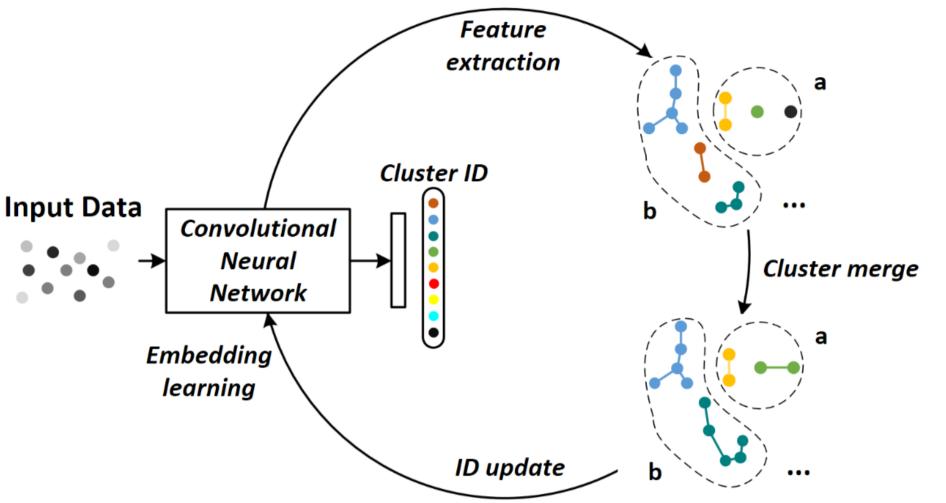
Dispersion based Clustering for Unsupervised

Australian National Jniversity

Person Re-identification

Guodong Ding^{1*}, Salman Khan², and Zhenmin Tang¹ ¹Nanjing University of Science and Technology, ²Australian National University * Corresponding author, guodong.ding@njust.edu.cn

Problem Definition and Contribution


Goal: To perform unsupervised person re-identification with a robust criterion in an agglomerative clustering framework.

Contributions: An unsupervised deep learning framework that

- proposes a dispersion based clustering criterion which considers both within cluster compactness and between clusters separation.
- has two major advantages manifested by the criterion, *i.e.*, automatic prioritization of isolated data points for merging and prevention of poor clustering.
- demonstrates superior performances over the SOTA methods on both

Approach

Learning Framework: Starting from sample specificity learning, *i.e.*, each sample as a class, alternatively train feature extractor and update clustering results for subsequent training.

Embedding Learning

Repelled loss: Given an input image x, a target class y, we compute its feature representation v, we calculate its class distribution as:

$$p(y|x,V) = \frac{exp(V_y^T v/\tau)}{\sum_{j=1}^N exp(V_j^T y/\tau)},$$
(1)

where τ is a temperature parameter that controls the softness of probability distribution over classes, V is a lookup table (LUT) containing the centroid feature of each class. After which a cross entropy (CE) loss is imposed to align p(y|x, V) with the clustering resulting labels.

Advantages: this form jointly considers inter-class and intra-class variances.

Discussion

On one hand: Proposed criterion (Eq. (4)) brings two major advantages to the merging process, *i.e.*, isolated point priority and poor clustering prevention.

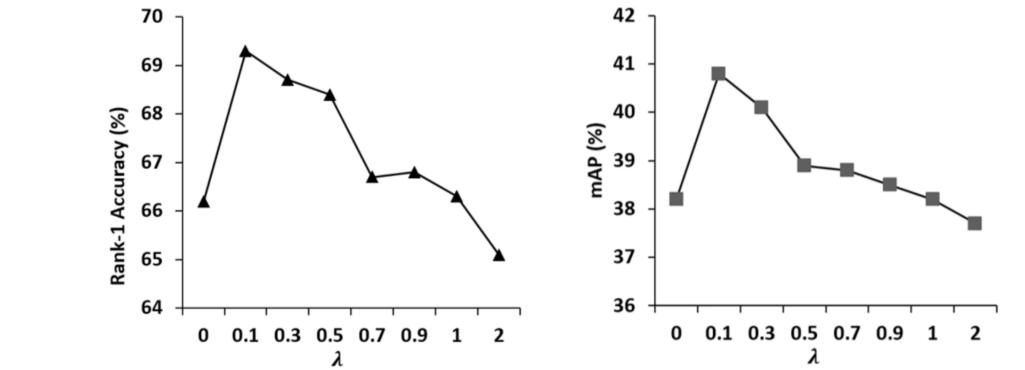
Merging Criterion (DBC)

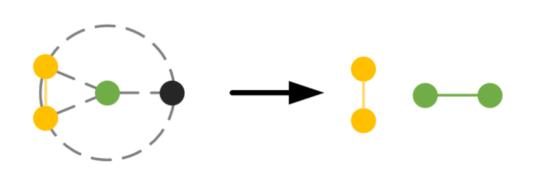
Dispersions: Given a cluster \mathcal{C} scattered in feature space, we define its dispersion $\mathcal{d}(\mathcal{C})$ as:

$$\mathcal{A}(\mathcal{C}) = \frac{1}{n} \sum_{i,j \in \mathcal{C}} dist(\mathcal{C}_i, \mathcal{C}_j), \qquad (2)$$

where n is the cardinality of C. As such, dispersion between clusters is written as:

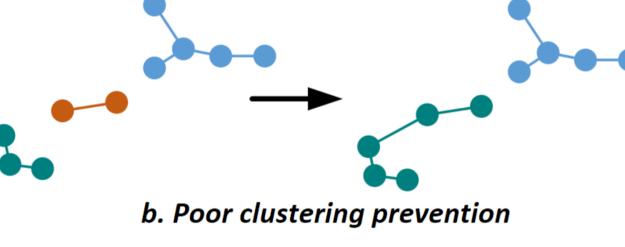
$$d(\mathcal{C}_a, \mathcal{C}_b) = \frac{1}{n_a n_b} \sum_{i \in \mathcal{C}_a, j \in \mathcal{C}_b} dist(\mathcal{C}_{a_i}, \mathcal{C}_{b_j}), \quad (3)$$


Thus, the **dispersion based merging criterion** is a combine of both above dispersion terms as follows:

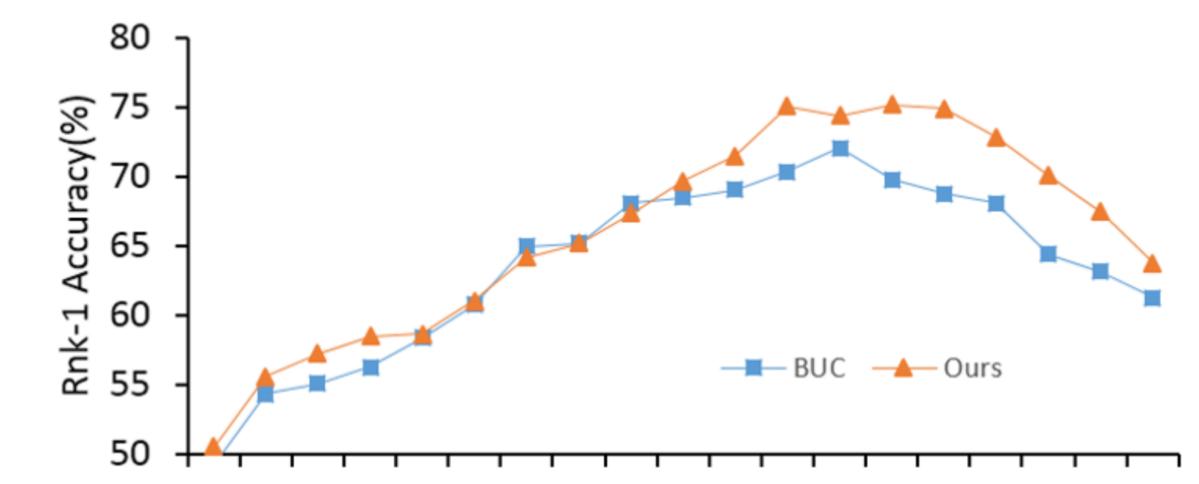

$$\mathcal{D}_{ab} = \mathcal{d}_{ab} + \lambda(\mathcal{d}_a + \mathcal{d}_b) \tag{4}$$

where λ is a trade off parameter between two components.

Experiments & Results


Tradeoff Parameter

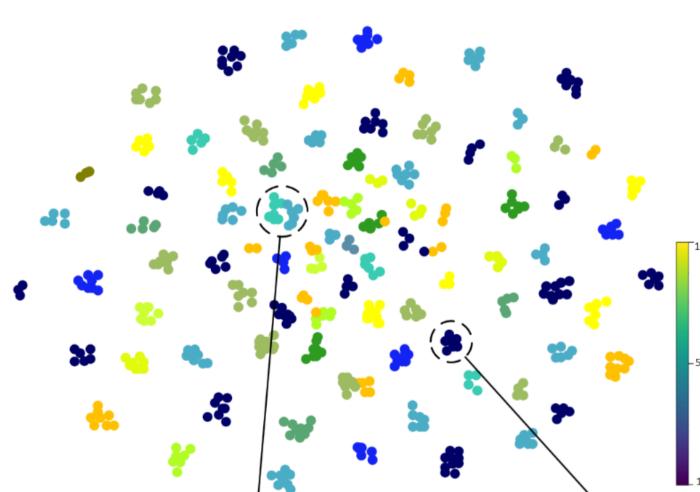
a. Isolated point priority


Isolated point has zero within cluster dispersion, thus can be prioritized in first few merging stages.

• Poor cluster has large within cluster dispersion which can defer itself from merging.

On the other hand: Proposed criterion (Eq. (4)) ensures the forming of compact and well-separated cluster results, serves the same purpose as the repelled loss, eventually speeds up learning in a reciprocal way.

Learning Speed & Robustness**



Ablation Study

Methods	Market-1501		DukeMTMC-reID		MARS		DukeMTMC-VideoReID		
	rank-1	mAP	rank-1	mAP	rank-1	mAP	rank-1	mAP	
BUC ⁻ [15]	62.9	33.8	41.3	22.5	55.5	31.9	60.7	50.8	
BUC [15]	66.2	38.3	47.4	27.5	61.1	38.0	69.2	61.9	
DBC ⁻	66.2	38.7	48.2	27.5	59.8	37.2	71.8	63.2	
DBC	69.2	41.3	51.5	30.0	64.3	43.8	75.2	66.1	

- denotes removal of regularization term, *i.e.*, *cardinality* in BUC and *intra-cluster* term (Eq. (3)) in BUC.

Qualitative Analysis**

T-SNE visualization of the clustering results on a reduced Market-1501 subset.

- In most cases, samples from the same identity are group together (see collections of same colored points).
- Some incorrect merging of identities are also present. For example, bottom left box

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1 2 3 Clustering Stages

- DBC has faster learning speed over BUC on DukeMTMC-VideoReID dataset and enjoys a better performance robustness against varying target cluster numbers.

Image-based Datasets

Methods	Labels	Market-1501				DukeMTMC-reID				
		rank-1	rank-5	rank-10	mAP	rank-1	rank-5	rank-10	mAP	
BOW[42]	None	35.8	52.4	60.3	14.8	17.1	28.8	34.9	8.3	
OIM[36]	None	38.0	58.0	66.3	14.0	24.5	38.8	46.0	11.3	
UMDL[22]	Transfer	34.5	52.6	59.6	12.4	18.5	31.4	37.6	7.3	
PUL[5]	Transfer	44.7	59.1	65.6	20.1	30.4	46.4	50.7	16.4	
EUG[35]	OneEx	49.8	66.4	72.7	22.5	45.2	59.2	63.4	24.5	
SPGAN[3]	Transfer	58.1	76.0	82.7	26.7	46.9	62.6	68.5	26.4	
TJ-AIDL[33]	Transfer	58.2	-	-	26.5	44.3	-	-	23.0	
BUC[15]	None	66.2	79.6	84.5	38.3	47.4	62.6	68.4	27.5	
DBC	None	69.2	83.0	87.8	41.3	51.5	64.6	70.1	30.0	

- "Transfer": External dataset with annotations used.

- "Camera ": Camera view information is used.

- "OneEx": One labeled example per person is used.

- "None": No extra information used.

where two ladies with similar appearance (white t-shirts and dark sports wear) are clustered together.

Video-based Datasets

Methods	Labels	MARS				DukeMTMC-VideoReID				
wienious		rank-1	rank-5	rank-10	mAP	rank-1	rank-5	rank-10	mAP	
OIM[42]	None	33.7	48.1	54.8	13.5	51.1	70.5	76.2	43.8	
DGM+IDE[37]	OneEx	36.8	54.0	-	16.8	42.3	57.9	69.3	33.6	
Stepwise[17]	OneEx	41.2	55.5	-	19.6	56.2	70.3	79.2	46.7	
RACE[38]	OneEx	43.2	57.1	62.1	24.5	-	-	-	-	
DAL[1]	Camera	49.3	65.9	72.2	23.0	-	-	-	-	
BUC[15]	None	61.1	75.1	80.0	38.0	69.2	81.1	85.8	61.9	
EUG[<mark>35</mark>]	OneEx	62.6	74.9	-	42.4	72.7	84.1	-	63.2	
DBC	None	64.3	79.2	85.1	43.8	75.2	87.0	90.2	66.1	

** Details of additional information in this poster can be found via our journal version "Towards better Validity: Dispersion based Clustering for unsupervised Person Re-identification" at https://arxiv.org/pdf/1906.01308.pdf