

1

Software Engineering Practices in Singapore

Danny C.C. Poo and Mui Ken Chung
Department of Information Systems

School of Computing
National University of Singapore

3, Science Drive 2
Singapore 117543

e-mail : dpoo@comp.nus.edu.sg <Danny Poo>

2

Abstract

A study on Software Engineering practices in Singapore was conducted in 1995. The study was
conducted to gain an insight into the extent to which Software Engineering practices have been
adopted by organisations in Singapore, the benefits these organisations have realised, the
problems they face in implementing these practices and their perceptions on issues prevalent in
the Software Engineering field. In the context of the study, “Software Engineering Practices”
refer to the models, techniques and tools used in the Software Engineering process.

The study was conducted through a self-administered mail questionnaire survey sent to a
number of organisations in Singapore. A total of 54 organisations responded to the survey. The
results showed that the majority of organisations had adopted a formal system development
methodology but relatively few were using Software Engineering tools. The respondents’
perceptions towards the benefits and problems of implementing Software Engineering practices
validated to a large extent the findings of other practitioners and researchers in the field.

3

1.0 Introduction
According to Conger (1994), Software Engineering is the systematic application of tools and
techniques in the development of computer-based applications with the aim to solve problems.
Many have suggested that the application of Software Engineering techniques could alleviate
the problems experienced by developers e.g. spiralling software costs, inconsistent software
quality, increased software maintenance burden (Fletcher and Hunt, 1993).

Although organisations in Singapore have applied Software Engineering techniques in their
system development projects, it is not clear how much or how far have the techniques been
practised in Singapore. To gain an insight into the extent to which Software Engineering
practices have been adopted by software developing organisations in Singapore, the benefits
these organisations have realised, the problems they face in implementing these practices and
their perception on issues prevalent in the Software Engineering field, a survey on Software
Engineering practices was conducted in Singapore in 1995.

In the context of the study, “Software Engineering Practices” include methodologies, models,
techniques and tools used in the Software Engineering process. We shall follow the definitions
given by Fletcher & Hunt (1993) on methodologies, models, techniques and tools. A
methodology is a systematic series of actions integrating a set of complementary techniques to
build and maintain systems; for example, James Martin’s Information Engineering, Ernst &
Young’s Navigator Systems Series, Arthur Andersen’s Method 1, etc. Models are integrated
assertions, theories, concepts and strategies that constitute a way of developing systems; for
example, waterfall model or variations of it to produce software. Techniques are specific set of
actions to accomplish a given activity; for example, Data Modelling, Data Flow Diagrams, Joint
Application Development, etc. Tools are products which assist a software engineer in
developing and maintaining software; for example, CASE, testing and application front-end
development tools.

1.1 Purpose of Study
An understanding of the current Software Engineering practices in Singapore would allow us to
benchmark ourselves against the state-of-the-art in the Software Engineering field. Such a
comparison would, hopefully, show up areas where we have performed adequately and areas
where there is room for improvement, so that energies and resources can be targeted more
specifically at areas where “catching up” needs to be done.

4

1.2 Objectives of Study
A survey on the use of software development methods in Singapore was earlier conducted by
Phoon and Poo (1991) in 1991. Subsequently in 1993, another survey on software project
management practices in Singapore was conducted by Khor and Woo (1994). The study
reported here hopes to supplement the aforementioned studies and achieve the following
objectives:

a. To find out the extent to which Software Engineering practices are carried out in
Singapore.

b. To identify the most commonly used software process models, techniques and tools.
c. To identify factors which influence Software Engineering practices.
d. To identify the problems organisations face in adopting Software Engineering

practices.
e. To gain an insight into organisations’ perception towards Software Engineering

practices.
f. To gain an insight into the nature of software maintenance work in Singapore.

This paper discusses the results of the survey. Due to space constraint, this paper will focus on
the first five objectives (a-e). Objective f will be reported in a separate paper.

1.3 Organisation of Paper
This paper is organised in the following manner :

Section 2 : Discusses the study methodology.
Section 3 : Summarises the results of the survey.
Section 4 : Analyses the results of the survey in relation to the objectives and hypotheses

formulated for the study.
Section 5 : Discusses the implications of the study.
Section 6 : Concludes the discussion.

2.0 Study Methodology
This section discusses the methodology used to conduct the study. In particular, it will discuss
the following :

• Objectives and hypotheses.
• Unit of Analysis.
• Research variables.
• Research sample.
• Survey instrument.

5

2.1 Objectives and Hypotheses
This study attempts to investigate whether the following hypotheses, formulated based on the
study objectives, are true:
Objective (a):
To determine the extent to which Software Engineering practices are carried out in
Singapore.

Hypothesis 1:
Software Engineering is practised in the majority of organisations in Singapore.

Rationale : In the earlier study conducted by Phoon and Poo (1991) it was found that the

majority of organisations in Singapore used a formal system development
methodology. This hypothesis is to test whether a similar observation can be
made on Software Engineering practices in this study.

Hypothesis 2:
Software Engineering techniques are more widely used than Software Engineering tools
(due to historical and cost reasons).

Rationale: Software Engineering tools are developed in support of Software Engineering

techniques and are relatively more expensive to implement than Software
Engineering techniques. This hypothesis is to test whether these factors have
affected the extent of usage of Software Engineering tools as compared to
Software Engineering techniques.

Objective (b):
To identify the most commonly used software process models and techniques.

Hypothesis 3:
The sequential/waterfall model is the most commonly used software process model.

Rationale: Since the sequential/waterfall model was amongst the first software process

models to be developed, this hypothesis is to test if it is the most commonly used
model.

6

Hypothesis 4:
The percentage of organisations which are currently using object-oriented techniques is
relatively low.

Rationale: Since object-oriented techniques are relatively new, it would be logical to

assume that their usage has not reached a significant level among organisations
yet. This hypothesis is to test whether this assumption is true.

Hypothesis 5:
Software Engineering techniques and tools are used more extensively in the analysis and
design phases of the software production process.

Rationale: In the study conducted by Phoon and Poo (1991), it was found that the use of

system development methodology was most extensive in the analysis and design
phases. This hypothesis is to test whether a similar observation can be made for
Software Engineering techniques.

Hypothesis 6:
Some techniques are more commonly used than others.

Rationale: The aim of this hypothesis is to find out which techniques are more commonly

used in each phase of the software life cycle.

Objective (c):
To identify factors which influence Software Engineering practices.

Hypothesis 7:
The adoption of Software Engineering practices is influenced by:
 a. size of organisation
 b. industry sector/type

Rationale: It is usually assumed that Software Engineering practices would be more

prevalent in larger organisations due to the higher complexity of systems
developed and also the availability of resources to invest in implementation of
Software Engineering practices. It is also assumed that certain industries, due to
the nature of the systems developed to support the business, would have a higher
percentage of Software Engineering usage. This hypothesis is to test whether
these assumptions are true.

7

Hypothesis 8:
Formal training has a positive effect on the adoption of Software Engineering practices.

Rationale: In theory, formal training heightens awareness of the benefits of Software

Engineering practices and enables the proper application of Software
Engineering techniques to realise these benefits. This hypothesis is to test
whether this is true in practice.

Hypothesis 9:
Organisations where the IT function has a high profile tend to implement Software
Engineering practices more extensively.

Rationale: In theory, top management support is one of the predominant factors which

affect successful adoption of Software Engineering practices. This hypothesis is
to test whether this is true in reality.

Hypothesis 10:
The adoption of a Software Engineering methodology forms the basis for use of Software
Engineering techniques and tools.

Rationale: Software Engineering techniques and tools were developed to support Software

Engineering methodologies. This hypothesis is to test whether in practice, there
is correlation between the use of Software Engineering techniques and tools and
the adoption of a Software Engineering methodology.

Objective (d):
To identify the problems organisations face in adopting Software Engineering practices.

Hypothesis 11:
There are common problems faced by organisations in adopting Software Engineering
practices.

Rationale: Problems faced by organisations in adopting Software Engineering practices

have been well documented. This hypothesis is to test whether these problems
are also faced by the organisations surveyed.

8

Objective (e):
To gain an insight into organisations’ perception towards Software Engineering practices.

Hypothesis 12:
In general, organisations have realised benefits with the implementation of Software
Engineering practices.

Rationale: The benefits that organisation will reap for implementing Software Engineering

practices have been well documented. This hypothesis is to test the perception
of organisations surveyed towards the realisation of these benefits.

Hypothesis 13:
Software Engineering practices have a positive effect on measures of software
development success.

Rationale: The primary objective of Software Engineering is to improve the software

development and maintenance process. This hypothesis is to test the perception
of organisations surveyed towards the impact of Software Engineering on their
software development process.

2.2 Unit of Analysis
The unit of analysis was the organisation. The target representative for the unit of analysis was
the IS department in the case of IT user organisations, the software development group in the
case of IT vendors and the systems consultancy group in the case of IT consultancy firms.
These representatives of the unit of analysis were selected because they were most likely to
have experience in Software Engineering within the organisation.

The unit of observation was the employee of the organisation who responded to the survey; the
employee is either a software development manager or executive.

2.3 Research Variables
The nature and sophistication of Software Engineering practices were measured by the
following variables:

• Software Development Methodology
 Existence, nature and extent of software development methodology used.
• Software Engineering Techniques

9

 Software Engineering techniques used in each phase of the software life cycle.
• CASE Tools
 Existence and extent of usage of CASE tools.
• Training and Education in Software Engineering
 Existence and type of training and education provided in Software Engineering.

Perceptions of current Software Engineering practices were gathered by the following variables:

• Measurement of Success in Software Projects
 Frequency of projects being completed on time, within budget, meeting user

requirements and easy to maintain.
• Factors Influencing the Success of Software Engineering Practices
 Extent to which organisations agree/disagree with commonly cited factors which

contribute to the success of Software Engineering practices.
• Barriers to the Successful Adoption of Software Engineering Practices
 Extent to which organisations agree/disagree with commonly cited factors which

prevent the successful adoption of Software Engineering practices.

The research variables identified above were operationalised in the form of one or more survey
questions with closed or open-ended answers. The survey form was designed with a conscious
effort to minimise the use of open-ended questions so as to make it easier for respondents to fill
in the questionnaire and to facilitate analysis of data.

Answers to the questions were gathered in the form of either nominal, ordinal or interval scales.
A nominal scale is one where the numbers are used merely as labels and the size of the number
is meaningless e.g. 1 is used to denote male and 2 is used to denote female. An ordinal scale is
one where there is some correspondence between the size of the number and the order of
magnitude of the quality represented by the numbers; however, the actual size of differences in
magnitude cannot be gauged from the scale e.g. the position 1, 2 and 3 in a race tells who came
first, second and third in the race but does not indicate the difference in speed of the three
persons. In an interval scale, the numbers do represent the magnitude of the differences e.g.
numbers on a temperature scale.

2.4 Research Sample
A sample of 240 organisations was selected from the mailing lists used in past surveys and
personal contacts. The sample of organisations selected included IT users from both the private
and public sector and IT vendors. A total of 54 valid responses (giving a response rate of
22.5%) were received.

10

2.5 Survey Instrument
A self-administered survey form consisting of 65 multiple choice and 6 open-ended questions
was used. The questionnaire was structured as follows:
 Section 1 - Demographic Data
 Section 2 - Current Software Engineering Practices

• Software Development Methodology
• Software Engineering Techniques
• CASE Tools
• Software Maintenance
• Training and Education In Software Engineering

 Section 3 - Perception of Current Practices

3.0 Results of Survey
This section presents the results of the survey. Where longitudinal comparisons are to be made,
results from the earlier studies conducted by Phoon and Poo (1991) and Khor and Woo (1994),
are also shown in shaded portions.

3.1 Demographic Data
All the three industry sectors i.e. the government organisations, private local organisations and
private foreign-owned organisations, were well represented in the survey. The majority of the
respondents were senior IS managers and executives.

IT developers formed the most significant group of respondents at 66.7%, followed by software
suppliers at 11.1%, training/education/R&D organisations at 9.3% and IT consultants at 7.4%.
The remaining 5.6% of respondents were hardware suppliers and others.

The largest percentage of organisations who responded had between 100-499 employees
(31.5%). There were also a significant number of organisations with either less than 100
employees or more than 2000 employees, each forming 22.2% of the respondents.

Most (40.7%) of the organisations had less than 10 IT professionals in the organisation. 25.9%
had between 10 to 19 IT professionals, 14.8% had 20 to 49 IT professionals and the remaining
18.5% had more than 50 IT professionals.

29.6% of the respondents had developed between 1 to 5 software systems in the past five years,
27.8% had developed 6 to 10 systems, 13% had developed more than 20 systems. Operational
systems which support day-to-day running of the organisation formed the bulk of software

11

systems developed by the organisations, followed next by decision support systems which
facilitate management decision making, then inter-organisational systems which provide links
to business partners and finally, other types of systems. Developing new applications was the
main activity of the IS departments, followed by maintenance of applications as the second
most common activity while end user computing support together with technical operations
support tied for third place in the ranking of activities carried out.

3.2 Current Practices - Software Development Methodology
68.5% of the organisations which responded used a formal system development methodology
(see Table 1). 78.4% of the formal system development methodologies used were developed in-
house. Since system development methodology and project management methodology are both
Software Engineering practices, these findings were compared against those obtained in the
study conducted by Khor and Woo (1994), where 61.6% of respondents reported having a
formal project management methodology, of which 71% were developed in-house and 60.8% of
the organisations had been using their methodology for more than 3 years (see Table 1). This
comparison shows that there is a close correspondence between the usage of formal system
development methodology and project management methodology.

Organisation Response Freq Percent Freq Percent
Uses Formal Yes 37 68.5% 61 69.0%
System Devt No 16 29.6% 27 31.0%
Methodology (Missing) 1 1.9%
 Total 54 100.0% 88 100.0%

Table 1 : Organisations using Formal System Development Methodology

86.5% of these organisations had been using the formal methodology for at least a year, with
27% using it for between 1 and 2 years, and 59.5% of these having used it for at least 3 years
(see Table 2).

 Response Freq Percent*
How Long Has Less than 1 year 5 13.5%
Methodology 1 - 2 years 10 27.0%
Been In Use ? 3 - 4 years 7 18.9%
 More than 4 years 15 40.5%
 Total 37 100.0%

* 37 Cases = 100% (based on number of respondents who used a formal system development methodology as

 shown in Table 1)

Table 2 : Number of Years Formal System Development Methodology Has Been Used

Taking into consideration both formal and informal methodologies used, the largest percentage
(37%) of methodologies used followed the Sequential/Waterfall software process model. The
next most common model followed was the Incremental Model (Phased Delivery) at 16.7%.

12

The Rapid Prototyping Model was followed by 9.3%, the Spiral Model (Waterfall + Risk
Analysis) by 3.7%. 11.1% were not sure which model was followed - not surprising since this
question requires some academic background in system development methodologies and some
of the respondents may not be from an IT discipline. The result is shown in Table 3.

 Response Freq Percent*
Software Sequential/Waterfall Model 20 37.0%
Process Spiral Model (Waterfall + Risk Analysis) 2 3.7%
Model Incremental Model (Phased Delivery) 9 16.7%
Followed by Rapid Prototyping Model 5 9.3%
Methodology Others 1 1.9%
 Not Sure 6 11.1%

*54 Cases = 100%

Table 3 : Software Process Model

The wide application of the Sequential/Waterfall model is expected since it is one of the earliest
software process models developed and is largely consistent with the structured analysis, design
and programming methods introduced in the 1970s. It is familiar to many IT professionals and
has been used to develop a whole continuum of application types ranging from transaction-
based to real-time systems (Degrace and Stahl, 1990).

3.3 Current Practices - Software Engineering Techniques

Requirements Analysis
Table 4 shows the most commonly used techniques in requirements analysis. Half of the
respondents used the following 4 techniques for requirements analysis :

• Data Flow Diagrams (77.8%)
• Data Dictionary (57.4%)
• Entity Relationship Diagrams (51.9%) and
• Flowcharts (51.9%)

The other more commonly used techniques were data normalisation (46.3%), prototyping
(42.6%) and process decomposition diagrams (25.9%). Object-oriented analysis and entity life
cycle analysis were the least used techniques with 9.3% response each.

According to Keyes (1992), the entire object-oriented field i.e. object-oriented analysis, object-
oriented design and object-oriented programming, is in the same state of turbulent evolution
that the structured field underwent in the mid-’70s. Object-oriented techniques reflect a new
culture of Software Engineering, one of component culture, as compared to the project culture
of the more traditional techniques (Mandrioli and Meyer, 1992). As such, it is not surprising

13

that very few organisations have yet to venture into the object-oriented field, and of those who
have, many are testing it out on small scale projects first. The usage of object-oriented
techniques in the United States around 1994 was only about 5% and there was no usage of
object-oriented techniques in Hong Kong based on the results of the survey on software
maintenance conducted by Yip, Lam and Chan (1994). In a recent survey conducted by Applied
Computer Research and Computing Trends in United States, Glass (1996) reported that
Information Systems (IS) organisations are not terribly interested in the object-oriented
approaches.

 Rank Response Freq Percent*
Techniques 1 Data Flow Diagrams 42 77.8%
Used in 2 Data Dictionary 31 57.4%
Requirements 3 Entity Relationship Diagrams 28 51.9%
Analysis 3 Flowcharts 28 51.9%
Phase 4 Data Normalisation 25 46.3%
 5 Prototyping/Rapid Prototyping 23 42.6%
 6 Process Decomposition Diagrams 14 25.9%
 7 Process Dependency Diagrams 10 18.5%
 8 Joint Application Development (JAD) 9 16.7%
 9 Entity Life Cycle Diagram 5 9.3%
 9 Object Oriented Analysis 5 9.3%
 10 Others 2 3.7%

*54 Cases = 100%

Table 4 : Most Commonly Used Techniques in Requirements Analysis Phase

System Design Phase
The three most common system design techniques used were screen design (79.6%), report
design (68.5%) and structure charts (40.7%) (see Table 5). Techniques which were used by
20% to 25% of the respondents were decision tables/trees, process hierarchy diagrams, HIPO
diagrams and transaction volume analysis. Object-oriented design was the second least used
system design technique at 3.7%.

 Rank Response Freq Percent*
Techniques 1 Screen Design 43 79.6%
Used in 2 Report Design 37 68.5%
System 3 Structure Chart 22 40.7%
Design 4 Decision Tables/Trees 14 25.9%
Phase 5 Process Hierarchy Diagrams 13 24.1%
 6 Hierarchical Input Process Output Diagrams 12 22.2%
 7 Transaction Volume Analysis 11 20.4%
 8 Action Diagrams 8 14.8%
 9 Dialogue Flow Diagrams 4 7.4%
 9 Others 4 7.4%
 10 Object-Oriented Design (e.g. Booch Diagrams) 2 3.7%
 11 Warnier-Orr Diagrams 1 1.9%
 12 Nassi-Schneiderman Diagrams 0 0.0%

*54 Cases = 100%

Table 5 : Most Commonly Used Techniques in System Design Phase

14

Coding Phase
For this phase, program specifications and 4GL had the highest usage at 61.1% and 63%
respectively. 38.9% of respondents still used 3GL (see Table 6).

 Response Freq Percent*
Techniques Program Specifications 33 61.1%
Used in 4GL 34 63.0%
Coding 3GL 21 38.9%
Phase Others 4 7.4%

*54 Cases = 100%

Table 6 : Techniques Used in Coding Phase

Review/Testing
The most widely used review technique was walkthroughs at 72.2% as shown in Table 7.
Following at a distant second was black-box testing at 42.6%. Bottom-up testing and top-down
testing were practised by 27.8% and 25.9% of the respondents respectively. White-box testing
was carried out by 18.5% of the respondents.

 Rank Response Freq Percent*
Techniques 1 Walkthroughs 39 72.2%
Used in 2 Black-box Testing 23 42.6%
Review/ 3 Bottom-up Testing 15 27.8%
Testing 4 Top-down Testing 14 25.9%
 5 White-box Testing 10 18.5%
 6 Others 1 1.9%

*54 Cases = 100%

Table 7 : Techniques used in Review/Testing Phase

In white-box testing, test cases are based on program codes rather than functional specifications
(which is the basis for black-box testing). The different forms of white-box testing include
statement, branch and path coverage i.e. running a series of tests to ensure that all statements,
branches and paths are tested at least once. In all these forms of testing, a tool is usually needed
to help the tester keep track of the statements, branches and paths which have been covered
(Schach, 1993). The complexity of white-box testing may be the reason why it is the least used
testing technique.

Maintenance Phase
The most common Software Engineering practice instituted for the maintenance phase was
software change management procedures (72.2%), followed by documentation change
management procedures (57.4%) and finally configuration management procedures (33.3%)
(see Table 8).

15

 Rank Response Freq Percent*
Techniques 1 Software Change Management Procedures 39 72.2%
Used in 2 Documentation Change Management Procedures 31 57.4%
Maintenance 3 Configuration Management Procedures 18 33.3%
Phase 4 Others 0 0.0%

*54 Cases = 100%

Table 8 : Techniques Used in Maintenance Phase

Number of Techniques Used
On average, a respondent’s organisation used 4 Software Engineering techniques in the
requirements analysis phase, 3 in the system design phase and 1 each in the coding phase,
review/testing phase and maintenance phase. This is shown in Table 9. This indicates that
Software Engineering techniques are most widely practised during the requirements analysis
and system design phases.

 Phase Mean Mode S.D.
No. Of SE Requirements Analysis Phase 4.111 4 2.597
Techniques System Design Phase 3.167 3 1.969
Used In Coding Phase 1.704 1 0.964
Each Phase Review/Testing Phase 1.899 1 1.327
 Maintenance Phase 1.630 1 0.938

Table 9 : Number of Techniques Used in Each Phase

3.4 Current Practices - Training and Education In Software Engineering
51.9% of respondents indicated that their organisations provided formal training in Software
Engineering methods (see Tables 10 and 11). Of these, 75% of them had courses conducted by
external trainers and 39.3% had courses conducted by in-house trainers. Out of all the
respondents, 46.3% had on-the-job-training in Software Engineering methods and only 5.6%
were self-taught through videos, computer based training etc.

Does Your Organisation Response Freq Percent
Provide Formal Yes 28 51.9%
Training In Software
Engineering

No 23 42.6%

Methods? (Missing) 3 5.6%
 Total 54 100.0%

Table 10 : Training in Software Engineering Methods

3.5 Measures Of Software Systems Developed
From the data shown in Table 12, it can be seen that of the four measures used to gauge the
success of software development projects in the organisations surveyed, the measure “Software
implemented meets with a high degree of user satisfaction” scored the highest with a mean of

16

3.648 (out of a Likert scale of 1 to 5), indicating that organisations usually had no problems in
meeting this goal. This is followed in order of decreasing mean scores by “Software developed
are easy to maintain” with a mean score of 3.396, “Software projects are completed within
estimated cost” with a mean score of 3.377 and lastly, “Software projects are completed on
schedule” with a mean score of 3.333.

 Rank Response Freq Percent*
Forms Of Formal Training
Training 2 Courses conducted by external trainers 21 38.9%
 3 Courses conducted by in-house trainers 11 20.4%
 Informal Training
 1 On-the-job training 25 46.3%
 4 Self-taught (through videos, CBT, etc.) 3 5.6%
 5 Others 0 0.0%

*54 Cases = 100%

Table 11 : Types of Training

 Rank* Software Situation Response** Percent*** Mean S.D.
Frequency 1 Software implemented Rarely/Never 5.6% 3.648 0.756
Of meets with a high degree Sometimes 35.2%
Occurrence of user satisfaction. Usually 48.1%
Of These Always 11.1%
Software (Missing) 0.0%
Situations 2 Software developed are Rarely/Never 11.2% 3.396 0.793
 easy to maintain. Sometimes 38.9%
 Usually 44.4%
 Always 3.7%
 (Missing) 1.9%
 3 Software projects are Rarely/Never 18.5% 3.377 0.882
 completed within Sometimes 31.5%
 estimated costs. Usually 40.7%
 Always 7.4%
 (Missing) 1.9%
 4 Software projects are Rarely/Never 18.5% 3.333 0.869
 completed on schedule. Sometimes 37.0%
 Usually 37.0%
 Always 7.4%
 (Missing) 0.0%

* Ranking is based on the means.

** Responses are grouped as follows: Rarely/Never : 1, 2; Sometimes : 3; Usually : 4; Always : 5.

*** 54 Cases = 100%

Table 12 : Success of Software Development Projects

From Table 13, it can be seen that the use of a formal system development methodology had no
significant impact on the success measures of software projects as all the respondents, whether
or not their organisations adopted a formal system development methodology, indicated that
their organisations achieved these measures quite frequently. This result may be supported by
the observation in Fletcher and Hunt (1993) that the benefits of Software Engineering practices

17

are typically long-term and difficult to measure. It is difficult for organisations to isolate the
effects of Software Engineering practices on their software development work unless they
undertake long-term, on-going studies with appropriate measurement techniques and tools.

Current Practice chi-sq. Degree of
Freedom

Sig. Result*

Organisation uses formal system development methodology. 0.58 1 0.446 Not sig.
Organisation uses CASE tools. 4.18 1 0.041 Y>N
Current system development methods incorporate steps to
improve maintainability of systems in future.

1.11 1 0.292 Not sig.

*Y - organisations which provided formal training in software engineering methods

 N - organisations which did not provide formal training in software engineering methods

Table 13 : Impact on the Success Measures of Software Projects

3.6 Perception of Current Software Engineering Practices In Organisation
Data on the perception of current Software Engineering practices in the organisations which
responded is shown in Tables 14 and 15.

Software Engineering Practices In The Organisation
Based on the mean scores of the responses, it was found that the respondents agreed in general
to all the observations offered on the effects of Software Engineering practices on their
organisations. The observations, ranked in order of decreasing mean scores obtained from the
responses, were as follows:

• Software Engineering practices enable better control over software development and
maintenance

• Software Engineering practices have improved the quality of systems
developed/maintained

• Software Engineering practices improve the maintainability/adaptability of software
• Software Engineering practices improve the productivity of software

developers/maintainers
• Software Engineering practices reduce the time to develop/maintain software
• Software Engineering practices have helped the organisation improve its competitive

advantage
• Standard methodology adopted by the organisation is easy to use
• Object-oriented Software Engineering methods is/will be useful to your organisation
• Software Engineering practices help to reduce/contain IS cost.

These results support the literature in Fletcher and Hunt (1993) on the benefits which an
organisation can expect to realise with the implementation of Software Engineering practices.

 Rank* Description Response** Percent*** Mean S.D.

18

Perception 1 SE practices enable better Agree 79.7% 4.020 0.520
Of SE control over software Neutral 11.1%
Practices development and Disagree 0.0%
In The maintenance (Missing) 9.3%
Org’n 2 SE practices have Agree 81.5% 4.000 0.456
 improved the quality of Neutral 9.3%
 systems developed/ Disagree 0.0%
 maintained (Missing) 9.3%
 3 SE practices improve Agree 81.5% 3.959 0.406
 maintainability/ Neutral 9.3%
 adaptability of software Disagree 0.0%
 (Missing) 9.3%
 4 SE practices improve the Agree 72.2% 3.837 0.472
 productivity of software Neutral 18.5%
 developers/maintainers Disagree 0.0%
 (Missing) 9.3%
 5 SE practices reduce the Agree 63.0% 3.714 0.645
 time to develop/maintain Neutral 24.1%
 software Disagree 3.7%
 (Missing) 9.3%
 5 SE practices have helped Agree 61.2% 3.714 0.736
 the organisation improve Neutral 24.1%
 its competitive advantage Disagree 5.6%
 (Missing) 9.3%
 6 Standard methodology Agree 53.7% 3.604 0.707
 adopted by the organisation is Neutral 29.6%
 easy to use Disagree 5.6%
 (Missing) 11.1%
 7 Object-oriented SE Agree 48.2% 3.531 0.710
 methods is/will be Neutral 37.0%
 beneficial to your organisation Disagree 5.6%
 (Missing) 9.3%
 8 SE practices help to Agree 48.1% 3.490 0.711
 reduce/contain IS costs Neutral 35.2%
 Disagree 7.4%
 (Missing) 9.3%

* Ranking is based on the means.

** Responses are grouped as follows: Disagree : 1, 2; Neutral : 3; Agree : 4, 5.

*** 54 Cases = 100%

Table 14 : Perception of Current Software Engineering Practices

19

 Rank* Description Response** Percent*** Mean S.D.
Perception 1 Lack of experienced IS Agree 72.3% 3.759 0.799
Of Barriers staff who can effectively Neutral 18.5%
To use SE methods/tools Disagree 9.3%
Successful (Missing) 0.0%
Adoption 2 Lack of formal training in Agree 70.4% 3.642 0.736
Of SE SE engineering methods/ Neutral 16.7%
Practices tools Disagree 11.1%
 (Missing) 1.9%
 3 Lack of suitable Agree 61.1% 3.593 0.765
 environment and tools to Neutral 29.6%
 support SE methods Disagree 9.3%
 (Missing) 0.0%
 4 Legacy systems which are Agree 55.6% 3.574 0.860
 not compatible with new Neutral 33.3%
 systems developed using Disagree 11.1%
 SE methods (Missing) 0.0%
 5 Complexity of SE Agree 59.3% 3.528 0.749
 practices Neutral 27.8%
 Disagree 11.1%
 (Missing) 1.9%
 6 Lack of management Agree 63.0% 3.500 0.947
 support Neutral 20.4%
 Disagree 16.7%
 (Missing) 0.0%
 7 Long learning curve Agree 48.2% 3.531 0.710
 Neutral 37.0%
 Disagree 5.6%
 (Missing) 9.3%
 8 Too large a financial Agree 51.8% 3.444 0.925
 investment Neutral 29.6%
 Disagree 18.5%
 (Missing) 0.0%
 9 No clear objectives for Agree 51.8% 3.377 0.860
 adopting SE practices Neutral 29.6%
 Disagree 16.7%
 (Missing) 1.9%
 10 Uncertainty over benefits Agree 51.8% 3.264 0.944
 of adopting SE practices Neutral 16.7%
 Disagree 29.6%
 (Missing) 1.9%
 11 Unsuccessful previous Agree 27.8% 3.077 0.710
 attempts in introducing Neutral 48.1%
 SE practices Disagree 20.4%
 (Missing) 3.7%
 12 Standard methodology is Agree 16.7% 2.759 0.799
 unsuitable for current Neutral 42.6%
 projects Disagree 40.8%
 (Missing) 0.0%

* Ranking is based on the means. ** Responses are grouped as follows: Disagree : 1, 2; Neutral : 3; Agree : 4, 5.

*** 54 Cases = 100%

Table 15 : Perception of Barriers to Successful Adoption of Software Engineering Practices

Barriers To Successful Adoption Of Software Engineering Practices

20

Based on the mean scores of the responses, it was found that the respondents agreed in general
to all, except one, of the factors cited as possible barriers to the successful adoption of Software
Engineering practices in their organisations. The factor to which the respondents took
exception was “Standard methodology is unsuitable for current projects”. This is an
encouraging result, but it cannot be guaranteed in the long term if an organisation based its
choice of Software Engineering practices solely on current projects. Fletcher and Hunt (1993)
reminded that there is a need to “gaze into the crystal ball” when making decisions on Software
Engineering practices to adopt i.e. organisations need to be visionary and determine how they
will use the technology two to five years from now in order for such a result to remain.

The rest of the factors to which the respondents generally agreed, ranked in order of decreasing
mean scores obtained from the responses, were as follows:

• Lack of experienced IS staff who can effectively use Software Engineering
methods/tools

• Lack of formal training in Software Engineering methods/tools
• Lack of suitable environment and tools to support Software Engineering methods
• Legacy systems which are not compatible with new systems developed using

Software Engineering methods
• Complexity of Software Engineering practices
• Lack of management support
• Long learning curve
• Too large a financial investment
• No clear objectives for adopting Software Engineering practices
• Uncertainty over benefits of adopting Software Engineering practices
• Unsuccessful previous attempts in introducing Software Engineering practices.

4.0 Hypotheses Analysis
The results of this study are analysed and used to answer the research hypotheses stated in
section 2.1.

Objective (a):
To find out the extent to which Software Engineering practices are carried out in Singapore.

Hypothesis 1
Software Engineering is practised in the majority of organisations in Singapore.
True. 68.5% of organisations in Singapore used a formal system development methodology.

Hypothesis 2

21

Software Engineering techniques are more widely used than Software Engineering tools
(due to historical and cost reasons).
True. Only 29.6% of organisations used CASE tools whereas over 70% of organisations used at
least one Software Engineering technique during the requirements analysis, system design,
review/testing and maintenance phases. The results of the survey reported in (Glass, 1996) also
indicate a low usage of CASE tools by organisations in the United States.

Objective (b):
To identify the most commonly used software process models and techniques.

Hypothesis 3
The sequential/waterfall model is the most commonly used software process model.
True. The most commonly used software process model was the sequential/waterfall model
(37%), followed by the incremental model (16.7%), the rapid prototyping model (9.3%), the
spiral model (3.7%) and others (1.9%). 11.1% of respondents were not sure which model they
were using.

Hypothesis 4
The percentage of organisations which are currently using object-oriented techniques is
relatively low.
True. The study showed that 9.3% of organisations were using object-oriented analysis
techniques and 3.7% of organisations were using object-oriented design techniques. 10% of
organisations said the measures taken to improve future maintainability of systems included
object-oriented approaches. 48.2% of respondents agreed that object-oriented Software
Engineering methods were/would be useful to their organisation.

Hypothesis 5
Software Engineering techniques and tools are used more extensively in the analysis and
design phases of the software production process.
True. On average, an organisation used 4 different Software Engineering techniques in the
analysis phase, 3 in the design phase and 1 each in the coding, review/testing and maintenance
phases.

Hypothesis 6
Some techniques are more commonly used than others.
True. The 4 requirements analysis techniques used by more than half of the respondents were
data flow diagrams (77.8%), data dictionary (57.4%), entity relationship diagrams (51.9%) and
flowcharts (51.9%). The 3 most commonly used system design techniques were screen design

22

(79.6%), report design (68.5%) and structure charts (40.7%). For coding, program specifications
and 4GL had the highest usage at 61.1% and 63% respectively. The most widely used review
technique was walkthroughs at 72.2%. The most common Software Engineering practice
instituted for the maintenance phase was software change management procedures (72.2%),
followed by documentation change management procedures (57.4%).

Objective (c):
To identify factors which influence software engineering practices.

Hypothesis 7
The adoption of Software Engineering practices is influenced by:
a. size of organisation
b. industry sector/type
(a) - Not True. The results showed that a higher percentage of small organisations were using a
formal system development methodology compared to large companies. However, it was found
that organisations with more IT professionals were more likely to be using a formal system
development methodology than organisations with fewer IT professionals.
(b) - Partially True. In terms of industry sector, the results showed that the public sector led in
the use of formal system development methodology while the private sector led in the use of
CASE tools. In terms of industry type, the results showed that there was no significant
difference between different types of industry in the adoption of Software Engineering
practices.

Hypothesis 8
Formal training has a positive effect on the adoption of Software Engineering practices.
True. It was found that organisations which provided formal training in Software Engineering
methods were more likely to use CASE tools than organisations which did not provide formal
training in Software Engineering. However, there was no significant relationship found
between the provision of formal training and the adoption of a formal system development
methodology.

Hypothesis 9
Organisations where the IT function has a high profile tend to implement Software
Engineering practices more extensively.
True. It was found that IS functions which operated as an independent unit in the organisation,
reporting directly to the chief executive officer, were more likely to be using a formal system
development methodology than IS functions which were totally or partially subsumed under
another functional unit in the organisation.

23

Hypothesis 10
The adoption of a system development methodology forms the basis for use of Software
Engineering techniques and tools.
Partially True. It was found that organisations which had adopted a formal system development
methodology were definitely more likely to use Software Engineering techniques in all stages of
the software life cycle than organisations which had not adopt a formal methodology. However,
No correlation was found between the use of a formal system development method and the use
of CASE tools.

Objective (d):
To identify the problems organisations face in adopting Software Engineering practices.

Hypothesis 11
There are common problems faced by organisations in adopting Software Engineering
practices.
True. The problems identified, ranked in order of decreasing significance, were as follows:

• Lack of experienced IS staff who can effectively use Software Engineering
methods/tools

• Lack of formal training in Software Engineering methods/tools
• Lack of suitable environment and tools to support Software Engineering methods
• Legacy systems which are not compatible with new systems developed using

Software Engineering methods
• Complexity of Software Engineering practices
• Lack of management support
• Long learning curve
• Too large a financial investment
• No clear objectives for adopting Software Engineering practices
• Uncertainty over benefits of adopting Software Engineering practices
• Unsuccessful previous attempts in introducing Software Engineering practices.

24

Objective (e):
To gain an insight into organisations’ perception towards Software Engineering practices.

Hypothesis 12
In general, organisations have realised benefits with the implementation of Software
Engineering practices.
True. Organisations had the following perceptions, ranked in order of decreasing significance,
towards the Software Engineering practices in their organisations:

• Software Engineering practices enable better control over software development and
maintenance

• Software Engineering practices have improved the quality of systems
developed/maintained

• Software Engineering practices improve the maintainability/adaptability of software
• Software Engineering practices improve the productivity of software

developers/maintainers
• Software Engineering practices reduce the time to develop/maintain software
• Software Engineering practices have helped the organisation improve its

competitive advantage
• Standard methodology adopted by the organisation is easy to use
• Object-oriented Software Engineering methods is/will be useful to the organisation
• Software Engineering practices help to reduce/contain IS cost.

Hypothesis 13
Software Engineering practices have a positive effect on measures of software
development success.
Not True. The study showed that the use of a formal system development methodology had no
significant impact on the success measures of software projects as all the respondents, whether
or not their organisations adopted a formal system development methodology, indicated that
their organisations achieved these measures reasonably frequently.

5.0 Implications of Study
In general, the majority of organisations which develop software systems made use of Software
Engineering techniques. However, the usage of Software Engineering techniques was still
concentrated in the analysis and design phases of the software life cycle. In the coding,
review/testing and maintenance phases, the use of Software Engineering techniques was very
limited - each organisation on average used only one technique in each of these phases. The
level of usage of CASE tools was also fairly low. Organisations in Singapore should increase

25

the application of Software Engineering techniques and tools so as to alleviate the long-standing
problems associated with software development and maintenance.

Although the implementation of Software Engineering techniques and tools needs to be
improved upon, respondents’ perception of Software Engineering issues were found to support
the work of researchers and practitioners with regards to the benefits of Software Engineering
practices and the barriers to successful adoption of these practices. This shows that
organisations are generally well aware of the benefits and problems in using Software
Engineering techniques and tools.

Major barriers to the implementation of Software Engineering practices were the lack of
experienced staff who can effectively use Software Engineering techniques and tools and the
lack of formal training in these areas. Companies need to be willing to invest in training for
their staff and provide a conducive environment for staff to gain experience in the use of
Software Engineering techniques and tools. This is important as “experience” is perceived as
the most important hiring criteria for a position in an IS organisation in the United States (Glass,
1996).

6.0 Conclusion
In this paper we discussed the results and implications of a survey on Software Engineering
practices in Singapore conducted in 1995. The study was intended to gain an insight into the
extent to which Software Engineering practices have been adopted by organisations in
Singapore, the benefits these organisations have realised, the problems they face in
implementing these practices and their perceptions on issues prevalent in the Software
Engineering field.

The study indicated that there is much for Singapore organisations to do in adopting state-of-
the-art practices in the Software Engineering field. However, our Software Engineering
practices are comparable to our counterparts in the United States and Hong Kong.

26

References

Conger, S A, (1994), The New Software Engineering, Wadsworth Publishing.

Degrace, P, and Stahl, L H, (1990), Wicked Problems, Righteous Solutions: A Catalogue of
Modern Software Engineering Paradigms, Yourdon Press.

Fletcher, T, and Hunt, J, (1993), Software Engineering and CASE: Bridging The Culture Gap,
McGraw Hill.

Glass, R.L., (1996), Results of the First IS State-of-the-Practice Survey, The Software
Practitioner, May-June-July-August.

Keyes, J, (1992), Software Engineering Productivity Handbook, McGraw Hill.

Khor, C K, and Woo, L Y, (1993/94), Software Project Management Practices In Singapore,
Department Of Information Systems and Computer Science, National University Of Singapore,
1993/94.

Mandrioli, D, and Meyer, B, (1992), Advances in Object-Oriented Software Engineering,
Prentice Hall.

Phoon, W T, and Poo, C C, (1990/91), Use of Software Development Methods In Singapore,
Department Of Information Systems and Computer Science, National University Of Singapore,
1990/91.

Schach, S R, (1993), Software Engineering, 2nd Ed., Richard D. Irwin Inc and Aksen
Associates Inc.

Yip, S W L, Lam, T, and Chan, S K M, A Software Maintenance Survey, IEEE 0-8186-6960-
8/94, 1994, pp 70-79.

