
DESIGN AND IMPLEMENTATION OF AN AUTOMATIC DOCUMENT
CLASSIFICATION SYSTEM

Jie-Mein, Goh and Danny C.C. Poo
Department of Information Systems

School of Computing
National University of Singapore

Lower Kent Ridge Road, Singapore 119260
{ gohjm, dpoo}@comp.nus.edu.sg

ABSTRACT

With the explosive growth of information, it is an
increasingly arduous task to locate and organize
information. Document classification is thus an important
component of Knowledge Management Systems as it
helps users to manage and search information in
enterprises more effectively. This paper describes the
design and implementation of the initial prototype of an
automatic document classification system to help users
classify documents automatically that can be built on top
of existing systems.

KEY WORDS
Software Tools, Artificial Intelligence Applications,
Software Design, Classification

1. INTRODUCTION

Knowledge management systems have been created
and applied to help organizations systematically manage
and leverage on the stores of knowledge. A company’s
success relies on the availability of information at the
right time and at the right place.

Document classification is an essential component of
knowledge management systems. Document classification
refers to the activity where documents are grouped
according to their content and use [1] according to some
predefined systematic arrangement or categories [2]. This
systematic arrangement is usually referred as the
knowledge taxonomy or enterprise taxonomy in
enterprises.

Document classification according to the enterprise
taxonomy is used to assist people by supporting the
following activities:
1. Browsing – A user may browse through categories of

information to find expected and unexpected
information that he or she may be interested in.
Documents classified according to various categories
in a taxonomy provides a structure to the process of
browsing.

2. Searching – Users with different degrees of
understanding on a specific subject may be assisted
when documents are classified according to the
enterprise taxonomy. The response time to the search
may be faster as the number of documents searched is
reduced considerably.

3. Managing – A user is able to better manage his data
in his system and recommend the locations to store
newly created files.

In order to classify document without increasing
the burden on knowledge workers, a new role of the
knowledge librarian has been created [3]. In a corporate
environment, knowledge taxonomies are created by
knowledge librarians to aid organization of knowledge to
achieve better maintenance and dissemination of
knowledge.

The knowledge librarian is also responsible for
transferring content into the knowledge repository by
tagging user submissions with appropriate keywords or
metadata and then categorizing the knowledge into the
repository.

With the exponential increase in the volume of
information on the World Wide Web and intranets, it is
increasingly difficult to find and organize information.
The creation of new roles for document classification is
no longer cost-effective and the intervention of layman
results in inconsistent and unreliable retrievals. Therefore,
there is a need to create a tool to automatically classify
documents using expert knowledge.

In our work, we examine automatic document
classification methods to supplement or replace human
efforts in organizing knowledge as the growth of
information makes them unmanageable. We address this
issue by employing machine learning classifiers for
automatic document classification. The advantage of this
approach is the accuracy achieved by machine learning
techniques is comparable to that of human experts [4].

Our objective is to develop a system that will
categorize documents without human intervention and
utilizes the cataloguer’s expert knowledge. Our system
captures expert’s knowledge by employing a machine
learning technique called support vector machines (SVM)
and uses the learned model to classify new documents.

This paper is organized as follows. In the next
section, we first review related work. Following this, we
explain our design objectives and describe a generic
design of automatic document classification system that
uses machine learning. Finally, we describe an initial
prototype that we have developed which employs the
design.

1.1 Previous Work

There have been several projects that attempt to
apply various techniques for document classification in
automated services. A wide range of information
retrieval, knowledge base and machine learning
techniques have been employed.

Closer to our work are the systems that have
applied machine learning techniques to text
categorization. There are several attempts to apply various
machine learning techniques which include regression
models [5-7], neural networks [5, 8-9], probabilistic
Bayesian models [10], nearest neighbor classifiers [7],
decision trees [11], symbolic rule learning [12-14] and
support vector machines (SVM) [15-17].

Some efforts have employed regression models.
Experiments conducted by Schutze [5], Fuhr [6] and
Yang [7] have shown that using regression models for
automatic document classification is effective. However,
the disadvantage of using regression model is the high
computing cost involved as compared to other techniques.
Projects that have used neural networks for automatic text
categorization have shown that non-linear neural
networks [5] do not have much improvement over linear
neural networks [8]. Similarly most of the rest of the
machine learning methods have proved to be effective for
classification.

More recent efforts on SVM have shown a leap
in improvement of classification effectiveness. SVM has
been introduced by Joachims [17] and subsequently used
by Dumais et.al [15], Dumais and Chen [16] whose
projects have shown that this technique was superior to
other machine learning techniques. Hence, we have
adopted SVMs in our prototype.

Although support vector machines have been
used by Dumais [15,16], the major difference between her
approach and ours is that in our system, nouns and noun
phrases were extracted as features whereas they used an
information gain metric to select features. Although SVM
have shown to be efficient and effective for classification,
it has not been previously explored with nouns and noun
phrases as features. A series of experiments by Yang and
Pederson [18] has shown that their metric has yielded
poor performance. Thus, we have used a different set of
features. Both document frequency and natural language
processing techniques were employed to obtain features
from documents in our initial prototype. We are
interested to find out if using natural language processed
features with SVM will improve results as it has been
observed that nouns and noun phrases indicating objects

and subjects of a document are likely to be the most
meaningful.

2. DESIGN OBJECTIVES

There are 4 major design considerations of our
system:
1. The system design must be independent of the user

environment and interface.
2. The system design must be independent of the

features and the learning method being used.
3. The system design should be independent of the

document database that is being used.
4. The system design should allow any type of

document format to be used.
With these objectives in mind, our design is kept as

generic as possible with the ultimate goal of plugging the
system into any document management system.

3. SYSTEM DESIGN AND
IMPLEMENTATION

The overall design (Figure 1) of the system
comprises of the following components:
1. The dataset grabber module connects to the document

database that had been classified manually by human
experts. These documents will be used as the dataset
to train or test the classifier.

2. Feature engine module processes the dataset obtained
by the dataset grabber module in 1.

3. The classifier module builds a learning classifier
based on the documents that have processed by the
feature engine.

4. The Graphical User Interface module handles the
interactions between the user and the system.

In the next few sections, we will discuss the

architectural overview of our prototype system that adopts
the above generic design. The graphical user interface of
this prototype system has been implemented in Java
supported by swing package.

Figure 1. Generic Design

Learning Classifier

Document Database
Management Module

New
Document

Model

Category

Document
database

User Interface

Feature Engine

3.1 Document Database Management Module

The document database management module contains
functions connecting the system to the World Wide Web.

With the design objective of keeping the system
independent of the document database that is being used
and the applicability of any type of document format, the
document database management module has two sub-
components, the document handler and the filter. The
document handler basically provides methods to retrieve
or store classified or unclassified documents. For
example, in many organizations, documents reside in a
common repository. In such a case, the document handler
basically contains methods to retrieve documents and
store newly classified documents into the repository. The
filter on the other hand, gets the document from the
document handler to preprocess the documents into text
format so that only plain text is handled by the feature
engine module.

The document handler in our prototype as shown
in Figure 2 actually performs the functions of a spider. It
works by connecting to the hyperlink of a seed page in a
web directory of a certain category that contains link to
other web pages not belonging to the web directory such
as Yahoo (http://www.yahoo.com) and Looksmart
(http://www.looksmart.com). For our experiments, we
used a collection of domain specific pages from
LookSmart’s web directory. The documents are then
downloaded into the local computer with each directory
as a category. In other words, documents belonging to the
same category will reside in the same directory.

Filter objects are also created and added when
the document database management module is
instantiated. The filter comprises of the links extractor,
script remover and the tags remover. The links extractor
will remove irrelevant links to sieve out only documents
that belongs to that category as classified by the web
directory. After this, the script remover of the filter will
remove the java scripts in the html documents. Finally,
the tags remover will sieve out the tags leaving only plain
text.

3.2 Feature Engine Module

The feature engine module constructs the
features from a document file in any format. This system
design allows users to test different types of feature
engineering methods. In our prototype, two feature
extraction techniques are built into the feature engine
module so that we can compare their performance. The
first technique uses each term in the documents of a
training corpus as a feature which is also known as the
bag of words technique. Therefore, it is not difficult to see
why this technique often result in a great number of
attributes in the learning classifiers. In order to reduce the
number of features, we have implemented a simplistic
natural language processing technique. Our objective
is to use as few features and preserve as much information
of the content as far as possible. Studies have shown that
phrases indicating the objects and subjects of a text are
likely to improve search results and are useful in
information retrieval.

Figure 3 shows the design of the feature engine
module for the natural language processing subcomponent
to extract nouns and noun phrases. It comprises of three
major parts. The first is a tokenizer component that reads
in each sentence and tokenizes the sentence to produce
tokens. The tokens or words are then passed to the tagger
module which attaches a part-of-speech tag to every word
in the documents. The nouns and noun phrase analyzer
filters the tagged words to obtain only the nouns and
noun-phrases. No further stemming was done and these
selected terms are then assembled into a global list.

3.3. Classifier Module

The classifier module contains methods that
build the learning classifier. There are many learning
algorithms that can be implemented in the classifier
module. In our prototype, this module contains methods
that create support vector machines. A support vector
machine algorithm was used as the classifier as previous
studies have shown that this technique is effective and
relatively fast for text classification problems.

A linear SVM is a hyperplane that separates a set
of positive examples from a set of negative examples with
maximum distance from the hyperplane to the nearest of

Sentence
and
Paragraph
Tokenizer

Part of
Speech
Tagger

Nouns
and
Noun
Phrase
Analyzer

WWW Dataset
on local
hard disk

Filter Documents
Handler

Figure 2. Document Database
Management Module

Figure 3. Feature Engine Module Components

the positive and negative examples. Figure 4 shows the
graphical representation of a linear SVM. More details
can be found in [20].

We used the Platt’s [21] sequential minimal optimization
algorithm to process the linear SVM more efficiently.
This algorithm breaks the large quadratic programming
problem into smaller sub-problems.

The feature engine module passes the features to
be learned from the training corpus and the model for
each category that has been built to the classifier module.
When new documents are to be classified, the learned
weights are then used to find the most relevant category
by computing the dot product of the vector of learned
weights and the input vector for the new document.

3.4 User Interface Module

We have developed the user interface of the system
in two modes: command line and graphical user interface
using Swing. Here we will describe our simplistic
graphical user interface briefly. Our graphical interface
consists of the following interface windows:

1. The build model interface allows users to enter

the web directory that they would like to collect
documents as their dataset (Figure 5). These
documents are then stored locally on the hard
disk and used as the training corpus to obtain a
classifier model.

2. The document input window allows the user to
classify a new document which can either be a
web document or a file residing on the local hard
disk (Figure 6). To generate the category, the
user clicks on the run button. Once the classifier
completes the processing, the results window
appears.

3. The results window that outputs the category of
the new document onto the window (Figure 7).

Figure 5. Build Model Interface

Figure 6. Document Input Window

Figure 7. Results Window

4. CONCLUSION

We have discussed the design of the system that is
independent of the feature processing and machine
learning classifier that is being used. This paper first
described a generic design of an automatic document
classification system followed by an application of the
design. We have shown how we applied the design when
building a prototype of an automatic document
classification system.

This system provides an intelligent automatic
document classification service that can be integrated into
knowledge management systems to help to automatically
categorize documents based on support vector machines
with natural language processing techniques. Further
experiments will be carried out on the effectiveness of the
automatic document classification system using a reduced
set of features.

REFERENCES

1. Smith III, D. Milburn, Information and Records

Management: A Decision-Maker’s Guide to Systems
Planning and Implementation (Quorom Books, 1986).

2. Gill, Suzanne, File Management and Information Retrieval

Systems (USA:Libraries Unlimited, 1986).

3. J. Hahn and M. R. Subramani, A Framework of Knowledge

Management Systems: Issues and Challenges for Theory
and Practice, Proceedings of the 21st International
Conference on Information Systems, Brisbane, 2000, 302-
312.

+
+

+

+
+

+

+

-
-

-

-
--

-
Maximum
distance Figure 4. Linear SVM

4. F. Sebastiani, Machine Learning in Automated Text
Categorization. ACM Computing Surveys, 34(1), 1- 47,
2002.

5. H. Schütze, D. Hull, and J.O. Pedersen, A Comparison of

classifiers and document representations for the routing
problem: Proceedings of the 18th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR’95), 229-237, 1995.

6. N. Fuhr, S. Harmanna, G. Lustig, M. Schwantner, and K.

Tzeras, Air/X-A rule-based multi-stage indexing system for
large subject fields: Proceedings of RIAO’91, 606-623,
1991.

7. Y. Yang and Y. Lui, A re-examination of text

categorization methods: Proceedings of the 22nd Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR’99), 42-49,
1999.

8. H.T Ng, W.B. Goh and K.L. Low, 1997. Feature Selection,

peceptron learning and a usability case study for text
categorization: Proceedings of SIGIR-97, 20th ACM
International Conference on Research and Development in
Information Retrieval, Philadelphia, P.A., 1997, 67-73.

9. Y. Yang, Expert network: Effective and efficient learning

from human decisions in text categorization and retrieval:
Proceedings of the 17th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval (SIGIR’94), 13-22, 1994.

10. D. Koller and M. Sahami, 1997. Hierarchically classifying

documents using very few words: Proceedings of the
Fourteenth International Conference on Machine Learning
(ICML’97), 170-178, 1997

11. D.D Lewis and M. Ringuette, A comparison of two

learning algorithms for text categorization: Third Annual
Symposium on Document Analysis and Information
Retrieval (SDAIR’94), 81-93, 1994.

12. C. Apte, F. Damerau and S. Weiss, Automated learning of

decision rules for text categorization, ACM Transactions on
Information Systems, 12(3), 233-251, 1994.

13. W.W. Cohen and Y. Singer, Context-sensitive learning

methods for text categorization: Proceedings of the 19th
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR’96),
307-315, 1996.

14. H. Li, and K. Yamanishi, Text Classification using ESC-

based stochastic decision-lists. Proceedings of the 8th ACM
International Conference on Information and Knowledge
Management (CIKM’99), 122-130, 1999

15. S. T. Dumais, J. Platt, D. Heckerman and M. Sahami,

Inductive learning algorithms and representations for text
categorization: Proceedings of the Seventh International
Conference on Information and Knowledge Management
(CIKM’98), 148-155, 1998.

16. S. Dumais, and H. Chen, Hierarchical Classification of
Web Content: Proceedings of SIGIR-00, 23rd ACM
International Conference on Research and Development in
Information Retrieval, 148-155, 1998.

17. T. Joachims, Text categorization with support vector

machines: Learning with many relevant features.
Proceedings of European Conference on MachineLearning
(ECML’98), 1998.

18. Y Yang, and J.O. Pederson, A comparative study on feature

selection in text categorization: Proceedings of the 14th
International Conference on Machine Learning (ICML’97),
412-420, 1997.

19. S. Scott and S. Matwin, Feature Engineering for Text

Classification: Sixteenth International Conference on
Machine Learning (ICML’99), Bled, Slovenia, June 27-29,
1999.

20. V. Vapnik, The Nature of Statistical Learning Theory

(Springer-Verlag, 1995).

21. J. Platt, Fast training of support vector machines using

sequential minimal optimization. In Advances in Kernel
Methods – Support Vector Learning (MIT Press, 1999).

