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Abstract

Temporal context plays a significant role in temporal action segmentation. In
an offline setting, the context is typically captured by the segmentation network
after observing the entire sequence. However, capturing and using such context
information in an online setting remains an under-explored problem. This work
presents the an online framework for temporal action segmentation. At the core of
the framework is an adaptive memory designed to accommodate dynamic changes
in context over time, alongside a feature augmentation module that enhances the
frames with the memory. In addition, we propose a post-processing approach to
mitigate the severe over-segmentation in the online setting. On three common
segmentation benchmarks, our approach achieves state-of-the-art performance.

1 Introduction

This work addresses online temporal action segmentation (TAS) of untrimmed videos. Such videos
typically feature procedural activities consisting of multiple actions or steps in a loose temporal
sequence to achieve a goal [6]. For example, “making coffee” has actions: ‘take cup’, ‘pour coffee’,
‘pour water’, ‘pour milk’, ‘pour sugar’ and ‘stir coffee’. Standard TAS models [11, 45, 25, 37] are
offline and segment-only videos of complete procedural activities. An online TAS model, in contrast,
segments only up to the current time point and does not have access to the entire video and, therefore,
the entire activity.

Online TAS faces challenges similar to other online tasks [44, 46] in establishing a scalable network
that can retain useful information from an ever-increasing volume of data and facilitate effective
retrieval when required. Additionally, over-segmentation is a common issue for offline TAS, where the
segmentation model divides an action into many discontinuous sub-segments, leading to fragmented
outputs. This issue is exacerbated in the online setting, as partial data at the onset of an action may
lead to erratic predictions and increased over-segmentation.

Most relevant to our task is online temporal action detection (TAD) [43]. Online TAD aims to identify
whether an action is taking place and the action category. TAD targets datasets like THUMOS [16],
TVSeries [5], and HACS Segment [48]. Among these, 90.8% videos of THUMOS [16] feature
only multiple instances of the same action, while TVSeries [5] comprises diverse yet independent
actions (e.g., ‘open door’, ‘wave’ and ‘write’) in one video. These actions do not necessarily correlate
with one another or impose specific temporal constraints. As such, a direct adaptation of popular
online TAD approaches like LSTR [44] and MAT [41] to online segmentation is non-ideal. For
instance, these models encode temporal context with a fixed set of tokens, which may limit their
capability to handle the relations of procedural videos. Furthermore, these models are typically
trained to prioritize frame-level accuracy while neglecting temporal continuity, which invariably leads
to over-segmentation.
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To address the online action segmentation task, this work proposes a novel framework centered on
a context-aware feature augmentation module and an adaptive memory bank . The memory bank,
per-video, tracks short-term and long-term context information. The augmentation module uses an
attention mechanism to allow frame features to interact with context information from the memory
bank and integrate temporal information into standard frame representations. Finally, we introduce
a post-processing technique for online boundary adjustment that imposes duration and prediction
confidence constraints to mitigate over-segmentation.

Summarizing our contributions, 1) We establish an online framework for TAS; 2) We propose
a feature augmentation module that generates context-aware representations by incorporating an
adaptive memory, which accumulates temporal context collectively. The module operates on frame
features independently of model architecture, enabling flexible integration; 3) We present a simple
post-processing technique for online prediction adjustment, which can effectively mitigate the over-
segmentation problem; and 4) Our framework achieves the state-of-the-art online segmentation
performance on three TAS benchmarks.

2 Related Work

Online Action Understanding. Many video understanding tasks, such as action detection [44, 42, 5,
2] and video instance segmentation [15, 46, 47], have been explored in online contexts. For online
action detection, videos are classified frame by frame without access to future frames. Specifically,
LSTR [44] employs a novel memory mechanism to model long- and short-term temporal dependencies
by encoding them as query tokens. Follow-up works feature a segment-based long-term memory
compression [41] and fusing short- and long-term histories via attention [2].

However, the videos in the datasets commonly used in online TAD contain independent actions [5] or
sequences of limited actions [16], thus lacking temporal relations between the actions. In contrast,
TAS deals with untrimmed procedural videos, where such relations are more prominent and may
span over long temporal durations. There is also a growing trend in online TAD models to use action
anticipation as an auxiliary task to enhance action modeling [2, 14]. In our online segmentation task,
we do not assume the availability of such information.

Temporal Action Segmentation. In TAS [6], methods vary by their level of supervision, including
fully [11, 20, 27], semi-supervised [8, 36], weakly [9, 13, 22, 30, 29, 31, 21], and unsupervised [19,
34, 32, 10, 9] setups. An emerging direction is to learn TAS incrementally [7] where procedural
activities are learned sequentially. However, all existing works are offline, and complete video
sequences can be used for inference. In contrast, our approach functions within an online setup. The
most related work [13] investigates online TAS in a multi-view setup and leverages the offline model
to assist online model learning. Furthermore, it uses the frame-wise multi-view correspondence
to generate pseudo-labels for action segments. In contrast, we do not assume the availability of
multi-view videos nor require assistance from a pre-trained offline model.

Post-processing for Action Segmentation. Post-processing methods are either rule-based or leverage
graphical modelling. Rule-based approaches [28, 35, 40, 38] apply predefined rules to smooth out
short-duration predictions that are unlikely given the context. Graphical modelling approaches use
Conditional Random Fields (CRFs) [17, 31, 30] to model the relationships and transitions between
consecutive actions. Online methods need post-processing to alleviate over-segmentation and help
locate the action boundaries.

3 Online Action Segmentation

Previous studies [1, 33] have demonstrated that the scope of the temporal context significantly
influences the performance of (offline) TAS models. This motivates our two lines of inquiry for
our online setting: 1) how to consolidate temporal context over an extended period, and 2) how to
enrich the frame representations with context to benefit the segmentation. This work introduces
a context-aware feature augmentation module (Sec. 3.2) alongside an adaptive context memory
(Sec. 3.3) to tackle the above questions.
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3.1 Preliminaries

Consider an untrimmed video v = {xt}Tt=1 of T frames, where xt ∈ RD is the per-extracted frame
feature at time t and D is the feature dimension. An action segmentation model partitions v into
N contiguous and non-overlapping temporal segments {si = (yi, ℓi)}Ni=1 corresponding to actions
y ∈ Y present in the video, where ℓ indicates the segment length and Y defines the action space [6].
A widely adopted strategy for TAS is to design a segmentation modelM that predicts the action
label yt for each frame xt, akin to a frame-wise classification. In the offline setting [11, 45, 25], the
per-frame prediction ŷt is based on the entire video sequence. The online setting uses only frames up
to the current prediction time t, without access to future frames. Comparatively:

ŷoffline
t = argmax

y∈Y
pt(yt|xt;x1:T ) and ŷonline

t = argmax
y∈Y

pt(yt|xt;x1:t). (1)

where pt ∈ R|Y| is the estimated action probability for frame xt. Most existing offline TAS
works [11, 45, 23] train the segmentation modelM using a cross-entropy loss (Lcls) for frame-wise
classification which is balanced by a smoothing loss (Lsm) that encourages smooth transitions between
consecutive frames:

L =
1

T

∑
t

− log(pt(yt))︸ ︷︷ ︸
Lcls

+λ · 1

T |Y|
∑
t,y

∆̃2
t,y︸ ︷︷ ︸

Lsm

, (2)

where ∆̃t,y =

{
∆t,y :∆t,y ≤ τ

τ :otherwise
and ∆t,y = |log pt(y)− log pt−1(y)| .

In this paper, we opt for the widely recognized convolution-based architecture MS-TCN [11] as our
foundational framework. This choice is driven by its relatively lower computational requirements
than the attention- or diffusion-based models [45, 25]. A straightforward transition from offline
mode to an online mode of the segmentation modelM is to substitute standard convolutions with
causal convolutions. Causal and standard convolutions differ in their receptive field in that causal
convolutions consider only past and present inputs while standard convolutions may incorporate both
past and future inputs within a kernel. Mathematical details and illustrations of the two are shown in
the Appendix.

3.2 Context-aware Feature Augmentation

The context-aware feature augmentation (CFA) module generates enhanced clip-wise features through
interactions with temporal context captured by an adaptive memory bank. The module operates
on a clip-wise basis. During training, video v is split into K non-overlapping clips {ck}Kk=1. Each
clip has a window size w and is sampled from v with a stride of δ = w, where the final clip
cK is padded if |cK | < w. The CFA module integrates the original pre-extracted frame features
ck = {xt}kwt=(k−1)w+1 with temporal context to produce a context-enhanced version of representations
c̃k = {x̃t}kwt=(k−1)w+1. Like [44, 41], our CFA module is also equipped with a simultaneously
updated memory bank Mk as a context resource for feature augmentation. The memory bank is
further described in Sec. 3.3.

At each step k, context is accumulated by feeding ck through a lightweight GRU [4] to obtain cGRU
k .

The GRU is reliable in capturing information over long video sequences [24]. The clip is then passed
through a context aggregation block to be augmented. The context aggregation block incorporates the
GRU features cGRU

k with the memory state Mk−1 from the previous step for I iterations. Concretely,
we pass cGRU

k through a self-attention (SA) block to encourage information exchange with the local
clip window. Additionally, we leverage a Transformer decoder [39] to achieve a more effective
memory encoding M̃TD

k−1, i.e.,

cSA
k = SelfAttn(cGRU

k ) and M̃TD
k−1 = TransDecoder(Mk−1, c

GRU
k , cGRU

k ). (3)

The outputs from the self-attention module (cSA
k ) and the transformer decoder (cTD

k ) are then combined
with cross attention (CA) and merged with cGRU

k to produce the context-augmented features:

c̃k = CrossAttn(cSA
k , M̃TD

k−1, M̃
TD
k−1) + cGRU

k . (4)
The detailed formulas of SelfAttn(), TransDecoder(), CrossAttn() are given in the Appendix. An
illustration of our CFA module is provided in Fig. 1.
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Figure 1: Context-aware Feature Augmentation (CFA) module. CFA takes as input a video clip ck
of length w, augments it with temporal information captured in an adaptive memory bank Mk, and
outputs an enhanced clip feature c̃k. I is the number of iterations of SA, TransDecoder, and CA.

3.3 Adaptive Memory Bank

In a similar spirit with [44], our memory is designed to account for both short- and long-term
context, i.e., M = [M long,M short]. Short-term memory helps capture the local action dynamics while
long-term memory retains information across extended durations important for TAS [1, 33].

Short Memory M short. Given that our enhancement module works on a per-clip basis with temporal
stride w, we directly regard the enhanced feature c̃k−1 from the last clip as the short-term memory,
i.e., M short

k = c̃k−1 ∈ RDw.

Algorithm 1 Adaptive Memory Update

Require: {ck}Kk=1 , w
1: Initialize M short

0 ← c1,M
long
0 ← ∅

2: for k ∈ [1...K] do
3: c̃k = CFA(ck,Mk−1)
4: mk = Conv1D(c̃k)

5: if len(M long
k−1) ≤

2
3w then

6: M long
k = concat(M long

k−1,mk)
7: else
8: M long

k = concat(M long
k−1[1 :],mk)

9: end if
10: M short

k = c̃k−1[len(M long
k ) :]

11: Mk = [M long
k ,M short

k ]
12: end for

Long Memory M long. We update our long-term
memory with information from processed clips.
Specifically, we apply a convolutional layer on top
of our context-enhanced representation c̃k, where
c̃k ∈ RDw, to collapse the temporal dimension and
yield a memory token mk = Conv1D(c̃k) ∈ RD.
This memory token is then appended to the current
long-term memory.

Adaptive Memory Update. The memory is updated
whenever a new clip is processed. In practice, we
constrain the total footprint of both short- and long-
term memory to match the size of the processing clip,
i.e., M ∈ RDw. At the beginning of each sequence,
the memory bank is initialized with short-term infor-
mation only, i.e., M =M short

0 = c1 and M long
0 =∅.

As more clips are processed, we gradually increase
the budget to accommodate longer-term information.
However, in anticipation of M long draining the entire budget in prolonged sequences, we cap its
utilization at a maximum of two-thirds of the total budget. In instances where this threshold is
exceeded, the earliest token is discarded, i.e.,:

M long
k =

{
concat(M long

k−1,mk) : len(M long
k−1) ≤

2
3w

concat(M long
k−1[1 :],mk) : otherwise

. (5)

The remaining budget is allocated for the short-term information accordingly:

M short
k = c̃k−1[len(M long

k ) :] (6)
As video progresses, our feature augmentation module (Sec. 3.2) receives more longer-term context
while emphasizing only shorter and more relevant short-term information. This adaptive approach
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(a) Online Inference (δ=1) (b) Semi-online Inference (δ=w)

xk xkw

xk+1 x(k+1)w

Output ŷ :

Step k :

Step k+1 :

Figure 2: Two inference types. a) Online inference samples clips with stride δ = 1 and only preserves
the last frame prediction, while b) Semi-online inference samples non-overlapping clips with stride
δ = w and all predictions are preserved.

enables the context memory to flexibly shift its attention between short and long-term information as
the video progresses. Algorithm 1 summarizes the update mechanism.

Discussion. Our module integrates context memory on top of a GRU layer. While the GRU captures
temporal dependencies, it may struggle, especially in thousands-frame long sequences common in
TAS. The context memory supplements the GRU by allowing selective access and updates, thereby
enabling the retrieval and manipulation of long-term information. Such a design is supported by
our empirical study that the explicit memory can extend the capacity of the GRU’s internal state.
Supporting ablations are found in Sec. 4.1.

3.4 Training and Inference

Algorithm 2 Post-processing for Online TAS

1: Compute ℓmin = σ × Tmax
2: Initialize ℓ = 0
3: for each frame t do
4: if qt < θ and ℓ < ℓmin then
5: ŷ∗t = ŷ∗t−1
6: ℓ = ℓ+ 1
7: else
8: ŷ∗t = ŷt
9: ℓ = 0

10: end if
11: end for

Training. Our final online segmentation model is
constructed by combining our CFA module with
a single-stage TCN [11] with causal convolutions.
Specifically, TCN takes as input the enhanced repre-
sentations c̃k and maps them to the same labels for
ck. We train the framework end-to-end with the loss
function formulated in Eq. (2), but on a clip basis
with T replaced by w:

Lclip =
1

w

∑
t

− log(pt(yt)) + λ ·
∑
t,y

∆̃2
t,y, (7)

we set λ = 0.15 following [11]. Like [44], training
on a clip basis provides better efficiency.

Inference. We present two distinct inference ap-
proaches by manipulating the clip sampling stride parameter δ. The first mode of inference, referred
to as online, is characterized by setting δ = 1. In such a setting, a video clip of w frames is processed,
with emphasis placed solely on the prediction derived from the final frame and rest are discarded.
This facilitates the scenario when frame-by-frame prediction is preferred. The alternate mode of
inference, termed semi-online, adheres to the training regime by setting δ = w. In this mode, video
clips are processed, and the dense predictions generated across all w frames are preserved as final
output. An illustration of two modes of inference is provided in Fig. 2.

3.5 Post-processing

Our intuition is that a valid action segment should not fall below a minimum length threshold unless
there is high confidence in the prediction to justify a change in the action class. Specifically, we
consider the maximum softmax probability of a prediction as its confidence measure, denoted as
qt = max(pt), for frame xt, as qt to some extent indicates its reliability. A prediction is considered
“unreliable” if its confidence measure scores below a certain threshold θ, i.e., qt < θ. For the
frame with “unreliable” prediction, we disregard its current prediction and assign the action label of
its proceeding frame ŷ∗t−1, when the previous action segment is shorter than the minimum length.
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p.p.
GTEA [12] 50Salads [38] Breakfast [18]

Acc Edit F1 @ {10, 25, 50} Acc Edit F1 @ {10, 25, 50} Acc Edit F1 @ {10, 25, 50}

Online

- 74.4 66.6 73.9 70.3 57.2 75.2 19.6 26.8 24.4 19.6 55.3 18.7 15.1 11.7 8.3
T

C
N

✓ 72.1 71.9 79.2 77.4 64.1 75.1 68.5 74.1 70.6 60.4 52.3 54.7 52.0 43.2 29.8

- 76.2 63.5 72.6 68.3 58.8 80.9 28.8 36.1 31.0 23.3 56.7 19.3 16.8 13.9 9.3

O
ur

s

✓ 74.4 70.3 78.5 76.4 67.7 77.7 71.5 77.7 74.6 64.1 52.9 55.7 54.8 45.8 30.5
Semi-online

- 75.8 66.8 74.3 71.5 60.3 79.1 29.0 38.5 35.5 28.3 55.7 18.6 15.4 12.7 9.0

T
C

N

✓ 73.5 75.4 80.3 76.9 66.6 76.7 69.2 73.1 70.5 62.8 52.5 54.0 53.1 44.5 29.6

- 77.1 68.1 76.7 73.5 63.9 82.4 32.8 43.0 41.1 34.7 57.4 19.6 17.8 14.8 10.1

O
ur

s

✓ 76.0 79.7 84.9 81.4 69.2 79.4 75.0 82.5 80.2 68.0 53.8 57.5 56.4 47.3 31.4
Table 1: Performance of our approach on three TAS benchmarks under two inference mode, i.e.,
online and semi-online. Post-processing is indicated by p.p..

Otherwise, we retain the original prediction. We set the length threshold ℓmin = σ × Tmax with
σ ∈ (0, 1), in proportion to to the longest video duration Tmax in training set.

Our post-processing mitigates the over-segmentation by adjusting action boundaries according to
network predictions and action length, which is very efficient compared to [32, 10] that calculates
frame similarities. The procedure for post-processing is illustrated in Algorithm 2.

4 Experiments

Datasets: We evaluate our model on three common TAS datasets. Breakfast [18] comprises in total
1,712 videos performing ten different activities with 48 actions. On average, each video contains six
action instances. 50Salads [38] has 50 videos with 17 action classes. GTEA [12] contains 28 videos
of seven kitchen activities composing 11 different actions. We use common I3D features [3] as input.

Evaluation Metrics: Standard evaluation metrics for TAS are reported for our online setting, which
includes frame-wise accuracy (Acc), segmental edit score (Edit), and segmental F1 scores with
varying overlap thresholds 10%, 25%, and 50%.

Implementation Details. In CFA, we stack 2 Transformer decoder layer with 8 heads, 2 Swin [26]
self- and cross attention with 4 heads. We use a single-stage TCN as segmentation backbone and
sample non-overlapping clips i.e., δ = w for efficiency. We train the model end-to-end with a learning
rate of 5e−4 of total 50 epochs. Detailed hyperparameter settings can be found in Appendix.

4.1 Experiment Results

Effectiveness. We report the overall performance for online and semi-online inference (see Sec. 3.4)
in in Table 1. Our baseline is a single-stage causal TCN and we build our framework on top of
it. Across all three datasets, the integration of our CFA module leads to a consistent boost in the
segmentation performance. Specifically, our approach gained 5.7% (75.2% vs. 80.9%) in Acc and
9.2% (19.6% vs. 28.8%) in Edit on 50Salads. While the improvements on other datasets are not as
significant, they still show effectiveness, with a margin of about 2%. Generally, semi-online inference
achieves better performance over online across all metrics. Such improvement is likely because
clip-wise prediction better preserves the local temporal continuity of labels compared to step-by-step
single frame prediction.

Comparing across the metrics, segmental scores appear to be significantly low. On breakfast [18]
with our online inference, a frame-wise accuracy of 56.7% only corresponds to a 9.3% F1 score
with 50% IoU. Such score indicates a severe over-segmentation issue and necessitates an effective
post-processing. However, a significant performance increase is observed on Edit and F1 scores
after our proposed pose-processing. For example, the same F1 score increases to 30.5%, tripling its
original value. Although post-processing could lead to a slight decrease in accuracy, it demonstrates
great effectiveness in mitigating the over-segmentation problem.
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GRU CFA Mem. Acc Edit F1 @ {10, 25, 50}

- - - 75.2 19.6 26.8 24.4 19.6
✓ - - 78.1 27.1 37.9 34.7 26.7
- ✓ - 76.2 22.3 30.1 27.0 21.9
✓ ✓ - 79.1 29.0 38.5 35.5 28.3
- ✓ ✓ 78.9 29.2 38.7 35.1 28.8
✓ ✓ ✓ 82.4 32.8 43.0 41.1 34.7

Table 2: Ablation study of module components on
50Salads [38].

I Acc Edit F1 @ {10, 25, 50}

1 79.1 29.0 38.5 35.5 28.3
2 79.6 30.7 40.7 38.2 31.4
3 79.5 28.5 37.2 36.1 29.0
4 79.1 29.2 39.1 36.3 30.5
5 79.2 30.8 39.1 37.7 30.6
Table 3: Effect of interactions I .

Ablation study. Table 2 evaluates the components in our CFA module. The first row is our single-layer
causal TCN baseline with strong frame-wise accuracy but poor segmental metrics. The GRU boosts
segment metrics (7-11%) over the baseline, showing its ability to accumulate context information.
While CFA using the current clip as pseudo memory predictably leads to a performance drop (5%)
compared to GRU due to lack of any context information. Combining either GRU or our adaptive
memory with our CFA achieves very close performance (rows 4 and 5), highlighting the importance
of the context information for TAS. The complete model yields the best performance and boosts Acc
by 7% and average segmental scores by 15.3%. This validates the complementary effect of GRU’s
internal state and our explicit memory design.

Number of layers in CFA. Table 3 explores the interaction iterations I in CFA. The results indicate
that the performance is not significantly affected by the number of iterations. In practice, we set the
number of iterations to 2, as it achieves a good balance between performance and efficiency.

M short M long Acc Seg.

✓ - 80.3 36.7
- ✓ 80.4 36.4
✓ ✓ 82.4 37.9

Table 4: Effect of memory composition.

w / len(M) 16 32 64 128 256

Acc 79.8 81.4 81.6 82.4 80.7
Seg. 35.1 36.5 37.6 37.9 38.2

Table 5: Effect of clip size and memory length.
“Seg.” indicates the mean of Edit and F1 scores.

Memory composition (M short/M long). We assess the impact of memory types and present results
in Table 4. It shows comparable performances for each memory type when considered individually.
However, the combination of both yields a 2% improvement in Acc and 1.5% for averaged segmental
metric, suggesting the significance of incorporating diverse memory for TAS.

Clip size w / Memory size len(M). In our implementation, we set clip size and memory size to be
equal and we report its influence on performance in Table 5. It shows a larger clip size leads to better
segmental results; this is because temporal continuity can be better modeled with longer clips for
learning. However, the information of short actions could be diluted when compressed to form the
memory token if the window size is too large.

Post-processing hyperparameters. Two hyperparameters are defined in our post-processing: confi-
dence threshold θ and the minimum segment length ℓmin. We vary its scaling factor σ to assess ℓmin.
In Table 6, increasing θ greatly enhances the segment results, with a 18.1% increase observed when
θ = 0.7. Although the accuracy tends to decrease as θ becomes larger, the drop is not as substantial
(3.1%) compared to the improvements in segmental results. While Table 7 shows the segmental
performance stops increasing and stays stable when σ > 1

16 with a fixed confidence score θ = 0.9. In
conclusion, employing a higher confidence threshold can help better mitigate the over-segmentation
because it makes more sense to prioritize preserving the continuity of a segment that includes frames
with highly confident predictions given a fixed length budget.

4.2 Comparison with State-of-the-Art Methods

Tables 8 and 9 compare our approach against the state-of-the-art TAS approaches on all three
benchmarks. Due to the absence of dedicated online TAS methods, we benchmark against the online
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θ 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Acc 82.5 82.6 82.6 82.6 81.2 81.1 79.4
Seg. 50.9 51.8 51.9 51.9 69.0 73.3 76.4

Table 6: Effect of confidence threshold θ (σ= 1
16 ).

σ 1
64

1
32

1
16

1
8

1
4

Acc 79.6 79.4 79.4 79.4 79.4
Seg. 70.9 74.7 76.4 76.4 76.4

Table 7: Effect of minimum length factor σ
with θ = 0.9.

Method
GTEA [12] 50Salads [38]

Acc Edit F1 @ {10, 25, 50} Acc Edit F1 @ {10, 25, 50}

of
fli

ne

MS-TCN [11] 78.7 84.0 88.3 86.6 72.8 81.2 65.8 72.8 70.4 61.7
MS-TCN + p.p. 78.7 85.2 89.6 88.3 73.3 80.4 74.1 82.0 79.2 70.2
ASFormer [45] 79.7 84.6 90.1 88.8 79.2 85.6 79.6 85.1 83.4 76.0
DiffAct [25] 82.2 89.6 92.5 91.5 84.7 87.4 88.9 90.1 89.2 83.7

on
lin

e

LSTR [44] 63.7 33.2 41.5 37.7 25.0 60.5 5.0 8.2 6.6 4.1
Causal TCN 74.4 66.6 73.9 70.3 57.2 75.2 19.6 26.8 24.4 19.6
Oursonline 75.8 66.8 74.3 71.5 60.3 79.1 29.0 38.5 35.5 28.3
Oursonline + p.p. 73.5 75.4 80.3 76.9 66.6 76.7 69.2 73.1 70.5 62.8
Ourssemi 77.1 68.1 76.7 73.5 63.9 82.4 32.8 43.0 41.1 34.7
Ourssemi + p.p. 76.0 79.7 84.9 81.4 69.2 79.4 75.0 82.5 80.2 68.0
Table 8: Comparison with the state-of-the-art methods on GTEA and 50Salads.

TAD approach LSTR [44]. We train LSTR on TAS datasets using the official code implementation2.
To ensure a fair comparison, we configure their working (short-term) memory to be the same as ours
(w). Additionally, we adjust its long memory accordingly to provide access to the entire past sequence.
As evident from Tables 8 and 9, LSTR [44] consistently achieves relatively low performance,
particularly with Edit scores of 5.0% and 4.9% on 50Salads and Breakfast datasets, respectively. This
suggests severe over-segmentation in their predictions. Moreover, these performances are inferior
even to those of our baseline model (casual TCN), indicating that a direct adoption of online detection
models for the segmentation task is not ideal.

Amongst all datasets, Breakfast is the most challenging, with a significant performance gap between
offline and online models, particularly on segmental metrics. Notably, the F1@50 score on Breakfast
experiences a drastic drop of 4/5, from 47.5% to 8.3%, highlighting the difficulty of the online
segmentation task with videos that are more complex. Nonetheless, we still achieve a modest absolute
performance improvement of 2%. Furthermore, our post-processing technique, significantly boosts
segmental performance, nearly tripling the original performance, albeit with a slight decrease in
Acc. This underscores the effectiveness of our post-processing technique in mitigating the over-
segmentation. MV-TAS [13] tackles online segmentation but under a multi-view setting. It leverages
multi-view information and an offline model as a reference for online segmentation. Despite this, even
our baseline model, depicted in the third-to-last row of Table 9, showcases a notable performance
improvement (55.3% vs. 41.6%) over MV-TAS [13]. This considerable margin emphasizes the
competitiveness of our baseline model.

When compared to offline models, our semi-online inference with post-processing manages to surpass
the offline model MS-TCN [11] on 50Salads dataset across the segmental metrics and reaches around
90% of the accuracy of the best-performing DiffAct [25]. On Breakfast, our approach lags behind the
offline model in both frame-wise accuracy and segmental metrics.

Qualitative Result. Fig. 3 qualitatively compares the segmentation results from different approaches.
It is clear to see that LSTR [44] suffers from the most prominent over-segmentation issue, which
remains significant after the post-processing. Under the same configuration, our semi-online achieves
slightly better results compared to the frame-by-frame online inference. On the other hand, our
post-processing, when applied, successfully removes the short fragments (black boxes) in the raw

2https://github.com/amazon-science/long-short-term-transformer
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Method
Breakfast [18]

Acc Edit F1 @ {10, 25, 50}

of
fli

ne MS-TCN [11] 69.3 67.3 64.7 59.6 47.5
ASFormer [45] 73.5 75.0 76.0 70.6 57.4
DiffAct [25] 75.1 76.4 80.3 75.9 75.1

on
lin

e

MV-TAS [13] 41.6 - - - -
LSTR [44] 24.2 4.9 5.5 3.9 1.7
Causal TCN 55.3 18.7 15.1 11.7 8.3
Oursonline 56.7 19.3 16.8 13.9 9.3
Oursonline + p.p. 52.9 55.7 54.8 45.8 30.5
Ourssemi 57.4 19.6 17.8 14.8 10.1
Ourssemi + p.p. 53.8 57.5 56.4 47.3 31.4

Table 9: Comparison with the state-of-the-art methods on Breakfast.

prediction and refines the segmentation output. In the meantime, it may reduce Acc, particularly at
action boundaries (red boxes).

For failure cases, we have the following two observations: Action start often delays due to the need
for more frame information to predict new actions, especially when facing semantic ambiguities
at action boundaries. Persistent over-segmentation happens when the network makes incorrect but
confident predictions, which could be improved with a stronger backbone or better temporal context
modeling.

LSTR [44]

+ post proc.

Oursonline

+ post proc.

Ourssemi

+ post proc.

MS-TCN [11]

GT

Figure 3: Visualization of segmentation outputs for sequence “rgb-01-1” from 50Salads [38].

4.3 Runtime Analysis

We evaluate the runtime performance of our approach using an Nvidia A40 GPU with both pre-
computed I3D features and raw streaming RGB inputs, and present the inference times in Table 10. As
shown, our approach can achieve up to 238.1 FPS when using pre-computed I3D features. To calculate
the runtime for the entire segmentation pipeline, we take into consideration of the computational
overheads of optical flow calculation and the I3D feature extraction. By leveraging a GPU backend
for optical flow calculation, our full framework is able to achieve a runtime of 33.8 FPS.

Inference Latency. The inference speed presented above is identical for both online and semi-online
inference modes since their input sizes are the same. However, the latency can differ. In the online
mode, inference is performed on a per-frame basis, meaning its latency is only dependent on the
inference speed. In contrast, the semi-online mode incurs additional latency as it requires gathering

9



frames up to the clip lengths (128 frames at a standard 25 FPS corresponds to 5.12 seconds) before
forming inputs.

Online inference offers better real-time responsiveness compared to semi-online inference, but the
latter achieves superior performance as we discussed in Sec. 4.1. The choice between these two
modes depends on the application’s priorities: if the real-time inference is critical, online inference is
preferable; however, if accuracy is more important and the task is less time-sensitive, semi-online
inference is recommended.

Ours (I3D) OF Comp. I3D Comp. Ours (raw)

Time (ms) 4.2 4.8 20.5 29.5
FPS 238.1 208.3 48.8 33.8

Table 10: Runtime profile (in ms and FPS).

Limitation. Handling diverse and real-world videos presents several challenges. One common
scenario involves interrupted actions, where a subject abruptly switches to a different action, leaving
the ongoing action unfinished. These interruptions can be challenging for the model to handle
effectively. Additionally, the extended length of the video poses another challenge. Streaming videos
can be infinitely long, so effectively managing and preserving long-form history within a fixed
memory budget becomes a critical issue.

5 Conclusion

This paper presents the first framework for the online segmentation of actions in procedural videos.
Specifically, we propose an adaptive memory bank designed to accumulate and condense temporal
context, alongside a feature augmentation module capable of injecting context information into inputs
and producing enhanced representations. In addition, we propose a fast and effective post-processing
technique aimed at mitigating the over-segmentation problem. Extensive experiments on common
benchmarks have shown the effectiveness of our approach in addressing the online segmentation task.
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A Appendix / supplemental material

A.1 Standard vs. Causal Convolution

Standard convolution. As shown in Fig. 4 (left), the receptive field of a standard convolution
includes both past and future inputs. Mathematically, for an input sequence x(t) and a filter h(k), the
output y(t) at time t is given by:

y(t) =

K∑
k=−K

h(k) · x(t− k) (8)

where K is the size of the filter. This means the output at time t depends on inputs from t−K to
t+K.

Causal convolution. As shown in Fig. 4 (right), the receptive field of a causal convolution includes
only the past and current inputs, ensuring that the output at time t does not depend on future inputs.
Mathematically, the output y(t) is given by:

y(t) =

K∑
k=0

h(k) · x(t− k) (9)

where K is the size of the filter. This means the output at time t depends only on inputs from t to
t−K.

A.2 CFA Formula

The attention mechanism [39] is written as:

Attention(Q,K, V ) = SoftMax
(
Q×KT

√
d

)
× V (10)

where Q,K, V represents query, key and value, respectively, and d is the hidden dimension.

We use a Transformer decoder [39] to obtain the memory encoding, and TransDecoder() is formulated
as follows:

M̃TD
k−1 = SelfAttn(Mk−1,Mk−1,Mk−1) + CrossAttn(Mk−1, c

GRU
k , cGRU

k ) + FFN (11)

Here, the FFN (Feed-Forward Network) is a two-layer fully connected network, Mk−1 is the memory
bank, which first undergoes self-attention. The output of the self-attention mechanism is used as the
query for cross-attention, where cGRU

k serves as the key and value. This interaction results in a more
effective memory encoding M̃TD

k−1.

We split the input feature of size C × T to 2 windows with size C × T
2 , and perform Swin [26] self

attention within each local window independently, and Cross attention for every two consecutive
local windows. The Swin attention mechanism can be formulated as:

Swin Attention(Q,K, V ) = SoftMax
(
Q×KT

√
d

+B

)
× V (12)

Where the B is the relative position of the window. Then, our method produces context-augmented
features c̃k using Eq. (3) and Eq. (4)

Our self-attention based on Eq. (12):

SelfAttn(cGRU
k , cGRU

k , cGRU
k ) = SoftMax

(
cGRU
k × (cGRU

k )T√
d

+B

)
× cGRU

k (13)

where c as the clip features and k as the current step, ck passes through a GRU to obtain cGRU
k . Next,

we use cross-attention to interact with the output of the self-attention cSA
k with the output memory

bank of the Transformer decoder, M̃TD
k−1:

CrossAttn(cSA
k , M̃TD

k−1, M̃
TD
k−1) = SoftMax

(
cSA
k × (M̃TD

k−1)
T

√
d

+B

)
× M̃TD

k−1 (14)

14



Standard Convolution Causal Convolution

Figure 4: Standard vs. Causal Convolution

A.3 Implementation

Hyper-parameters. As shown in Table 11, the hyper-parameter settings are generally the same
for each dataset. GTEA uses a shorter window size because the longest video is only about 2000
frames, whereas the other datasets all use a window size of 128. The optimal confidence threshold
for segmental metrics varies for each dataset: for GTEA is 0.6; for 50Salads is 0.9; and for Breakfast
is 0.8.

Hyper-parameters GTEA 50Salads Breakfast

Learning rate 5e4 5e4 5e4

Epochs 50 50 50
No. GRU layers 1 1 1
w 64 128 128
σ 1/16 1/16 1/16
θ 0.6 0.9 0.8
iteration I 2 2 2
TD heads 8 8 8
SwinAttn heads 4 4 4
No. Causal TCN stages 1 1 1
No. Causal dilated Conv layers 10 10 10

Table 11: Hyper-parameter settings for GTEA, 50Salads, and Breakfast datasets.

A.4 AsFormer Performance

We conduct experiments on three common TAS datasets, where we replace the MS-TCN backbone
with AsFormer. In MS-TCN, the transition to an online method is relatively straightforward, as it
only requires replacing all the standard convolution layers with causal convolution layers. However,
in AsFormer, the transformation involves more extensive modifications. In addition to replacing
the convolution layers with causal convolutions, we also modify the standard attention layers into
causal attention layers. Furthermore, we incorporate our proposed GRU, CFA, Memory Bank, and
a Post-processing module to ensure that AsFormer transitions from an offline method to an online
method. Our approach remains highly effective in boosting online segmentation performance while
maintaining the strengths of the AsFormer architecture.
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p.p.

GTEA 50Salads Breakfast

Acc Edit F1 @ {10, 25, 50} Acc Edit F1 @ {10, 25, 50} Acc Edit F1 @ {10, 25, 50}

Offline - 79.7 84.6 90.1 88.8 79.2 85.6 79.6 85.1 83.4 76.0 73.5 75.0 76.0 70.6 57.4

- 75.0 69.7 77.7 74.0 62.0 77.5 29.1 37.9 35.3 28.6 64.9 32.1 31.2 27.4 20.2Online ✓ 72.8 77.8 84.5 80.8 64.2 69.4 36.4 70.6 65.7 52.3 63.1 60.1 61.6 54.3 39.2

- 76.5 71.3 79.0 76.7 63.1 78.5 29.7 38.5 36.2 30.4 64.8 37.0 33.9 30.0 22.6Semi ✓ 74.7 79.6 86.3 82.8 67.0 71.0 64.9 72.2 67.2 53.8 64.0 63.2 64.9 57.5 43.0

Table 12: Performance of our approach when using ASFormer as the segmentation backbone.
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