
A Combined Approach to Checking Web Ontologies

Jin Song Dong
School of Computing
National University of

Singapore

dongjs@comp.nus.edu.sg

Chew Hung Lee
DSO National Laboratories

Defense Science Organization
(DSO)

lchewhun@dso.org.sg

Hian Beng Lee
DSO National Laboratories

Defense Science Organization
(DSO)

lhianben@dso.org.sg

Yuan Fang Li
∗

School of Computing
National University of

Singapore

liyf@comp.nus.edu.sg

Hai Wang
Department of Computer

Science
University of Manchester

hwang@cs.man.ac.uk

ABSTRACT
The understanding of Semantic Web documents is built upon on-
tologies that define concepts and relationships of data. Hence,
the correctness of ontologies is vital. Ontology reasoners such as
RACER and FaCT have been developed to reason ontologies with
a high degree of automation. However, complex ontology-related
properties may not be expressible within the current web ontology
languages, consequently they may not be checkable by RACER and
FaCT. We propose to use the software engineering techniques and
tools, i.e., Z/EVES and Alloy Analyzer, to complement the ontol-
ogy tools for checking Semantic Web documents. In this approach,
Z/EVES is first applied to remove trivial syntax and type errors of
the ontologies. Next, RACER is used to identify any ontological
inconsistencies, whose origins can be traced by Alloy Analyzer.
Finally Z/EVES is used again to express complex ontology-related
properties and reveal errors beyond the modeling capabilities of the
current web ontology languages. We have successfully applied this
approach to checking a set of military plan ontologies.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Formal methods, Model checking; I.2.4 [Knowledge Representa-
tion Formalisms and Methods]: Representation languages

General Terms
Languages, Verification

Keywords
Semantic Web, RACER, Z, Alloy, DAML+OIL, Ontologies

1. INTRODUCTION
Semantic Web gives data well-defined and machine-understandable

meaning so that they can be processed by intelligent software agents
on human’s behalf [2]. Data are expressed in terms of ontologies,

∗Author of correspondence: liyf@comp.nus.edu.sg

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-844-X/04/0005.

which define their concepts and relationships. Ontology languages
such as DAML+OIL [23] and OWL [6] provide basic vocabularies
for describing ontologies. Based on description logics, ontology
languages were originally designed to be decidable [27] so that
agents can perform reasoning without human guidance. Consis-
tency and correctness of shared ontologies are vital to the correct
functioning of agents. Hence, ontology checking and verification
tools, such as RACER [11] and FaCT [13], etc., have been devel-
oped with the advancement of ontology languages to facilitate on-
tology creation, management, verification, merging, etc. However,
some important complex ontology-related properties cannot be ex-
pressed by current ontology languages and consequently cannot be
checked by ontology tools such as RACER and FaCT. For exam-
ple, in the military plan ontology, it is important to ensure that no
single military unit is assigned to two different military tasks (that
may be at different locations) at the same time. Such a property
is difficult to be expressed by DAML+OIL or OWL but validity of
such properties is significant. Hence, the ability of expressing and
checking properties beyond the modeling power of ontology lan-
guages is desirable. We propose to use the software engineering
techniques and tools, i.e., Z and Alloy, to complement the ontology
tools for checking Semantic Web documents.

Z [24] is a widely used formal specification language designed
to model system data and state. It is based on ZF set theory and
first-order predicate logic, which can be regarded as a superset of
description logic [16]. This intrinsic homogeneity implies that Z
is more expressive than ontology languages and can capture com-
plex constraints beyound current web ontology. Z/EVES [20] is an
interactive proof tool for checking and reasoning Z specifications.

Alloy [14] was originally developed as a lightweight modeling
language aimed at automated analysis. Its design was influenced
by Z but is less expressive. Alloy Analyzer (AA) [15] is a fully-
automated tool for analyzing Alloy specifications with special model
checking features which are helpful to trace the exact source of er-
rors.

In our previous works, we have applied Z/EVES [7] and AA
[8] separately to reasoning of Web ontologies. We found out that
the Z/EVES and AA approaches complement each other in expres-
siveness and automation. Moreover, they are also complementary
to Semantic Web reasoners such as RACER. This motivated us to
propose this combined approach to checking Web ontologies using
these tools.

714

We believe that the quality of Semantic Web documents can be
assured with higher confidence by using the synergy of reasoning
power of RACER, Z/EVES and AA. In our approach, Z/EVES is
first applied to remove trivial syntax and type errors of the ontolo-
gies. Next, RACER is used to identify any ontological inconsisten-
cies. Then, AA is used as a surgery tool to trace the origins of such
inconsistencies. Finally Z/EVES is used again to express complex
ontology-related properties and reveal errors beyond the modeling
capabilities of the current web ontology languages. By applying
these tools systematically to an ontology, we can not only uncover
more errors than using any one of them alone, but also correct any
inconsistencies more easily and precisely.

The rest of the paper is organized as follows. We give an overview
of Semantic Web, ontology languages, Z and Alloy and their tool
support in Section 2. Z and Alloy semantics for DAML+OIL are
presented in Section 3. In Section 4, we briefly introduce the re-
spective transformation processes from DAML+OIL to Z and Alloy
and the military plan ontologies, which will be used to illustrate the
approach of checking ontologies in Section 5, in which we firstly
applied the approach to the plan ontology itself, where we found an
ontological error, and traced its origin using AA. Secondly, we used
the approach to check one instance ontology. Z/EVES discovered a
number of errors beyond the modeling capabilities of DAML+OIL
and Alloy. Finally, Section 6 concludes the paper.

2. OVERVIEW
2.1 Semantic Web Languages & Tools

Semantic Web was originally proposed by Tim Berners-Lee et
al. as “an extension to the current web in which information is
given well-defined meaning, better enabling computers and people
to work in cooperation” [2]. It is a universal medium for exchange
of data and uses metadata to add meaning to data so that they can
be understood, shared, processed and integrated by machines au-
tonomously. In other words, web contents are not only for human
consumption, machines will also be able to participate. This abil-
ity of intelligent agents greatly increases the power of the web by
having machines undertaking works on behalf of human. The un-
derstanding of data is built upon giving data well-defined structure
and meaning, which is accomplished by ontologies.

Ontologies are used to represent concepts and relationships of
data on the web and they are expressed in terms of ontology lan-
guages. The structural well-definedness of these languages comes
from XML, cornerstone of a series of technologies. On top of
XML, the Resource Description Framework (RDF) [18] is a frame-
work for metadata and describes resources on the web. RDF Schema
[3] provides basic vocabularies for RDF documents, which are made
of a collection of statements of the form 〈subject predicate object〉,
where subject is the resource we are interested in, predicate spec-
ifies the property or characteristic of the subject and object states
the value of the property. RDF Schema allows structured and semi-
structured data to be mixed, which makes data hard for machines
to understand. Moreover, it does not contain all desired modeling
primitives.

DAML (DARPA Agent Markup Language) [23] is built on top
of RDF Schema and it has a much richer set of language constructs
to express class and property relationships than those allowed in
RDF Schema. DAML combined effort with the Ontology Inference
Layer (OIL) [4] project and it is now referred to as DAML+OIL.
The other major extension of DAML+OIL is the ability to express
restrictions on class and property definitions. By restricting exist-
ing classes and properties, new concepts can be built incrementally.
This facilitates construction of new ontologies as previous ones can
be reused.

In 2003, based on DAML+OIL, a new ontology language OWL
[26] was published by W3C. It contains three sublanguages: OWL
Lite, DL and Full, with increasing expressiveness. OWL Lite and
DL are decidable whereas OWL Full is generally not.

Ontology-related tools have been built alongside the develop-
ment of ontology languages. The rest of this subsection will in-
troduce a few of these tools.

Cwm (Closed world machine) [22] is a general-purpose data pro-
cessor for the Semantic Web. Implemented in Python and command-
line based, it is also a forward chaining reasoner for RDF.

Triple [21] is a RDF query, inference and transformation lan-
guage. It does not have a built-in semantics for RDF Schema, but
it allows semantics of languages to be defined with rules on top
of RDF. This feature of Triple facilitates data aggregation as user
can perform RDF reasoning and transformation under different se-
mantics. The Triple tool supports DAML+OIL through external
DAML+OIL reasoners such as FaCT and RACER.

FaCT (Fast Classification of Terminologies) [13], developed at
University of Manchester, is a TBox (concept-level) reasoner that
supports automated concept-level reasoning, namely class subsump-
tion and consistency reasoning. It does not support ABox (instance-
level) reasoning. It is implemented in Common Lisp and comes
with a FaCT server, which can be accessed across network via its
CORBA interface. Given an DAML+OIL ontology, it can classify
the ontology (performs subsumption reasoning) so as to reduce re-
dundancy and detects any inconsistency within it.

RACER, the Renamed ABox and Concept Expression Reasoner
[11], implements a TBox and ABox reasoner for the description
logic ALCQHIR+(D)− [10]. It can be regarded as (a) a Semantic
Web inference engine, (b) a description logic reasoning system ca-
pable of both TBox and ABox reasoning and (c) a prover for modal
logic Km. In the Semantic Web domain, RACER’s functionalities
include developing ontologies (creating, maintaining and deleting
concepts, roles and individuals); querying, retrieving and evaluat-
ing the knowledge base, etc. It supports DAML+OIL and RDF.

We chose RACER as the ontology reasoner for our approach
since it has a richer set of functionalities and is supported by graph-
ical ontology editors such as OilEd [1] and RICE (RACER Inter-
active Client Environment), both of which can perform reasoning
over DAML+OIL with RACER as a background reasoner. In our
approach, RACER will be used with OilEd as a user interface.

2.2 Z & Alloy: Languages & Tools
Z [24] is a formalism based on ZF set theory and first-order pred-

icate logic. It is specially suited to model system data and state.
Z/EVES [20] is an interactive system for composing, checking,
and analyzing Z specifications. It supports the analysis of Z spec-
ifications in a number of ways: syntax and type checking, schema
expansion, precondition calculation, domain checking, general the-
orem proving, etc. In Z/EVES, Z specifications are in the form of
sections to improve reuse. The built-in section toolkit defines
basic constants and operators. Specifications are built hierarchi-
cally by including existing sections as their parents.

Alloy [14] is a structural modeling language emphasizing on au-
tomated reasoning support. It treats relations as first class citizens
and uses relational composition as a powerful operator to combine
various structural entities. The design of Alloy was influenced by
Z and it can be (roughly) viewed as a subset of Z. AA is a con-
straint solver that provides fully automatic simulation and check-
ing. AA works as a compiler: it compiles a given problem into
a (usually huge) boolean formula, which is subequently solved by
a SAT solver, and the solution is then translated back to AA. In-
evitably, a scope - a bound on the size of the domains - must be
given to make the problem finite.

715

AA determines whether there exists a model of the formula.
When AA finds an assertion to be false, it generates a counterexam-
ple, which (in some cases) makes tracing the error easier, compared
to theorem provers. However, the capability of AA is constrained
by the way it works. Since AA performs exhaustive search, it does
not scale very well. In our experiences, AA can only handle on-
tologies with no more than twenty entities. Similar to Z/EVES,
Alloy specifications are in the form of modules, organized into a
tree. Existing modules can be reused by commands open or use.

The aim of our approach is to ensure the absence of ontologi-
cal inconsistencies and correctness of ontology-related properties
to the maximal extend. Hence, to be on the safe side, we assume
that the knowledge base (ontology) under investigation contains all
relevant facts (Closed World Assumption). The bound on Alloy
modules does not cause semantic problems as AA is only used as a
surgery tool to locate the sources of identified errors.

3. Z & ALLOY SEMANTICS FOR DAML+OIL
In this Section, we present a subset of Z & Alloy semantics

for the ontology language DAML+OIL. The full semantics can be
found in [7] and [8]. In this Section, the Z definitions will be pre-
sented above the corresponding Alloy definitions, which will be in
teletype font.

3.1 Z/Alloy Semantics for DAML+OIL

Basic Concepts

Everything in Semantic Web is a Resource. So we model it as a
given type in Z and Alloy.

[Resource]

sig Resource {}

Class corresponds to a concept, which has a number of resources
associated with it: the instances of this class. Hence, in Z,
we model class as a subset of resource and instances as a function
from a class to a set of resources. In Alloy, each class maps a set
of resources via the relation instances, which contains all the
instance resources. The Alloy keyword disj is used to indicate
that class and property are disjoint.

Class : P Resource

instances : Class → P Resource

disj sig Class extends Resource

{instances: set Resource}

Property is also a subset of resource, disjoint with class. A
property relates resources to resources. In Z, the function sub val
maps each property to the resources it relates.

Property : P Resource

Property ∩ Class = ∅

sub val : Property →
(Resource ↔ Resource)

disj sig Property extends Resource

{sub_val: Resource -> Resource}

Class relationships

The property subClassOf is defined as a relation from class to
class. For a class c1 to be the sub class of class c2, the instances
of c1 must be a subset of instances of c2. Other properties such

as disjointWith are similarly defined. Note that the subset
relationship is expressed in terms of membership relationship to
make proof in Z/EVES more automated. In Alloy, a function is
used to represent the subClassOf concept.

subClassOf : Class ↔ Class
disjointWith : Class ↔ Class

∀ c1, c2 : Class •
c1 subClassOf c2 ⇔ instances(c1) ∈ P instances(c2)

c1 disjointWith c2 ⇔ instances(c1) ∩ instances(c2) = ∅

fun subClassOf(c1, c2: Class)

{c2.instances in c1.instances}

fun disjointWith (c1, c2: Class)

{no c1.instances & c2.instances}

Class & Property

The property toClass attempts to establish a maximal possible
set of resources as a class. In Z context, it states that any resource
a1 is an instance of class c1 if either: a1 is defined for property p
and (a1, a2) ∈ sub val(p) implies that a2 is an instance of class
c2; or that a1 is not defined for p at all.

toClass : (Class × Property) ↔ Class

∀ c1, c2 : Class; p : Property • (c1, p) toClass c2 ⇔
(∀ a1, a2 : Resource • a1 ∈ instances(c1) ⇔

((a1, a2) ∈ sub val(p) ⇒ a2 ∈ instances(c2)))

fun toClass (p:Property, c1:Class, c2:Class)

{all a1, a2: Resource | a1 in c1.instances <=>

a2 in a1.(p.sub_val) => a2 in c2.instances}

Property hasValue states that all instances of class c have re-
source r for property p.

hasValue : (Class × Property) ↔ Resource

∀ c : Class; p : Property; r : Resource •
(c, p) hasValue r ⇔

(∀ a : instances(c) • (a, r) ∈ sub val(p))

fun hasValue (p:Property, c:Class, r:Resource)

{all a:Resource |

a in c.instances => a.(p.sub_val) = r}

Property relationships

In Z context, the property subPropertyOf states that a property
p1 is a sub property of another property p2 iff sub val(p1) is a
subset of sub val(p2).

subPropertyOf : Property ↔ Property

∀ p1, p2 : Property • p1 subPropertyOf p2 ⇔
sub val(p1) ∈ P sub val(p2)

fun subPropertyOf (p1, p2:Property)

{p1.sub_val in p2.sub_val}

716

3.2 Import Mechanisms & Proof Support
The Z semantics is contained in a section daml2z, on top of

toolkit. Definitions alone are not sufficient to exploit the full
power of Z/EVES. An ample stock of rewrite rules, forward rules
and assumption rules is needed to make proof processes more au-
tomated. Based on the semantic model, we constructed a section,
called DAML2ZRules, of rules which describes the above defini-
tions in more than one angle and is used to help Z/EVES to perform
reasoning tasks. This section has daml2z as parent. The Alloy se-
mantics is contained in a module called DAML.

Ontologies are built layer on layer. Other domain specific on-
tologies are built in terms of basic concepts presented in this sec-
tion and their corresponding Z models will have DAML2ZRules
or its descendent sections as parents. Similarly, the Alloy models
will import module damloil or its descendents.

4. MILITARY PLAN ONTOLOGIES
& TRANSFORMATION

4.1 Military Plan Ontologies
DSO National Laboratories (DSO) developed a DAML+OIL mil-

itary plan ontology [17], defining concepts in the military domain,
including military organizations, specialities, geographic features,
etc. For example, the class MilitaryTask is defined as follows.
It is a sub class of MilitaryProcess,

<daml:Class rdf:about="http://www.dso.org.sg/
PlanOntology#MilitaryTask">

<rdfs:label>MilitaryTask</rdfs:label>
<rdfs:subClassOf>

<daml:Class rdf:about="http://www.dso.org.sg/
PlanOntology#MilitaryProcess"/>

</rdfs:subClassOf>
</daml:Class>

A number of plan instances of this ontology were also generated
from plain text by an information extraction (IE) engine developed
by DSO. Military plans are typically prepared as both graphical
overlays and textual documents detailing the plans. IE is used to
transform the textual documents into ontological data. A typical IE
workflow consists of word segmentation & stemming, PoS (part of
speech) tagging, Named Entity recognition, etc. With all informa-
tion gathered from various steps, the IE engine then fills the slots
in pre-defined templates, which is subsequently transformed into a
RDF document, which usually comprises the following four parts:

• A set of military operations and tasks, defining their types,
phases and the logic order.

• A set of military units, which are the participants of the mil-
itary operations and tasks,

• A set of geographic locations, where such operations take
place and

• A set of time points for constraining the timing of such oper-
ations.

4.2 Web Ontology to Z
We have developed a tool in Java to automatically transform on-

tologies into Z. Given a DAML+OIL or RDF ontology, it iterates
through all elements and transforms them into Z definitions.

We used this tool to transform the military plan ontology into Z
section military, with DAML2ZRules as parent. To better uti-
lize Z/EVES’s proof power, We made the following enhancements
to the military section:

• During transformation, labels are systematically added to Z
predicates, making them axioms (either rewrite rules or as-
sumption rules) recognized by Z/EVES, which will assume
an assumption rule to be true and rewrite the left-hand side of
a rewrite rule to its right-hand side during the proof process.

• Since MilitaryProcess and its sub classes have a start and end
time, start and end are modeled as functions from Mili-
taryProcess to integer, so that Z/EVES can perform reason-
ing over integer domain.

• A set of theorems specific to these military definitions are
formulated. These theorems describe the relationships among
the various military entities. For example, we have theorems
stating sub task relationship between different kinds of mili-
tary tasks, transitivity of sub task relationship, etc.

For example, the class MilitaryTask presented earlier is trans-
formed into the following axiomatic definition. Note that the pred-
icate is marked as an assumption rule.

MilitaryTask : Class

〈〈grule MilitaryTask subClassOf MilitaryProcess〉〉
(MilitaryTask, MilitaryProcess) ∈ subClassOf

Our tool also transforms instance RDF ontologies into Z speci-
fications, in which additional Z predicates are sometimes added to
make the reasoning process of Z/EVES more automated.

In DAML+OIL, different names refer to different entities (Unique
Name Assumption [11]). However, in Z, different names can refer
to the same entity. We use cardinality of sets to make Z/EVES
work the same way. In the instance ontology, whenever two mil-
itary tasks are related by sub task or super task relationship, we
construct a set containing the two tasks and assume the cardinality
of the set is two, as follows:

〈〈grule ECA P3 P13 S1 disj ECA P3 P13〉〉
#{ECA P3 P13 S1, ECA P3 P13} = 2

4.3 Web Ontology to Alloy
The transformation from DAML+OIL & RDF ontologies to Al-

loy is straightforward. We developed an XSLT [25] stylesheet for
automatic transformation. The military ontology is transformed
into a module military. The class MilitaryTask is transformed
into the following Alloy definition:

static disj sig MilitaryTask extends Class {}

fact{subClass(MilitaryProcess, MilitaryTask)}

5. COMBINED APPROACH TO CHECKING
ONTOLOGIES

5.1 Combined Approach
In this Section, we present the approach of checking DAML+OIL

ontologies using tools RACER, Z/EVES and AA in conjunction.
Given an ontology, we apply the tools in the following steps:

1. We transform it to a Z specification and use Z/EVES as a type
checker to check for syntax and type errors. Any such error
found by Z/EVES will be corrected in the original ontology.
Z/EVES performs the type checking automatically.

717

The purpose of this step is to remove trivial errors before
actual checkings are performed. Sometimes, type errors are
caused by implicit facts in the ontology. Unlike ontology
languages that use the “Open World Assumption”, specifica-
tion languages like Z usually do not automatically assume an
implicit fact to be true.

For example, in the instance ontology planA.daml, the re-
source ECA-P2-P7 is an instance of class Thing. How-
ever, it is defined for the property start, whose domain is
instances of class MilitaryProcess and its sub classes.
If RACER is queried whether ECA-P2-P7 is an instance
of MilitaryProcess, it will return true and hence this
fact is implicit and assumed. However, if similar query is
issued to Z/EVES, it will complain that ECA-P2-P7 is not
well typed. The revelation of implicit facts helps human to
understand the ontology better.

2. We input the trivial-errors-corrected ontology into OilEd and
connect to RACER to classify it. In this step, RACER will
perform unsatisfiability, subsumption and instance checking,
which will decide whether there are ontological inconsisten-
cies fully automatically.

RACER will report any inconsistent classes and properties,
however, it is unable to tell where the error lies. OilEd as an
ontology editor collects information related to each individ-
ual class and property and the information about the incon-
sistent entity will be used in the next step to identify possible
source of the inconsistency.

3. In case of an error, as described in the previous step, OilEd
will return a minimal set of classes, properties and instances
that constrain the offending concept. Then we employ AA
to analyze the isolated ontology fragment to determine the
source of the error. In some cases, AA can pinpoint certain
classes and properties which cause the error.

If AA does not detect an error, we need to iteratively aug-
ment the fragment ontology by referring to OilEd and in-
cluding classes, properties and instances related to existing
definitions. This step requires human interaction but it can
be handled with relative ease.

If the fragment ontology is too large for AA to analyze, we
use Z/EVES as a theorem prover to determine the source of
the inconsistency, which requires substantial expertise in in-
teracting with Z/EVES.

After an error is reported, we check back the original on-
tology and correct it accordingly. RACER is used again to
check the consistency of corrected ontology.

4. Finally, we use Z/EVES again to check properties beyond the
modeling capability of DAML+OIL and Alloy. As stated in
Section 1, Z is a superset of ontology languages and Alloy
and it can capture a richer set of information, which is some-
times crucial to the correctness of the ontology. This final
step applies to instance ontologies in particular.

This step is domain-specific and it requires thorough under-
standing of the domain. For the military plan ontologies case
study, we have constructed a set of theorems in Z/EVES and
used them to systematically test the correctness of the in-
stance.

By capturing properties that cannot be expressed by DAMO+OIL
using Z, we actually treat Z as an ontology language but with

increased expressiveness, at the cost of decidability and au-
tomation. The benefit of the gained expressiveness is domain-
specific and it will be exemplified in our case study in Section
5.3.

In the rest of this Section, we will use the military plan ontologies
case study to demonstrate this approach.

5.2 Checking Military Plan Ontology
As introduced in Section 4, the military plan ontology defines

concepts in the military domain. It contains 98 classes, 26 proper-
ties and 34 resources.

Firstly, we transformed this ontology into the corresponding Z
section military. With order of some Z definitions changed,
Z/EVES accepts this Z section without complaints, which means,
the section does not contain trivial errors such as syntactic and type
errors. The absence of trivial errors is because this ontology is
written by hand, not produced by the IE engine.

Secondly, we open OilEd and connect it to RACER via HTTP
interface. We then load the ontology into OilEd and classify it, as
described in step 2 of Section 5.1.

Shown in Figure 1, PrepareDemolition-MilitaryTask,
the first class on the left panel, is highlighted by OilEd as an incon-
sistent class. Restrictions imposed on this class are displayed at the
bottom on the right.

Figure 1: Discovery of an unsatisfiable concept by RACER

RACER tells us that the class PrepareDemolition-MilitaryTask
causes the problem. However, it cannot determine exactly where
the inconsistency comes from. In the next step, we employ AA to
pinpoint the source of the inconsistency.

Thirdly, we extract a small ontology fragment containing defi-
nitions of the offending class and those classes, properties and in-
stances appearing in the Restrictions panel, namely assignedTo,
EngineerUnit and ArtilleryFiringUnit. This fragment
is subsequently transformed into an Alloy module shown in Figure
2, which is loaded into AA to check for inconsistency. Note that
the last fact in the Alloy module denotes that there exists some in-
stances of class EngineerUnitwhich have been assignedTo
some tasks. This fact is necessary because of the definition of
toClass, which establishes a maximum possible set of resources
as a class.

AA detects the inconsistency by its inability of finding a solution
that satisfies all facts within the given scope. However, no solution

718

module inconsistency_military
open demo1/library/DAML

static disj sig MilitaryTask extends Class {}
static disj sig PrepareDemolition_MilitaryTask

extends Class {}
fact {subClassOf

(MilitaryTask, PrepareDemolition_MilitaryTask)}
static disj sig assignedTo extends Property {}
static disj sig ModernMilitaryUnit extends Class{}
static disj sig EngineerUnit, ArtilleryFiringUnit

extends Class{}
fact {subClassOf(ModernMilitaryUnit, ArtilleryFiringUnit)}
fact {subClassOf(ModernMilitaryUnit, EngineerUnit)}
static disj sig EngineeringMilitarySpeciality

extends Resource {}
static disj sig speciality extends Property {}
fact{hasValue (speciality,

EngineerUnit, EngineeringMilitarySpeciality)}

fact {disjoinWith(ArtilleryFiringUnit, EngineerUnit)}
fact {toClass(assignedTo,

PrepareDemolition_MilitaryTask, ArtilleryFiringUnit)}
fact {toClass(assignedTo,

PrepareDemolition_MilitaryTask, EngineerUnit)}
fact {some

(assignedTo.sub_val).(EngineerUnit.instances)}

fun dummy() {}
run dummy for 15

Figure 2: Alloy Concepts related to the inconsistency

may be due to the scope being too small. To determine the reason
behind, we use AA’s utility “Determine unsat core” to trace the
source of the error. If we are un-convinced of the error, we may
increase the scope and run AA again.

Figure 3 shows how AA determines which facts caused the prob-
lem. In the right panel, clauses _Fact_144 to _Fact_147 are
related to the problem. Arrows were added in the figure to show
the correspondence of clauses in the right panel and concepts in the
left panel. After examining the clauses, we found that the 4 clauses
with arrows attached actually caused the problem. Hence, the lack
of solution was indeed due to the inconsistency of the original on-
tology. The inconsistency is caused by assigning
PrepareDemolition_MilitaryTask to both
ArtilleryFiringUnit and EngineerUnit, which are
disjointWith each other. Hence, by removing any of the two
assignments, the fact of disjointness or the fact that some instances
of EngineerUnit being assigned, the inconsistency can be elim-
inated. Since the source of the inconsistency is discovered by AA,
we need not resort to Z/EVES, in this case.

After checking the original ontology, we found that
ArtilleryFiringUnitwas mistakenly assigned to
PrepareDemolition_MilitaryTask. After this fact is re-
moved, RACER confirms that the ontology is satisfiable.

Lastly, we will use Z/EVES to check for more complex prop-
erties. Since this is not an instance ontology, the 4th step is not
performed. It will be detailed in the next subsection, where we will
check the correctness of an instance plan ontology.

5.3 Checking Instance Ontology
In this subsection, we discuss how Z/EVES is used to check an

instance of the military plan ontology: planA.daml, to illustrate the
final step of the approach.

To ensure the correctness of military plan ontologies, it is not
enough just to perform checking using AA and RACER. We need
to ensure, for example, that no military unit is assigned to two or
more military tasks at the same time, and that no military task is a

sub task of itself. By performing the last step of the approach, we
discovered a number of such errors beyond the modeling capabili-
ties of DAML+OIL and Alloy.

The first three steps are not shown to concentrate on the final
step of our approach. In the first three steps, we performed the usual
transformation and checking and obtained an ontological-error-free
document. It was then transformed into a Z section. Part of this
ontology and the corresponding Z definitions are shown below.

<rdf:Description rdf:about=’ECA-P1-P2-P2-S1’>
<NS4:subTaskOf rdf:resource=’ECA-P1-P2’/>
<NS4:subTaskOf rdf:resource=’ECA-P1-P2-P2’/>
<NS4:location rdf:resource=’E. AFRICA’/>
<NS4:target rdf:resource=’E. AFRICA’/>
<rdf:type rdf:resource=’http://www.dso.org.sg/

PlanOntology#HastyDefend-MilitaryTask’/>
<NS0:start rdf:resource=’0’/>
<NS0:end rdf:resource=’15’/>
<NS4:assignedTo rdf:resource=’InfantryBattalion_aa5’/>

</rdf:Description>
<rdf:Description rdf:about=’G. SMILAX’>

<rdf:type rdf:resource=’http://www.dso.org.sg/
PlanOntology#AxisOfAdvance’/>

</rdf:Description>
<rdf:Description rdf:about=’InfantryBattalion_aa5’>

<rdf:type rdf:resource=’http://www.dso.org.sg/
PlanOntology#InfantryBattalion’/>

</rdf:Description>

ECA P1 P2 P2 S1 : Resource

〈〈grule ECA P1 P2 P2 S1 type〉〉
ECA P1 P2 P2 S1 ∈ instances(HastyDefend MilitaryTask)

〈〈rule ECA P1 P2 P2 S1 start〉〉
start(ECA P1 P2 P2 S1) = 0

〈〈rule ECA P1 P2 P2 S1 assignedTo〉〉
(sub val(assignedTo))(| {ECA P1 P2 P2 S1} |) =

{InfantryBattalion aa5}
〈〈rule ECA P1 P2 P2 S1 end〉〉
end(ECA P1 P2 P2 S1) = 15

〈〈rule ECA P1 P2 P2 S1 target〉〉
(sub val(target))(| {ECA P1 P2 P2 S1} |) =

{E AFRICA}
〈〈rule ECA P1 P2 P2 S1 location〉〉
(sub val(location))(| {ECA P1 P2 P2 S1} |) =

{E AFRICA}

G SMILAX : Resource

〈〈grule G SMILAX type〉〉
G SMILAX ∈ instances(AxisOfAdvance)

InfantryBattalion aa5 : Resource

〈〈grule InfantryBattalion aa5 type〉〉
InfantryBattalion aa5 ∈ instances(InfantryBattalion)

〈〈rule ECA P1 P2 P2 S1 subTaskOf〉〉
(sub val(subTaskOf))(| {ECA P1 P2 P2 S1} |) =

{ECA P1 P2, ECA P1 P2 P2}

It may be noted that the subTaskOf statement is modeled in
a separate Z predicate at the end. Actually all subTaskOf state-
ment are extracted and put to the end of the Z specification to pre-
vent circular or advance reference of military tasks.

719

Figure 3: AA showing the source of unsatisfiability

The instance ontology planA.daml contains altogether 954 state-
ments, describing 195 resources (RDF subjects). Among these 195
subjects, 78 are instances of MilitaryProcess and sub classes;
69 are instances of ModernMilitaryUnit and sub classes and
the rest 48 are instances of GeographicArea and sub classes.

The transformed Z section contains 791 predicates specifying
195 Z (axiomatic) definitions. Note that there is a decrease in num-
ber of Z predicates from that of RDF statements. There are two
reasons: (1) statements with properties comment and label are
not transformed to Z since they are just descriptions of the sub-
ject; (2) statements such as subTaskOf and assignedTo for
any one instance are grouped to form one Z predicate, as shown in
the above rewrite rule ECA_P1_P2_P2_S1_subTaskOf.

Twenty-eight type errors were discovered by Z/EVES in step 1.
Most of these errors are caused by the inaccuracy of the IE engine.
For example, Coastal_Hook_Force was defined as a class in
the plan ontology; it is redefined as a resource of type Thing in this
instance ontology. Although the user may have wanted to redefine
Coastal_Hook_Force as Thing, it is very unlikely since no
semantic significance is added and the ontology becomes harder to
comprehend. Conservatively, we treat this redefinition as an error.

In step 1, implicit facts are also made explicit by Z/EVES. For
example, the type of one of the military tasks ECA-P1-P4-P1
was Thing in the instance ontology, it is reported by Z/EVES as a
type error and corrected to be MilitaryProcess. The reason is
that ECA-P1-P4-P1 has start and end time points associated
with it. And the domains of these two functions are restricted to
instances of MilitaryProcess.

Note that in ontological sense, the above errors are not treated
as inconsistencies: in description logics, implicit information can
be derived and if there is no conflict, it is assumed true. Hence,
RACER will return true if it is queried whether ECA-P1-P4-P1
is an instance of MilitaryProcess. However, Z/EVES is more
restrictive in treating types of Z language constructs.

After the first three steps were performed, no ontological errors
were found. We proceed to the 4th step. Before applying Z/EVES,
we studied the plan ontology and gained some insights of military
domain, based on which we formulated a number of theorems to
test the correctness of instance ontologies. One such theorem tests
that for a given MilitaryTask, its start time is less than end
time and it is not a sub task of itself.

theorem MilitaryTaskTimeSubTaskTest1
∀ x : instances(MilitaryTask) •

start(x) < end(x) ∧
x �∈ (sub val(subTaskOf))(| {x} |)

14 such hidden errors are discovered. 2 of them are caused by
military tasks having start time greater than end time; 4 are caused
by military tasks do not have end time defined, 3 are caused by
military units being assigned to different tasks simultaneously and
5 are caused by military tasks having more than one start or
end time points. In the rest of this subsection, we demonstrate
how various kinds of checkings can be performed by Z/EVES.

We systematically test all instances of military tasks (including
sub classes) for the above theorem. For example, one such in-
stance, ECA_P1_P2_P1_S1, is tested as follows. It is an instance
of class HastyDefend_MilitaryTask and it has two super
tasks: ECA_P1_P2 and ECA_P1_P2_P1.

Proof
try lemma MilitaryTaskTimeSubTaskTest1;
split x = ECA P1 P2 P1 S1;

cases;

use cardCup [Resource] [S := {ECA P1 P2 P1 S1},
T := {ECA P1 P2}];

reduce;

use cardCup [Resource] [S := {ECA P1 P2 P1 S1},
T := {ECA P1 P2 P1}];

reduce;

· · ·

The proof process is intuitive: we consider the super tasks of x
(instantiated to ECA_P1_P2_P1_S1 in this case) one at a time
as sub goals. When all sub goals are completed, the current goal is
proven. Defined in the built-in section toolkit, the rule cardCup
is used here, with Resource as the actual parameter, to make the
two military tasks distinct, as we stated in the end of Section 4.
The last command reduce returns true, which means that the
current goal is proven, not the whole theorem.

We test another military task: ECA_P3_P3_S1. This time, after
issuing similar commands, the remaining goal is of the form:

¬ x = ECA P3 P3 S1

This is an apparent contradiction to the 2nd step of the proof:
instantiation of x to ECA_P3_P3_S1. Hence we know for sure

720

there is something wrong with this instance. Since it is very hard
for theorem provers to prove falsity, we need to negate the theorem
and show that the negated theorem can be proved to be true.

theorem negatedMilitaryTaskTimeSubTaskTest1
∃ x : instances(MilitaryTask) •
¬ (start(x) < end(x) ∧

x �∈ (sub val (subTaskOf))(| {x} |))
By negating the theorem and trying again, Z/EVES does return

true. After checking the ontology, we found that start time is 7 but
end time is 4, hence it is indeed an error, which was not discovered
by RACER and AA.

After performing this checking to all military tasks, 2 such er-
rors were found. These errors may be caused by the inaccuracy of
the IE engine; or they may be human error. After checking with the
developers at DSO, it was found out that the errors were in the orig-
inal textual document, which is the input of the IE engine. Hence
in this case, it is human factor that is not reliable.

The discovery of this kind of errors motivated us to perform
some more complex reasoning. Since we have ensured that all in-
stances of MilitaryTask (and sub classes) are locally correct,
naturally we want to express and check the inter-task temporal re-
lationship. For example, the following theorem states that for any
instance x of MilitaryTask and a set y of super tasks of x, any
member z of set y must satisfy start(z) ≤ start(x) ∧ end(z) ≥
end(x). That means, the start time of a super task must be less than
or equal to that of its sub task, and the end time of a super task
must be greater than or equal to that of its sub task. Since we have
ensured that start time is before the end time for each military task,
the above predicate suffices to prove the correctness.

theorem subTaskOfTimingTest2
∀ x : instances(MilitaryTask) •
∀ y : P(instances(MilitaryTask)) |

y = (sub val(subTaskOf))(| {x} |) •
∀ z : y •
start(z) ≤ start(x) ∧ end(z) ≥ end(x)

The following proof scripts test the above theorem against the
instance ECA_P1_P1_P1_S1 and its 2 super tasks. Z/EVES con-
firms the temporal relationship of these instances is correct by re-
turning true.

Proof
try lemma subTaskOfTimingTest2;

split x = ECA P1 P1 P1 S1;

cases;
split y = {ECA P1 P1, ECA P1 P1 P1};
cases;
split z = ECA P1 P1 P1;

cases;

reduce;
· · ·

The last theorem we present in this paper, MilitaryUnitTest,
states that for any given military unit and two military tasks as-
signed to this unit, the durations of the two tasks do not overlap.
As we have proved the local consistency of each military task, the
predicate end(y) ≤ start(z) ∨ end(z) ≤ start(y) is sufficient.

theorem MilitaryUnitTest
∀ x : instances(ModernMilitaryUnit) •
∀ y, z : instances(MilitaryTask) •

x ∈ (sub val(assignedTo))(| {y} |) ∧
x ∈ (sub val(assignedTo))(| {z} |) ∧
(end(y) ≤ start(z) ∨ end(z) ≤ start(y))

We exhaustively and systematically apply this theorem to appro-
priate military units and tasks. During transformation process, we
have collected information about what tasks each military unit ex-
ecutes; it is easy to proceed in this case. The proof process of one
such combination is shown below.

Proof
try lemma MilitaryUnitTest;
split x = CHF 1;

cases;

split y = ECA P3 P5 S1;

cases;
split z = ECA P3 P5 S3;

cases;
reduce;

After the last command reduce is entered, the following re-
maining goal is returned by Z/EVES:

z = ECA P3 P5 S1 ∧ y = ECA P3 P5 S3

⇒ ¬ x = CHF 1

This is an abvious contradiction to the instantiation of quantified
variables x, y and z. Hence we suspect that there is an error with
this combination of instances. So we negate the theorem again and
try to prove this negated theorem.

theorem negatedMilitaryUnitTest
∃ x : instances(ModernMilitaryUnit) •
∃ y, z : instances(MilitaryTask) •
¬ (x ∈ (sub val(assignedTo))(| {y} |) ∧

x ∈ (sub val(assignedTo))(| {z} |) ∧
(end(y) ≤ start(z) ∨ end(z) ≤ start(y)))

After issuing similar commands, we proved the negated theorem.
We found in the original ontology that the start and end time of
these two military tasks are the same. Hence there is indeed an
error that cannot be discovered by RACER and AA.

6. CONCLUSION
In our attempts to answering the emerging needs of checking

and verifying web ontologies, we propose an approach of check-
ing correctness of DAML+OIL ontologies using a combination of
tools from both Semantic Web (RACER) and Software Engineering
(Alloy Analyzer and Z/EVES).

For checking Semantic Web documents, our general approach
begins with using Z/EVES to check for trivial errors such as syn-
tax and type errors, which are corrected in the original ontology.
Next, RACER is used to automatically determine the consistency
of the ontology. Thirdly, if the ontology is inconsistent, we identify
a small partition of concepts in the ontology closely-related to the
offending concept(s) and use AA as a surgery tool to check for the
source of the inconsistency. If AA is unable to find the error, we
may need to use Z/EVES’s theorem-proving power to interactively
check for the error. Lastly, for instance ontologies, we use Z/EVES
again as a theorem prover to check for properties that ontology lan-
guages and Alloy cannot model.

We have applied our approach to a recent real-world case study
of military plan ontologies. In the plan ontology, we discovered
one ontological inconsistency and traced its origin using AA. Using
Z/EVES, we discovered 14 errors in one instance ontology. These
errors are beyond the modeling capabilities of DAML+OIL and Al-
loy and cannot be detected by RACER and AA.

Although we have worked carefully to ensure the correctness of
the Z/Alloy semantics for DAML+OIL, it is necessary to formally

721

prove the soundness of the semantics. Its proof using institutions
theory [9] is part of the future work that is underway.

In this paper, we have concentrated on expressing and checking
static properties of DAML+OIL ontologies, capturing and check-
ing dynamic properties such as those defined by Semantic Web ser-
vices [5] using formalisms such as Z, PVS [19] or CSP [12] will be
one of the future work.

7. ACKNOWLEDGEMENT
The authors wish to thank Chan Kum Lan, Chew Lock Pin and

How Khee Yin for their collaboration and support. We are also
grateful to anonymous referees for their valuable comments. This
work is partially supported by the Defense Innovative Research
Project (DIRP) research grant “Formal Design Methods and DAML”.

8. REFERENCES
[1] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd:

a reason-able ontology editor for the semantic web. In
Proceedings of KI2001, Joint German/Austrian Conference
on Artificial Intelligence, number 2174 in Lecture Notes in
Computer Science, pages 396–408, Vienna, September 2001.
Springer-Verlag.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic
Web. Scientific American, May 2001.

[3] D. Brickley and R. Guha (editors). Resource description
framework (rdf) schema specification 1.0.
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/,
March, 2000.

[4] J. Broekstra, M. Klein, S. Decker, D. Fensel, and
I. Horrocks. Adding formal semantics to the web: building
on top of rdf schema. In ECDL Workshop on the Semantic
Web: Models, Architectures and Management, 2000.

[5] M. Burstein, J. Hobbs, O. Lassila, D. Martin, S. McIlraith,
S. Narayanan, M. Paolucci, T. Payne, K. Sycara, and
H. Zeng. Daml service.
http://www.daml.org/services/daml-s/2001/05/.

[6] M. Dean, D. Connolly, F. van Harmelen, J. Hendler,
I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and
L. A. Stein (editors). OWL Web Ontology Language 1.0
Reference. http://www.w3.org/TR/owl-ref/, 2002.

[7] J. S. Dong, C. H. Lee, Y. F. Li, and H. Wang. Verifying
DAML+OIL and beyond in Z/EVES. In Proceedings of 26th

International Conference on Software Engineering
(ICSE’04), Edinburgh, Scotland, May 2003. to appear.

[8] J. S. Dong, J. Sun, and H. Wang. Checking and Reasoning
about Semantic Web through Alloy. In Proceedings of
Formal Methods Europe: FME’03, volume 2805 of Lect.
Notes in Comput. Sci., pages 796–814, Pisa, Italy, Sept.
2003. LNCS, Springer-Verlag.

[9] J. A. Goguen and R. M. Burstall. Institutions: abstract model
theory for specification and programming. J. ACM,
39(1):95–146, 1992.

[10] V. Haarslev and R. Möller. Practical Reasoning in Racer with
a Concrete Domain for Linear Inequations. In I. Horrocks
and S. Tessaris, editors, Proceedings of the International
Workshop on Description Logics (DL-2002), Toulouse,
France, Apr. 2002. CEUR-WS.

[11] V. Haarslev and R. Möller. RACER User’s Guide and
Reference Manual: Version 1.7.6, Dec. 2002.

[12] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall International, 1985.

[13] I. Horrocks. The FaCT system. Tableaux’98, LNCS,
1397:307–312, 1998.

[14] D. Jackson. Micromodels of software: Lightweight
modelling and analysis with Alloy. Available:
http://sdg.lcs.mit.edu/alloy/book.pdf (an early version has
been published in TOSEM Vol-11), 2002.

[15] D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: the Alloy
Constraint Analyzer. In The 22nd International Conference
on Software Engineering (ICSE’00), pages 730–733,
Limerick, Ireland, June 2000. ACM Press.

[16] P. Lambrix. Description Logics home page.
http://www.ida.liu.se/labs/iislab/people/patla/DL/index.html.

[17] C. H. Lee. Phase I Report for Plan Ontology. DSO National
Labs, Singapore, 2002.

[18] O. Lassila and R. R. Swick (editors). Resource Description
Framework (RDF) Model and Syntax Specification.
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/,
Feb, 1999.

[19] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype
verification system. In D. Kapur, editor, 11th International
Conference on Automated Deduction (CADE), volume 607
of Lecture Notes in Artificial Intelligence, pages 748–752,
Saratoga, NY, June 1992. Springer-Verlag.

[20] M. Saaltink. The Z/EVES system. In J. P. Bowen, M. G.
Hinchey, and D. Till, editors, ZUM’97: Z Formal
Specification Notation, volume 1212 of Lect. Notes in
Comput. Sci., pages 72–85. Springer-Verlag, 1997.

[21] M. Sintek and S. Decker. TRIPLE—A query, inference, and
transformation language for the semantic web. In I. Horrocks
and J. Hendler, editors, The Semantic Web — ISWC 2002.
Proceedings of the First International Semantic Web
Conference, volume 2348 of Lect. Notes in Comput. Sci.,
pages 364–378, Sardinia, Italy, June 2002. Springer-Verlag.

[22] Tim Berners-Lee. cwm - a general purpose data processor for
the semantic web.
http://www.w3.org/2000/10/swap/doc/cwm, 2004.

[23] F. van Harmelen, P. F. Patel-Schneider, and I. Horrocks
(editors). Reference description of the DAML+OIL ontology
markup language. Contributors: T. Berners-Lee, D. Brickley,
D. Connolly, M. Dean, S. Decker, P. Hayes, J. Heflin, J.
Hendler, O. Lassila, D. McGuinness, L. A. Stein, ..., March,
2001.

[24] J. Woodcock and J. Davies. Using Z: Specification,
Refinement, and Proof. Prentice-Hall International, 1996.

[25] World Wide Web Consortium (W3C). XSL Transformations
(XSLT) Version 1.0. http://www.w3.org/TR/xslt, 1999.

[26] World Wide Web Consortium (W3C). OWL Web Ontology
Language Overview. http://www.w3.org/TR/owl-features/,
Mar. 2003.

[27] World Wide Web Consortium (W3C). Web Ontology
Language (OWL) Use Cases and Requirements.
http://www.w3.org/TR/webont-req/, Mar. 2003.

722

