
Timed Communicating Object Z
Brendan Mahony and Jin Song Dong, Member, IEEE

AbstractÐThis paper describes a timed, multithreaded object modeling notation for specifying real-time, concurrent, and reactive

systems. The notation Timed Communicating Object Z (TCOZ) builds on Object Z's strengths in modeling complex data and

algorithms, and on Timed CSP's strengths in modeling process control and real-time interactions. TCOZ is novel in that it includes

timing primitives, properly separates process control and data/algorithm issues and supports the modeling of true multithreaded

concurrency. TCOZ is particularly well-suited for specifying complex systems whose components have their own thread of control. The

expressiveness of the notation is demonstrated by a case study in specifying a multilift system that operates in real-time.

Index TermsÐSoftware/system specification, formal methods, real-time systems, concurrency, object-oriented modeling, Z, CSP.

æ

1 INTRODUCTION

MANY formal specification and design notations have
tended to concentrate either on data modeling and

algorithmic concerns (e.g., Z, VDM, etc.) or else on process
control concerns (e.g., CSP, CCS, StateCharts, etc.). Complex
systems often have intricate system states and process
control structures involving concurrency and real-time
interactions. To formalize such systems, it is necessary to
have a notation which is able to capture both the data/
algorithmic issues and the process behavior issues in a
smoothly integrated but also highly structured and mod-
ular manner. In consequence, the blending of state-
modeling and process languages has become an active area
of research [21], [49], [50], [24].

Object Z [19] is an object-oriented extension of the
Z formal specification language. Z is a model-oriented
specification language with powerful features for describ-
ing complex data structures and their operations. Object Z
improves the clarity of large Z specifications through
enhanced structuring. However, the process semantics of
Object Z mean that process execution is single-threaded,
operations are atomic (there is no notion of the duration of
operations), and process control logic is tightly coupled
with class structure. Therefore, it is difficult to use Object Z
to model concurrent real-time reactive systems.

Timed CSP [46] is an extension of Hoare's Communicat-
ing Sequential Processes (CSP) notation. It builds on CSP's
strengths in modeling process control issues, such as
concurrency and synchronization, by adding primitives
for modeling real-time issues. However, CSP has only the
most rudimentary mechanisms for modeling data and
algorithmic issues and it is cumbersome to capture the
state of a complex system.

This paper describes an integration of Object Z and
Timed CSP, called Timed Communicating Object Z (TCOZ),
and presents a case study on using TCOZ to specify a real-
time multilift system. TCOZ builds on the respective
strengths of the Object Z and Timed CSP notations in order
to provide a single notation for modeling both the state and
process aspects of complex systems. The notion of blending
Object Z with CSP has been suggested independently by
Fischer [21] and Smith [49]. The most obvious novelty of
TCOZ is that it is built on Timed CSP and includes
primitives for treating timing issues; however, in addres-
sing the issue of time, it has been necessary to make several
inovations which impact positively even on the treatment of
ªuntimed systems.º TCOZ adopts a finer grain of atomicity
than either Fischer or Smith. Operations are considered to
represent a sequence of (unspecified) update events, rather
than to constitute atomic events in themselves. This opens
the possibility of treating operation composition and
refinement in TCOZ, including the introduction of multi-
threaded concurrency at the operation level. TCOZ adopts
an explicit mechanism for enabling operations (and indeed,
arbitrary processes) which is distinct from the operation
definition itself. This increases the potential for reuse of
operation specifications and allows the notions of operation
and process refinement to be reconciled. TCOZ adopts the
CSP channel-based communications paradigm in its full
generality and enhances it by the introduction of a novel
network topology operator that allows the communications
interfaces of complex TCOZ processes to be visualized
through simple network-topology graphs. This improves
decoupling of class definitions by simplifying the interfaces
between objects. For the most part, these topics can be
touched on only briefly in this paper and they will be the
subjects of future more detailed correspondences.

The TCOZ notation has been briefly described and
exercized in introductory papers by these authors [39], [40],
[10]. This paper combines elements of these papers, but
describes the notation and its use in greater detail.
Important issues such as formal syntax and semantics are
explained for the first time.

The remainder of the paper is organized as follows: In

Section 2, Object Z and Timed CSP notations are briefly

150 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 2, FEBRUARY 2000

. B. Mahony is with the Information Technology Division, Defence Science
and Technology Organisation, Salisbury, Australia.
E-mail: Brendan.Mahony@dsto.defence.gov.au.

. J.S. Dong is with the School of Computing, National University of
Singapore, Lower Kent Ridge Rd., Singapore.
E-mail: dongjs@comp.nus.edu.sg.

Manuscript received 24 Mar. 1998; revised 12 Oct. 1998; accepted 5 Feb.
1999.
Recommended for acceptance by J. Gannon.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 106596.

0098-5589/00/$10.00 ß 2000 IEEE

introduced. The advantages and disadvantages of the two

notations in modeling timing, concurrency, complex data,

and algorithmic aspects are demonstrated using a common

example, a timed collection. In Section 4, the blended

notation, TCOZ, is introduced and the timed collection

example used to show how it uses the strengths of the

individual notations to address their respective weaknesses.

In Section 4, the case study on specifying a real-time

multilift system is presented. In Section 5, a discussion of

related work is presented. Finally, a syntax for TCOZ is

presented as Appendix A.

2 OBJECT-Z AND TIMED CSP

The common example of a generic timed collection is used

throughout this section and the next section to illustrate the

differences between and to demonstrate the advantages and

disadvantages of the Object Z, Timed CSP, and TCOZ

notations, respectively.

2.1 Generic Timed Collection Example

The generic timed collection denotes a collection of

elements of type X with a time stamp. Operations are

allowed to add elements to and delete elements from the

collection. When deleting an element from the collection,

the oldest element should be removed and output to the

environment. The collection has the following timing

properties: First, that it takes a small but nonzero time (ta
and td, respectively1) to update the internal state during an

add or delete operation. Second, each element of the

collection becomes stale if it is not passed on within to time

units of being added to the collection. Stale elements should

never be passed on, but are instead purged from the

collection upon becoming stale. The purge operation has a

duration of tp.

2.2 A Model of Time

In this paper, all timing information is represented as real
valued measurements in seconds, the SI standard unit of
time [30]. Describing time and other physical quantities in
terms of standard units of measurement is an important
aspect of ensuring the completeness and soundness of
specifications of real-time, reactive, and hybrid systems. In
order to support the use of standard units of measurement,
extensions to the Z typing system suggested by Hayes and
Mahony [27] are adopted. Under this convention, time
quantities are represented by the type

TT �� RR s;

which represents real-valued time measured in seconds.
Time literals consist of a real number literal annotated with
a symbol representing a unit of time. For example, 3 �s is a
literal representing a period of three microseconds. All the
arithmetic operators are extended in the obvious way to
allow calculations involving units of measurement.

The timing constants associated with the timed collection
example are introduced via axiomatic definitions.

�ta; td; tp; to : TT:

2.3 Object Z

The main Object Z construct is the class definition. A class is
a template for objects of that class: for each object of a class,
the object's states are instances of the class' state schema
and the object's state transitions are instances of the class'
operation schemas. An object is said to be an instance of a
class and to evolve according to the definitions of its class.

Since Object Z has no standard conventions for handling
timing and process control issues, it is necessary to model
these issues explicitly in the class state. One such approach
is Timed Object Z [12], which incorporates ideas from
various Z-based approaches for specifying real-time
requirements [20], [41]. The Timed Object Z approach
consists of two conventions. First, environmental factors are
modeled as functions of time and are included in the system
state. In the timed collection example, the environment is
modeled by functions left and right. These functions
represent the participation of the environment in Add and
Delete operations, respectively. The second extension is to
include a global real-time clock, conventionally represented
by a distinguished state attribute now. The clock may only
be updated during an operation and the next operation
must start as soon as the previous one is finished. In order
to model the time taken between operations, it is thus
necessary to introduce a Wait operation.

2.3.1 Timed Collection in Object Z

The use of Timed Object Z is illustrated by the
TimedCollection class in Fig. 1. The generic function ps

(purge stale) is defined in Fig. 2, e.g.,

ps�2 �s; f1 �s; b�; �7 �s; c�g� � f�1 �s; b�; �5 �s; c�g:
The first schema of a class is called the state schema. It

describes the various state attributes and the class invariant.
The class attributes are divided into primary attributes and
secondary attributes, which appear below a � separator
placed in the declaration section of the state schema. The
important aspect of secondary attributes in the context of
the TimedCollection classes is the fact that they are subject
to change by every operation. For a detailed discussion of
secondary attributes, see Dong et al. [14]. The predicate
below the line in the state schema is called the class
invariant. It describes the state properties that must be
established initially and preserved by every operation.

In the TimedCollection class, the primary attribute mems
denotes a finite set of time-stamped elements of the generic
type X. The other primary attributes are the left and right

environment variables. Since these variables represent
interactions with the environment, they are not subject to
change by any of the class operations.

In the TimedCollection class, the secondary attributes are
now, denoting the current time; and ti, denoting the idle
time since the completion of the last operation; the tuple
�t; oldest�, denoting the oldest element being in the

MAHONY AND DONG: TIMED COMMUNICATING OBJECT Z 151

1. For ease of presentation (especially in the Object Z and Timed CSP
versions), we adopt exact timing constraints in the timed collection
example.

collection, when it is nonempty; and the time variable idle,

denoting the time until the next operation.
The INIT schema describes the allowed initial values

for the class attributes, in this case, mems. The initial

schema implicitly includes the state schema, so that the

initial state includes all the class attributes and satisfies

the class invariant. The timed collection initially contains

no elements.

The remaining four schemas are operation schemas

which describe the allowed state transitions for the class.

The declaration parts of operation schemas may include a

�-list of those (primary) attributes whose values may

change. By convention, any primary attribute not appearing

in the �-list may not change value. The values of the

secondary attributes are always subject to change. Every

operation schema implicitly includes the state schema in

unprimed form (the state before the operation) and primed

form (the state after the operation).
The timing behavior of the TimedCollection requires

careful explanation. The Add operation may occur only

when there is an item available on left. It updates timeouts

in the existing collection and purges any stale items (this is

described in the ps funtion definition), and adds the new

item with the maximum timeout of to. This activity must

take exactly ta and the idle time is set to 0 �s. The Delete

operation is enabled only when the right environment is

willing to accept the oldest item; it communicates the item

and then deletes it from the collection. The Purge operation

152 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 2, FEBRUARY 2000

Fig. 1. Object Z Model of the Timed Collection.

Fig. 2. Purge stale function.

is invoked when no communication is possible before the

first item goes stale (ti 2 dom mems). Each of these

operations also implicitly updates the idle attribute accord-

ing to the requirement in the data invariant. The idle

attribute always records the amount of idling required

before the next action is enabled and the Wait operation

simply consumes this idle time.

2.3.2 Transition System Interpretation

Object Z has a three-stage semantics. The various operations
in a class are given a standard Z semantics, then this is used
to develop a transition-system semantics, which then
determines an event-based process semantics [48]. The Z
operation semantics is best viewed as describing a relation
between initial and final states for each operation. The
operations of a given class thus form a named collection of
relations, which determines a transition system in which a
given operation may fire exactly when its Z precondition is
satisfied. The Z precondition of an operation schema
describes the initial states for which there exists some final
state satisfying the schema predicate. The process model for
the class consists of all the sequences of operations/events
which can be performed by objects of the class.2

For example, the TimedCollection object starts with
mems empty, then evolves by successively performing
either Add, Delete, Purge, or Wait operations. This is
sometimes expressed semiformally by an equation, such as

TCbeh �̂ �Add ut Delete ut Purge ut Wait�; TCbeh:
Here, TCbeh represents the behavior of the

TimedCollection, � ut � is the Object Z choice between
operations,3 and � ; � is the Object Z sequential composi-
tion. The choice of which operations are enabled at each
point is determined by which preconditions are satisfied by
the current state. As an example of a precondition
calculation, consider the Purge operation. The Z precondi-
tion is defined to be

9mems0 : FF�TT�X�;
now0; t0i; idle

0 : TT;

�t; oldest� : TT�X � Purge:
By expanding the predicate part of the Purge schema

and simplifying, it can be shown that this is equivalent to

nowÿ ti 2 dom mems:

Thus, the Purge operation may only occur when the oldest
member of the timed collection has expired.

This entwining of behavioral control matters with
algorithmic matters creates unnecessary complexity in the
design process and fails to promote a clear separation of
concerns. For example, in order to ensure that operations
occur in some desired order, the designer must painstak-
ingly craft the preconditions of all the operations in a class
so as to ensure the desired interactions, and may even need
to add unnecessary process state in order to represent

control state. Since there is no way to progress time except
through the action of an operation, it is necessary to
introduce pseudooperations, such as Wait, whose sole
purpose is to make sure that there is something to do at
each point in time. Deep reasoning is required to demon-
strate that time does indeed always progress. Perhaps most
inconvenient is the fact that this use of preconditions to
control the sequencing of transitions is incompatible with
aspects of Z algorithmic refinement. In particular, refine-
ment by weakening an operation's precondition is dis-
allowed in Object Z. Weakening an operation's pre±
condition would result in it being enabled more often, thus
playing havoc with the process control structure of the
original specification. For example, if the precondition for
the Purge operation was weakened, it would be possible for
it to occur either before or after the expiry time stamp of
data element, a result completely at odds with the purpose
of the time stamp.

2.3.3 Summary

The TimedCollection class describes the data state (mems)
and operations of the timed collection well. However,
Timed Object Z requires interactions with the environment
and the progress of time to be micromanaged in an
intrusive manner. The proliferation of additional attributes
required to deal with process control and time result
in significant overspecification of the system. All too
frequently, deep reasoning is required to comprehend
the subtle and complex interplays between operations
and environment.

2.4 Timed CSP

Timed CSP [46] extends the well-known CSP (Commu-
nicating Sequential Processes) notation of Hoare [29] with
timing primitives. CSP is an event-based notation primarily
aimed at describing the sequencing of behavior within a
process and the synchronization of behavior (or commu-
nication) between processes. Timed CSP extends CSP by
introducing a capability to quantify temporal aspects of
sequencing and synchronization.

CSP adopts a symmetric view of process and environ-
ment. Events represent a cooperative synchronization
between process and environment. Both process and
environment may control the behavior of the other by
enabling or refusing certain events or sequences of events.
Although CSP semantics are symmetric with respect to
process and environment, we find it helpful in the following
to use the words request and block as synonyms for enable
and refuse, respectively, when referring to the environment.

2.4.1 Process Primitives

A process which may participate in event a and then act
according to process description P is written

a@t! P �t�:
The event a is initially enabled by the process and occurs

as soon as it is requested by its environment; all other
events initially are refused. The event a is sometimes
referred to as the guard of the process. The (optional) timing
parameter t records the time, relative to the start of the

MAHONY AND DONG: TIMED COMMUNICATING OBJECT Z 153

2. Smith's semantics also includes ready sets which record the enabled
events at each step.

3. Note the clear influence of CSP.

process,4 at which the event a occurs and allows the
subsequent behavior P to depend on its value.

The second form of sequencing is process sequencing. A
distinguished event

p
is used to represent and detect

process termination. The sequential composition of P and
Q, written P ;Q, acts as P until P terminates by commu-
nicating

p
and then proceeds to act as Q. The termination

signal is hidden from the process environment and there-
fore occurs as soon as enabled by P . The process which may
only terminate is written SKIP.

The parallel composition of processes P and Q, synchro-
nized on event set X, is written

P j�X�jQ:
No event from X may occur in P j�X�jQ unless enabled

jointly by both P and Q. When events from X do occur, they
occur in both P and Q simultaneously and are referred to as
synchronizations. Events not from X may occur in either P or
Q separately, but not jointly. For example, in the process
described by

�a! P �j�a�j�c! a! Q�;
all a events must be synchronizations between the two
processes. Since a is not enabled initially by the right-hand
process, a cannot occur in the left-hand process until the
right hand process has performed a c event and the a event
becomes enabled in both processes.

In an asynchronous parallel combination

P jjj Q;
both components P and Q execute concurrently without
any synchronizations.

Diversity of behavior is introduced through two choice
operators. The external choice operator allows a process a
choice of behavior according to what events are requested
by its environment. The process

�a! P � ut �b! Q�
begins with both a and b enabled. The environment chooses
which event actually occurs by requesting one or the other
first. Subsequent behavior is determined by the event which
actually occurred, P after a and Q after b, respectively.
When the range of choices is large (possibly infinite),
external choice may be written in an intentional form,

uta : A � P �a�;
which allows the environment to choose any event a from a
set A and subsequent behavior is determined by P �a�.

Internal choice represents variation in behavior deter-
mined by the internal state of the process. The process

a! P u b! Q

may initially enable either a, b, or both, as it wishes, but
must act subsequently according to which event actually
occurred. The environment cannot affect internal choice.
Again, an intentional form is allowed.

An important derived concept in CSP is the notion of
channel. A channel is a collection of events of the form c:n:
the prefix c is called the channel name and the collection of
suffixes is called the values of the channel. When an event
c:n occurs, it is said that the value n is communicated on
channel c. When the value of a communication on a channel
is determined by the environment (external choice), it is
called an input and when it is determined by the internal
state of the process (internal choice) it is called an output. It
is convenient to write c?n : N ! P �n� to describe behavior
over a range of allowed inputs instead of the longer
utn : N � c:n! P �n�. Similarly, the notation c!n : N ! P �n�
is used instead of u n : N � c:n! P �n� to represent a range
of outputs. Expressions of the form c?n and c!n do not
represent events, the actual event is c:n in both cases.

The interrupt process P1 5 e! P2 behaves as P1 until
the first occurrence of interrupt event e, then the control
passes to P2.

Recursion is used to given finite representations of
nonterminating processes. The process expression

�P � a?n : NN! b!f�n� ! P

describes a process which repeatedly inputs a natural on
channel a, calculates some function f of the input, and then
outputs the result on channel b. CSP specifications are
typically written as a sequence of simultaneous equations in
a finite collection of process variables. Such a specification
~X �̂ ~F �~X� is implicitly taken to describe the solution to the
vector recursion �~X � ~F �~X�.

In general, the behavior of a process at any point in time
may be dependent on its internal state and this may
conceivably take an infinite range of values. It is often not
possible to provide a finite representation of a process
without introducing some notation for representing this
internal process state. The approach adopted by CSP is to
allow a process definition to be parameterized by state
variables. Thus, a definition of the form

Pn:N �̂ Q�n�
represents a (possibly infinite) family of definitions, one for
each possible value of n. There is no inherent notion of
process state in CSP, but rather these annotations are a
convenient way to provide a finite representation of an
infinite family of process descriptions.

2.4.2 Timing Primitives

To the standard CSP process primitives, Timed CSP adds
two time specific primitives, the delay and the timeout.

A process which allows no communications for period t
then terminates is written WAIT t. The process WAIT t; P is
used to represent P delayed by time t.

The timeout construct passes control to an exception
handler if no event has occurred in the primary process by
some deadline. The process

�a! P � . �t�Q
will try to perform a! P , but will pass control to Q if the a
event has not occurred by time t, as measured from the
invocation of the process.

154 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 2, FEBRUARY 2000

4. This may be nonzero because the process must wait until the event is
requested by its environment.

2.4.3 The Timed Collection Example

The timed collection can be modeled as a process with two
channels, left and right, respectively. Elements are added
to the collection through communications on the left
channel and removed through communications on the
right channel. The timing issues of the timed collection can
be described using (Timed CSP's) delay and timeout
constructs.

The initial state is represented by the empty set.

TimedCollection�̂ TC;:
When the first element joins the collection, it is stamped

with a timeout and the time taken to update the process
state is represented by a delay.

TC;�̂ left?e : X !WAIT ta;TCf�to;e�g:

When the collection is nonempty, the process is ready to
accept left or right events. The staleness stamps are
updated with each communication and state update delays
are introduced. In the event of no communication occurring
before the oldest element becomes stale, all stale elements
are purged (see Fig. 3).

2.4.4 Summary

For such an example, Timed CSP is superior to Object Z as a
means of describing process control. Timed CSP also

handles the timing issues of delays and timeouts simply
and elegantly. The allowed sequences of events are clearly
and concisely determined by the CSP code, there is no need

to calculate preconditions, nor is any other form of deep
reasoning required to understand the ways in which the

timed collection may evolve. The Timed Object Z approach
results in a too complex model which overspecifies this

simple system, even though the timed collection example
does not make use of the multithreading and synchroniza-

tion capabilities of Timed CSP which are clearly well
beyond the scope of Object Z's atomic state transition

semantics. On the other hand, the syntactic treatment of
internal state in the above is complex and unwielding,

distracting strongly from the basically elegant treatment of

the delay and timeout issues. Although, for example,

Roscoe's CSPM language [45] includes some powerful data

modeling primitives, CSP still has no standard support for

state modeling in the form of mathematical toolkits and

libraries, nor are there modular techniques for constructing

and reasoning about the complex internal state.

3 TCOZ

In many ways, Object Z and Timed CSP complement each
other in their capabilities. Object Z has strong data and
algorithm modeling capabilities. The Z mathematical toolkit
is extended with object-oriented structuring techniques.
Timed CSP has strong process control modeling capabil-
ities. The multithreading and synchronization primitives of
CSP are extended with timing primitives. Moreover, both
formalisms are already strongly influenced by the other in
their areas of weakness. Object Z supports a number of
primitives which have been inspired by CSP notions such as
external choice and synchronization. CSP practitioners tend
to make use of notation inspired by the Z mathematical
toolkit in the specification of processes with the internal
state. This is not surprising, given their joint associations in
the Programming Research Group in Oxford. Another
important connection is the well-known duality between
the state transition behavioral model and the event-based
behavioral model [28], which makes it a simple matter to
develop complementary semantics for the two languages.

Given these factors, it is natural to consider the
possibility of blending the two notations into a more
complete approach to modeling real-time and/or concur-
rent systems. Fischer [21] and Smith [49] have indepen-
dently suggested CSP-style semantics for Object Z classes in
which operation calls become CSP events. Operation names
take on the role of CSP channels, with input and output
parameters being passed down the operation channel as
values. This view fits nicely with the Object Z interpretation
of operations being atomic, but is not well-suited to
considering multithreading and real-time. Restricting op-
erations to atomic events collapses the spatial and temporal
aspects of operations; everything happens at a single point
and instantaneously. Identifying channel names with
operation names creates unnecessary tensions between the
data and process views of objects and considerably reduces
the potential for reuse of operation definitions. Another
approach is that taken by Galloway in his CCZ language
[23], based on Z and (value-passing) CCS. There Z
operation schemas do not appear as events, but instead
appear as prefixes to parameterized CCS output processes.
The effect of the operation schema is to restrict the allowed
output values in the associated process and to update the
values of the process state parameters. While this approach
effectively disentangles the communication interface from
the operational structure, the need to associate every
occurence of an operation with a following output process
is a major syntactic inconvenience.

The approach taken in the TCOZ notation is to identify
operation schemas (both syntactically and semantically)
with (terminating) CSP processes that perform only state

MAHONY AND DONG: TIMED COMMUNICATING OBJECT Z 155

Fig. 3. Behavior when nonempty.

update events; to identify (active) classes with nonterm±
inating CSP processes; and to allow arbitrary (channel-
based) communications interfaces between objects.

The syntactic implications of this approach are that the
basic structure of a TCOZ document is the same as for
Object Z. A document consists of a sequence of definitions,
including type and constant definitions in the usual Z style.
TCOZ varies from Object Z in the structure of class
definitions, which may include CSP channel and processes
definitions. In fact, all operation definitions in TCOZ are
considered to define CSP processes. The CSP view of an
operation schema is that it describes all the sequences of
update events which change the system state as required by
the schema predicate. The exact nature and granularity of
these update events is left undetermined in TCOZ (at least
at the syntactic level), but by allowing an operation to
consist of a number of events, it becomes feasible to specify
its temporal properties when describing the operation.
Since operation schemas take on the syntactic role of CSP
processes, they may be combined with other schemas and
even CSP processes using the standard CSP process
operators. Thus, it becomes possible to represent true
multithreaded computation even at the operation level,
something that would not be possible with CCZ approach.
The Fischer/Smith approach of identifying operation
names with CSP channels is not followed, channels are
given an independent, first class role. This allows the
communications and control topology of a network of
objects to be designed orthogonally to their class structure.
The CSP channel mechanism is the only (dynamic) way to
pass information between objects as the state of objects is
encapsulated by hiding all update events.

3.1 Defining Operations

The operation schema is the basic tool for describing state
change in TCOZ. In order to allow treatment of timing
issues in schema definitions, a distinguished identifier � is
introduced to represent the duration of the state calcula-
tions performed by the operation. When � does not appear
in the definition of an operation, the default interpretation is
that there be no constraint on the duration of the operation,
although individual specification documents may choose to
adopt a different convention.

Although the schema is the basic tool, the true power of
TCOZ comes from the ability to make use of Timed CSP

primitives is describing the process aspects of an oper-
ation's behavior. All operation definitions in TCOZ are
in fact Timed CSP process definitions, with operation
schema being given the syntactic status of terminating
Timed CSP processes.

As an example, consider the specification of the Add
operation (see Fig. 4) of the timed collection example. The
actual state-change allowed by the operation schema
remains unchanged from the Timed Object Z version, but
the timing characteristics of the operation are expressed by
the condition � � ta, rather than now0 ÿ now � ta.

Since TCOZ operations are identified with terminating
CSP processes, it is natural to allow their definition in terms
of CSP primitives, such as event sequencing, as well as
through the schema calculus. The novelty of the full TCOZ
version of Add lies in the adoption of CSP primitives in its
definition. Item inputs are communicated to the Add
operation along a channel left. This definition of Add says
that after the parameter e has been input on channel left at
time ti, the state-calculation Add0 is performed. Several
aspects of TCOZ name-space conventions are raised by this
definition.

First, observe that the parameters e and ti occur in Add0

with Z-style input decorations and in Add without them. In
TCOZ, the convention is adopted that the true name of all
parameters is the undecorated version. In an operation
schema, the ? and ! decorations are used solely to
distinguish between inputs and outputs for the purposes
of defining the binding semantics of the operation. This is
analogous to the convention of using primed and unprimed
versions to indicate the final and initial values of a state
attribute. In fact, all parameters are treated in the same way
as state attributes, with the exception that state attributes
are available in every name environment in a class
definition. The reason for this convention may be clearly
seen in the following example:

�y! :NN j y! � f�x��; c:y!
���x�; y? : NNjx0 � g�y?��:

Clearly, it does not make sense to decorate the y in c:y
with either the ! or the ?, any more than it would make
sense to use a 0 decoration on an attribute variable
appearing in a communication.

This leads to the second observation that may be made of
the Add definition. The �e : X; ti : TT� � construct is a local
block definition in the state guard style (state guards are
explained further below). The other forms of local blocks
are the intentionial forms of both internal and external
choice, which use the usual Z-style schema-text conven-
tions. For example,

un : NN jn < 5 � c!n! P

or

ut n : NNjn < 5 � c?n! P:

The state guard serves as an alternate form of external
choice, so that the Add process is equivalent to

ut e : X; ti : TT � left?e@ ti ! Add0:

156 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 2, FEBRUARY 2000

Fig. 4. Add operation.

In TCOZ, the internal and external choice operators must
be used explicitly. Decorated communications of the form
c!n and c?n have no conventional meaning in TCOZ, simply
being syntactic sugar for c:n. They are allowed simply as a
form of comment to emphasize the intended direction
of communication.

In TCOZ, the local name space may be changed either by
a local block definition as above or else by the occurence of
an operation schema. An operation schema removes all its
input parameters from scope and replaces them with its
output parameters. The output parameters then become
available for use in subsequent communication events or as
inputs to subsequent operation schemas.

In the case of the Delete operation (see Fig. 5), the
communication of the deleting element must precede the
updating of the collection state and in fact is the enabling
event for the operation. Since the name convention is that
outputs are only available to the right of a schema, this
behavior cannot be described using an output parameter.
Instead, the update operation is described as a simple state
update which removes the oldest item (and any others that
become stale). The overall delete operation consists of this
schema guarded by a communication on the right channel.

The first part of the definition of Delete is a novel process
control primitive known as a state guard.5 The adoption of a
state guard mechanism allows TCOZ to adopt a proper
separation between algorithm and process design issues.
The sequencing of activities in an object is controlled
explicitly through state guards rather than implicitly
through the operation preconditions. In this way, it
becomes possible to reclaim the Z-style operation design
and decomposition techniques abandoned by standard
Object Z.

Every process definition has (at least) an initial state
which may be addressed using schema notation. This is the
function of the first part of the expression defining Delete. It
is a schema-based method of restricting the action of the
process to initial states for which the collection is nonempty.
For other states this process will deadlock or block, refusing
any communication.

Note that the precondition requirement in the Delete0

schema, though identical, could not achieve the desired
restriction on the behavior of Delete. Failure to satisfy a
precondition when control is passed to an operation instead
results in divergence, or unspecified subsequent behavior.
Delete0 places no restrictions at all on its behavior when the
initial queue is empty. The precondition is the state-based
equivalent of process divergence and the guard is the state-
based equivalent to process deadlock.

For every operation P (even those constructed using the
process calculus), the collection of initial states for which
the process will not diverge is called its precondition (written
pre P) and the collection of states for which it will not
deadlock is called its guard (written grd P).

3.2 Schemas and Processes

A schema expression describes a relationship on or between
process state/s, while a process expression describes the
overall behavior or evolution of a process. The Z semantic
model for operation schemas consists of sets of variable
bindings, mappings from variable names to values. An
important point is that these sets may be infinite when the
operation allows unbounded nondeterminism. Timed CSP
has a number of semantic models, but the most common
consists of sets of tuples consisting of a timed trace (a
sequence of time stamped events) and a refusal (a record of
when events are refused by the process). The trace/refusal
pair is called a failure and the model the timed failures
model. The basic approach taken in the TCOZ semantics is
to adopt the timed failures semantic model and to provide
an interpretation of the Z semantic model in terms of
failures and divergences, though some variations are
required to make this possible. First, a variable binding is
added to represent the initial values of all the process
attributes. Second, a new class of events, referred to as
update events, is introduced to represent changes to the
process attributes. The resulting model is called the state/
failures/divergences model. The state of the process at any
given time is the initial state updated by all of the updates
that have occurred up to that time. If an event trace
terminates (that is, if a

p
event occurs), then the state at the

time of termination is called the final state. Finally, since the
unbounded nondeterminism potentially present in
Z schemas cannot be treated properly using finite-traces,
an infinite-trace variation of the timed-failures model, due
to Mislove et al. [43], is adopted.

The process model of an operation schema consists of all
initial states and update traces (terminated with a

p
) such

that the initial state and the final state satisfy the relation
described by the schema. If no legal final state exists for a
given initial state, the operation diverges immediately. In
the timed-failures model, divergence is represented by
allowing arbitrary behavior from the time of divergence.

The process model for the state guard consists of
replacing the trace part of every behavior of the guarded
process whose initial state does not satisfy the state guard
with the empty trace. The empty event trace describes the
process being blocked by the failure of the state guard. In
addition, divergence cannot occur if the state guard is
not satisfied.

MAHONY AND DONG: TIMED COMMUNICATING OBJECT Z 157

Fig. 5. Delete operation.

5. Although if-then style commands appear in several dialects of CSP, for
example CSPM [45], we believe that TCOZ is unique in adoptiong the state
guard as a separate primitive in the style of Morgan's version of the
guarded command language [44].

Since schema calculus operators cannot sensibly be
applied to arbitrary CSP processes, it is necessary to strictly
distinguish the schema calculus from the process calculus.
The two exceptions to this are the typecasting of operation
schema expressions as terminating processes and of initial
state schema expressions as state guards. In all other
circumstances, the schema and process calculi are separate
and distinct. For example, if P and Q are operations schema
expressions, the expression a! �P ^Q� is legal while the
expression �a! P � ^Q is not. The full power of the schema
calculus may be used to construct schema expressions, but
once a schema expression has been cast into a process-like
role, it may no longer act in a schema-like role.

Some existing Object Z schema calculus operators, such
as ut , j , and ; , have name-sakes with similar semantics
in the CSP process calculus. The convention adopted in
TCOZ is that the CSP operator is intended, and only ªpure
logicº schema calculus operators are allowed in TCOZ.
This is justified by the superior algebraic properties of the
CSP operators.

When operations are combined using the concurrency
primitives j and jjj , the designer is exposed to all the
usual dangers of shared variable concurrency. The opera-
tion OS1jjOS2, where OS1 and OS2 are operation schema,
will synchronize on all state update events on variables in
the respective delta-lists. Thus, OS1jjOS2 will have much
the same process properties as OS1 ^OS2, with the
exception that when the operations are inconsistent for a
given initial state, the concurrent composition will deadlock
while the logical composition will diverge. For example,
consider

SQRT �̂ �x; x0 : NNjx > 0 ^ x02 � x�
HALF �̂ �x; x0 : NNjx0 � 2 � x�:

The operations SQRT and HALF can agree only in the
case where x � 4. When either of the operations is
undefined (for example, when x � 2; SQRT is undefined),
SQRT jjHALF will diverge. When both are defined but in
disagreement (for example, when x � 16), SQRT jjHALF
will deadlock at some unspecified time. The process
SQRT ^HALF is just �x; x0 : NNjx � 4 ^ x0 � 2� and will
never deadlock. The concurrent composition OS1jjjOS2 is
even less well-behaved, and every variable may be updated
in any way allowed by either OS1 or OS2. Such a situation is
likely to be very difficult to analyze. We strongly
recommend that concurrent composition of operations be
used sparingly, preferably only in cases where the opera-
tions have disjoint delta-lists. Shared data structures should
only be utilized when properly protected by the object
encapsulation mechanism.

3.3 Active and Passive Objects

The definition in a class of the distinguished process name
MAIN indicates that the class is being defined as active. As
in CCZ [23], the MAIN process is used to determine the
behavior of objects of an active class after initialization.
Initialization is treated in the usual way through the INIT

schema. Active objects have their own thread of control and
their mutable state attributes and operation definitions are
fully encapsulated (update events are hidden). Distinct

objects, even of the same class, share no data and can
experience no shared variable interference. Other objects
can neither reference an active object's state attributes nor
invoke any of its local operations. Only local constants, such
as the object identity attribute self , may be accessed by
other classes. All dynamic interactions with an active object
must take place through the CSP channel communication
mechanism. Active objects are considered to have the
syntactic properties of process identifiers and may be
composed using CSP operators.

The MAIN operation is optional in a class definition. If a
class is defined without a MAIN process it is called a passive
class. Passive objects are controlled by other objects in a
system and their state and operations are fully available to
the controlling object (unless explicitly hidden). The
appearance of MAIN clearly distinguishes the definition of
active objects and passive objects in a system.

Returning to the timed collection example, the existence
of environmental obligations and the need to purge stale
elements means that the timed collection class must have its
own thread of control. Assuming that the class operations
are defined as in Section 3.1, the timed collection behavior is
defined by a MAIN process similar to the Timed CSP
version presented in Section 2.4.3.

MAIN �̂ �TC � �mems � ;� �Add; TC ut
�mems 6� ;����Add ut Delete� . �t�Purge�;TC:

The most striking difference lies in the use of the
operation schemas to subsume the role of the complex
annotations present in the Timed CSP version. This
represents a clearer and more structured presentation of
the basic control logic. A second difference lies in the
use of the state guard construct to distinguish between
the empty and nonempty behaviors of the timed collection,
thus saving the need to define separate empty and
nonempty processes.

3.4 Communication Channels

The class state-schema convention is extended to allow the
declaration of communication channels. If c is to be used as
a communication channel by any of the operations of a
class, then it must be declared in the state schema to be of
type chan. Channels are type heterogeneous and may carry
communications of any type.

We have decided on this convention in TCOZ, primarily
because we see no compelling reason to associate types with
channels and can see some minor advantages in not doing
so. Certainly, the timed failures semantics does not require
that channels be typed. Channel communication events are
simply pairs consisting of the channel name and the value
communicated. Neither does the Z bindings semantics
requires the value be typed, the Z semantics is modeled in
untyped set theory. The main argument in favor of
extending the typing conventions to channels is that it
provides redundancy which will guard against silly errors,
such as trying to read an input of one type when the output
was of another type. Balanced against this, we believe that
the ability to send many forms of data over a channel plays
a vital role in lowering the complexity of class interfaces
and this lower complexity also reduces the likelihood of

158 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 2, FEBRUARY 2000

errors such as listening for an input on the wrong channel.
Furthermore, we believe it is more instructive to group
logically related communications (such as those pertaining
to a particular protocol) than to group communications
with identical type but logically unrelated function. Thus,
we currently adopt the untyped convention with the
intention of evaluating our position again as our experience
using the notation increases. An interesting analysis of the
general benefits of typed and untyped syntax has been
made by Lamport and Paulson [36].

Contrary to the conventions adopted for internal state
variables, channels are viewed as global rather than as
encapsulated entities. This is an essential consequence of
their role as communications interfaces between objects. In
the situation of multiple instances of objects of the same
class in a system, those objects will all share the same
channel. For example, if O is a sequence of objects of class C
with channel c, then in the process

jjj i : dom O � O�i�;
each of the objects O�i� communicates with the environ-
ment by sharing channel c with every other object. In the
general case, there is no way for the environment to know
which of the objects it is communicating with when using
channel c. If it is necessary to know which object the
environment is communicating with, the object identity
attribute self [17] can be included in the communication, for
example,

c:�self; message�:
(This technique is used frequently in the lift case study.) The
introduction of channels to TCOZ reduces the need to
reference other classes in class definitions, thereby further
enhancing the modularity of system specifications.

Consider once again the timed collection example. Using
the TCOZ conventions, the class state can be significantly
simplified from the Timed Object Z version (see Fig. 6). The
sole remaining primary class attribute is the actual collec-
tion itself, and none of the timing attributes are required. In
addition to the list of mems, the state schema must declare
channels left and right. These channels serve much the
same role as the corresponding environment variables in
the Timed Object Z version, but here that role is better
defined in terms of the CSP process model. The secondary
attributes oldest and t remain useful in simplifying the
operation definitions and are retained.

3.5 The Timed Collection

Bringing together the various aspects of the TCOZ timed

collection introduced above, we are able to present the

entire class definition in Fig. 7.
This specification represents a more concise, flexible, and

scalable treatment of both process and state than is possible

in either Object Z or Timed CSP. The structure of the

process' internal state and communications interfaces are

prominently documented. The structured schema-based

approach to describing state transitions, supported as it is

by the full power of the Z toolkit and the schema calculus, is

better able to handle large and complex process state than

the essentially ad hoc state annotation conventions of CSP.

Making use of the Timed CSP process definition conven-

tions removes the need to consider process control matters

in operation schemas. There is a clear separation of process

control and algorithmic matters, which simplifies the

description of both.

3.6 Composing Classes

Inheritance is a mechanism for incremental specification,

whereby new classes may be derived from one or more

existing classes. Essentially, all definitions are pooled with

the following provisions: Inherited type and constant

definitions and those declared in the derived class are

merged. The state and initialization schemas of inherited

classes and those declared in the derived class are

conjoined. Operation schemas with the same name are

also conjoined.
TCOZ extends Object Z with two new class constructs,

channels chan and main behavior MAIN. Channels are

treated as normal state constant attributes; therefore, they

are pooled into the derived classes. Channel renaming is the

same as state attribute renaming. Since new classes will

generally have new behaviors, the MAIN class definition is

never inherited. As for all other class definitions, a class

extension must include a MAIN definition if the class is to

be active. The rules for (active and passive) class inheritance

are:

. A new active class may be derived from an existing
active class by defining a new MAIN process.

. A new active class may be derived from an existing
passive class by defining a MAIN process.

. A new passive class can also be derived from an
existing active class by not defining a new MAIN

process.
. A new passive class can be derived from an existing

passive class by not defining a MAIN process.

A composite object which contains active objects is also an
active object (a MAIN definition must appear in the
composite object class). Active objects are responsible for
their own intialization, so a composite object will often not
require an explicit INIT schema. An example of this is the
Buffered-Consumer/producer class in Section 3.7. Since it
has no passive internal state, it requires no explicit
initialization. Another result of the encapsulation of local
state in active objects is the inability of a composite class to
refer to the local state attributes and operations of a

MAHONY AND DONG: TIMED COMMUNICATING OBJECT Z 159

Fig. 6. State schema.

component object. Only class constants such as the object
identity self may be accessed.

3.7 A Multithreaded Example

The timed collection example made no use of the multi-
threaded capabilities of the TCOZ notation. In this section, a
specification of a standard buffered consumer/producer
process is presented (see Fig. 9) as a demonstration these
aspects of TCOZ.

A simple consumer/producer process accepts inputs of
type L on its left channel, calculates some function j f :
L! R of the inputs, and outputs the result on its
right channel.

To ensure that all inputs are accepted and outputs are
received, the process is buffered left and right with timed
collection processes (see Fig. 10). The buffered process
consists of a left buffer, a right buffer, and an internal
consumer/producer, as depicted in Fig. 8.

Correct hookup of the timed collection buffers to the
consumer/producer is achieved by renaming the various
internal channels. The renaming convention is the same

as for Object Z and Timed CSP, that is, P �a=b� is P with
all occurrences of b replaced by a. Intermediate channels

ml and mr are introduced as the internal interfaces to

the left and right buffers, respectively. In order to retain a

consumer-/producer-like interface, the right channel of

the left buffer is renamed to ml, the left channel of the

right buffer renamed to mr and the left and right channels

of the internal consumer/producer are renamed to ml

and mr, respectively.
The internal interfaces are protected from environmental

interference by hiding them. The hiding notation is the same

as for both Object Z and Timed CSP, that is, �P n c� is P

with c protected from external influence. In the case where
P is process-like and c is a channel, this has the important

result of freeing communications on c from the requirement

of synchronizing with the environment. Thus, communica-

tions on mr and ml occur as soon as the local processes are

ready and cannot be blocked by any other entity.
The BufConProd class definition allows true multi-

threading of the two buffers and the consumer/producer.

160 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 2, FEBRUARY 2000

Fig. 8. Buffered consumer producer.

Fig. 7. Timed Object Z model of the Timed Collection.

For example, the left buffer may be accepting a new item at
the same time as the consumer/producer is processing
another item, at the same time as the right buffer is
releasing yet another item to the environment. This
concurrency is coerced into smooth cooperation through
the requirement for synchronization between the processes
when communication occurs on the internal channels ml

and mr.
The addition of these CSP process structuring features

represents a significant advance in the scope and size of
systems which may be addressed by the Object Z approach.

3.8 Complex Network Topologies

The syntactic structure of the CSP synchronization operator
is convenient only in the case of pipeline-like communica-
tion topologies. Expressing more complex communication
topologies generally results in unacceptably complicated
expressions. For example, consider the communication
topology shown in Fig. 11, where processes A and B

communicate privately through the channel ab, processes A
and C communicate privately through the channel ac, and
processes B and C communicate privately through the
channel bc. One CSP expression for such a network
communication system is

�A�bc0=bc�j�ab; ac�j �B�ac0=ac�j�bc�j C�ab0=ab��
nab; ac; bc��ab; ac; bc=ab0; ac0; bc0�:

The hiding and renaming is necessary in order to cover
cases such as C being able to communicate on channel ab.

The above expression not only suffers from syntactic

clutter, but also serves to obscure the inherently simple

network topology described so elegantly by Fig. 11. One

reason for this is that it artificially suggests a dominant role

for process A. Equivalent, but superficially very different,

formulations of the network could be used to assign this

ªdominantº role to either B or C. We believe that network

topologies can be better described by adopting a notation

inspired by the graph-based approach embodied in Fig. 11.
A network topology abstraction is an expression of the form

(Fig. 12).
The formal network parameters are abstract names that

represent the process that form the nodes of the network

topology. It is necessary to use abstract names to allow

separate incarnations of processes with identical definition.

The formal network topology describes a finite graph in

which each edge or network connection generally represents

a private channel connection between network nodes.

Multiple connections between processes and connections

between multiple processes over a single channel are

represented by multiple connection expressions. In this

case, the channel becomes a party line between the various

participating processes.
A network topology abstraction describes a function,

which we call a network constructor, that builds a process

network using its process arguments as nodes. The network

constructor associated with a given network abstraction is

built by processing the formal parameters sequentially. At

each stage there is a list of remaining formal parameters.

Suppose v is the next remaining formal parameter. The local

channels on which v is not synchronizing are decorated to

avoid unwanted synchronizations. The local channels on

which it is synchronizing with any of the remaining

parameters are used to create a synchronization with the

remaining network. Then the rest of the formal parameters

MAHONY AND DONG: TIMED COMMUNICATING OBJECT Z 161

Fig. 9. Consumer/producer class.

Fig. 10. Buffered cons/prod model.

Fig. 11. Two-dimensional communication topology.

are treated one at a time to construct an expression for that

remaining network. Finally, all the local channels are

hidden and any decorations removed.
The above network topology abstraction thus describes

the following network constructor (Fig. 13).
The system in Fig. 11 can be described by applying a

suitable network topology abstraction to the processes A, B,

and C.

�jjv1; v2; v3 � v1 !ab v2; v2 !bc v3; v3 !bc v1� �A;B;C�:
The processes A;B;C are the actual network parameters.

When the actual network parameters are all process names,
the syntactic conventions are relaxed to allow the formal

network topology to act in the guise of a process operator.
For example, the network topology of Fig. 11 may be

described by the lax usage

jj�A !ab B; B !bc C; C !ca A�:
Such usage is considered acceptable since the names

representing the actual parameter can serve the dual

purpose of also identifying the formal parameters. Other
forms of lax usage allow network connections with common

nodes to be run together, for example,

jj�A !ab B !bc C !ca A�;
and multiple channels above the arrow, for example,

jj�A !ab1;ab2
B�:

As a further example of the use of the network topology

convention, note that the behavior of the BufConProd

object can also be expressed by

MAIN �̂ jj �l !ml cp !mr r�:
The network topology convention is particularly useful for

describing the interactions between floors (requests), lift-
controller, and elevators in the lift system.

We believe this TCOZ network topology convention to

be a novel and potentially useful addition to the basic

CSP notation. For example, the directed parallel operator

in the CSPM language, while adopting similar syntax,

addresses the different problem of synchronizing on

differently named channels without the burdensome use

of renaming.

4 THE LIFT CASE STUDY

The multilift system is a standard example used to

demonstrate the expressive power of various specification

techniques in modeling concurrent reactive systems.6

People are familiar with the user requirement of a lift

system, so they can concentrate on the modeling notations.

However, the lift case study is not a trivial example because

of the complexity caused by inherent concurrent interaction

in the system [51]. We chose the specification of the lift

system as the TCOZ case study also because both CSP and

Object Z have been applied to the lift system, allowing a

comparison to be drawn. The CSP ªliftº model [47]

describes the sequences of events for the lift system well;

however, it struggles to capture the data aspects of the lift

system. Furthermore, the CSP model has a flat and in places

awkward structure and the communications interfaces

between the lift system components (i.e., floor-buttons

and lifts) are not clearly documented. The Object Z ªliftº

model [15] demonstrates the power of modeling the state

change of the lift system in a structured way. However, it

is complicated by the need to represent process state as

data and it uses a complex, centralized control-model

because of the Object Z's single thread semantics. Neither

the CSP nor Object Z model addresses the real-time issues

for the lift system.
Our goals for the TCOZ specification of the lift system

include:

. a model that captures both the data structures and
the behavior of the lift system;

. a true multithreaded specification that captures the
concurrent, reactive, and real-time aspects of the lift
system; and

. a component-based incremental style specification
that is extendible and reusable.

162 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 2, FEBRUARY 2000

Fig. 13. Network topology constructor.

Fig. 12. Network topology abstraction.

6. Many formal notations have been applied to the lift system. For
example, the UNITY model [7], [9], Raddle [22], and Constraint Nets [52].

This case study aims to demonstrate the TCOZ approach for
modeling timed reactive systems. Other detailed (lift
specific) issues, such as the efficiency of lift scheduling,
are not considered in this paper.

4.1 System Overview

A lift system for a building consists of multiple lifts, each
providing transport between the various floors of the
building as dictated by the pressing of a range of service-
request buttons. Inside each lift there is a panel of buttons,
one for requesting travel to each of the building's floors.
The panel buttons of any lift must be in one-to-one
correspondence with the floor numbers. In general, there
are two service-request buttons on each floor, for upward
and downward travel respectively, though on the first floor
and the top floor there is only one button. Any service-
request button can be pushed at any time. Once pushed, the
button is said to be on and it remains on until the requested
service is provided. Pressing an internal button requests the
lift to visit the corresponding floor. Pressing an external
button requests a lift to visit the floor with the desired
direction of travel. The lift controller has a queue which
stores all current (external) floor requests. When a request
arrives from a floor, the system will put the request at the
end of the external request queue. When a lift becomes
available, the controller will assign the first request of the
queue to the lift for service. When visiting a floor, a lift door
operates in the order of open-door, wait, then close-door.
This normal process can be interrupted by a customer
crossing the door as detected by some sensors.

Furthermore, the following timing properties must be
captured in the model:

. Lift travel time between two consequent floors is a
constant; however, there is a constant time delay for
acceleration and braking;

. Without interrupts, the lift door should be kept at
the ªopenº state for a fixed time period before
closing.

4.2 Specification Structure

The lift specification is developed in a bottom-up manner,
beginning with models of basic (passive) component
objects, such as ªbuttons,º which are then used to develop
more complex (active) component objects, such as ªfloors

(requests),º ªlifts,º and a ºcontroller.º Then the lift

system is modeled as an active composite object which

composes the component objects with their interactions

(through channels).
Fig. 14 illustrates the communication interfaces between

lift system components. There are three major components,

the service-request panels on each floor, the lifts them-

selves, and the central controller which mediates service

requests from the floors. External requests received by a

floor on the request channel cause the floor's corresponding

service button to be lit and the request is communicated to

the controller on the enter channel. The button remains lit

until a confirmation is received on the service channel.

Requests received by the controller on the enter channel are

enqueued and sent to idle lifts on the select channel on a

first-in-first-out basis. Whenever a lift receives an internal

request on the int request channel, the corresponding

button is lit and the request entered into its itinerary. While

the lift has local requests pending, it services them in strict

order according to its current movement direction, rever-

sing direction at the extreme floors. The behavior of the

active lifts is monitored on the check channel, and if a

request can be serviced en route, it is dispatched to the lift

in question and dequeued. Once the lift becomes idle, it

may accept an external request on the select channel, move

to the requested floor, and send a confirmation to the floor

panel on the service channel.

4.3 Buttons

A basic component of the lift system is the button panels on

the floors or inside the lifts. Buttons have a common

behavior; they can be pushed ªOnº by people and turned

ªOffº by the system.

ButtonStatus ::� OnjOff:
Buttons are modeled using a simple passive class (Fig. 15),

which records their current state and provides operations

for turning them on and off.

4.4 The Building

Our model of the building concentrates on the behavior of

the service-request panels on each floor, as depicted in

Fig. 16; other floor-related issues are elided.

MAHONY AND DONG: TIMED COMMUNICATING OBJECT Z 163

Fig. 14. Lift system communication diagram.

4.4.1 Floor Panels

Floors may be divided into two classes, those from which it

is possible to travel upward and those from which it is

possible to travel downward.

MoveDir ::� UpjDown:
The TopFloor (Fig. 17) is a floor from which only

downward travel is possible, and the BottomFloor (Fig. 18)

is a floor from which only upward travel is possible.
A MiddleF loor is a floor from which both upward and

downward travel is possible. Object Z's class inheritance

features are used to allow both upward and downward

travel for the MiddleFloor class (Fig 19).
Inheritance provides a subclassing mechanism for

specification reuse (not a true subtyping mechanism). When

a new active class is derived from an existing active class,

the objects of the new class often have different behavior to

the objects of the existing class. As a consequence, the MAIN

process must always be redefined explicitly.

The subscript ª c
º (object containment 7 [13]) indicates

that the button objects are contained in their corresponding

floor object.
As a floor can be either top-floor, bottom-floor, or

middle-floor, the general type of a floor is defined as a

class-union [11].

4.4.2 The Building

The building is modeled as an aggregate of active floor

objects (Fig. 20). Individual floors do not communicate with

each other, but rather with the central controller and with

the lifts. Thus, the MAIN processes of the individual floor

objects are combined using asynchronous composition, jjj .

4.5 Lifts

A lift consists of four parts, as depicted in Fig. 21, a door for

allowing access to and from the lift, a shaft for transporting

the lift, an internal queue for determining the lift itinerary,

and a controller for coordinating the behavior of the other

components. This division structures the specification in

such a way as to limit the complexity of the individual

components and to highlight the potential for concurrency.

4.5.1 Lift Door Control

The lift door controller is treated as a separate class so as to

ensure a clear description of its timing and safety proper-

ties. Under this limited aim, the class may be described

entirely within the Timed CSP idiom.
The controller interfaces on a channel servo with a

servomechanism that activates the door to open or close

and on a channel sensor to determine when the door is

open, closed, or blocked from closing. The messages that

may be set on these channels are then

DoorMess ::� ToOpen j Opened j
ToClose j Closed j Interrupt:

The timing property of the door is that once it is open, it

must remain open for time period

j to : TT open time

before closing. The safety property is that if the closing of

the door is blocked (as indicated by receipt of an Interrupt

message) the door must be reopened.
The door cycle is initiated by receipt of an open signal

from the lift controller and completed by sending a close

signal. As soon as the door is open, a conf signal must be

sent to the lift controller so as to indicate fulfillment of a

service request (Fig. 22).
In the CycleDoor process, we make use of the CSP

interrupt primitive, which allows an exception handling

behavior to be triggered by the occurrence of an unusual

event. The normal door cycle follows the order of open-

door, wait to, then close-door. This normal cycle can be

interrupted and restarted by the event which detects a

message Interrupt from the channel sensor. This message

acts as an interrupt on the normal cycle and control is

returned to the start of the normal cycle.

4.5.2 Moving the Lift

The essentially analog nature of the movement of the lift

presents something of a modeling problem. The technique

used throughout this specification has been to abstract real-

world interactions as CSP events (e.g., the request and

int request) channels, but the movement betweens floors is

by its nature a time-consuming process. We thus adopt the

common technique of delimiting the period of movement

by start and finish events. The start event of the movement

process is a communication to the lift-shaft apparatus of the

number of floors to be moved. The finish event is a

communication from the lift-shaft apparatus that the lift has

164 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 2, FEBRUARY 2000

Fig. 15. Button model.

7. Object containment ensures that no object directly or indirectly
contains itself; and no object is directly contained in two distinct objects. For
a detailed discussion, see [13].

arrived at the destination floor. The timing properties of lift

movement are described by two time constants:

. maximum time to move one floor Up or Down

j t : TT

. acceleration and braking delay

j delay : TT

The maximum time to pass from one floor to another is �t for

each floor travelled plus a delay of delay caused by initial

acceleration and final braking of the lift. The shaft model is

captured in Fig. 23.
Such event-based models are highly abstract and

perhaps are less satisfying when applied to the complex

process of moving the lift than when applied to the more

event-like process of pressing a button. However, the

channel-based interfaces of TCOZ processes mean that

such models must be used. In their favor, it must be pointed

out that from the point of view of the lift controller the

MAHONY AND DONG: TIMED COMMUNICATING OBJECT Z 165

Fig. 17. Top floor model. Fig. 18. Bottom floor model.

Fig. 16. External service request panels.

matters of essential interest are precisely when the move-

ment commences and when it finishes.

4.5.3 Lift Itinerary

The itinerary of the lift is determined by the requests made
by passengers using the internal floor-request panel and
those dispatched from the central control. For the purposes
of limiting design complexity, a separate class is defined to
determine the lift's internal service itinerary.

This internal queue makes use of a panel of buttons to
communicate with passengers and to maintain a record of
the floor-requests pending (Fig. 24). A dependent (second-
ary) variable irs records the set of destinations that have
been selected by the passengers at any given time. This set
may in turn be split into those destinations above a given
floor, ups, and those below, dns. Floor services are
requested on the int request channel and confirmed on
the int serv channel. Scheduling services are requested by
passing the current floor fl? and movement direction md?
on the int sched channel.

The operations of the controller are turning the panel
buttons on and off, in response to service requests and
confirmations, and determining the next destination for the
lift itinerary. The next destination is the first requested
destination in the current direction of movement, reversing
at either extremity of movement. A scheduling request is
only serviced if there are pending floor-service requests.

4.5.4 Lift Controller

The lift controller keeps record of the current floor and
movement direction and provides the interface between the
lift environment and the other lift components. The lift
controller exhibits three modes of behavior. It is modeled
in Fig. 25.

The lift begins at rest awaiting either a passenger
destination request or a dispatch from the central controller.
Any passengers inside the lift are given a period of time

tp : TT

�wait for passenger input�:

�����
to make an internal request before the lift accepts any

external requests.

The controller determines that an internal request is

pending through the willingness of the internal queue to

perform a scheduling transaction. Once the queue has

indicated the next destination, the central controller is

checked to see if there is an external request from an

intermediate floor. If so, the lift services the external request

first. If not, it services the internal request: the new direction

is calculated and set; the lift is moved to the new floor and

the door is opened; the internal queue and the central

controller are notified; and then, once the door is closed,

control is returned to the rest mode.

If, after waiting tp, an external request becomes available

before any internal request: the new move direction is set;

the lift is moved to the new floor and the door is opened;

the floor service-request panel is notified; and then, once the

door is closed, control is returned to the rest mode (Fig. 26).

4.5.5 The Bank of Lifts

Each lift consists of a door, a shaft, and a controller (Fig. 26).
The collection of all the lifts (Fig. 27) in the system is

modeled as an aggregate of the individual lifts acting

autonomously.

4.6 The Central Controller

The responsibility of the central controller is to dispatch

floor requests to idle lifts (modeled in Fig. 28). It consists of

a request queue with channels that connect the floors and

the lifts. The network topology is described graphically in

Fig. 14.
The controller receives requests from the floors and

enters them into the reqQ queue (Join operation). In the

ordinary case, these requests are dispatched in first-in-first-

out manner (Dispatch operation) as idle lifts become

available, but if in the course of servicing internal requests

a lift can visit a floor while moving in the floor required

direction, the request is removed from the queue

(CheckServ operation).

4.7 The Lift System

The lift system consists of the floors of the building, the

bank of lifts, and the central controller. The number of

166 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 2, FEBRUARY 2000

Fig. 20. Building model.

Fig. 19. Middle floor model.

floor-service buttons in each lift must be exactly the number

of floors in the building. It is modeled in Fig. 29.

The lift system behavior MAIN describes the commu-

nication channels between the independent concurrently

executing system components: the lifts, the floors, and the

controller. The floors communicate service requests to the

controller through the enter channel, the controller dis-

patches these requests to the lifts through the select and

check channels, and the lifts indicate successful servicing of

requests to the floors through the service channel.

4.8 Discussion

The application of TCOZ to the multilift system has been

convincingly successful, despite the relatively modest

real-time aspects of the specification. The powerful combi-

nation of object-oriented structuring, data modeling, and

process modeling features available in TCOZ has allowed

the clean presentation of an ambitiously detailed (when

compared to versions described in other languages) treat-

ment of the multilift system. This strongly supports our

claims that TCOZ represents a highly scalable and reusable

method for describing real-time and concurrent systems. As

an example, consider modifying the specification so as to

allow ªopportunisticº servicing of requests entered after a

lift starts moving. The modular nature of the specification

immediately draws attention to the Shaft class which

controls the movement of the lift between floors. The

interface of this class needs to be expanded to include

events to indicate the lift is approaching the next floor and

to stop the lift at the next floor. Armed with these additional

controls, the LiftControl class can easily be modified to

react opportunistically to new service requests.

One surprise in the development of the TCOZ lift was

the degree to which the process model idiom came to

dominate. The starting point of the development had been a

data-oriented standard Object Z specification [15]. Rather

than being a simple matter of adding real-time and

concurrent features to the existing specification, it soon

became clear that much of its ªdataº was in fact being used

MAHONY AND DONG: TIMED COMMUNICATING OBJECT Z 167

Fig. 23. Shaft model.Fig. 22. Door model.

Fig. 21. Internal lift communication diagram.

to represent ªprocessº behavior which could be more

elegantly represented using the CSP process modeling

features of TCOZ. The final approach adopted was to model

the system primarily as a network of communicating

processes and to make use of Object Z's data modeling

features to simplify and structure the specification by

abstracting away from algorithmic specifics and reusing

common data components such as buttons.

A perceived weakness of the TCOZ approach was

identified in its handling of the interface between

TCOZ processes and the real world. Although the abstrac-

tion of button presses as communications on external

channels is reasonably acceptable, the inability to describe

ªcontinuouslyº changing aspects of the system such as ªlift

positionº is particularly disturbing. While modeling the

moving process by start and finish events provides an

adequate interface to the TCOZ specification, it goes no way

at all toward ensuring that lift shaft satisfies our informal

intuitions as to its behavior. The specification is thus,

strictly speaking, not of a system for moving people

between floors of a building, but a description of a method

of controlling such a system in a satisfactory manner.
One advantage of choosing the lift system to exercise the

TCOZ language is the availability of existing lift specifica-

tions in both CSP [47] and Object Z [15]. Apart from the

ability of TCOZ to describe timing aspects not addressed by

either of these specifications, such as the correct behavior of

the door opening cycle, TCOZ represents an improvement

in expressibility, modularity, and reusability over both

existing specifications.

The CSP ªliftº model [47] is similar in spirit to the TCOZ

lift presented here, except that it does not consider the door

cycle nor the movement of the lift. However, in contrast to

the highly modular approach of the TCOZ specification, the

CSP version is forced to adopt a quite flat structure, because

the only structuring facility available is the process

definition. The channel interface declarations and the

network topology operator provide valuable information

to the reader of the TCOZ specification regarding the source

and destination of communications, which is not available

to the reader of the CSP specification. Although some

168 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 2, FEBRUARY 2000

Fig. 24. Internal queue model.

attempt is made to structure the CSP specification docu-

ment through the use of section headings to distinguish

system components, the essentially global nature of all

process definitions and communication channels makes it

difficult to comprehend individual process definitions

without extensive reference to the rest of the specification.

The standard CSP synchronization operator � jj � is a

particular point of weakness, as it offers no visual feedback

as to the interface between network components. The use of

the network topology operator (and associated diagrams) is

a particular strength of the TCOZ specification.
The weaknesses in CSP's treatment of data and algo-

rithms not only adds syntactic clutter to the CSP lift, but

also appears to influence the structure of the specification.

In particular, the difficulty in abstracting various calcula-

tions away from the specific direction of travel results in a

ªsplitº specification, with many features being repeated for

both the ªupº and ªdownº directions of travel. For example,

the specification of a single lift (see p. 26 of [47]) includes

subprocesses Lift�f; up� and Lift�f; down�, which differ

primarily in the method of calculating the next floor on the

itinerary. In contrast, the TCOZ version abstracts this

calculation into the Next operation of the Internal Q class,

allowing the description of the lift's gross behavior to be

independent of the direction of travel, even despite using a

more complex method of determining the itinerary.

Although a specification of this form is possible in CSP,

the lack of strong, modular data modeling facilities acts as a

strong disincentive to this form of abstraction.
The Object Z ªliftº model [15] provided a structured and

reusable model and was able to describe the sequence of

state changes of the overall lift system. However, Object Z's

process semantics forces the specification to include extra

data for describing process state and all system components

to be viewed passively (except the lift system class), which

leads to a complex, centralized control-model. The lift

components, such as the shaft and the door, were

abstractively modeled as internal state components (rather

than component objects) of the lift. The system class

LiftSystem (pp. 146-147 of [15]) became very complex

(and lengthy) because the global ordering of synchroniza-

tions between lifts, floor requests, and request queue must

be explicitly determined. In the TCOZ model, only the local

ordering of these events need be specified, the global

ordering is implicit in the CSP event synchronization

model. In addition, the TCOZ model gives the freedom of

viewing the lift system components as active entities

allowing a more natural, modular, and reusable description

of the lift system.

MAHONY AND DONG: TIMED COMMUNICATING OBJECT Z 169

Fig. 25. Individual lift controller.

5 RELATED WORK

The basis for the successful blending of the Timed CSP

and Object Z notations is the duality between state

transition semantics and event semantics. This has long

been recognized [28], [34], [4], [6], and has undoubtedly

helped shape the development of Object Z's behavioral

semantics. Perhaps the most mature formalism based on

this duality is Butler's [6] blending of CSP with Back's and

von Smith's Action Systems [3]. An important lesson from

this work is the need to distinguish strongly between the

notions of guard and precondition in the state-transition

view. The failure to do so in Object Z has made it impossible

to reconcile the usual Z precondition refinement techniques

with the default behavioral semantics. The adoption of a

distinct notion of state guards in TCOZ makes possible a

170 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 2, FEBRUARY 2000

Fig. 28. Lift system controller mode.

Fig. 27. Shaft model.

Fig. 26. Shaft model.

full blending of the Z-style algorithm and the CSP-style

process refinement.

The notion of blending the untimed CSP and Object Z

has been proposed independently by Fischer [21] and Smith

[51]. Both take the approach of identifying the notion of

channel with that of operation and operation invocations

with atomic communications of both inputs and outputs.

The latter prevents the modeling of timing and concurrency

at the operation level and complicates the CSP semantics

through the mixing of elements of external (inputs) and

internal (outputs) choice in a single event. The former is

undesirable from a theoretical standpoint, because it

confuses communications interfaces which are essentially

process-related attributes with algorithmic structures which

are essentially data related attributes. An object's commu-

nications interface should be determined by high-level

considerations of the overall system structure, while the

operational interface should be determined by considera-

tion of the internal data structures. The purpose of the class

envelope is to resolve such tensions locally, not to

propagate them up and down the design hierarchy. The

practical consequences of the identification of channel and

operation is the promotion of both high degrees of coupling

between classes and unnatural class structures. Neither

formalism makes a thorough distinction between precondi-

tions, guards, and operations, and consequently, refinement

issues are complicated in both. Smith adopts a semantics

which is unable to model process divergence, and as a

consequence, must identify preconditions with guards,

making process and precondition refinement incompatible.

The semantics adopted by Fischer does allow a distinction

between guards and preconditions, but guards are tightly

coupled with operations so that the same operation may not

be used in differing circumstances as is the Remove

operation in the Controller class. Moreover, a convention

is introduced whereby when an operation guard is not

explicitly defined, the precondition is used by default, thus

complicating both the understanding of the process

behavior and the refinement of the operation. Issues, such

as real-time and the distinction between active and passive

objects, are not addressed by either formalism.

More generally, the need for specification notations

capable of addressing both data/algorithmic issues and

process control issues is widely recognized. Several

notations now exist aimed at bridging this divide. These

fall essentially into two classes: those that adopt a

process-algebra/event-based style (LOTOS [32], ESTEREL

[5], RAISE [25]) and those that adopt a transition system

style (UNITY [7], Action Systems [3], TLA [35]). We

consider two real-time specific languages, E-LOTOS [31]

and ASTRAL [8], as being representative of their respective

classes and having similar aims to TCOZ.

The LOTOS specification language [32] is very similar in

approach to TCOZ, blending CSP-like process primitives

with a declarative-style data-specification language.

E-LOTOS [31] is a recently developed real-time extension

to LOTOS. The process and real-time primitives of

E-LOTOS are influenced by Timed-CSP, therefore these

aspects of E-LOTOS are similar to TCOZ. The major

differences lie in the data-modeling and structuring aspects

of the two formalisms. The data modeling language of

E-LOTOS is an algebraic/functional hybrid, while TCOZ is

model-based. The module construct of E-LOTOS is similar

to the class construct of TCOZ in that it can encapsulate

states and operations. Modules can be reused via the

imports mechanism, which is similar to the class inheri-

tance. However, E-LOTOS modules cannot be instantiated

as a type, while TCOZ classes can. Therefore, the notions of

object and composition of objects (aggregation) are missing

from E-LOTOS. In TCOZ, this adds another dimension of

potential for reuse of specifications. E-LOTOS's subtyping is

a simple record-type extension mechanism which is less

powerful than the TCOZ's polymorphic typing (inheritance

hierarchy and class union).

ASTRAL is developed based on the ideas of RT-

ASLAN [2] and TRIO [26]. ASTRAL also has a module

construct that encapsulates the variables and transactions.

The ASTRAL module has the two dimensions of reuse,

importing and type instantiation. Therefore, the ASTRAL

module is very close to the TCOZ class construct except that

the names of instances of a module are modeled explicitly,

while the object identity is implicitly included in the TCOZ

class semantics (a class is a collection of object identities). In

ASTRAL, object composition is generally modeled by the

(programming-language-flavored) list type construct,

array :::of:::. In TCOZ, object composition may have

various (mathematics-flavored) abstract forms, i.e., collec-

tions ªPP:::º and list ªseq:::º. The timing aspects are similar

to the TLA approach [1] and the Timed Object Z approach

[11]. That is, a global clock NOW is introduced and system

environments are modeled explicitly. Therefore, sequential

real-time systems can be captured well by ASTRAL, while

MAHONY AND DONG: TIMED COMMUNICATING OBJECT Z 171

Fig. 29. Final lift system model.

truly concurrent active systems are difficult to describe

in ASTRAL.

6 CONCLUSIONS AND FURTHER WORK

Timed CSP and Object Z complement each other not only in

their expressive capabilities, but also in their underlying

semantics. In addition, the object-oriented flavor of Object Z

provides an ideal foundation for promoting modularity and

separation of concerns in system design. The combination

of the two, TCOZ, treats data and algorithmic concerns in

the Object Z style and treats process control, timing, and

communication concerns in the CSP style. The notion of

active and passive objects are clearly distinguished in the

TCOZ model. This powerful modeling combination, TCOZ,

has been successfully applied to a comprehensive case

study on specifying a real-time multilift system. In

comparison to the CSP model [47] and the standard

Object Z model [15] of the lift system, the TCOZ model

not only describes the complex system state and behavior

within a cleaner and less coupled structure, but also

captures the true concurrent real-time interactions between

various system components of the lift system. The lift case

study also provides feedback to the development of TCOZ.

For example, the development of the modeling notation for

complex network topologies is motivated by the lift case

study. A particular weakness of the language has been

identified in its ability interface with ªreal-worldº aspects of

a system. This clearly limits the applicability of the notation

to the software aspects of a system. Future work will be

directed toward improving its capabilities in this direction

so as to integrate it into a more holistic approach to real-

time and embedded systems design. One promising

approach is to enhance TCOZ with features of the Timed

Refinement Calculus [37], [41], which allow convincing

descriptions of continuously varying real-world observa-

bles. TCOZ preserves, in a large part, both the syntax and

semantics of the individual notations and hence, can

potentially benefit from the large body of experience

developed in the use of and tool support for the individual

notations and their parents. These benefits might include:

the full application of the Z schema calculus, structured

design, and refinement techniques; the application of

Timed CSP process equivalence and refinement techniques,

especially the Timed CSP model hierarchy for moving

between timed and untimed models; the extension of

existing Z, Object Z, and CSP tools and model checkers.

For example, we are currently planning a project to

construct a parser/type-checker for TCOZ based on the

Object Z parser of Johnson [33].

A separate paper details the blended state/event process

model which forms the basis for the TCOZ semantics [38].

Additional planned work includes developing refinement

rules for the TCOZ specification language based on existing

Z and CSP refinement systems. Schneider has described

a system for capturing and verifying abstract temporal

requirements of Timed CSP processes [46]; it is hoped

that this might also form a valuable addition to the

TCOZ notation.

APPENDIX A

TCOZ CONCRETE SYNTAX

The TCOZ syntax is based on the Object-Z syntax [16], [18].

A.1 Notation

The syntax is described in an extended BNF with the

following metasymbols:

::� produces

j altnerative

�x� optional x

fxg zero or more x0s
fxg1 one or more x0s:

Nonterminals ending in List have productions according

to:

xList ::� xf; xg:
Nonterminal names are typically compound and abbre-

viated, each part commencing with an uppercase letter, e.g.,

OpExpDef . Abbreviations are listed below.
Terminal symbols are shown directly as they appear in

TCOZ. Metasymbols are larger than terminal symbols of the

same shape as seen by:

::� ::�; j j; � � � �; and f g f g:

A.2 Abbreviations

The following abbreviations are used in the productions

listed in Section A.3.

Abb Abbreviation Gen Generic
Ax Axiomatic Inv Invariant
Bool Boolean Op Operation
Chan Channel Pred Predicate
Dec Declaration Prim Primary
Def Definition Sec Secondary
Des Designator Sep Separator
Exp Expression Var Variable

A.3 Productions

The order of presentation of productions is top down with

definitions for nonterminals appearing after their last

application, except for recursive definitions.

172 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 2, FEBRUARY 2000

MAHONY AND DONG: TIMED COMMUNICATING OBJECT Z 173

Productions are in equal-precedence groups (separated

by ÿ ÿ ÿÿ), and the precedence of groups increases

down the page. The ªL/Rº indication determines left or

right associativity of binary operators.

174 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 2, FEBRUARY 2000

The nonterminal Deltalist cannot be written DeltaList,

as the construct represented does not conform to the

List convention.
Iff (()), disjunction (_) and conjunction (^) are

associative. ªRº indicates right-to-left association.

The syntax does not define the details of the productions

for

Infix; Prefix; Postfix; Number; Name; Sep:

Elision of end-of-line semicolons, end-of-line conjunction

symbols, and ªsuch thatº bars in 2D structures without

predicates is not shown in the syntax.

ACKNOWLEDGMENTS

We would like to thank John Colton, Ian Hayes, Keith

Gallagher, Neale Fulton, and the anonymous referees for

many useful comments. This work has been supported in

part by the DSTO/CSIRO Fellowship program.

MAHONY AND DONG: TIMED COMMUNICATING OBJECT Z 175

REFERENCES

[1] M. Abadi and L. Lamport, ªAn Old-Fashioned Recipe for Real
Time,º ACM Trans. Programming Languages, vol. 15, no. 5,
pp. 1,543-1571, 1991.

[2] B. Auernheimer and R.A. Kemmerer, ªRt-aslan: A Specification
Language for Real-Time Systems,º IEEE Trans. Software Eng.,
vol. 12, no. 9, Sept. 1986.

[3] R.J.R. Back and J. von Wright, ªRefinement Calculus, Part II:
Parallel and Reactive Programs,º Stepwise Refinement. J.W. de
Bakker, W.P. de Roever, and G. Rozenberg, eds., Springer Verlag,
1990.

[4] M. Benjamin, ªA Message Passing System: An Example of
Combining CSP and Z,º Z User Workshop: Proc. Fourth Ann. Z
User Meeting, pp. 221±228, Dec. 1989

[5] G. Berry and G. Gonthier, ªThe Esterel Synchronous Program-
ming Language: Design, Semantics, Implementation,º Science of
Computer Programming, vol. 19, no. 2, pp. 87±152, Nov. 1992.

[6] M.J. Butler, ªA CSP Approach to Action Systems,º PhD thesis,
Wolfson College, Oxford University, 1992.

[7] K.M. Chandy and J. Misra, Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

[8] A. Coen-Porisini, C. Ghezzi, and R. Kemmerer, ªSpecification of
Real-Time Systems Using ASTRAL,º Technical Report 96-30,
Computer Science Dept., Univ. of California, Santa Barbara, Jan.
1997.

[9] H.C. Cunningham, V.R. Shan, and S. Shen, ªDevising a Formal
Specification for an Elevator Controller,º Technical Report TR 94-
10, Department of Computer and Information Science, Univ. of
Mississippi, 1994.

[10] J.S. Dong, ªLiving with Free Type and Class Union,º Proc. 1995
Asia-Pacific Software Eng. Conf. (APSEC '95), pp. 304±312, Dec.
1995.

[11] J.S. Dong, J. Colton, and L. Zucconi, ªA Formal Object Approach
to Real-Time Specification,º Proc. Third Asia-Pacific Software Eng.
Conf. (APSEC '96), Dec. 1996.

[12] J. S. Dong and R. Duke, ªThe Geometry of Object Containment,º
Object-Oriented Systems, vol. 2, no. 1, pp. 41±63, Mar. 1995.

[13] J.S. Dong and B.P. Mahony, ªActive Objects in TCOZ,º Proc.
Second Int'l Conf. Formal Eng. Methods (ICFEM '98), pp. 16±25, 1998.

[14] J.S. Dong, G. Rose, and R. Duke, ªThe Role of Secondary
Attributes in Formal Object Modelingº Proc. First IEEE Int'l Conf.
Eng. Complex Computer Systems (ICECCS '95), pp. 31±38, Nov. 1995.

[15] J.S. Dong, L. Zucconi, and R. Duke, ªSpecifying Parallel and
Distributed Systems in Object Z,º Second Int'l Workshop Software
Eng. for Parallel and Distributed Systems, pp. 140±149, 1997.

[16] R. Duke, P. King, G. Rose, and G. Smith, ªThe Object Z
Specification Language: Version 1,º Technical Report 91-1, Soft-
ware Verification Research Centre, Australia, 1991.

[17] R. Duke and G. Rose, ªModeling Object Identity,º Proc. 16th
Australian Computer Science Conf. (ACSC-16), pp. 93±100, Feb. 1993.

[18] R. Duke and G. Rose, Formal Object-Oriented Specification.
Academic Press, 1998.

[19] R. Duke, G. Rose, and G. Smith, ªObject Z: A Specification
Language Advocated for the Description of Standards,º Computer
Standards and Interfaces, vol. 17, no. 511±533, 1995.

[20] C. Fidge, P. Kearney, and M. Utting, ªA Formal Method for
Building Concurrent Real-Time Software,º IEEE Software, vol. 14,
no. 2, 1997.

[21] C. Fischer, ªCSP-OZ: A Combination of Object Z and CSP,º
Formal Methods for Open Object-Based Distributed Systems
(FMOODS'97), vol. 2, pp. 423±438, 1997.

[22] I. R. Forman, ªDesign by Decomposition of Multiparty Interac-
tions in Raddle87,º Proc. Fifth IEEE Int'l Workshop Software
Specification and Design (IWSSD'89), pp. 2±10, 1989.

[23] A.J. Galloway, ªIntegrated Formal Methods with Richer Metho-
dological Profiles for the Development of Multiperspective
Systems,º PhD thesis, Univ. of Teesside, School of Computing
and Mathematics, Aug. 1996.

[24] A.J. Galloway and W.J. Stoddart, ªAn Operational Semantics for
ZCCS,º Proc. IEEE Int'l Conf. Formal Eng. Methods (ICFEM '97),
pp. 272±282, Nov. 1997.

[25] C. George, P. Haff, K. Havelund, A.E. Haxthausen, R. Milne, C.B.
Nielson, S. Prehn, and K.R. Wagner, The Raise Specification
Language. New York: Prentice Hall, 1992.

[26] C. Ghezzi, D. Mandrioli, and A. Morzenti, ªTrio: A Logic
Language for Executable Specifications of Real-Time System,º J.
Systems and Software, June 1990.

[27] I.J. Hayes and B.P. Mahony, ªUsing Units of Measurement in
Formal Specifications,º Formal Aspects of Computing vol. 7, no. 3,
1995.

[28] J. He, ªProcess Simulation and Refinement,º Formal Aspects of
Computing, vol. 1, no. 3, pp. 229±241, 1989.

[29] C.A.R. Hoare, Communicating Sequential Processes. Prentice Hall,
1985.

[30] Units of Measurement: Handbook on Int'l Standards for Units of
Measurement. Geneva: Int'l Organization for Standardization, 1979.

[31] ªISO,º SC21/WG7 Working Draft on Enhancements to LOTOS,
ISO Working Group 7, Dec. 1997.

[32] ªISO 8807,º LOTOS±A Formal Description Technique Based on the
Temporal Ordering of Observational Behavior, 1989.

[33] W. Johnston, ªA Type Checker for Object Z,º Technical Report 96-
24, Software Verification Research Centre, School of Information
Technology, Univ. of Queensland, Brisbane, Australia, July 1996.

[34] M.B. Josephs, ªA State-Based Approach to Communicating
Processes,º Distributed Computing, vol. 3, pp. 9±18, 1988.

[35] L. Lamport, ªThe Temporal Logic of Actions,º ªACM Trans.
Programming Languages and Systems,º vol. 16, pp. 872±923, 1994.

[36] L. Lamport and L.C. Paulson, ªShould Your Specification
Language Be Typed?º Technical Report 147, Systems Research
Center, 1997.

[37] B.P. Mahony and J.S. Dong, ªOverview of the Semantics of
TCOZ,º Proc. IFM '99: Integrated Formal Methods, pp. 66±85, June
1999.

[38] B.P. Mahony, ªNetworks of Predicate Transformers,º Technical
Report 95-05, Software Verification Research Centre, Department
of Computer Science, Univ. of Queensland, St. Lucia, Australia,
Feb. 1995.

[39] B.P. Mahony and J. S. Dong, ªBlending Object Z and Timed CSP:
An Introduction to TCOZ,º Proc. 20th Int'l Conf. Software Eng.
(ICSE'98), Apr. 1998.

[40] B.P. Mahony and J.S. Dong, ªNetwork Topology and a Case Study
in TCOZ,º Proc. ZUM '98 11th Int'l Conf. Z Users,, vol. 1,493, Sept.
1998.

[41] B.P. Mahony and I.J. Hayes, ªA Case Study in Timed Refinement:
A Mine Pump,º IEEE Trans. Software Eng., vol. 18, no. 9,
pp. 817±826, Sept. 1992.

[42] M. Mislove, A. Roscoe, and S. Schneider, ªFixed Points without
Completeness,º Theoretical Computer Science, vol. 138, pp. 273±314,
1995.

[43] C.C. Morgan, Programming from Specifications, second ed. Prentice
Hall, 1994.

[44] A.W. Roscoe, Theory and Practice of Concurrency. Prentice-Hall,
1997.

[45] S. Schneider, ªCorrectness and Communication in Real-Time
Systems,º PhD thesis, Oxford University Computing Laboratory,
Programming Research Group, 1990. Available as Technical
Monograph PRG-84.

[46] S. Schneider and J. Davies, ªA Brief History of Timed CSP,º
Theoretical Computer Science, vol. 138, 1995.

[47] M.D. Schwartz and N.M. Delisle, ªSpecifying a Lift Control
System with CSP,º Proc. Fourth IEEE Int'l Workshop Software
Specification and Design (IWSSD '87), pp. 21±27, Apr. 1987.

[48] G. Smith, ªA Fully Abstract Semantics of Classes for Object Z,º
Formal Aspects of Computing, vol. 7, no. 3, pp. 289±313, 1995.

[49] G. Smith, ªA Semantic Integration of Object Z and CSP for the
Specification of Concurrent Systems,º Proc. FME '97: Industrial
Benefit of Formal Methods, Sept. 1997.

[50] K. Taguchi and K. Araki, ªThe State-Based CCS Semantics for
Concurrent Z Specification,º Proc. IEEE Int'l Conf. Formal Eng.
Methods (ICFEM '97), pp. 283±292, Nov. 1997.

[51] J.C.P. Woodcock, S. King, and I.H. Sorensen, ªMathematics for
Specification and Design: The Problem with Lifts,º Proc. Fourth
IEEE Int'l Workshop Software Specification and Design (IWSSD '87),
pp. 265±268, 1987.

[52] Y Zhang and A.K. Mackworth, ªDesign and Analysis of
Embedded Real-Time Systems: An Elevator Case Study,º Techni-
cal Report 93-04, Computer Science Dept., Univ. of British
Columbia, 1993.

176 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 2, FEBRUARY 2000

Brendan Mahony received the BSc degree
from the Australian National University in 1984
and the BA degree with first class honors from
the University of Queensland in 1987. In 1991,
he was awarded a PhD at the University of
Queensland, after studying techniques for the
specification and design of real-time systems.
He continued these studies as a research fellow
at the University of Queensland. Since 1995, he
has been employed by the Defence Science and

Technology Organisation, researching the application of state machine
formalisms to the analysis of safety and security critical systems. In
1997-1998, he spent a year with CSIRO's Mathematical and Information
Sciences in Canberra, as the CSIRO/DSTO fellow.

Jin Song Dong received the BInfTech degree
(with first class honors) and the PhD degree from
the University of Queensland in 1992 and 1995,
respectively. From 1995-1998, he was a
research scientist and then a senior research
scientist at the CSIRO Mathematical and
Information Sciences in Australia. In 1998, he
joined the faculty of the Computer Science
Department of the National University of Singa-
pore. His research interests include formal

methods, real-time specification, object orientation, programming
language semantics, safety critical systems, and open distributed
systems. He is member of the IEEE. His recent papers can be found
at http://www.comp.nus.edu.sg/~dongjs/.

MAHONY AND DONG: TIMED COMMUNICATING OBJECT Z 177

