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ABSTRACT
Crowdsourcing has created a variety of opportunities for many chal-
lenging problems by leveraging human intelligence. For example,
applications such as image tagging, natural language processing,
and semantic-based information retrieval can exploit crowd-based
human computation to supplement existing computational algo-
rithms. Naturally, human workers in crowdsourcing solve problems
based on their knowledge, experience, and perception. It isthere-
fore not clear which problems can be better solved by crowdsourc-
ing than solving solely using traditional machine-based methods.
Therefore, a cost sensitive quantitative analysis method is needed.

In this paper, we design and implement a cost sensitive method
for crowdsourcing. We online estimate the profit of the crowd-
sourcing job so that those questions with no future profit from
crowdsourcing can be terminated. Two models are proposed to
estimate the profit of crowdsourcing job, namely the linear value
model and the generalized non-linear model. Using these models,
the expected profit of obtaining new answers for a specific question
is computed based on the answers already received. A question is
terminated in real time if the marginal expected profit of obtaining
more answers is not positive. We extends the method to publish a
batch of questions in a HIT. We evaluate the effectiveness ofour
proposed method using two real world jobs on AMT. The experi-
mental results show that our proposed method outperforms all the
state-of-art methods.

Categories and Subject Descriptors
H.3.m [Information Storage and Retrieval]: Miscellaneous

Keywords
Crowdsourcing, Decision-making

1. INTRODUCTION
Crowdsourcing has attracted a great deal of interest as a plat-

form for leveraging crowd-based human computation and intelli-
gence. It is to some extent inspired by the vast amount of collab-
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oration in Web 2.0 communities, where users share not only infor-
mation, but also their knowledge and intelligence. Platforms such
as, for example, the Amazon Mechanical Turk (AMT) [1], facilitate
the refinement of data and reduction of noise by passing complex
jobs to human workers. These complex jobs include image tag-
ging, semantic-based information retrieval, and natural language
processing, which are hard for computers, but relatively easy for
human workers. Instead of designing sophisticated algorithms or
spending a lot of money to consult experts, many of these jobs
can be solved by human workers on a crowdsourcing platform at
a much lower cost. Some successful crowdsourcing applications
that appear recently include CrowdDB [4], CrowdSearch [19], and
HumanGS [14].

Despite the success of crowdsourcing systems, employing crowd-
sourcing effectively remains challenging for three reasons. First,
for most crowdsourcing jobs, we need to obtain multiple answers
to guarantee their quality. Thus, we have to decide when to stop
obtaining new results provided by human workers. Most existing
work uses the accuracy or the cost as the optimization objective.
These turn out to be too rigid in practice. However, the trade-
off is not trivial. Typically crowdsourcing jobs may have different
level of difficulty (e.g. homework of kids vs. research problems),
risks (e.g. Flickr image tagging vs. cancer diagnosing), and profits
(e.g. survey for personal interest vs. design for investment model).
Therefore, it is important to have an online economic model that
considers all these factors of crowdsourcing jobs.

Second, none of the current research focuses on whether a prob-
lem is suitable for crowdsourcing or not. Intuitively, crowdsourc-
ing based techniques are more fitting for problems that require se-
mantic processing. For example, sentiment analysis, imagetag-
ging, and information retrieval are good problems for crowdsourc-
ing while large scale numerical analytics are better handled by ma-
chines.

Finally, the estimation of crowdsourcing quality is still primi-
tive. Low quality answers may sharply reduce the quality of crowd-
sourcing, and introduce noises. To resolve the quality issue, sev-
eral methods have been proposed, such as Crowdscreen [12] and
CDAS [9]. Both proposals only consider the accuracy of the an-
swers provided by the workers, without taking into account the dif-
ficulty of the tasks. However, it is very challenging to predict the
difficulty of the tasks, and a robust algorithm that can handle prob-
lems of varied levels of difficulty and answers of varied levels of
quality is needed.

In this paper, we propose a novel online cost sensitive decision-
making model to address the above three challenges. Our contribu-
tions include:



Workers

HIT

Answer

Termination
Strategy

Crowdsourcing
System

Strategy
Maker

Job Manager

Accuracy-Cost Predictor

Decision-Making System

accu-cost function

budget/constraints

error loss function

accu/cost expectation

cost prediction

accuracy prediction

User Requirements

Results Prediction

Job

Question1

Question2

...

predictions
without
real job

trade-off

Customer

remove
completed
questions

question status

early
prediction

Question
Dispatcher

HIT result

questions
requiring

more
workers

requiring
worker
number

prediction

answersanswers

questionsquestions

actions before
crowdsourcing

actions for publishing
HIT to workers

actions for receiving
workers’ answers

accepted
HIT

questions

Figure 1: The Architecture of Cost Sensitive Decision Making System

• We propose an online, cost sensitive decision-making model
to analyze and decide whether to stop the question in its cur-
rent status, given the value of the question, the risk of get-
ting incorrect answers, and the cost of workers in the crowd-
sourcing system. To the best of our knowledge, our model is
the first that provides an online quantitative profit analysis of
crowdsourcing jobs. We further extend our algorithm to sup-
port online cost sensitive decision-making with constraints,
such as limited budgets etc.

• An application or task may contain questions of diverse dif-
ficulty levels. We propose a model for measuring the diffi-
culty of a question and We design and implement a robust
algorithm that handles such questions.

• We propose a novel algorithm called Accuracy-Cost to per-
form the marginal analysis of the accuracy and the cost in
crowdsourcing. The algorithm calculates the incremental pro-
fit when the number of workers is increased.

• We conduct extensive experimental studies on two real data-
sets obtained from the answers of workers in AMT to eval-
uate the effectiveness of our proposed method. The results
show that our method obtains precise results while keeping
the cost low. We also develop an automatic question dis-
patching method that assigns multiple questions in a HIT
while each question can be terminated at any time.

The rest of this paper is organized as follows. Section 2 gives
an overview of our method. Section 3 explains the preliminaries.
Section 4 presents our proposed linear model to get real timedeci-
sions and analyse the profit. Section 5 extends our linear model to
the non-linear model, which demonstrates the relationshipbetween
cost and accuracy and gives our model widespread applicability.
Section 6 discusses the experimental studies. Section 7 reviews the
related works. Finally, we conclude in Section 8.

2. OVERVIEW
In this section, we give an overview of our cost sensitive decision-

making method for crowdsourcing.

Figure 1 shows the architecture of our proposed method. The
core part is the decision-making system (the dashed box), which
consists of five components, namely the job manager, the question
dispatcher, the accuracy-cost predictor, the strategy maker, and the
termination strategy manager. The job manager passes the ques-
tions from the crowdsourcing customer to the question dispatcher.
It keeps collecting the answers of the workers and reportingthe
updated question status to the termination strategy manager. Af-
ter receiving the questions, the question dispatcher allocates these
questions to several workers using a question dispatching algorithm
(will be discussed in Subsection 5.2). The termination strategy
manager determines whether we should stop getting more answers
for a question and return the results to the customer based onthe
status of the question. These termination strategies are generated by
the strategy maker according to user’s requirements, namely the er-
ror loss function, the accuracy/cost expectation, the budget, or other
constraints. The strategy maker employs a linear model we propose
in Section 4. Note that the generated strategies are stored in the ter-
mination strategy manger so that our decision-making system is
able to decide if we should terminate a question in real-time. The
accuracy-cost predictor provides two major functionalities. First,
it predicts the results as well as the accuracy/cost ratio. Second, it
generates the termination strategies using a generalized non-linear
model together with the strategy maker. The details of the non-
linear model is discussed in Section 5.

In summary, our proposed decision-making system automati-
cally dispatches questions to the workers. It terminates the ques-
tions and returns the answers in real-time according to the gen-
erated termination strategies. This decision-making system also
provides an early prediction of the results before running areal
crowdsourcing job in order to help the customer set proper user re-
quirements. In the following sections, we present the idea and the
method of implementing this decision making system.

3. PRELIMINARIES
Before describing our method in Section 4 and 5, we discuss the

required prior knowledge to understand the problem.



For the sake of brevity, in our model we assume the questions
are two-choice problems. We can think of the two choices as bi-
nary values0 and1. However, we can easily extend our method to
problems that have more than two choices.

Question status: We model the status of a question by a pair
(m, l) that represents the numbers of the two different answers re-
ceived from the workers. Since the values0 and 1 are just two
symbols to represent both choices, the0s and1s in the answers can
be exchanged. As a result, the following two cases: (1)m 0s and
l 1s; (2)m 1s andl 0s can be viewed as identical to represent the
agreement of the workers on the two choices. Without loss of gen-
erality, in the remainder of this paper, we use(m, l) (m > l) to
represent the above two cases.

Intuitively, the question status indicates the difficulty of the ques-
tion. Whenm is far larger thanl, most of the workers agree on one
choice. It could be that this question is easy. On the other hand,
whenm is close tol, it is likely that the question is too difficult so
that the workers are just making guesses.

Question run: A question runr is a sequence of question sta-
tuses as we get answers from workers for this question, i.e.,

r = {(m0, l0), (m1, l1), · · · , (mn, ln)}

where(m0, l0) = (0, 0) is the initial status. Every non-initial sta-
tus (mi, li) has exactly one more answer than its previous status
(mi−1, li−1), i.e.,(mi, li) = (mi−1, li−1+1) or (mi−1+1, li−1).
In the above question runr, the question is terminated at question
status(mn, ln), after which it will not accept more answers. For
example,{(0, 0), (1, 0), (2, 0), (2, 1)} is a valid question run that
stops after getting three answers but{(0, 0), (1, 0), (2, 1), (2, 0)}
is not a valid question run.

Accuracy of question answer:We useAQ to denote the accu-
racy of an answer to questionQ, i.e. the probability that a worker
provides the correct answer. Most of existing works considering
the accuracy of answers assume that the accuracy is a fixed value
that can be computed from sampled answers, e.g. [9][12]. The
major drawback of these models is that they do not take the dif-
ficulty of questions into consideration. Using these models, for a
single worker, his answers to different questions would have the
same quality. However, this observation contradicts the intuition
that the answers of a hard question might be poor.

In our paper, instead of modelling the accuracy as a single fixed
value and employing sampling based methods to estimate thisvalue,
we represent the accuracy as a probability distribution. The proba-
bility distribution provides the ability of modelling answer quality
based on the observed question status. We model the accuracyAQ

as a random variable and we estimate the value ofAQ by the ob-
servation of the question status(m, l). Specifically, we assume that
AQ obeys the Beta distribution:

ASSUMPTION 1. Given a questionQ, the probability density
function ofAQ is:

f(AQ = µ) = µa−1(1− µ)b−1/Beta(a, b)

We thus haveE[AQ] = a/(a + b). a and b are parameters of
the Beta distribution, representing the prior prediction of the ran-
dom variable. The Beta distribution is actually a two-dimensional
Dirichlet distribution1. We can replace the Beta distribution by the
more general Dirichlet distribution for multiple choice questions.

If the prior distribution is B(µ|1, 1), i.e., the uniform distribu-
tion, then the estimation ofAQ is only determined by the observa-
tion of the question status. In other words, our method is a general-

1http://en.wikipedia.org/wiki/Dirichlet_distribution

ized form of both the traditional fixed accuracy model and theuni-
form distribution. It takes both the prior knowledge and theques-
tion status observation into consideration to adapt the estimated dis-
tribution of the difficulty of problems. Ideally the estimated distri-
bution performs best when it is the same as the empirical distri-
bution of problem difficulty. However, the empirical distribution
is always difficult to obtain. Moreover, it is not feasible tocom-
pute Bayesian inference based on the empirical distribution. The
Beta distribution is used to simplify the computation, as itis the
conjugate prior distribution of Binomial and Bernoulli distribution.
While on the other hand, Beta distribution with proper parameters
fits the accuracy distribution well.

We have observed that our model is robust since using different
prior prediction parametersa, b almost does not change the results.
This is because our model is based on a probability distribution and
it can be adaptively adjusted to be applied on questions withdiver-
sified difficulties. Moreover, we observed that the empirical distri-
bution ofAQ in several real question sets, including the tweet sen-
timent analysis questions and common sense questions used in our
experiments, is similar to the B(µ|6, 2) distribution. On the other
hand, our experiments also show that when distribution changes,
this estimation still works well. In Section 4, we explain the reason
that the probability distribution based accuracy model outperforms
the fixed value based accuracy models. In the experiment section,
we use empirical data to support the above two observations.

Accuracy of question result:We useAR to represent the accu-
racy of the result based on a majority voting on the current ques-
tion status(m, l). We always choose the answer represented by
the majoritym. As a result,AR is the probability that the majori-
tiesm choose the correct answer. We define〈x, y〉 as the status
havingx correct answers andy incorrect answers. As the status
(m, l) represents eitherm correct answers orm incorrect answers,
(m, l) = 〈m, l〉∪〈l, m〉. By Bayesian analysis, the conditional prob-
ability, AR givenAQ and observation(m, l) is:

AR =
Pr(〈m, l〉)

Pr(〈m, l〉) + Pr(〈l, m〉)
=

AQ
m−l

AQ
m−l + (1− AQ)m−l

Note thatAR is also a random variable asAQ is a random vari-
able.

The notations used in the following sections of this paper are
listed in Table 1.

4. LINEAR DECISION-MAKING
In this section, we introduce a linear model for online decision

making. We first estimate the accuracy of the answers according
to the question status and prior distribution. Based on the estima-
tion of the answer accuracy, we obtain the marginal income and
the profit of each status. This enables us to make decisions ateach
status according to the economic profit. In this paper, we employ
a dynamic programming algorithm to calculate the profit and gen-
erate the strategy for each question status. We prove that the time
complexity of our strategy generating algorithm isO(n2) (n is the
maximum possible number of answers for a single question, i.e. the
search space), which is a significant improvement compared with
existing methods such as CrowdScreen’sO(n4) linear program-
ming. In this section, we also discuss the techniques of extending
our method to solve a more complex problem, namely linear model
with constraints of accuracy and cost.

4.1 Linear model
For a questionQ, the linear model has three variables: the ques-

tion valueVQ, the error lossLQ, and the question cost per worker



Table 1: Notations
Q a question in a crowdsourcing job
VQ the value of a crowdsourcing questionQ
LQ the loss of getting a wrong answer forQ
CQ the cost of assigning a question to a worker

(m, l) the status of the crowdsourcing questionQ

AR
the probability that the voting result ofQ
is correct

AQ
the probability that a worker provides the
correct answer to the questionQ

MI(m, l)
the marginal income of the question accuracy
AR in status(m, l)

P (m, l)
the expected economic profit of the question
in status(m, l)

PS(m, l)
the expected economic profit of stopping the
question in status(m, l)

PC(m, l)
the expected economic profit of continuing the
question in status(m, l)

B(µ|a, b) PDF of Beta distribution
Γ(n) Gamma function

Beta(a, b) Beta function

CQ. As discussed in Section 2, these values are preset by the
crowdsourcing customer.VQ is the value of this question given
an answer (not necessarily a correct one). The error lossLQ is the
penalty of obtaining a wrong answer forQ. CQ represents the cost
of hiring a worker forQ. According to the definition ofVQ, LQ

andCQ, we propose the following linear model:

DEFINITION 4.1 (PROFIT OF A QUESTION). Suppose a ques-
tion Q ends after it receivesk answers, and the result isans. The
profit P of Q is:

(1) ans is correct:P = VQ − kCQ.

(2) ans is incorrect:P = VQ − LQ − kCQ.

However, in practice we do not know whether the answerans is
correct or not. Thus, we compute the expected valueE[P ] of the
profit to estimate the average profit of questionQ. The expected
profit is computed by:

E[P ] = (VQ − kCQ)E[AR] + (VQ − LQ − kCQ)(1 −E[AR])

= LQE[AR] + VQ − LQ − kCQ

whereAR is the probability thatans is correct. Note thatAR is a
random variable, we thus use the expectedE[P ] with respect to all
possible worlds ofAR.

We use two functions, namely the value functionfV (E[AR]) and
the cost functionfC(E[AR]), to describe the expected profit func-
tion E[P ](E[AR]). fV (E[AR]) is the expected gain from the job,
while fC(E[AR]) is the cost of crowdsourcing. In this model, ob-
viously fV (E[AR]) (i.e. LQE[AR] + VQ −LQ) is a linear function
of accuracyE[AR]. It is remarkable that the expected profit func-
tion is not a linear function forE[AR], since largerE[AR] requires
more answers (larger number ofk). We will discuss the non-linear
fV (E[AR]) in next section for some special needs in multi-question
situation.

In Subsection 4.2, we describe the method to estimateE[AR]

based on the prior distributionB(µ|a, b) of the difficulty AQ and
the observations on the final status(m, l) of Q.

We formally define the decision-making problem based on the
linear model.

PROBLEM DEFINITION 1. GivenVQ, LQ andCQ of a question
Q, find the decision-making algorithm to maximizeE[P ] among

all possible runs ofQ on any answer sequence provided by the
workers.

We next show the method of derivingE[AQ], E[AR] etc. in Sub-
section 4.2 and we discuss the algorithm of finding the question run
that maximizesE[P ] in Subsection 4.3.

4.2 Accuracy Estimation
Suppose the observation of the final status is(m, l), we can

derive theE[AQ] based on the prior distributionB(µ|a, b) using
Bayesian Analysis. The posterior result is our estimation of E[AQ].

THEOREM 4.1.

E[AQ] =
Γ(a +m+ 1)Γ(b + l) + Γ(a + l+ 1)Γ(b +m)

(a+ b+m+ l)(Γ(a +m)Γ(b + l) + Γ(a + l)Γ(b +m))

whereΓ(n) is the Gamma function such thatΓ(n) = (n − 1)! for
any positive integern.

PROOF. We prove the theorem using Bayesian Theorem. The
conditional probability density function of the observation O =
(m, l) given the conditionAQ = x (x ∼ B(µ|a, b)) is

fO(m, l|AQ = x) =
(m+ l

m

)

(xm(1− x)l + xl(1 − x)m)

Note that the probability density function contains two cases: (1)
m correct answers,l incorrect answers and (2)m incorrect an-
swers,l correct answers. Using Bayesian Theorem, we have:

fAQ
(AQ = x|m, l) =

fO(m, l|AQ = x)fAQ
(AQ = x)

fO(m, l)

=
(xm(1− x)l + xl(1 − x)m)xa−1(1 − x)b−1

∫ 1
0
(xm(1− x)l + xl(1− x)m)xa−1(1 − x)b−1dx

=
xa+m−1(1− x)b+l−1 + xa+l−1(1 − x)b+m−1

∫ 1
0
xa+m−1(1− x)b+l−1 + xa+l−1(1− x)b+m−1dx

Therefore, the expected value ofAQ is:

E[AQ] =

∫ 1

0
xfAQ

(AQ = x|m, l)dx

=

∫ 1

0

xa+m(1− x)b+l−1 + xa+l(1 − x)b+m−1

∫ 1
0 (xa+m−1(1 − x)b+l−1 + xa+l−1(1− x)b+m−1)dx

dx

=

∫ 1
0
xa+m(1 − x)b+l−1dx+

∫ 1
0
xa+l(1− x)b+m−1dx

∫ 1
0 (xa+m−1(1 − x)b+l−1dx+

∫ 1
0 xa+l−1(1 − x)b+m−1)dx

=
Beta(a +m+ 1, b+ l) +Beta(a + l + 1, b+m)

Beta(a +m, b+ l) +Beta(a + l, b+m)

=
Γ(a +m+ 1)Γ(b + l) + Γ(a + l + 1)Γ(b +m)

(a + b+m+ l)(Γ(a +m)Γ(b + l) + Γ(a + l)Γ(b +m))

Theorem 4.1 gives the average accuracy of the answers. Based
on this theorem, we can further derive the expectation of theac-
curacy of the resultsAR using Bayesian Analysis. We have the
following theorem:

THEOREM 4.2. Given observations on the final status(m, l) of
a question, the expected accuracy of the resultsE[AR] is:

E[AR] =
Γ(a +m)Γ(b + l)

Γ(a+m)Γ(b + l) + Γ(a + l)Γ(b+m)



Table 2: Trends ofAQ andAR
h
h
h
h
h
h
h
h
h
h
h
h
h

Prior Distribution

Question Status
(1,0) (3,3) (4,0) (8,2) (100,100) (101,100) (110, 100)

AQ

Fixed accuracy 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
B(µ|6, 2) 0.75 0.643 0.821 0.762 0.51 0.51 0.513

Fixed accuracy 0.80 0.8 0.8 0.8 0.8 0.8 0.8 0.8
B(µ|8, 2) 0.8 0.687 0.853 0.79 0.514 0.514 0.52

AR

Fixed accuracy 0.75 0.75 0.5 0.988 0.999 0.5 0.75 1
B(µ|6, 2) 0.75 0.5 0.962 0.953 0.5 0.51 0.591

Fixed accuracy 0.80 0.8 0.5 0.996 1 0.5 0.8 1
B(µ|8, 2) 0.8 0.5 0.985 0.983 0.5 0.514 0.634

PROOF. Note thatAR is a function ofAQ. Thus, the expected
value ofAR is:

E[AR] =

∫ 1

0
ARfAQ

(AQ = x|m, l)dx

=

∫ 1

0

xm(1− x)l

xm(1 − x)l + xl(1− x)m

×
xa+m−1(1 − x)b+l−1 + xa+l−1(1− x)b+m−1

∫ 1
0
xa+m−1(1 − x)b+l−1 + xa+l−1(1 − x)b+m−1dx

dx

=

∫ 1
0 xa+m−1(1 − x)b+l−1dx

∫ 1
0
xa+m−1(1 − x)b+l−1 + xa+l−1(1− x)b+m−1dx

=
Beta(a +m, b+ l)

Beta(a +m, b+ l) + Beta(a + l, b+m)

=
Γ(a +m)Γ(b + l)

Γ(a +m)Γ(b + l) + Γ(a+ l)Γ(b+m)

Theorem 4.1 and 4.2 show that the expected values ofAQ and
AR only depend on the status(m, l) and the prior parametersa, b.

To illustrate Theorem 4.1 and 4.2, we show several examples of
trends ofAQ andAR on different question status given specified
prior distribution of difficulty of questions in Table 2. We com-
pare the two Beta distributions B(µ|6, 2) and B(µ|8, 2) with two
fixed value based models with accuracy 0.75 and 0.8, which arethe
expected values of the two Beta distributions respectively. We ob-
tain the following facts from Table 2: in status(3, 3), the predicted
value ofAQ of the B(µ|8, 2) distribution model (0.687) is smaller
than that of fixed value model (0.75); in status(4, 0), the predicted
value ofAQ of the B(µ|6, 2) distribution model (0.821) is larger
than that of fixed value model (0.8). These two facts show thatthe
Beta distribution model provides a better prediction than the fixed
value based models, since the predicted values ofAQ according to
the fixed value based models are always the same no matter what
the current question status is.

Moreover, the predicted values of different distribution models
converge while the number of answers goes up. Therefore, the
choice of prior parameters in the distribution model is not impor-
tant, because the distribution model can adaptively adjustthe pre-
dicted values according to the observation of question status Con-
sider the status(8, 2), the two fixed value models (0.75 and 0.8)
provide very aggressive predictions onAR, i.e. 0.999 and 1 re-
spectively. However, in practice, 8 of 10 workers agree may not
always guarantee the correctness of the results.

When the status is (100, 100), we intuitively believeAQ is likely
to be close to 0.5 rather than 0.75 or 0.8. Based on the status
(100, 100), we consider the case of accepting one more answer,
i.e. question status(101, 100). ObviouslyAR should still be close
to 0.5 as the votes of both choices are very close. However, the
two fixed value based models provide the prediction ofAR as 0.75
and 0.8 respectively, which are the same as the predicted values in

question status(1, 0). This example shows that the Beta distribu-
tion model outperforms the fixed value based models by consider-
ing the question status.

According to Theorem 4.1 and 4.2, we can predict the possi-
ble future answers based onE[AQ], E[AR] and the current status
(m, l). We define two transitive probabilities:

(1) Pr(+1|m, l): probability from status(m, l) to (m+ 1, l).

(2) Pr(−1|m, l): probability from status(m, l) to (m, l + 1).

Intuitively Pr(+1|m, l) andPr(−1|m, l) represent the probability
that the next answer is the same value as the value voted bym and
l answers respectively. ObviouslyPr(+1|m, l) + Pr(−1|m, l) = 1.
We have the following theorem:

THEOREM 4.3.

E[Pr(+1|m, l)]

=
Γ(a +m+ 1)Γ(b + l) + Γ(b+m+ 1)Γ(a + l)

(a+ b+m + l)(Γ(a +m)Γ(b + l) + Γ(a + l)Γ(b+m))

The proof is analogous to Theorem 4.1. Based on these above the-
orems, we can quantitatively derive the decision-making strategies.

4.3 Decision Making
We consider the marginal income of accuracy at each status(m, l).

Then we derive the profit according to the marginal income of ac-
curacy. We define the marginal income of accuracy at status(m, l)

as the expected increase of theE[AR] after obtaining a new an-
swer. We denote the marginal income of accuracy at status(m, l)

asMI(m, l).

DEFINITION 4.2.

MI(m, l) = E′[AR|m, l]− E[AR|m, l]

whereE′[AR|m, l] is the expected accuracy of the results after
getting one more answer, i.e.E′[AR|m, l] =

if m>l: E[E[AR|m+1, l]Pr(+1|m, l)+E[AR|m, l+1]Pr(−1|m, l)],
i.e. E[AR|m+1, l]E[Pr(+1|m, l)]+E[AR|m, l+1]E[Pr(−1|m, l)]

if m=l: E[E[AR|m+1, l]Pr(+1|m, l)+E[AR|l+1, m]Pr(−1|m, l)],
i.e. E[AR|m+1, l]E[Pr(+1|m, l)]+E[AR|l+1,m]E[Pr(−1|m, l)]

By simplifying the equations in Definition 4.2, we have the fol-
lowing theorem:

THEOREM 4.4. The marginal income of accuracyMI(m, l)
satisfies:

(1) MI(m, l) = 0 whenm > l.

(2) MI(m,m) =
a− b

2(a+ b+ 2m)
.



Algorithm 1: Generate Linear Strategy Algorithm
Input : Parametera, b of prior distribution, Error LossLQ, question

costCQ

Output : StrategyS for each status(m, l)

1 M ← ⌈ 1
2
(
LQ(a−b)

6CQ
− (a + b))⌉;

2 S.M ←M ;
3 for i fromM to 0 do
4 S.(M, i)← stopping;
5 S.PS(M, i)← VQ − (1−E[AR|M, i])LQ − (M + i)CQ;
6 S.P (M, i)← S.PS(M, i);

7 for i fromM − 1 to 0 do
8 for j from i to 0 do
9 S.PS(i, j)← VQ − (1 −E[AR|i, j])LQ − (i + j)CQ;

10 S.PC(i, j)← E[Pr(+1|i, j)]S.P (i+ 1, j) +
E[Pr(−1|i, j)]S.P (i, j + 1)− CQ;

11 S.P (i, j)← max{S.PS(i, j),S.PC(i, j)};
12 if S.PS(i, j) >= S.PC(i, j) then
13 S.(i, j)← stopping;

14 else
15 S.(i, j)← continuing;

16 return S

PROOF. We prove the theorem by calculatingMI(m, l). When
m > l, getting an extra answer cannot change the result of the
majority voting. Therefore, the marginal income of accuracy is 0.
As a result,MI(m, l) = 0 whenm > l.

Whenm = l,

MI(m,m) = E[AR|(m + 1, m)]− E[AR|(m,m)]

=
Γ(a+m+ 1)Γ(b +m)

Γ(a +m+ 1)Γ(b +m) + Γ(a +m)Γ(b +m+ 1)

−
Γ(a +m)Γ(b +m)

Γ(a +m)Γ(b +m) + Γ(a+m)Γ(b +m)

=
(a+m)Γ(a +m)Γ(b +m)

((a +m) + (b+m))Γ(a +m)Γ(b +m)
−

1

2

=
a+m

a + b+ 2m
−

1

2

=
a− b

2(a + b+ 2m)

Note thata > b is guaranteed by the prior distribution. There-
fore,MI(m,m) decreases whilem increases.

Based on the marginal income of the accuracy, we can further de-
rive the profitP (m, l) of a question in status(m, l). The profit is
defined as the maximum economic profit at status(m, l) given the
linear model in Subsection 4.1. We introduce two more profit func-
tions before formally definingP (m, l), namely the profitPS(m, l)
of stopping the question at status(m, l) and the profitPC(m, l) of
continuing the question at status(m, l). Since a question has only
two choices (stopping and continuing) at any status, we therefore
formally define the profit at status(m, l) as:

DEFINITION 4.3.

P (m, l) = max{PS(m, l), PC(m, l)}

Intuitively, we should stop the question whenPS(m, l) >=
PC(m, l) because we cannot benefit from this question any more
by waiting for more answers.

Now we consider the two profit functionsPS(m, l) andPC(m, l).
Given the accuracyE[AR], we know that the result is incorrect with

probability1 − E[AR]. Therefore, according to the linear model,
the profitPS(m, l) satisfies:

PS(m, l) = VQ − (1− E[AR])LQ − (m+ l)CQ

When we continue a question, we will pay one moreCQ and get
a new answer from a new worker. Meanwhile, the status is also
changed to a new status. It is easy to find that the next status is(m+
1, l) with probabilityPr(+1|m, l) and(m, l+1) with probability
Pr(−1|m, l). Thus, the profitPC(m, l) is recursively defined as
following:

PC(m, l) = E[Pr(+1|m, l)]P (m+ 1, l)

+E[Pr(−1|m, l)]P (m, l + 1)− CQ

Given the recursive definition, it is difficult to calculate them
directly. Now we discuss the condition to guarantee the strategy of
one status(m, l) stopping, i.e.

PS(m, l) > PC(m, l)

m that satisfiesMI(m,m)LQ < CQ is obvious a lower bound,
as we will not get a positive profit in each future step. Moreover,
we have found a looser lower bound ofm. We have the following
theorem:

THEOREM 4.5 (TERMINATION THEOREM). A sufficient con-
dition ofPS(m, l) > PC(m, l) is

m >
1

2
(
LQ(a− b)

6CQ

− (a+ b))

and l < m.

PROOF. We defineP ′(m, l) = P (m, l) − PS(m, l). Based on
this definition, we can rewrite the Definition 4.3 by

P ′(m, l) = max{0,MI(m, l)LQ + E[Pr(+1|m, l)]P ′(m+ 1, l)

+ E[Pr(−1|m, l)]P ′(m, l + 1) − CQ}

We have the observationsP ′(m, l) > P ′(m, l−1) andP ′(m, l) >

P ′(m+ 1, l) for all m > l. For a large enough numberm, we have
MI(m,m) < CQ/LQ sincelimm→+∞ MI(m,m) = 0. Based on
MI(m,m)LQ < CQ, there exist somem such thatP ′(m+1, m) =

0. We can prove the following Lemma:

LEMMA 4.1. P ′(m,m − 1) = 0 if P ′(m + 1, m) = 0 and

m >
1

2
(
LQ(a−b)

6CQ
− (a + b))

Based on Lemma 4.1, we therefore state thatP ′(m,m) = 0 when

m >
1

2
(
LQ(a−b)

6CQ
− (a + b)).

PROOF OFLEMMA 4.1. We prove the lemma by contradiction.
If P ′(m,m−1) > 0, we have the following inequality:MI(m,m−
1)LQ + E[P (+1|m,m − 1)]P ′(m + 1, m − 1) + E[P (−1|m,m −
1)]P ′(m,m)− CQ > 0 whereMI(m,m− 1) = 0. Meanwhile, we
have

P ′(m + 1,m− 1) <= P ′(m+ 1,m)

As a result,P ′(m+1, m−1) = 0. Obviously,E[P (−1|m,m−1)] <

1/2. Therefore, we haveP ′(m,m) > 2CQ.
Note that

P ′(m,m) = MI(m,m)LQ + P ′(m + 1, m) − CQ

According to the fact thatP ′(m + 1,m) = 0, we have

P ′(m,m) = MI(m,m)LQ − CQ

Therefore,
MI(m,m)LQ − CQ > 2CQ



Algorithm 2: Generate Linear Strategy Algorithm with Con-
straints

Input : Parametera, b of prior distribution, Error LossLQ, question
costCQ, Budget constraintθ

Output : StrategyS for each status(m, l)

1 M ← ⌈ 1
2
(
LQ(a−b)

6CQ
− (a + b))⌉;

2 S.M ←M ;
3 for i fromM to 0 do
4 S.(M, i)← stopping;
5 S.PS(M, i)← VQ − (1−E[AR|M, i])LQ − (M + i)CQ;
6 S.P (M, i)← S.PS(M, i);

7 for i fromM − 1 to 0 do
8 for j from i to 0 do
9 if (i+ j + 1)CQ > θ then

10 S.PS(i, j)← VQ−(1−E[AR|i, j])LQ−(i+j)CQ;
11 S.P (i, j)← S.PS(i, j);
12 S.(i, j)← stopping;

13 else
14 S.PS(i, j)← VQ−(1−E[AR|i, j])LQ−(i+j)CQ;
15 S.PC(i, j)← E[Pr(+1|i, j)]S.P (i+ 1, j) +

E[Pr(−1|i, j)]S.P (i, j + 1)− CQ;
16 S.P (i, j)← max{S.PS(i, j),S.PC(i, j)};
17 if S.PS(i, j) >= S.PC(i, j) then
18 S.(i, j)← stopping;

19 else
20 S.(i, j)← continuing;

21 return S

Moreover,MI(m,m) = (a − b)/(2(a + b + 2m)). As a result, we
havem < 1

2
(
LQ(a−b)

6CQ
− (a + b)) , which contradicts withm >

1
2
(
LQ(a−b)

6CQ
− (a+ b)). �

We have designed the linear model based algorithm (Algorithm
1) to generate the strategy deciding whether the question should
stop at each status(m, l). The search space boundM is the upper-
bound ofm in all possiblecontinuingstatus(m, l) in Theorem 4.5:

M = ⌈
1

2
(
LQ(a− b)

6CQ

− (a+ b))⌉ (1)

We apply dynamic programming to iteratively compute the deci-
sion of the generated strategyS from the upper-bound back to 0.
For each status(m, l), we computePS(m, l) andPC(m, l) based
onP (m+ 1, l) andP (m, l+1). In strategyS , the decision is made
for each status(m, l) by comparingPS(m, l) andPC(m, l). As a
result, the question run that maximizesP (m, l) is found by stop-
ping the question at the first status(m∗, l∗) such thatPS(m

∗, l∗) >

PC(m∗, l∗). Algorithm 1 can be applied to find the question run
that maximizeP (m, l) for all input 0-1 sequences. Obviously, the
time complexity of Algorithm 1 isO(M2) whereM is computed
in Equation 1. Note that Algorithm pre-computes all possible deci-
sions offline and it only takesO(M) time to make decisions online
by queryingS.(m, l) in O(1) time for each status(m, l).

4.4 Model with Constraints
In this subsection, we discuss the decision-making problemwith

constraints on the accuracy and cost of the result of the question.
Suppose the constraints are represented bycost 6 Budget. We
solve this problem by simply adapting Algorithm 1. We mark the
status(m, l) as stopping when(m + l + 1)CQ > Budget. This
adapted algorithm is outlined in Algorithm 2. We can extend algo-
rithm 2 to support other constraints such as accuracy etc.

Algorithm 3: Accuracy-Cost Algorithm
Input : Parametera, b of prior distribution, question costCQ

Output : List of tuples of accuracy, cost and error loss
{〈accu, cost, LQ〉}

1 result← ∅;
2 LQ← 1000CQ ;
3 while LQ > 0 do
4 S ← GenerateLinearStrategy(a, b, LQ, CQ);
5 accu← ComputeAccuracy(S);
6 cost← ComputeCost(S);
7 result← result ∪〈accu[0][0], cost[0][0], LQ〉;
8 max← 0;
9 foreach Non-stop status(m, l) in S.status do

10 c← cost[m][l];
11 lQ ← cLQ/(PC(m, l)− PS(m, l) + c);
12 if lQ > max then max← lQ ;

13 LQ ← max;

14 return result;

In Algorithm 2, the upper bound of search spaceM is computed
in line 1. Line 3-6 pre-computes the strategy for status(M, i). All
statuses(M, i) are set to bestopping. Line 7-20 the strategy of each
status(i, j) is computed. When status(i, j) does not satisfy the
constraints, it is set to bestoppingin line 10-12. Otherwise,PS(i, j)

andPC(i, j) are computed respectively in line 14-15. The decision
of status(i, j) is decided by comparingPS(i, j) with PC(i, j) in
line 17-20. The computed strategyS is returned as the result of
Algorithm 2 (line 21).

5. NON-LINEAR DECISION-MAKING
In this section, we discuss a non-linear model based approach to

predict the relationship between the accuracy and the cost of the
question without prior knowingLQ. We have presented the deci-
sion making algorithm in Section 4 for a single question, where the
job value is a linear function of the accuracy. However, consider-
ing the case of making decisions on a batch of questions, the value
function might be more complicated than a linear function. For ex-
ample, we list three non-linear functions in Figure 2, representing
the cases that we have constraints on the quality of the data and we
use the information entropy to measure the informativenessof the
data. Therefore, the value functions are not linear. Moreover, the
non-linear model based method is also driven by situations where
the customers are not able to estimate the error loss function LQ

of some problems. The method we have discussed in Section 4
cannot be simply applied to make decisions for the question in the
above situations. Since the quality of data can be well estimated
by the accuracy when the number of questions is large enough,we
propose Algorithm 3 to find the relationship between accuracy and
cost (shown in the bottom of Figure 2) in Subsection 5.1. Algo-
rithm 3 calculates the difference between the value function and the
cost function as the profit function (as illustrated on the right hand
side of Figure 2). Thus, the maximum point of the profit function
(star point in Figure 2) is the trade-off point to maximize the profit.
We extend our method to solve the problem of decision making for
multiple questions in Subsection 5.2.

5.1 Accuracy-Cost Relationship
To obtain the cost function of accuracy, we propose the non-

linear model based algorithm (Algorithm 3) by iteratively applying
Algorithm 1. According to the Algorithm 1, we know that given
fixeda, b, LQ/CQ, we have a determined strategy to find the ques-
tion run that maximizes the profit.

The basic idea of this non-linear model based algorithm is to:
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Figure 2: Examples of non-linear decision making

Step 1. initialize LQ to be a sufficiently large value (i.e.1000CQ)
and compute the accuracy and cost based onLQ.

Step 2. iteratively adjust the value ofLQ by reducingLQ such that
the decision of only one status(m, l) changes fromcontinu-
ing to stopping.

Step 3. compute accuracy and cost and go back to Step 2.

This method is to enumerate the accuracy and cost pairs by grad-
ually reducing the value ofLQ. We show the detailed method in
Algorithm 3. In Algorithm 3, we record the expected accuracyand
cost for each status(m, l) using the strategy generated fromLQ.
Algorithm 3 iteratively reducesLQ by selecting the maximumlQ
that can change exactly onecontinuingstatus tostopping. lQ is
computed in line 11. The correctness is guaranteed by the follow-
ing lemma:

LEMMA 5.1. Given a continuing status(m, l), we reduceLQ

to becost[m][l]LQ/(PC(m, l)− PS(m, l) + cost[m][l]). If the stop-
ping/continuing status of all status(m′, l′) other than(m, l) are not
changing, we havePC(m, l) = PS(m, l).

PROOF OFLEMMA 5.1. By the definition of the two profits, i.e.
PS(m, l) andPC(m, l):

PS(m, l) = VQ − LQ + E[AR|m, l]LQ − (m + l)CQ

PC(m, l) = VQ − LQ + accu[m][l]LQ − (m + l)CQ

−cost[m][l]

We therefore have

PS(m, l)− PC(m, l) = LQ∆accu− cost[m][l]

where∆accu = accu[m][l]−E[AR|m, l]. We assume thatlQ∆accu
− cost[m][l] = 0. Thus,

lQ =
cost[m][l]

∆accu
=

cost[m][l]LQ

PC(m, l)− PS(m, l) + cost[m][l]
�

Algorithm 4: Compute Accuracy
Input : StrategyS
Output : Expected accuracyaccu of the problem in every status

(m, l) using StrategyS
1 M ← S.M ;
2 for i fromM to 0 do
3 for j from i to 0 do
4 if (i, j) is stoppedthen
5 accu[i][j]← E[AR|i, j];

6 else
7 accu[i][j]←

Pr(+1|i, j)accu[i+1][j]+Pr(−1|i, j)accu[i][j−1];

8 return accu

Algorithm 5: Compute Cost
Input : StrategyS
Output : Expected accuracycost of the problem in every status(m, l)

using StrategyS
1 M ← S.M ;
2 for i fromM to 0 do
3 for j from i to 0 do
4 if (i, j) is stoppedthen
5 cost[i][j]← (i + j)CQ;

6 else
7 cost[i][j]← Pr(+1|i, j)cost[i+ 1][j] +

Pr(−1|i, j)cost[i][j − 1] + CQ;

8 return cost

The strategy is generated according to the newly updatedLQ.
We employ dynamic programming method to compute the accu-
racy and cost in Algorithm 4 and 5. These two algorithms com-
pute the accuracy and cost respectively for each status(m, l) from
(M,M) (stopping) back to(0, 0).

We formally define the non-linear value function problem as:

PROBLEM DEFINITION 2. Given the functions of the value of
question qualityfV (accu) and costfC(accu) with respect to the
accuracy of the result, find the strategy to maximizefP (accu) =

fV (accu)− fC(accu) on each possible question run.

Algorithm 3 provides the accuracy-cost relationshipfC(accu),
which makes it possible to find a trade-off point when user re-
quirementsfV (accu) is clear. Moreover, this can be used to give
customer the accuracy and cost predictions early and help the user
to choose suitable requirements likefV (accu) or special point of
〈accu, cost, LQ〉 .

The solution of those non-linearfV (accu) requirements can be
done as follows:

1. Computeresult = {〈accu, cost, LQ〉} by calling Algorithm 3.

2. Findmaxaccu∈result{f
V (accu)− fC(accu)} by computing the

difference between the non-linear value and cost for eachaccu
in theresult. Generate the strategy using the correspondingLQ

of accu as parameter of Algorithm 2.

Notice that in general case thefP (accu) is not convex (e.g. the
profit function for stage value). As a result, we have to calculate
every point for computingfP (accu).

This method can also be applied to solve the problem with con-
straints on the expectation of accuracy or cost. We only needto
modify the non-linear functionsfV (accu) to present the constraints
(e.g.stage value function gives a strict constraint of accuracy).



Algorithm 6: Question Dispatching Algorithm
Dispatcher:
Initialize min-heapheap to be empty;
foreach non-stop questionQi do

Ci ← cost[0][0];
Pi ← 0;
Ei ← Ci − Pi;
if heap.size()<kthen

heap.push(Qi);

while not all questions are stopped and a new worker comesdo
foreach questionQi in heap do

AssignQi to the HIT;Pi ← Pi + 1;
Ei ← Ci − Pi;

foreach non-stop questionQi in heap do
Maintainheap usingEi;

Updater:
while any questionQi gets into a stopping status(Qi.m,Qi.l) do

Mark Qi as a stopped question.

while any questionQi gets a new answer to the status(Qi.m,Qi.l)
do

Pi ← Pi − 1;
Ci ← cost[Qi.m][Qi.l];
Ei ← Ci − Pi;
Maintainheap usingEi;

5.2 Decision-Making for Multiple Questions
We discuss the question dispatching algorithm (Algorithm 6) in

this subsection. This algorithm aims to build a question dispatcher
that assigns HITs containing a batch of questions to the workers.
Batching questions in a HIT is an effective approach to reduce the
average cost of each question. However, our proposed algorithm
only generates strategies for a single question. Questionsmay be
included multiple times in different HITs and their decisions are
made in real-time. The numbers of required workers are different
among the questions. Therefore, we need to design an algorithm to
dynamicly batch non-stopped questions in a HIT. The question dis-
patching algorithm is designed in order to reduce the rate ofalready
stopped questions in the HITs.

The key idea of our question dispatching algorithm is to man-
age all the questions to be finished at almost the same time. We
store all the unfinished questions in a question pool and maintain
the number of questions included in the HITs. Attributed to the
fact that the randomness of receiving order of the answers, it is
difficult to design a deterministic method to find the best assign-
ment of questions. Instead, we maintain the expected numberof
asking questions from current status such that these numbers are
synchronously decreased. As a result, we put questions withthe
largest expected number of asking questions into a HIT.

We outline the function of dispatcher and updater in Algorithm
6. For the question, the number of expected asking questionsCi at
status(Qi.m,Qi.l) is retrieved fromcost[Qi.m][Qi.l] computed
by Algorithm 5. Meanwhile, there are some HITs on the worker’s
hand. We record the number of HITs that are posted but have not
yet received answers of each questionQi asPi. We useEi =
Ci − Pi as the estimation of expected asking questions. When a
HIT is posted or its answer is received, the expectations of effected
questions are updated and the questions with the largest expected
numbers are maintained with a min heap.

6. EXPERIMENTAL STUDIES
This section will discuss the experiment results of our meth-

ods. To evaluate the performance of our proposed methods, we

have conducted extensive experiments on two real-world datasets
on the AMT. Besides, various robustness tests and theoretical re-
sults are studied using synthetic datasets. We show that ourpro-
posed method: (1) works better than any other existing method
in terms of both the accuracy and the cost; (2) is robust to han-
dle questions with diversified difficulty distribution and unexpected
data quality; (3) is scalable when the maximum number of work-
ers is increased; (4) works well on various kinds of crowdsourcing
questions.

6.1 Experiment Setup
We use the following two datasets for our performance studies,

namely tweet sentiment analysis (TSA) dataset and common sense
question (CSQ) dataset. Humans are good at comprehension and
perform well on problems requiring background knowledge. These
two datasets focus on the two main advantages of crowdsourcing
respectively.

TSAdataset: A real-world tweets dataset containing 400 com-
ments of 20 movies is crawled from Twitter. We generate a sen-
timent analysis question (positive, negative) for each of the com-
ments as a candidate crowdsourcing task. We assign each of the
400 questions to up to 50 workers using the question dispatching
algorithm (Algorithm 6). We repeat the question dispatching al-
gorithm 10 times to get 10 different question runs for each ques-
tion. In total, we get 200,000 answers from the workers as theTSA
dataset.

CSQdataset: We crawl 400 common sense problems from the
Internet as the candidate crowdsourcing tasks. We also assign each
of the 400 questions to up to 50 workers by repeatedly using Algo-
rithm 6 10 times. In total, we also get 200,000 answers from the
workers as theCSQdataset.

Figure 3 compares the distribution of the difficulty of the ques-
tions with B(µ|6, 2) distribution. The average accuracy of results
AR is tested on more than 200 answers. This figure indicates that
B(µ|6, 2) distribution can be well used to model the distribution of
the difficulty of the Tweet sentiment analysis questions. Moreover,
the results also show that about 6.8% of questions have an average
AR smaller than 0.5, which fits the prediction well. The predicted
value of the proportion is 6.25% based on B(µ|6, 2) distribution.
The accuracy of these questions become even worse when more
workers answer them. As a result, the overall accuracy of results
on all questions can only achieve 93%-94% rather than very close
to 100%. We also observe that the questions in both datasets are a
bit more difficult than the expectation based on the prior B(µ|6, 2)
distribution.

To compare the performance of proposed algorithm with other
existing algorithms, we implement four algorithms, i.e. Accuracy-
Cost (Algorithm 3), Crowdscreen [12], Majority Voting and Naive
Majority Voting Algorithm. In the majority voting algorithm, when
the number of providers of a value is more than a half of the maxi-
mum number of workers, the online majority voting algorithmout-
puts this value and stops, whereas in the offline naive majority vot-
ing algorithm, all the values from all workers are collectedand out-
put the majority results.

6.2 Problem-Crowdsourcing Fitness
In this subsection we give the analysis on whether a job is appro-

priate for crowdsourcing or not. We useCQ as the unit. The results
in Figure 4 show that the lower bound ofVQ to get benefit from
crowdsourcing job in variousLQ. The loss and costVQ − P (0, 0)
means the total cost of solving a question by crowdsourcing (no-
tice thatP (0, 0) containsVQ in it, this measure only contains the
error loss expectation and questions cost and is irrelevantto VQ).
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Figure 6: Expected accuracy given the number

of workers
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Figure 7: Empirical number of workers given

required accuracy on TSA dataset
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Figure 8: Empirical accuracy given the number

of workers on TSA dataset

For those jobs whereLQ is too high orVQ is not enough, crowd-
sourcing is not a cost-effective way. We compare the loss andcost
on two set of questions, namely the questions obeying B(µ|6, 2)
distribution and the questions having the ideal sameAQ = 0.75.

6.3 Performance of Accuracy-Cost Algorithm
We test the performance of our Accuracy-Cost Algorithm by in-

vestigating the accuracy-cost relationship on both datasetsTSAand
CSQ. The results of the number of workers given required accuracy
and the accuracy given the number of workers are showed here.
We compare the four algorithms, namely Accuracy-Cost, Crowd-
Screen, Majority Voting and Naive Majority Voting. All fouralgo-
rithms make the trade-off according to their strategy.

Figure 5 and Figure 6 present the theoretical predictions ofthe
number of workers given a required accuracy and the accuracy
given the number of workers respectively based on the B(µ|6, 2)
distribution model.

Experimental results on theTSA dataset: Figure 7 shows the
empirical number of workers hired in the crowdsourcing system.
In Figure 7, the results show that our Accuracy-Cost Algorithm
needs the smallest number of workers and Naive Majority Vot-
ing needs the largest number. Meanwhile, comparing Figure 7
with Figure 5, the empirical results validate the theoretical pre-
dictions. Figure 8 shows the empirical accuracy of the crowd-
sourcing tasks on theTSAdataset. The results in Figure 8 show
that our Accuracy-Cost Algorithm has the highest accuracy while
Naive Majority Voting has the lowest. The empirical resultsalso
fit the theoretical predictions well by comparing Figure 8 with Fig-
ure 6. Our Accuracy-Cost Algorithm outperforms other algorithms
because our Accuracy-Cost Algorithm computes the maximum ac-
curacy for each possible cost and the smallest cost for each possible
accuracy (in Algorithm 3).

Experimental results on theCSQ dataset: Figure 9 shows the
empirical number of workers hired in the crowdsourcing system.
We observe similar trends in Figure 9, i.e. the number of workers of
Accuracy-Cost Algorithm is the smallest. The empirical results in
Figure 9 also fit the theoretical prediction of the results inFigure 5
well. Figure 10 shows the empirical accuracy of the crowdsourcing
tasks on theCSQdataset. The results in Figure 10 are similar to the
results in Figure 6.

The experimental results on these two datasets show that our
method can be applied on various crowdsourcing questions and
yield good accuracy while requiring the least number of workers.

6.4 Robustness
We study the robustness of our algorithm by varying the dis-

tribution of question difficulty. We vary variance and expectation
of the difficulty distribution of questions such that the distribution
is different from our prior B(µ|6, 2) distribution. The robustness
of obtaining satisfied results on unexpected hard questions(or low
quality users) is another key requirement, since low data quality
without expectation is usually unacceptable.

Figure 11 demonstrates the empirical accuracy of our Accuracy-
Cost Algorithm, CrowdScreen and Majority Voting working onun-
expected low quality answers with an average 65% accuracy. Note
that these four algorithms expect the difficulty of questions to be
75% based on the prior B(µ|6, 2) distribution. Figure 11 shows that
our algorithm still produces results with accuracy very close to the
accuracy required by the customer while the other two algorithms
fail to obtain results with high accuracy. This phenomenon is due to
the fact that our algorithm models the probability of a worker pro-
viding an answer as a random variable. This property provides the
ability to detect the decrease of accuracy and guarantee high qual-
ity results by asking more questions automatically. We can see that
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Figure 9: Empirical number of workers given

required accuracy on CSQ dataset
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Figure 10: Empirical accuracy given the num-

ber of workers on CSQ dataset

 78

 80

 82

 84

 86

 88

 90

 92

 85  86  87  88  89  90  91  92

E
m

pe
ric

al
 A

cc
ur

ac
y(

%
)

Expected Accuracy (%)

Accuracy-Cost Algorithm
Crowdscreen

Majority Voting
Expected Accuracy

Figure 11: Accuracy of the algorithms on hard

questions
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Figure 12: Vary the variance of difficulty of

questions
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Figure 14: Strategy Generating Time

with the growth of the number of workers(i.e. the increase ofaccu-
racy requirement), our method obtains more answers and produces
more precise estimation, which results in stronger resistance.

Figure 12 and Figure 13 show the performance when we vary the
difficulty distribution of questions. In both experiments algorithm
with B(µ|6, 2) distribution and CrowdScreen algorithm are com-
pared to the algorithm using the exact prior distribution (our algo-
rithm outputs the best strategy when data exactly match the prior
distribution). In our experiments, we use the accuracy thatthe ex-
act prior distribution algorithm using 10 workers can achieve as the
accuracy requirements. We report the number of needed workers
to achieve the accuracy requirements for both algorithms. Figure
12 reports the results of varying the variance of the distribution and
Figure 13 reports the results of varying the expectation of the distri-
bution. The results in these two figures indicate that our Accuracy-
Cost algorithm needs almost the same number (less than 2% incre-
ment) of workers as the exact prior distribution algorithm when we
vary the difficulty distribution of the questions, while Crowdscreen
algorithm needs more workers when the variance of the distribution
is increased.

Instead of using a fixed value, this random variable based prob-
ability model is more robust.This implies that our algorithm can
by applied to solve unexpected hard questions or working on data
sources with unpredictable quality in real crowdsourcing applica-
tions.

6.5 Scalability and Question Dispatching
In this subsection, we discuss the scalability of our algorithm

when the number of workers and the number of questions increases.
We first report the results on the running time of our algorithms

with respect to the number of workers in Figure 14. We compare
both our linear and non-linear algorithms with the CrowdScreen’s
linear and ladder algorithms. Note that the time reported isthe of-
fline strategy generating time. The results show that our algorithms

are scalable when the number of workers is increased. The lin-
ear strategy generating algorithm takes 1.29 millisecondsand non-
linear algorithm takes 80.06 milliseconds when there are 40work-
ers. The results also show that the two CrowdScreen algorithms
need to take a lot more time to generate the strategy.

We report the performance of the question dispatching algorithm
in Table 3. In this experiment, the maximum number of questions
in a HIT is varied from 400 to 10. The measurements contain the
average percentage of valid questions in each HIT, average finish-
ing time, average cost per question and average cost per effective
question. The valid question refers to the not yet stopped questions
in the HIT. We compare the average percentage of valid questions
of our question dispatching algorithm to that of randomly assigning
questions. The results show that our question dispatching algorithm
assigns up to 10.9% and on average 4.53% more valid questionsin
each HIT than randomly assigning algorithm.

7. RELATED WORK
Crowdsourcing has been widely used to solve challenging prob-

lems by human intelligence in comprehensive areas. In crowd-
sourcing systems, complex and difficult problems are partitioned
to simple tasks. These tasks are assigned to several workers. The
crowdsourcing system collects and integrates the answers from the
workers as the results of the crowdsourcing jobs. Kitter et al. [8]
studied the user behaviour in micro-task markets to show that user
performs different behaviours.

Recently, crowdsourcing has been adopted and applied in sev-
eral research areas such as database researches, machine learning
and information retrieval. CrowdDB [3, 4], Qurk [10, 11] and
TurkDB [13] designed three databases that are incorporatedwith
crowdsourcing systems. These three databases allow queries to be
partially answered through the AMT system. Selke et al. [16]ex-
panded database schemas with additional attributes through query-
ing the crowdsourcing systems. CrowdER [17] applied crowd-



Table 3: Performance of Question dispatching algorithm (2 USD per hour per worker on average)

# of questions in a HIT 400 200 100 50 20 10
Effective questions rate using question dispatcher 48.20% 88.40% 94.60% 98.40% 99.50% 99.80%

Effective questions rate by randomly assigning questions48.20% 77.50% 87.30% 93.60% 96.70% 98.40%
Average HIT finish time (s) 2850 1472 765 393 189 113

Average cost per question (0.01 USD) 0.396 0.409 0.425 0.437 0.526 0.627
Average cost per effective question (0.01 USD) 0.822 0.463 0.449 0.444 0.529 0.628

sourcing to find the matching entities. In [9], we proposed a qual-
ity sensitive answering model for our system CDAS to manage the
crowdsourcing tasks. In [15], Raykar et al. discussed the method
of applying crowdsourcing in supervised learning without absolute
golden standard. In [5], Guo et al. proposed a method to find the
maximum element in a crowdsourcing database. Alonso et al. [2]
developed a crowdsourcing based relevance evaluation method for
information retrieval while Kazai et al. [7] proposed a crowdsourc-
ing based book search evaluation method. Ipeirotis et al. [6] de-
signed an approach to rank the workers by quality. Welinder et al.
[18] proposed a crowdsourcing based online algorithm to findthe
ground truth. Crowdsourcing techniques has also been applied on
other database based applications, such as graph search [14].

CrowdScreen [12] was designed to improve the accuracy and re-
duce the cost of binary choice problems in crowdsourcing systems
by using a probabilistic method. Our work is different in that (1) we
consider the three factors that affect the profit of the crowdsourcing
job, namely the value of the questions, the risk of obtainingan in-
correct answer and the cost of assigning questions to workers; we
consider both linear and non-linear model of the accuracy-cost re-
lationship; (2) we model the accuracy of an answer to a question as
a random variable instead of a fixed value; (3) we have optimized
the algorithms to build more scalable and robust algorithms.

8. CONCLUSION
Crowdsourcing has attracted a great deal of interest in solving

challenging problems by integrating human intelligence with algo-
rithms. However, the system cannot be applied with unreliable data
quality. Moreover, it is even harder to decide whether a problem is
suitable to be solved by crowdsourcing. In this paper, we propose
an online cost sensitive decision making method with novel data
quality estimation. To show the effectiveness and efficiency of our
method, we conduct extensive experiments over two real datasets
on the Amazon Mechanical Turk. The experimental results show
that our proposed method achieves a better accuracy-cost perfor-
mance than all the existing methods. Moreover, our method isboth
scalable and robust such that it outputs reliable answers with diver-
sified crowdsourcing data quality.
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