Particle Filtering

CS6240 Multimedia Analysis

Leow Wee Kheng

Department of Computer Science
School of Computing
National University of Singapore
Introduction

Video contains motion information that can be used for:

- detecting the presence of moving objects
- tracking and analyzing the motion of the objects
- tracking and analyzing the motion of camera

Basic tracking methods:

- **Gradient-based Image Flow:**
 - Track points based on intensity gradient.
 - Example: Lucas-Kanade method [LK81, TK91].

- **Feature-based Image Flow:**
 - Track points based on template matching of features at points.

- **Mean Shift Tracking:**
 - Track image patches based on feature distributions, e.g., color histograms [CRM00].
Strengths and Weaknesses

- **Image flow approach:**
 - Very general and easy to use.
 - If track correctly, can obtain precise trajectory with sub-pixel accuracy.
 - Easily confused by points with similar features.
 - Cannot handle occlusion.
 - Cannot differentiate between planner motion and motion in depth.
 - Demo: lk-elephant.mpg.

- **Mean shift tracking:**
 - Very general and easy to use.
 - Can track objects that change size & orientation.
 - Can handle occlusion, size change.
 - Track trajectory not as precise.
 - Can’t track object boundaries accurately.
 - Demo: ms-football1.avi, ms-football2.avi.
Basic methods can be easily confused in complex situations:

- In frame 1, which hand is going which way?
- Which hand in frame 1 corresponds to which hand in frame 2?
Notes:

- The chances of making wrong association is reduced if we can correctly **predict** where the objects will be in frame 2.
- To predict ahead of time, need to **estimate** the velocities and the positions of the objects in frame 1.

To overcome these problems, need more sophisticated tracking algorithms:

- **Kalman filtering**: for linear dynamic systems, unimodal probability distributions
- **Extended Kalman filtering**: for nonlinear dynamic systems, unimodal probability distributions
- **Condensation algorithm**: for multi-modal probability distributions
CONDENSATION

Conditional Density Propagation over time [IB96, IB98]. Also called particle filtering.

Main differences with Kalman filter:

1. Kalman filter:
 - Assumes uni-modal (Gaussian) distribution.
 - Predicts single new state for each object tracked.
 - Updates state based on error between predicted state and observed data.

2. CONDENSATION algorithm:
 - Can work for multi-modal distribution.
 - Predicts multiple possible states for each object tracked.
 - Each possible state has a different probability.
 - Estimates probabilities of predicted states based on observed data.
Probability Density Functions

Two basic representations of probability density functions $P(x)$:

1. **Explicit**
 - Represent $P(x)$ by an explicit formula, e.g., Gaussian
 \[
 P(x) = \frac{1}{\sqrt{2\pi \sigma}} \exp \left(-\frac{x^2}{2\sigma^2} \right)
 \]
 (1)
 - Given any x, can compute $P(x)$ using the formula.

2. **Implicit**
 - Represent $P(x)$ by a set of samples x_1, x_2, \ldots, x_n and their estimated probabilities $P(x_i)$.
 - Given any $x' \neq x_i$, cannot compute $P(x')$ because there is no explicit formula.
CONDENSATION algorithm predicts multiple possible next states.

- Achieved using **sampling** or **drawing samples** from the probability density functions.
- High probability samples should be drawn more frequently.
- Low probability samples should be drawn less frequently.
Sampling from Uniform Distribution

Uniform Distribution:

\[P(x) = \begin{cases}
\frac{1}{X_M - X_m} & \text{if } X_m \leq x \leq X_M \\
0 & \text{otherwise.}
\end{cases} \]

(2)

- Equal probability between \(X_m \) and \(X_M \):
Sampling Algorithm:

1. Generate a random number r from $[0, 1]$ (uniform distribution).
2. Map r to x:

$$x = X_m + r(X_M - X_m) \quad (3)$$

The samples x drawn will have uniform distribution.
Sampling from Non-uniform Distribution

Let $P(x)$ denote the probability density function. $F(x)$ is the indefinite integral of $P(x)$:

$$F(x) = \int_0^x P(x)\,dx$$ \hspace{1cm} (4)
Sampling Algorithm:

1. Generate a random number r from $[0, 1]$ (uniform distribution).
2. Map r to x:
 - Find the x such that $F(x) = r$, i.e., $x = F^{-1}(r)$.
 - That is, find the x such that the area under $P(x)$ to the left of x equals r.

The samples x drawn will fit the probability distribution.
The method is useful when
- it is difficult to compute $F^{-1}(r)$, or
- the probability density is implicit.

The basic idea is similar to the previous method:
- Given x_i and $P(x_i)$, $i = 1, \ldots, n$.
- Compute cumulative probability $F(x_i)$:

$$F(x_i) = \sum_{j=1}^{i} P(x_j) \quad (5)$$

- Compute normalized weight $C(x_i)$:

$$C(x_i) = \frac{F(x_i)}{F(x_n)} \quad (6)$$
Sampling Algorithm:

1. Generate a random number r from $[0, 1]$ (uniform distribution).
2. Map r to x_i:
 - Find the smallest i such that $C_i \geq r$.
 - Return x_i.

Samples $x = x_i$ drawn will follow probability density.
- The larger the n, the better the approximation.
Factored Sampling

- x: object model (e.g., a curve)
- z: observed or measured data in image
- $P(x)$: a priori (or prior) probability density of x occurring.
- $P(z|x)$: likelihood that object x gives rise to data z.
- $P(x|z)$: a posteriori (or posterior) probability density that the object is actually x given that z is observed in the image.

So, want to estimate $P(x|z)$.
From Bayes’ rule:

\[P(x|z) = k P(z|x) P(x) \]

where \(k = P(z) \) is a normalizing term that does not depend on \(x \).

Notes:

- In general, \(P(z|x) \) is multi-modal.
- Cannot compute \(P(x|z) \) using closed form equation. Has to use iterative sampling technique.
- Basic method: factored sampling [GCK91]. Useful when
 - \(P(z|x) \) can be evaluated point-wise but sampling it is not feasible, and
 - \(P(x) \) can be sampled but not evaluated.
Factored Sampling Algorithm [GCK91]:

1. Generate a set of samples \(\{s_1, s_2, \ldots, s_n\} \) from \(P(x) \).
2. Choose an index \(i \in \{1, \ldots, n\} \) with probability \(\pi_i \):

\[
\pi_i = \frac{P(z|x = s_i)}{\sum_{j=1}^{n} P(z|x = s_j)}.
\] \hspace{1cm} (8)

3. Return \(x_i \).

The samples \(x = x_i \) drawn will have a distribution that approximates \(P(x|z) \).

- The larger the \(n \), the better the approximation.
- So, no need to explicitly compute \(P(x|z) \).
CONDENSATION Algorithm

Object Dynamics

- state of object model at time t: $\mathbf{x}(t)$
- history of object model: $\mathbf{X}(t) = (\mathbf{x}(1), \mathbf{x}(2), \ldots, \mathbf{x}(t))$
- set of image features at time t: $\mathbf{z}(t)$
- history of features: $\mathbf{Z}(t) = (\mathbf{z}(1), \mathbf{z}(2), \ldots, \mathbf{z}(t))$

General assumption: object dynamic is a Markov process:

$$P(\mathbf{x}(t + 1) | \mathbf{X}(t)) = P(\mathbf{x}(t + 1) | \mathbf{x}(t)) \quad (9)$$

i.e., new state depends only on immediately preceding state.
- $P(\mathbf{x}(t + 1) | \mathbf{X}(t))$ governs probability of state change.
Measurements

Measurements $z(t)$ are assumed to be mutually independent, and also independent of object dynamics. So,

\[
P(Z(t) \mid X(t)) = \prod_{i=1}^{t} P(z(i) \mid x(i)).
\]
(10)
CONDENSATION Algorithm

Iterate:

At time \(t \), construct \(n \) samples \(\{s_i(t), \pi_i(t), c_i(t), i = 1, \ldots, n\} \) as follows:

The \(i \)th sample is constructed as follows:

1. **Select** a sample \(s \) from the probability distribution \(\{s_i(t-1), \pi_i(t-1), c_i(t-1)\} \).

2. **Predict** by selecting a sample \(s' \) from the probability distribution

\[
P(x(t) \mid x(t-1) = s)
\]

Then, \(s_i(t) = s' \).
Measure $z(t)$ from image and weight new sample:

$$\pi_i(t) = P(z(t) \mid x(t) = s_i(t))$$

- normalize $\pi_i(t)$ so that $\sum_{i} \pi_i(t) = 1$
- compute cumulative probability $c_i(t)$:

$$c_0(t) = 0$$
$$c_i(t) = c_{i-1}(t) + \pi_i(t)$$
Example

Track curves in input video [IB96].

Let

- \mathbf{x} denote the parameters of a linear transformation of a B-spline curve, either affine deformation or some non-rigid motion,
- \mathbf{p}_s denote points on the curve.

Notes:

- Instead of modeling the curve, model the transformation of curve.
- Curve can change shape drastically over time.
- But, changes of transformation parameters are smaller.
Model Dynamics

\[x(t + 1) = Ax(t) + B\omega(t) \] \hspace{1cm} (11)

- **A**: state transition matrix
- **\omega**: random noise
- **B**: scaling matrix

Then, \(P(x(t + 1) | x(t)) \) is given by

\[
P(x(t + 1) | x(t)) = \exp \left\{ -\frac{1}{2} \| B^{-1}[x(t + 1) - Ax(t)] \| ^2 \right\} . \hspace{1cm} (12)
\]

\(P(x(t + 1) | x(t)) \) is a Gaussian.
Measurement

- \(P(z(t) \mid x(t)) \) is assumed to remain unchanged over time.
- \(z_s \) is nearest edge to point \(p_s \) on model curve, within a small neighborhood \(\delta \) of \(p_s \).
- To allow for missing edge and noise, measurement density is modeled as a robust statistics, a truncated Gaussian:

\[
P(z \mid x) = \exp \left\{ -\frac{1}{2\sigma^2} \sum_s \phi_s \right\}
\]

where

\[
\phi_s = \begin{cases}
\| p_s - z_s \|^2 & \text{if } \| p_s - z_s \| < \delta \\
\rho & \text{otherwise.}
\end{cases}
\]

\(\rho \) is a constant penalty.

Now, can apply CONDENSATION algorithm to track the curve.
Further Readings:

- [IB96, IB98]: Other application examples of CONDENSATION algorithm.
Reference I

"Introduction to Random Signals and Applied Kalman Filtering."

D. Comaniciu, V. Ramesh, and P. Meer.
Real-time tracking of non-rigid objects using mean shift.

U. Grenander, Y. Chow, and D. M. Keenan.
"HANDS. A Pattern Theoretical Study of Biological Shapes."
M. Isard and A. Blake.
Contour tracking by stochastic propagation of conditional density.

M. Isard and A. Blake.
CONDENSATION — conditional density propagation for visual tracking.
Reference III

B. D. Lucas and T. Kanade.
An iterative image registration technique with an application to stereo vision.
http://www.ri.cmu.edu/people/person_136_pubs.html.

C. Tomasi and T. Kanade.
Detection and tracking of point features.
http://citeseer.nj.nec.com/tomasi91detection.html,
http://www.ri.cmu.edu/people/person_136_pubs.html.