
Introduction

This set of articles consists of scribe notes from the course CS6282, ”Very Large Scale
Distributed Systems”, conducted in School of Computing, National University of Singa-
pore. These notes are meant to be dynamic, evolving over time, with frequent changes
and updates.

i



1 Introduction

Scribed By Ooi Wei Tsang, version 0.1, Last Modified 11 Aug 05

1.1 DISTRIBUTED SYSTEMS

A distributed system, simply put, is a system with multiple computers working together
to perform a task. As an example, consider “viewing a web page” as the task. To perform
this task, the web server, caching proxy, ad server, and the end-user’s computer work
together to retrieve the web page and its object for display at the end-user’s computer.

In this course, we are interested in large scale distributed systems. In other words, sys-
tems with a large number of computers working together to perform a task. An example
of such system is the Internet, where tens of thousands of routers are working together to
route packets between hosts. Recent technology advances, including faster CPU, higher
network capacity, smaller transistors, has lead to many new services, applications and
networks that can be characterized as large scale distributed systems. Understanding
how these systems work, and how to design and build them properly, thus has became
an important issue.

As an example of large scale distributed system, consider a recent phenomenon used
for peer-to-peer file sharing called BitTorrent1. BitTorrent allows thousands of hosts to
share files. This ability is enabled by the trend of increasing high speed connections to
homes and increasing harddisk space to store files.

Another example is wireless sensor networks. In such networks, thousands of tiny
sensors can be scattered over an area, working together to achieve a task, such as envi-
ronmental monitoring. Advances in radio and hardware technology has enabled this new
type of network.

1.2 DESIGN REQUIREMENTS

We now examine some general properties of a “good” large scale distributed system.
These properties should be the design goals, or design requirements of any such systems,
and they guide the performance metrics that we should use to evaluate a system.

We should note that it is often impossible to meet all these requirements at the same
time. In most cases, we have to trade-off between these requirements.

Correct The first requirement is, of course, the system must behave correctly. Consider
Internet routing – the packets must be routed correctly between the hosts. While this
requirement seems obvious, Fischer, Lynch and Paterson showed in 1985 that in the pres-
ence of unreliable processes, consensus among the processes cannot be achieved [2]. This
result implies that, in theory, absolute correctness cannot be achieved if some processes
or the network is unreliable. In such cases, we will have to settle for “practically” correct.
If you feel uneasy over this, you can think about TCP – a transport layer protocol that
is considered as reliable. In theory, however, TCP can never guarantee that the packet
delivered will arrive (for instance, the network may fail or connection may timeout due

1http://www.bittorrent.com

ii



DESIGN REQUIREMENTS iii

to long delays). But, TCP is good enough to be called reliable. Another point to note is
that, in some cases, we will have to sacrifice correctness in order to improve performance
in another metric. For instance, to monitor temperature in a sensor network, we may
settle for an approximate average temperature, rather than the absolute average, just so
that the scheme is efficient.

Scalable Scalability is another important requirement for building large scale systems.
The term scalability, refers to the ability of a system to perform well despite increasing
demand. We typically refer to scalability with respect to a certain system parameter and
a specific task. For instance, Internet can route packets pretty well even as the number
of hosts and routers grows. However, existing Internet does not scale in terms of host
naming as the number of hosts increases.

Scalability is often relative and subjective. For instance, using BitTorrent to distribute
a software release, is more scalable than distributing a new release through a FTP server.
But using a centralized tracker limits the scalability of BitTorrent, and thus is less scalable
compared to a solution that uses a distributed tracker.

Robust The term robust, or fault tolerant, refers to the ability for the system to continue
working in full or in part despite failures or broken part. The Internet routing structure
is somewhat robust, as when one or two routers fail, most of the time packets can find
an alternate paths between hosts.

Consider the example of BitTorrent. The BitTorrent protocol is extremely robust
against failure of peers. It, however, relies on a centralized tracker to track who to
download files from. If the tracker fails, a BitTorrent client will not be able to function.

This goal closely relates to the goal of Availability, which is the percentage of time a
system is able to function.

Efficient Another general design goal is efficiency. We should design a system to be
efficient in terms of number of messages exchange, computations required, time taken,
battery power consumed etc. The latter is especially of concern in a wireless sensor
network.

Simple There is a funny article by Doug Comer about how to insult a computer sci-
entist2. A quote from the article, says, “Systems researchers take pride in being able
to invent the simplest system that offers a given level of functionality”. Simplicity, be-
sides being beautiful and elegant, can lead to easier implementation, less bugs, easier
maintenance, and easier analysis.

This design goal is known as the KISS principle (“Keep it Simple and Stupid”).
An example of a simple design, is how Internet routing protocol deals with router

failure or configuration changes. There is no explicit error handling in the protocol.
Instead, a router simply periodically forgets routing table entries, and relies of periodic
refresh messages from other routers to update the table. Entries corresponding to failed
routers will automatically be removed from the table (such states are known as soft
states).

Ease of Use A design goal related to simplicity is ease of use. The system must provide
friendly interface to end-users and the right programming abstractions to developers.
The system must support incremental deployment of software and protocols.

Secure Finally, we should design the system to be secure – robust against unauthorized
access, tempering and attack from malicious users. In certain applications, ensuring the
users’ privacy is important as well.

2http://www.cs.purdue.edu/homes/dec/essay.criticize.html



iv CS6282

1.3 CHALLENGES

In this section, we discuss why it is challenging to meet the design requirements listed
in the previous sections. The characteristics of a large-scale distributed system are as
follows.

Numbers The first factor that complicates the design of any large scale distributed
system is simply the number of hosts or devices involved. Designing a system that scales
to a large number becomes important. The efficiency of the algorithm involved becomes
important – for instance, a O(N2) algorithm might be acceptable in a distributed system
with 10 nodes, but in a large system with tens of thousands of node, such algorithm will
not scale.

The large number of nodes increases the number of faults that can occur. An event
that occurs rarely on a single host, can happen pretty often when the number of hosts is
large [3].

Scattered The second complications come from the fact that the hosts and devices might
be scattered over a large geographical area. This increases the communication latency
among the hosts and increases the unreliability of communications among the hosts.

Note that not all large scale distributed systems are scattered. Large cluster of PCs,
such as the one used by Google to answer web search query [1], is an example.

Dynamic Users in a large scale distributed system can join and leave as they want. This
activity is sometimes known as churn. High churning rate poses a challenge as states
might needs to be updated or transfered among the nodes everytime a node leave or join
the system.

BitTorrent is an example system that can handle the transient of nodes very well.

Unreliable Nodes in a large scale distributed system can fail. In contrast to churn,
where a node might leave gracefully, nodes failure occurs unpredictably. Due to the large
numbers of hosts, failure can happen more frequently than one would think.

Untrustable Not all nodes in a distributed system can be trusted.
This characteristic is particularly critical in design of distributed games. In games,

players are selfish rather than cooperative. They tend to cheat.

Resource Constraint A system always has a bottleneck that prevents it to scale arbi-
trarily. Such constraints often force us to design efficient algorithms and techniques.

Note that in any systems research, interesting problems exists only when there is
certain level of resource constraints. When resources are too limited, there is nothing we
can do. When resources are abundance, we can do anything!

Heterogeneity To complicate matters, not only that nodes have resource constraints, dif-
ferent nodes might have different constraints. In a large scale distributed systems, nodes
are more likely to have different amount of CPU power, battery power and network link
capacity. Some nodes have more resource constraints than others. Such heterogeneity
needs to be considered as well. Often, we need to treat such nodes differently.

1.4 BASIC PRIMITIVES

Many different services and applications exists as a large-scale distributed systems. How-
ever, most of the applications can be built on-top of a small number of primitives. In
this sections, we attempt to list down some of these primitives.



SUMMARY v

Lookup/Update Table lookup is a primitive operation in many applications. For in-
stance, DNS performs lookup on host name; File sharing applications perform lookup to
find out which peer store a particular file.

All lookup-based applications have a naive, unscalable solution in which the lookup
table is stored in a centralized server and every node query that server for information
(Incidentally, this is how the original Napster work).

If the table is static, then a simple solution to scalability is replication. Most of
the time, however, the lookup table is dyanmic and can be changed through update
operations. The design space to consider can be different when the lookup table can be
changed thorugh insert or delete operations.

One-to-Many Another primitive is dissemination of information to a subset of nodes
in the system. This operation, also known as multicast, is extremely useful for group
communications. For instance, in a video on demand application, the server needs to
stream a video to multiple viewers. In a sensor network, a node might want to send
messages to query the temperature of a set of other sensors.

The special case where a message is sent to all other nodes is called broadcast.

Many-to-one The reverse of the multicast primitive, where multiple nodes send mes-
sages to a single sink, is useful for collecting information. An example where this is used
is network management. Another example is sensor network. Continuing the previous
example, the temperature readings of the sensors can be sent back to the querying node
using this primitive.

Publish/Subscribe This specialized primitive, is a more general version of multicast. In
multicast, we want to send identical messages to a set of nodes. In publish/subscribe
system, different sets of nodes might be interested (“subscribed”) in different information.
A set of messages needs to be sent (“published”) such that only those who are interested
in the messages receives it.

An example is event notification services. IBM, for example, uses such service to send
updates to millions of users during the Sydney Olympic in 2000.

Maintaining Global States Besides the communication primitives above, applications
might require maintenance of some global states across the nodes in a distributed system.
One such example is multi-player games.

Read/Write/Execute Some primitive OS operations might be needed for certain appli-
cations. For instance, Grid computing allows code to be executed on a remote machine.
Download files from a P2P file sharing system, can be considered as reading from a
distributed file system.

1.5 SUMMARY

In this lecture, we discussed the requirements, challenges and primitive operations in
large scale, distributed systems. The discussions here provide a framework in which
individual technique and system that we will study over the semester can be compared
and categorized into.

REFERENCES

1. L. A. Barroso, J. Dean, and U. Hlzle. Web search for a planet: The google cluster
architecture. IEEE Micro, 23(02):22–28, 2003.



vi

2. M. H. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of consensus with one
faulty process. Journal of the ACM, 32(2):374–382, April 1985.

3. S. Muir. The seven deadly sins of distributed systems. In The 1st USENIX Workshop
on Real, Large Distributed Systems (WORLDS 2004), San Francisco, CA, December
2004.


