Software Engineering Techniques for Semantic Web

Jin Song DONG
(www.comp.nus.edu.sg/~dongjs)
Computer Science Department

National University of Singapore

(Joint work with Yuan Fang LI, Hai WANG, Jing/Jun SUN and others)

June 2005

Objectives

e To learn Software Modeling Techniques, i.e., Z, Alloy ...
e To learn Semantic Web Languages, i.e., RDF, OWL ...

e To study the Connections Between the Two Areas.

Semantic Web

“The Semantic Web is an extension of the current Web in which information is
given well-defined meaning, better enabling computers and people to work in
cooperation. It is the idea of having data on the Web defined and linked in a way
that it can be used for more effective discovery, automation, integration, and reuse
across various applications.” — W3C (www.w3.org/2001/sw)

Overview

e Introduction to Software Modeling Techniques

— Z and Alloy

e Introduction to Semantic Web

— RDF, DAML+OIL, OWL and ORL

e Software Design Method/Tools for Semantic Web
— Extracting DAML ontology from Z models
— Semantics of DAML+OIL in Z/Alloy
— Combined Approach to Reasoning about Semantic Web

e Conclusion and Further Work

The Z Specification Language

developed originally at Programming Research Group, Oxford University
based on set theory and predicate logic

system described by introducing fixed sets and variables and specifying the

relationships between them using predicates
declarative, not procedural

system state determined by values taken by variables subject to restrictions

imposed by state invariant

operations expressed by relationship between values of variables before, and
values after, the operation

variable declarations and related predicates encapsulated into schemas

schema calculus facilitates the composition of complex specifications

J. Woodcock and J. Davies, Using Z: Specification, Refinement, and Proof. Prentice-Hall, 1996

Relations

A relation R from A to B, denoted
by

R: A+ B,
is a subset of A x B.

R is theset {(c,z),(c,2),(d,z),(d,y),(d,z2)}

Notation: the predicates

(c,2) € R and c¢—z2€R and cRz

are equivalent.

domR istheset {a:A | db: BeaRb}
ran R istheset {b:B | Ja:AeaRb}

Domain and Range Restriction/Subtraction

Suppose R: A<+ Band S C A and T C B; then

e.g. if

S<R istheset {(a,b):R | a€ S}
R>T istheset {(a,b):R | be T}

S<R istheset {(a,b):R | a¢ S}
Re T istheset {(a,b):R | bg T}

has_sibling : People <» People then

female < has_sibling is the relation is_sister_of
has_sibling > female is the relation has_sister

female <9 has_sibling is the relation is_brother_of
has_sibling & female is the relation has_brother

Relational Image

Suppose R: A+ Band SC A
R|S)=4{b:B | Ja:SeaRb}

R(S|)CB

divides({8,9}))
={z:N | Jk:Nez=8k V z =09k}
= {numbers divided by 8 or 9}
<({7.321})={z:N | >3}

has_sibling(male |) = {people who have a brother}

Relational Composition

Suppose R: A+>Band S: B+ C

RgS
={(a,c):Ax C | 3b:BeaRb A bSc}

S
e
RgSe A~ C

e.g.

1s_parent_of §is_parent_of = is_grandparent_of

R°=id[4], R'=R, R®=Rg3sR, R®=R3sR3R,...

Functions
A (partial) function f from a set A to a set B, denoted by
f:A-+ B,

is a subset f of A x B with the property that for each a € A there is at most one
b € B with (a,b) € f. The function f is a total function, denoted

f:A— B,

if and only if dom f is the set A.

The predicates
(a,b) e f and f(a)=1b

are equivalent.

10

Sequences

A sequence s of elements from a set A, denoted
s:seqA,

is a function s : N -+ A where dom s = 1.. n for some natural number n. For
example,

(b,a,c,b) denotes the sequence (function){1 + 6,2 — a,3 +— c,4 — b}

The empty sequence is denoted by ().

The set of all sequences of elements from A is denoted seq A and is defined to be

seqA=={s: N+ A | dn:Nedoms=1..n}

We define seq; A to be the set of all non-empty sequences, i.e.
seq; A ==seq A — {{)}

Notice that: (a, b, a)# (a, a, b)# (a, b)

11

Z. Schemas: A Message Buffer Example

Leave Join

-

Buffer -

e A number of messages are transmitted from one location to another.

e Because of other traffic on the line each message for transmission is placed in a
buffer which outputs the message when the line is free.

e This buffer may contain several messages at any time, but there is a fixed
upper limit on the number of messages the buffer may contain.

e The buffer operates on a first in/first out (FIFO) principle.

12

Formal Specification

The State Schema

[MSG] (The exact nature of these messages is not important)

is the set of all possible messages that could ever be transmitted.

| maz : N (The actual value of maz is not important)

is the constant maximum number of messages that can be held in the buffer at any

one time.
_ Buffer
items : seq MSG declaration
7 items < maz predicate

e.g. suppose MSG = {my, mg, mg} and mazr =4

Then items = (my, mgy) is an instance, but items = (mg, my, my, mg, mg) is not

13

Schema Inclusion and Operation/Initial Schemas

A Buffer _ A Buffer

{Buﬁer items, items’ : seq MSG
B ! BT ,
uifer #items < maz N #items' < max
_Join _ Leave _ Bufferyyyp ———
A Buffer A Buffer Buffer
7 M ' M.)
msg SG msg SG items = ()
#items < mazx items #+ O
items’ = items 7~ (msg?) | items = (msg!) items’

14

Alloy Overview

Alloy (developed at MIT by D. Jackson’s group) is a structural modelling language
based on first-order logic (a subset of Z) and specifications organised in a tree of
modules

Signature: A signature (sig) paragraph introduces a basic type and a collection
of relation (called field) in it along with the types of the fields and constraints
on their value. A signature may inherit fields and constraints from another

signature.

Function: A function (fun) captures behaviour constraints. It is a parameterised
formula that can be “applied” elsewhere,

Fact: Fact (fact) constrains the relations and objects. A fact is a formula that
takes no arguments and need not to be invoked explicitly; it is always true.

Assertion: An assertion (assert) specifies an intended property. It is a formula

whose correctness needs to be checked, assuming the facts in the model.

15

Alloy Analyser (AA)

e Constraint solver with automated simulation & checking
e Transforms a problem into a (usually huge) boolean formula

e A scope (finite bound) must be given

16

Alloy Basics

x (a scalar), {x} (a singleton set containing a scalar), (x) (a tuple) and {(x)?} (a
relation) are all treated as the same as {(x)}. The relational composition (or join)

and product:

{X1, .., Xm,)}r.{(S, Y1,.., Yn)} = {(X1, .., Xm, Y1, .., Yn)}
{X1, .., Xm, SO} -> {(S, Y1,.., Yn)} = {(X1, .., Xm, S, S, Y1, .., Yn)}

17

Alloy Expression Examples

children = “parents

ancestors = “parents

descendants = "ancestors

Man = Person - Woman

mother = parents & (Person->Woman)

father = parents & (Person->Man)

siblings = parents. parents - iden [Person]

cousins = grandparents. grandparents - siblings - iden [Person]

18

Alloy Logical Operators

'F // negation: not F
F & G // conjunction: F and G

F || G // disjunction: F or G

F => G // implication: F implies G; same as !F || G

F <=> G // biimplication: F when G; same as F =>G && G => F
F =>G,H // if F then G else H; same as F => G && 'F => H
Quantifiers

all x: e | F

some x: e | F
no x: e | F
sole x: e | F

one x: e | F
one x:e, y:f | F

all disj x,y: e | F

19

Examples

// no polygamy

all p: Person | sole p.spouse

// a married person is his or her spouse’s spouse

all p: Person | some p.spouse => p.spouse.spouse = p

// no incest

no p: Person | some (p.spouse.parents & p.parents)

// a person’s siblings are those persons with the same parents
all p: Person | p.siblings = {q: Person | q.parents = p.parents} - p
// everybody has one mother

all p: Person | one p.parents & Woman

// somebody is everybodys ancestor

some x: Person | all p: Person | x in p.*parent

20

Alloy, UML and Z

Given the UML Class diagram

A B

X <<assoc>> Y

The corresponding Alloy expression:

assoc: A x -> y B

Given the Z expressions, the corresponding Alloy expressions:
inZ: T — 15

in Alloy: T1 ->! T2

inZ: Ti + 15

in Alloy: T1 ->7 T2

21

Module, Sig, Fact, Fun and Assert (example)

module CeilingsAndFloors

sig Platform {}

sig Man {ceiling, floor: Platform}

fact {all m: Man | some n: Man | Above (n,m)}

fun Above (m, n: Man) {m.floor = n.ceiling}

assert BelowToo {all m: Man | some n: Man | Above (m,n)}
run Above for 2

check BelowToo for 2

22

Recall Overview
e Introduction to Software Modeling Techniques
— Z and Alloy

v Introduction to Semantic Web
— RDF, DAML+OIL, OWL and ORL

e Software Design Method/Tools for Semantic Web
— Extracting DAML ontology from Z models
— Semantics of DAML+OIL in Z/Alloy
— Combined Approach to Reasoning about Semantic Web

e Conclusion and Further Work

23

Semantic Web

e Goals
— Realizing the full potential of the Web
— Making it possible for tools (agents) to effectively process information.
— Ultimate goal - effective and efficient global information /knowledge
exchange
e Building on proven ideas

— Combines XML, RDF, hypertext and metadata approaches to linked

information

— Focuses on general principles of Web automation and data aggregation

24

Semantic Web Architectural Dependencies

_\
ﬁ\ Rules Trust

Data Proof

Ontology vocabulary

Digital Signature

www.w3c.org (by Tim Berners-Lee)

25

RDF, DAML+HOIL and OWL

e Resource Description Framework (RDF) — 1999

— An RDF document is a collection of assertions in subject verb object form

for describing web resources

— Provides interoperability between applications that exchange
machine-understandable information on the Web

— Use XML as a syntax, include XMLNS, and URIs
e DARPA Agent Markup Language (DAML+OIL) — 2001

— Semantic markup language based on RDF, and
— Extends RDF(S) with richer modelling primitives
— DAML combines Ontology Interchange Language (OIL).

e OWL Web Ontology Language — 2003 (become W3C rec)
— Based on DAML+OIL
— Three levels support: Lite, DL, Full

26

HTML and XML

e HTML

<H1> Semantic Web and Formal Methods</H1>

 Teacher: Jin Song Dong
 Students: s19908, s20015
 Requirements: discrete maths

o XML

<course>
<title> Semantic Web and Formal Methods </title>
<teacher> Jin Song Dong </teacher>
<students> 519908, s20015 </students>
<req> discrete maths </req>

</course>

27

Lack semantics in XML

e The XML is accepted as the emerging standard for data interchange on the
Web. XML allows authors to create their own markup (e.g. <course>), which

seems to carry some semantics.

e However, from a computational perspective tags like <course> carries as much
semantics as a tag like <H1>. A computer simply does not know, what a

course is and how the concept course is related to other concepts.

e XML may help humans predict what information might lie “between the tags”
in the case of <students> </students>, but XML can only help.

e Only feasible for closed collaboration, e.g., agents in a small and stable

community /intranet

28

RDF Basics

e Resources — Things being described by RDF expressions. Resources are
always named by URIs, e.g.

— HTML Document
— Specific XML element within the document source.

— Collection of pages

e Properties — Specific aspect, characteristic, attribute or relation used to
describe a resource, e.g. Creator, Title ...

e Statements —
Resource (Subject) + Property (Predicate) + Property Value (Object)

29

RDF Statement Example 1
Dong, Jin Song is the creator of the web page
http://www.comp.nus.edu.sg/cs4211
e Subject (Resource) - http://www.comp.nus.edu.sg/cs4211
e Predicate (Property) - Creator
e Object (Literal) Dong, Jin Song

~———————_ Credtor
http://www.comp.nus.edu.sg/cs4211

30

Dong, Jin Song

RDF Statement Example 2

Dong, Jin Song whose e-mail is dongjs@comp.nus.edu.sg is the creator of the web
page http://www.comp.nus.edu.sg/cs4211

Creator
http://www.comp.nus.edu.sg/cs4211

Dong, Jin Song dongjs@comp.nus.edu.sg

31

RDF in XML syntax

<rdf :RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax—ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description about="http://www.comp.nus.edu.sg/cs4211">
<dc:creator>Dong, Jin Song</dc:creator>
<dc:title>Advanced Software Engineering</dc:title>
<dc:date>2000-07-01</dc:date>

</rdf :Description>

</rdf :RDF>

32

RDF Containers

e Bag - An unordered list of resources or literals
e Sequence - An ordered list of resources or literals

e Alternative - A list of resources or literals that represent alternatives for the

value of a property

33

Container example: Sequence

Statement: The students of the course CS4211 in alphabetical order are Yuanfang
Li, Jun Sun and Hai Wang .

<rdf :RDF xmlns:rdf=http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
xmlns:s="http://www.schemas.org/Course/">
<rdf :Description about=http://www.comp.nus.edu.sg/ cs4211>
<s:students>
<rdf:Seqg>
<rdf:1i rdf:resource="http://www.comp.nus.edu.sg/~1liyf"/>
<rdf:1i rdf:resource="http://www.comp.nus.edu.sg/ sunj"/>
<rdf:1i rdf:resource="http://www.comp.nus.edu.sg/ wangh"/>
</rdf:Seq>
</s:students>
</rdf:Description>
</rdf :RDF>

34

RDF Schema

e Basic vocabulary to describe RDF vocabularies, e.g.,

Class, subClass0f, Property, subProperty0f, domain, range
e Defines properties of the resources (e.g., title, author, subject, etc)
e Defines kinds of resources being described (books, Web pages, people, etc)

e XML Schema gives specific constraints on the structure of an XML document
RDF Schema provides information about the interpretation of the RDF

statements

e RDF schema uses XML syntax, but could theoretically use any other syntax

35

RDF Schema Example (Class)

<?7xml version="1.0"7>
<rdf :RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax—ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#">

<rdfs:Class rdf:ID="Person">

<rdfs:subClassOf

rdf :resource="http://www.w3.0rg/1999/02/22-rdf-syntax—ns#Resource" />
</rdfs:Class>

<rdfs:Class rdf:ID="Student">

<rdfs:subClass0f rdf:resource="#Person"/>
</rdfs:Class>

36

RDF Schema Example (Property)

<rdf :Property rdf:ID="teacher">
<rdfs:domain rdf:resource="#Course"/>
<rdfs:range rdf:resource="#Person"/>
</rdf :Property>

<rdf :Property rdf:ID="students">
<rdfs:comment>List of Students in alphabetical order</rdfs:comment>
<rdfs:domain rdf:resource="#Course"/>
<rdfs:range rdf:resource="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Seq"/:
</rdf :Property>

37

Why RDF(S) is not enough

e Only range/domain constraints on properties (need others)
e No properties of properties (unique, transitive, inverse, etc.)
e No equivalence, disjointness, etc.

e No necessary and sufficient conditions (for class membership)

38

DAML+OIL

e Europe: Ontology Inference Language (OIL) extends RDF Schema to a
fully-fledged knowledge representation language.

e US: DARPA Agent Markup Language (DAML)
e Merged as DAML+OIL in 2001

— logical expressions
— data-typing
— cardinality

— quantifiers

e Becomes OWL — W3C 2004

39

DAML: Setting up the namespaces

<rdf :RDF
xmlns:
xmlns:
xmlns:

Xxmlns:

rdf ="http://www
rdfs="http://www
xsd ="http://www
daml="http://www

.w3.0rg/1999/02/22-rdf-syntax-ns#"
.w3.0rg/2000/01/rdf-schema#"
.w3.0rg/2000/10/XMLSchema#"
.daml.org/2001/03/daml+oil#"

40

DAML: Define Classes

<rdfs:Class rdf:ID="Animal"> <rdfs:label>Animal</rdfs:label> </rdfs:Class>
<rdfs:Class rdf:ID="Male">
<rdfs:subClassOf rdf:resource="#Animal"/>
</rdfs:Class>
<rdfs:Class rdf:ID="Female">
<rdfs:subClassOf rdf:resource="#Animal"/>
<daml:disjointWith rdf:resource="#Male"/>
</rdfs:Class>
<rdfs:Class rdf:ID="Man">
<rdfs:subClassOf rdf:resource="#Person"/>
<rdfs:subClass0f rdf:resource="#Male"/> </rdfs:Class>

41

DAML: Define Properties

<rdf :Property rdf:ID="hasParent'>
<rdfs:domain rdf:resource="#Animal"/>
<rdfs:range rdf :resource="#Animal" />

</rdf :Property>

<rdf :Property rdf:ID="hasFather">
<rdfs:subProperty0f rdf:resource="#hasParent"/>
<rdfs:range rdf:resource="#Male"/>

</rdf :Property>

42

DAML: Define Restrictions

<rdfs:Class rdf:ID="Person"> <rdfs:subClass0f rdf:resource="#Animal"/>
<rdfs:subClass0f>
<daml:Restriction>
<daml :onProperty rdf:resource="#hasParent"/>
<daml:toClass rdf:resource="#Person"/>
</daml:Restriction> </rdfs:subClass0f>
<rdfs:subClass0f>
<daml:Restriction daml:cardinality="1">
<daml:onProperty rdf:resource="#hasFather"/>
</daml:Restriction> </rdfs:subClass0f>
<rdfs:subClass0f>
<daml :Restriction daml:maxcardinality="1">
<daml:onProperty rdf:resource="#hasSpouse"/>
</daml:Restriction> </rdfs:subClass0f>
</rdfs:Class>

43

DAML: UniqueProperty and Transitive

<daml:UniqueProperty rdf:ID="hasMother">
<rdfs:subProperty0f rdf:resource="#hasParent"/>
<rdfs:range rdf:resource="#Female"/>

</daml :UniqueProperty>
<daml :TransitiveProperty rdf:ID="hasAncestor">

<rdfs:label>hasAncestor</rdfs:label>
</daml:TransitiveProperty>

44

DAML: hasValue and intersectionOf

<rdfs:Class rdf:ID="TallThing">
<daml:sameClassAs>
<daml :Restriction>
<daml:onProperty rdf:resource="#hasHeight"/>
<daml:hasValue rdf:resource="#tall"/>
</daml:Restriction>
</daml:sameClassAs>
</rdfs:Class>
<rdfs:Class rdf:ID="TallMan">
<daml:intersectionOf rdf:parseType="daml:collection">
<rdfs:Class rdf:about="#TallThing"/>
<rdfs:Class rdf:about="#Man"/>
</daml:intersectionOf>
</rdfs:Class>

45

DAML: instances

<Person rdf:ID="Adam">
<rdfs:label>Adam</rdfs:label>
<hasHeight rdf:resource=#medium/>
</Person>

46

OWL: The three sublanguages

e OWL Lite supports those users primarily needing a classification hierarchy and
simple constraints. For example, while it supports cardinality constraints, it

only permits cardinality values of 0 or 1.

e OWL DL supports those users who want the maximum expressiveness while
retaining computational completeness and decidability. OWL DL includes all
OWL language constructs, but they can be used only under certain restrictions
(for example, while a class may be a subclass of many classes, a class cannot be

an instance of another class).

e OWL Full is meant for users who want maximum expressiveness and the
syntactic freedom of RDF with no computational guarantees. For example, in
OWL Full a class can be treated simultaneously as a collection of individuals

and as an individual in its own right.

47

OWL: Changes from DAML-+OIL

e With respect to the three sublanguages, the DAML+OIL semantics is closests
to the OWL DL semantics.

e The namespace was changed to http://www.w3.0org/2002/07 /0wl
e Cyclic subclasses are now allowed
e multiple rdfs:domain and rdfs:range properties are handled as intersection

e Various properties and classes were renamed, e.g., daml :UniqueProperty is

replaced by owl:FunctionalProperty

... http://www.w3.org/TR/owl-ref/

48

Beyond OWL: Ontology Rule Language (ORL)

e Decidability vs Expressiveness
e OWL is weak in express composite properties

ORL extends OWL DL with a form of rules while maintaining compatibility

with OWLs existing syntax and semantics.

e I. Horrocks and P. F. Patel-Schneider, A Proposal for an OWL Rules
Language, ACM WWW’04, NY, May 2004

49

ORL Example

<owlx:Rule>
<owlx:antecedent>
<owlx:individualPropertyAtom owlx:property="hasParent">
<owlx:Variable owlx:name="x1" />
<owlx:Variable owlx:name="x2" />
</owlx:individualPropertyAtom>
<owlx:individualPropertyAtom owlx:property="hasBrother">
<owlx:Variable owlx:name="x2" />
<owlx:Variable owlx:name="x3" />
</owlx:individualPropertyAtom>
</owlx:antecedent>
<owlx:consequent>
<owlx:individualPropertyAtom owlx:property="hasUncle">
<owlx:Variable owlx:name="x1" />
<owlx:Variable owlx:name="x3" />
</owlx:individualPropertyAtom>
</owlx:consequent>
</owlx:Rule>

50

Recall Overview
e Introduction to Software Modeling Techniques

— Z and Alloy

e Introduction to Semantic Web

— RDF, DAML+OIL, OWL and ORL

v' Software Design Method /Tools for Semantic Web
— Extracting DAML ontology from Z models
— Semantics of DAML+OIL in Z/Alloy
— Combined Approach to Reasoning about Semantic Web

e Conclusion and Further Work

51

Problems in designing Semantic Web ontology /services

e Semantic Web languages are not expressive enough for designing Semantic Web
complex ontology properties and service/agents.

Require a systematic design process with expressive high level modeling techniques

Solution: software specifications

52

Some DAML constructs in Abstract Form

Abstract DAML constructs

Description

daml_class

classes

daml_subclass|C]

subclasses of C

daml_objectproperty|D < R)]

relation properties with domain D, range R

daml_objectproperty|D — R]

function properties with domain D, range R

daml_subproperty|P]

sub properties of P

instanceof [C]

instances of the DAML class C

53

Extracting DAML ontology from the Z model

Z can be used to model web-based ontology at various levels. The Z conceptual
domain models can be transformed to DAML4OIL ontology via XSLT technology.

Given type transformation

[T]

T € daml_class

e.g.
[Author]

<daml:class rdf:ID="author">
<rdfs:label>Author</rdfs:label> </daml:Class>

54

7. schema transformation

S
{)(: T; Y :PTs

Ty, Ts € daml_class

S € daml_class, X € daml_objectproperty|S — Ti|, Y € daml_objectproperty[S <> T2]

__ Paper
title : Title; authors : P Author

<daml:class rdf:ID="paper"> <rdfs:label>Paper</rdfs:label> </daml:Class>
<daml:0ObjectProperty rdf:ID="paper_title"> <rdf:type rdf:resource="
http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>

<rdf :domain rdf:resource="#paper"/>

<rdf :range rdf:resource="#title"/> </daml:0bjectProperty>
<daml:0ObjectProperty rdf:ID="paper_authors">

<rdf :domain rdf:resource="#paper"/>

<rdf:range rdf:resource="#author"/> </daml:0bjectProperty>

55

Z axiomatic definition transformation (relation/functions)

R:B <+ (—,+)C B, C € daml_class

R € daml_objectproperty|B <> (—,+)C]

‘Taﬁwence:.Paper<+_Paper <daml :0bjectProperty rdf:ID="paper_reference">
<rdfs:domain rdf:resource="#paper"/>
<rdfs:range rdf:resource="#paper"/>

</daml:0bjectProperty>

56

Z axiomatic definition transformation (subset)

N € daml_class

M € daml_subclass[N]

Biannual : P ConfSeries <daml:class rdf:ID="biannual">

<rdfs:subClass0f rdf:resource="#confseries"/>
</daml:class>

57

Exercise: Convert Z spec to DAML

[Students, Code, Title] Course GraduateCourse : P Course
code : Code enrolment : Students <+ Course
title : Title

Convert the Z spec to DAML:

58

<daml:class rdf:ID="student"> <rdfs:label>Student</rdfs:label> </daml:Class>
<daml:class rdf:ID="code"> <rdfs:label>Code</rdfs:label> </daml:Class>
<daml:class rdf:ID="title"> <rdfs:label>Title</rdfs:label> </daml:Class>

<daml:class rdf:ID="course"> <rdfs:label>Course</rdfs:label> </daml:Class>

<daml:0bjectProperty rdf:ID="course_code">

<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdf:domain rdf:resource="#course"/> <rdf:range rdf:resource="#code"/>

</daml:0bjectProperty>

<daml:0ObjectProperty rdf:ID="course_title">

<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdf:domain rdf:resource="#course"/> <rdf:range rdf:resource="#coursetitle"/>

</daml:0bjectProperty>

<daml:class rdf:ID="graduatecourse">

<rdfs:subClassO0f rdf:resource="#course"/> </daml:class>
<daml:0ObjectProperty rdf:ID="enrolment">

<rdfs:domain rdf:resource="#student"/> <rdfs:range rdf:resource="#course"/>
</daml:0bjectProperty>

59

Improve the ontology quality through Z tools

Z/EVES tool is an interactive system for composing, checking, and analyzing Z
specifications. It supports the analysis of Z specifications in several ways: syntax
and type checking, schema expansion, precondition calculation, domain checking,
and general theorem proving. Some ontology related flaws in Z model can be
detected and removed with the assistance of Z/EVES so that the transformed
DAML ontology from checked Z model will have better quality.

Alternatively, one can develop reverse transformation tools from DAML ontology
to the formal specifications then to use formal specification tools to detect domain
and logical errors that the current DAML reasoner is not able to detect.

60

Checking Military Plan Ontology Experience

e Singapore DSO has developed an IE engine which has been used to generate
ontologies (in DAML) from military formation and plan (in natural language).
e A military ontology is made up of the following four main ingredient sets.

— military operations and tasks, which define the logic order, type , and
phases of a military campaign.

— military units, which are the participants of the military operations and
tasks,

— geographic locations, where such operations take place and
— time points for constraining the timing of such operations.
e We have developed an auto transformation tool that takes DAML document

and produces Z specifications, then we use Z/EVES tool to check the type
errors and ontology consistency issues.

e Checking beyond web ontology (e.g. one military unit assigned two different
tasks at the same time period)

61

A Military Case Study Statistics in Z/EVES

Items Numbers
Resources 138
Operations, tasks, phases 56

Units 47
Geographic areas 35
Statements (in RDF) 592

Transformed Axiomatic Defs (in Z) | 138

Transformed Predicates (in Z) 410
Type errors 22
DAML related ontology errors 0
errors beyond DAML 2

62

Recall Overview
e Introduction to Software Modeling Techniques

— Z and Alloy

e Introduction to Semantic Web

— RDF, DAML+OIL, OWL and ORL

e Software Design Method/Tools for Semantic Web
— Extracting DAML ontology from Z models

v" Semantics of DAML+OIL in Z/Alloy
— Combined Approach to Reasoning about Semantic Web

e Conclusion and Further Work

63

Ontology Tools: A Brief Survey

e RDF reasoner: Cwm, Triple

e Fast Classification of Terminologies (FaCT)
— Supports consistency & subsumption reasoning (TBox)

— Does not support instantiation reasoning (ABox)

Renamed ABox and Concept Expression Reasoner (RACER)
— Supports TBox & ABox reasoning

— Includes richer functionalities compared to FaCT

FaCT & RACER are fully automated

OilEd: graphical ontology editor that supports FaCT & RACER

64

Z /Alloy Semantics for DAML+OIL

Basic Concepts

e Resource

[Resource]

e Class & instances

Class : IP Resource
stances :
Class — P Resource
e Property & sub_val

Property : P Resource
Class N Property = &

sub_val : Property
— (Resource <+ Resource)

sig Resource {}

disj sig Class extends Resource
{instances: set Resource}

disj sig Property extends Resource
{sub_val: Resource -> Resource}

65

Z /Alloy Semantics for DAML+OIL

Class Relationships

e subClassof & disjointWith

subClassOf : Class <+ Class
disjoint With : Class <+ Class

Ve, co: Class o
c1 subClassOf co < instances(c1) € P instances(cs)
c1 disjoint With co < instances(cy) N instances(cy) = @

fun subClass0f(cl, c2: Class)
{c2.instances in cl.instances}
fun disjointWith (cl, c2: Class)
{no cl.instances & c2.instances}

66

Z /Alloy Semantics for DAML+OIL

Class € Property

e toClass

toClass : (Class x Property) <> Class

Vc1, co : Class; p : Property o (¢, p) toClass co <
(V a1, az : Resource ® a; € instances(c1) <
((a1, a2) € sub_val(p) = as € instances(cz)))

fun toClass (p:Property, cl:Class, c2:Class)
{all al, a2: Resource | al in cl.instances <=>
a2 in al.(p.sub_val) => a2 in c2.instances}

— Example: Anything that breathes
by gill is a fish, including all
those don’t breathe at all!

67

Fish, Gill : Class
Breathe_by : Property

(Fish, Breathe_by) toClass Gill

Z /Alloy Semantics for DAML+OIL

Class € Property (continued)

e hasValue

hasValue : (Class x Property) <> Resource

YV c: Class; p : Property; r : Resource e
(¢, p) hasValue r <
(V a : instances(c) o (a,r) € sub_val(p))

fun hasValue (p:Property, c:Class, r:Resource)
{all a:Resource |
a in c.instances => a.(p.sub_val) = r}

68

Z /Alloy Semantics for DAML+OIL

Property Relationships

e subPropertyOf

subPropertyOf : Property <+ Property

V p1,pa : Property e
p1 subPropertyOf ps <
sub_val(p1) € P sub_val(ps3)

fun subProperty0f (pl, p2:Property)
{pl.sub_val in p2.sub_val}

69

Import Mechanism & Proof Support for Z/EVES

e Import mechanism
— 7 definitions are put into a section daml2z
— Alloy definitions are put into a module DAML

— Other transformed ontologies have these definitions as parents

e Proof support for Z/EVES
— Definitions alone are not adequate
— Trivial proof goals should be automated

— A section DAML2ZRules of rewrite, assumption & forward rules are
constructed

70

Military Plan Ontology

e Developed by DSO Singapore, defining concepts in military domain:
military.daml

e Instance ontologies generated from plain text by IE engine

e Contains sets of
— Military operations & tasks
— Military units
— Geographic locations

— Time points

71

Transformation

e DAML+OIL to Z
— Developed a Java tool for automatic transformation
— Supports both plan & instance ontologies

— A number of enhancements made

Z predicates marked by labels as (rewrite or assumption) rules
Time points modeled as natural numbers N

Domai n-pecific theorems are added

Supports Unique Name Assumption

Additional predicates added to facilitate proof

e DAML+OIL to Alloy
— More straightforward
— Using an XSLT stylesheet

72

Transformation: Example

e DAML-+OIL:

<daml:Class rdf:about="http://www.dso.org.sg/
PlanOntology#MilitaryTask">
<rdfs:label>MilitaryTask</rdfs:label>
<rdfs:subClass0f>

<daml:Class rdf:about="http://www.dso.org.sg/
PlanOntology#MilitaryProcess"/>

</rdfs:subClass0f>

</daml:Class>

o /:
MilitaryTask : Class
((grule MilitaryTask_subClassOf_MilitaryProcess))
(Military Task, MilitaryProcess) € subClassOf

e Alloy:

static disj sig MilitaryTask extends Class {}
fact{subClass(MilitaryProcess, MilitaryTask)}

73

Recall Overview
e Introduction to Software Modeling Techniques

— Z and Alloy

e Introduction to Semantic Web

— RDF, DAML+OIL, OWL and ORL

e Software Design Method/Tools for Semantic Web
— Extracting DAML ontology from Z models
— Semantics of DAML+OIL in Z/Alloy
v" The Combined Approach

e Conclusion and Further Work

74

The Combined Approach

1. Transforms ontology to Z & type-check using Z/EVES

e Semi-automated
2. Use RACER & OilEd to check for ontological inconsistencies

3. If inconsistencies found, use AA to pinpoint them

e Iterate steps 2 & 3 until RACER finds no inconsistency

4. If an instance ontology, use Z/EVES to check for properties inexpressible in
DAML+OIL & Alloy

e Interactive...

75

Standard SW Reasoning
e Step 1: Z/EVES finds no type errors in (transformed) military.daml

e Step 2: RACER complains about an inconsistent class,
PrepareDemolition-MilitaryTask on the left

76

Standard SW Reasoning (continued)

e However, RACER cannot tell where the inconsistency is
e Step 3: Extract fragment of ontology according to OilEd

e AA finds the inconsistency, and it gives the possible cause in red color

" Alloy Analyzer (beta release)

ptatic dis) sig ModernMilitarylnit extends Class{) [111 Formulas: { H { univdhe mo 1libranDAMUIC lass] - dematiibrarg
static dis) sig EngineerUnit, ArtilleryFiringUnit extends (la € 23 171 farmwala for funclion dumny

act {subC_ass0f (ModetnMilitaryUnit, ArtilleryFiringlnit)} ¢ 3 111 all non-excluded global canstraints

act {subC.a3s0f (ModernMilitaryUnit, EngineerUnic)} ¢ 3111 Formutas: [untlema1ibrargDAMUC kass] - demotilibe:
atatic diz) 2ig EngineeringMilitaryipeciality extends Fesourcd & 7 1/1 constraints for basic signature chermo 17 ib rangCam LIC)
static disz] sig speciality extends Property {} & 9 1/1 constrainis for basic signature demo 1/ b rangDAM LP
act{hasVa ue (speciality, Engineerlnit, EngineeringMilitarySps & 3 01 constraints for basic signature dema s ibrandCusm LR
& 3 01 Fact incansistency_militand_Fact_134

facr (disyesndich(ArtiliecyFiringtit, Eogineecinat) | @ (= 071 Fact neansistency_militand_Fact_139

REELC s n(Renl gnain @ 7 01 Fact incansistency_militanyg_Fact_140
PrepareDemolition_MilitaryTask, lrtilleryFiringlnit) & 071 Factincansistency_militang_Fact 143

REL{SaCInpn(nit greie,, . : ©- (7 141 Fact incansistency_militand_Fact_144
Freparedemolicion NilitaryTask, Enginterinit)} . |j1.l’1 Fact incansistency_millitaryy_Fact_145

fact {some . f i
[aszignedTo.sub_wval). (EnginesrUnit. instances) } Ij WA mc:nsraiﬂr‘rcy_mﬂlwl_ﬁct_'] -
- = 111 Fact inconsistency_militarnd_Fact_147

L Ij 11 instantialions of polpmorphic fact, Fact stdéiordd_F act_1
Line 1, Column 1

7

More Advanced Reasoning

e Applied to instance ontology planA.daml: 954 RDF statements, 195 subjects

e Ontology fragment:

<rdf :Description rdf:about=’G. SMILAX’>

<rdf :type rdf:resource=’http://www.dso.org.sg/PlanOntology#AxisOfAdvance’/>
</rdf:Description>
<rdf:Description rdf:about=’InfantryBattalion_aab5’>

<rdf :type rdf:resource=’http://www.dso.org.sg/PlanOntology#InfantryBattalion’/>
</rdf:Description>

G_SMILAX : Resource InfantryBattalion_aab : Resource

{(grule G_SMILAX_type)) ((grule InfantryBattalion_aa5_type))

G_SMILAX € InfantryBattalion_aab €
instances(AzisOfAdvance) instances(InfantryBattalion)

e 28 type errors discovered by Z/EVES: mostly caused by re-definition
e No ontological errors found by RACER

78

More Advanced Reasoning (continued)

e Use domain-specific theorems to systematically test the consistency of the
ontology

o E.g., “no military task should be the sub task of itself and its start time should

be less than or equal to its end time”.

e Once a goal cannot be proved: negate the theorem and prove

e 14 hidden errors found by Z/EVES in step 4
— 2: military task’s start time greater than end time

4: military task doesn’t have end time defined

— 3: military unit assigned to different tasks simultaneously
5

: military tasks with more than one start or end time point

79

Temporal Relationships Retween Tasks

o “Sub tasks’s duration must be within its super tasks’ durations”

theorem subTaskOfTimingTest2
V x : instances(Military Task) e
Yy : P(instances(MilitaryTask)) |
y = (sub_val(subTaskOf))({z} |) e
Vz:y e start(z) < start(xz) N end(z) > end(z)

e y is the set of super tasks of z, z is any member of y

e Local consistency ensured by the previous theorem, hence
start(z) < start(z) A end(z) > end(z) is sufficient

80

Malitary tasks € units

e “No military task is to be assigned to 2 different tasks at the same time”

theorem MilitaryUnitTest
V x : instances(ModernMilitaryUnit) e YV y, z : instances(Military Task) |
z € (sub_val(assignedTo))({y} |) A = € (sub_val(assignedTo))({z} |) e
end(y) < start(z) V end(z) < start(y)

e Since local consistency has been ensured for each military task, predicate
end(y) < start(z) V end(z) < start(y) is sufficient

Example: the remaining goal for military tasks ECA_P3_P5_S1 &
ECA_P3_P5_8S3 and military unit CHF_1

z=FECA_P3_P5_S1 ANy=FECA_P3_P5_53
= -z =CHF_1

e An obvious contradiction, negate the theorem & prove again

e 3 such errors were found

81

Summary of the Combined Approach

e The combination of SW & SE reasoning tools effectively checks
ontology-related properties

e Results of the synergy
— Automatedly find ontological inconsistencies using RACER
— Isolate & find the source of the inconsistencies using Alloy Analyser
— Interactively checks for more complex properties (inexpressible in

DAML+OIL) using Z/EVES

e Application to the second military-domain case study revealed 1 ontological

inconsistency & 14 hidden errors

82

Tool Environment for the Combined Approach (on going)

DAML Formal Environment - D¢ Academic, LA ontology® all.dami

File Edit Tools Ervironments Help

| s|mla|oe|@|«=]|IE|

ROFDAML Ortology | sy Specification | Specitication |

Korxml wersion="1.0" encoding="UTF-8"2>
Frdf:RFDF xmlns:daml="http: / /vww.daml.org/2001l/03/danl+oil#™
*mlns:de="http: //purl.org/dc/elenents /1. 17"
xulnz:nzd="htep: //www.dso.org. sg/Planlnto logy /Ontol ogy /DAML /unit_ech ont. daml#"”
Xmlns:oiled="http: //iy.Co. han. ac. Uk/o0il /o0l leds”™
mlns: rdf="heep: /v w3. org/1999/02/22-rdf -ayntax-ns§"”
xmlns: rdfs="http: /fww, wi.org/2000/0L /xdf-schena#”™ xmlnsixsd="http: //www, w3.org/ 2000/ 10/ XMLEchenag™>
<danl:0Ontology cdf:about=""">
<dc:ritle>Plan ntologp</dc:title>
<dc:date>< /dec:date>
<dcicreator=</dcicreator>
<dcidescriprion:< /dc: descriptions
<a@c:subject<< /4o subjecT>
<daml:versionInfolx< /daml:versionInfol
<fdaml : Dntologys
<daml:Class
rdf: about="htcp: / /s, dso.org. sg/Planinto logy /Ontology/DAML /mil_task_ont.dan] §HascyDefend-MilitaryTask™>
£rdfs: label*HastyDefend-MNilitaryTask< /rdf=s: labal>
<rdfs:comment>=4 hasty defence is undertaken when enemy contact
iz imminent.</rdfs:comments
<oiled: creationDate>2002-09-05T09: 301 252</0iled: creationDates
<oiled:creator>lchewhuns/oiled:creator>
<rdfs:subClass0f>
<daml:Class
rdf: about="http: /s, dso.org. sg/Planinto logy /Ontology/DAML/mil_task_ont.danl#DefensiveMilitaryTask" />
</rdfs: subClass0f>
</dam]l:Class>
<daml:Class rdf:about="http://teknowledge.con/ontology /Merge., txt#landirea™>

Opened [\l cademic R Antologyall dami

83

Tutorial Conclusion

e Semantic Web

v' good support for automation, collaboration, extension and integration

X less expressive and no systematic design process for web ontology/agents
e Software Specifications

v’ expressive, diverse and can be combined effectively

X weak in linking various methods for collaborative design
e Approaches

v Semantic Web environment for linking various formalisms (FME’02)

v/ Extracting web ontologies systematically from Z specifications (ICFEM’02)

v Checking Semantic Web Using Software Tools (FME’03, ICSE’04,
WWW’04)

84

Possible Future Research

e Software Engineering for Semantic Web:
— Software specification languages (like Z) as Semantic Web languages
— Web Services (OWL-S) Specifications
— Model behaviors of intelligent Semantic Web agents using Z, process algebra
or integrated formal methods
e Semantic Web for Software Engineering
— Meta integrating environment for software modeling

— Intelligent Software Engineering Environment

85

Recent Publications

The research on Formal methods and Semantic Web has been investigated in

[57

6,4,7,3,1, 2.

References

[1]

J. S. Dong, C. H. Lee, H. B. Lee, Y. F. Li, and H. Wang. A Combined Approach to Checking Web
Ontology. In The 13th International World Wide Web Conference (WWW?’04), refereed papers
track. ACM Press, May 2004.

J. S. Dong, C. H .Lee, Y. F. Li, and H. Wang. Verifying DAML+OIL and Beyond in Z/EVES. In
The 26th International Conference on Software Engineering (ICSE’04). ACM/IEEE Press, May
2004.

J. S. Dong, J. Sun, and H. Wang. Semantic Web for Extending and Linking Formalisms. In L.-H.
Eriksson and P. A. Lindsay, editors, Proceedings of Formal Methods FEurope: FME’02, pages
587-606, Copenhagen, Denmark, July 2002. LNCS, Springer-Verlag.

J. S. Dong, J. Sun, and H. Wang. Z Approach to Semantic Web. In C. George and H. Miao, editors,
International Conference on Formal Engineering Methods (ICFEM’02), pages 156—167. LNCS,
Springer-Verlag, October 2002.

J. S. Dong, J. Sun, and H. Wang. Checking and Reasoning about Semantic Web through Alloy. In
Proceedings of 12th Internation Symposium on Formal Methods FEurope: FM’03, pages 796-813,
Pisa, Italy, September 2003. LNCS, Springer-Verlag.

86

[6] J.S. Dong, J. Sun, H. Wang, C. H. Lee, and H. B. Lee. Analysing Semantic Web: A Military Case
Study. In The 15th International Conference on Software Engineering and Knowledge
Engineering (SEKE’03), San Francisco, USA, June 2003.

[7] Hai Wang. Semantic Web and Formal Design Methods. PhD thesis, National University of
Sinagpore, 2004.

87

