
WCET-Centric Partial Instruction Cache Locking

Huping Ding1, Yun Liang2 and Tulika Mitra1

1School of Computing, National University of Singapore
2Advanced Digital Sciences Center, Illinois at Singapore

{dinghuping,tulika}@comp.nus.edu.sg, eric.liang@adsc.com.sg

ABSTRACT
Caches play an important role in embedded systems by bridging the
performance gap between high speed processors and slow memory.
At the same time, caches introduce imprecision in Worst-case Ex-
ecution Time (WCET) estimation due to unpredictable access la-
tencies. Modern embedded processors often include cache locking
mechanism for better timing predictability. As the cache contents
are statically known, memory access latencies are predictable lead-
ing to precise WCET estimates. Moreover, by carefully selecting
the memory blocks to be locked, WCET estimate can be reduced
compared to cache modeling without locking. Existing static in-
struction cache locking techniques strive to lock the entire cache
to minimize the WCET. We observe that such aggressive lock-
ing mechanisms may have negative impact on the overall WCET
as some memory blocks with predictable access behavior get ex-
cluded from the cache. We introduce a partial cache locking mech-
anism that has the flexibility to lock only a fraction of the cache.
We judiciously select the memory blocks for locking through ac-
curate cache modeling that determines the impact of the decision
on the program WCET. Our synergistic cache modeling and lock-
ing mechanism achieves up to 68% reduction in WCET for a large
number of embedded benchmark applications.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]: [Real-
time and embedded systems]

General Terms
Algorithm, Design, Performance

Keywords
WCET, Partial Cache Locking

1. INTRODUCTION
Cache memories are often employed in embedded systems to

hide the main memory access latency. Caches are quite effective in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 3-7, 2012, San Francisco, California USA
Copyright 2012 ACM 978-1-4503-1199-1/12/06 ...$10.00.

improving the average-case performance due to the temporal and
spatial locality of memory accesses in a program. For hard real-
time systems, however, caches are problematic due to timing un-
predictability — specially in the context of Worst-case Execution
Time (WCET) estimation. WCET is an important metric for hard
real-time systems. It is defined as the upper bound on the maxi-
mum execution time of the program on a particular hardware plat-
form across all the possible inputs. In the presence of caches, it is
challenging to determine the cache behavior for a memory access
(hit or miss) through static program analysis for WCET estimation.
If a memory access cannot be guaranteed as a cache hit, it is con-
servatively estimated to be a miss in WCET analysis. This leads to
significant imprecision in WCET estimation.

In this paper, we focus on instruction caches, which are present
in almost all embedded systems today. There exist many static pro-
gram analysis techniques that model the instruction cache for tight
WCET estimation [19, 10]. For example, Theiling et al. [19] model
the cache states at each program point and classify the cache behav-
ior (hit or miss) of a memory access based on the cache state. How-
ever, in the presence of complex control flow, cache modeling may
fail to accurately determine the cache behavior for some memory
accesses. Such unclassified accesses are conservatively assumed to
be cache misses in WCET analysis due to the safety critical nature
of hard real-time systems. This over-estimation can lead to serious
over-dimensioning of the processor resources.

To improve timing predictability, modern embedded processors
often feature cache locking mechanisms. Memory blocks can be
locked in the cache using special lock instructions. Once a memory
block is locked, it cannot be evicted from the cache under replace-
ment policy. Thus, locking the entire cache resolves the problem of
timing unpredictability. More importantly, by carefully choosing
the memory blocks to be locked, WCET estimate can be reduced
compared to cache modeling techniques without locking [6, 14].

Embedded processors also provide the option of partial cache
locking through two different mechanisms: way locking and line
locking. In way locking, particular ways are entirely locked for all
the cache sets. Way-locking is employed in several ARM processor
series. Line locking allows different number of lines to be locked in
different cache sets and is employed in Intel Xscale, ARM9 family
and Blackfin 5xx family. In partial cache locking, the unlocked
portion of the cache behaves as a normal cache. For example, if
in a 4-way set associative cache, 2 cache ways are locked, then
the other two cache ways serve as a 2-way set associative cache.
Clearly, line locking is more flexible than way locking, which in
turn is more flexible than full cache locking.

Recently, a heuristic [6] and an optimal solution [14] have been
proposed to minimize the WCET via static instruction cache lock-
ing. These existing techniques make an implicit but important de-

m1

P0 P1

10

100

No Locking

WCET: 20 + 3 = 23 misses

Way-1

Full Locking

WCET: 20 + 80 = 100 misses

Partial Locking

WCET: 10 + 3 = 13 misses

90

m2

m0

m3

m4

m5

Way-2

Way-1 Way-2

80

m3 m4

Way-1 Way-2

m2

Figure 1: Advantage of partial cache locking over full cache lock-
ing and cache modeling with no locking. The program consists of four
loops. The first loop contains two paths (P0 and P1) and the other three
loops contain only one path. The loop iteration counts appear on the
back edges.

cision of locking the entire cache. This crucial decision arises from
the assumption that instruction cache modeling for WCET analy-
sis is quite imprecise. By employing full cache locking, [6, 14]
can completely bypass cache modeling in WCET analysis phase
and thereby achieve tight WCET estimation. Indeed, as these tech-
niques are oblivious to cache modeling, they assume the worst-case
behavior with empty cache (where all the accesses are serviced
from main memory) as the reference point and improve upon it
through locking of memory blocks along the WCET path. In this
context, it is guaranteed that locking the entire cache will provide
maximum WCET reduction compared to the baseline empty cache.
In other words, the cache locking problem becomes equivalent to
the scratchpad memory allocation problem.

In this paper, we argue (and experimentally validate) that aggres-
sive full cache locking as proposed in [6, 14] may have substan-
tial negative impact on WCET reduction. State-of-the-art instruc-
tion cache modeling techniques for WCET analysis are quite ma-
ture. Most memory accesses can thus be successfully classified as
hit/miss through WCET analysis techniques. Consider a memory
block m originally classified as cache hit in a normal cache through
static WCET analysis. But m is not selected for locking under full
cache locking scenario. Thus m does not have any opportunity to
reside in the cache and all its accesses incur cache misses. Now
consider an alternative scenario where partial cache locking is em-
ployed. Again m is not selected for locking. However, as the cache
has some unlocked lines, m may still be brought into the cache at
runtime and the cache misses can be avoided.

In summary, full cache locking does not exploit the entire spec-
trum of opportunities presented by cache locking. Thus, in this
paper we propose a partial cache locking technique that explores
in conjunction with accurate cache modeling the entire spectrum of
choices. Partial cache locking problem is more challenging com-
pared to full cache locking as it requires careful cost-benefit anal-
ysis to decide between locking a cache line with a single memory
block versus keeping it unlocked so that more than one memory
blocks can benefit from it. This synergistic interaction between
cache modeling and memory block selection for locking sets apart
our technique from the state-of-the-art.

Motivating Example. We illustrate the benefit of partial cache
locking over full cache locking with a concrete example shown in
Figure 1. The program consists of four loops and we assume that
all the memory blocks are mapped to the same cache set in a 2-way
set associative cache.

Cache modeling with no locking: Let us first estimate the WCET
via cache modeling with no locking. Theiling et al. [19] models
the cache states at all program points. All the memory blocks in
the first loop (m0, m1, m2) are cache misses in the worst case
because alternate execution of the two program paths (P0 and P1)
can lead to mutual eviction of the blocks. Thus, program path P1
with 2 cache miss is the worst case path in the first loop. For the
other three loops, cache modeling techniques can easily determine
that the first access is a cold miss and the subsequent accesses are
cache hits via persistence analysis or virtual unrolling [15, 19].
Therefore, cache modeling estimates 23 cache misses in the worst
case — 20 misses for the first loop and 3 misses for the other loops.

Full cache locking: Existing cache locking techniques [6, 14]
first build the worst case path (e.g., (m1m2)10m3100m490m580)
assuming that all accesses are serviced from the main memory (i.e.,
there is no cache). Now memory blocks are selected for locking
along the worst-case path so as to improve the WCET until the
cache is fully locked. Both cache locking techniques [6, 14] model
the fact that the WCET path may change after locking some mem-
ory locks. For this example, the heuristic [6] and the optimal [14]
approach return the same solution. m3 and m4 are chosen to be
locked as they contribute most towards WCET reduction. After
locking, we get 100 cache misses in total in the worst case — 20
misses in the first loop and 80 misses in the last loop. Thus, cache
locking performs worse than cache modeling in this example.

Partial cache locking: Our partial locking technique can deter-
mine that it is beneficial to keep one cache line free so that accesses
to m3, m4, and m5 can be cache hits after the first cold miss. It
only chooses to lock m1 or m2 in the cache. Thus we get 13 cache
misses in the worst case — 10 misses in the first loop and 3 cold
misses for the other loops. Thus partial cache locking improves
upon cache modeling and full locking.

From the example above, we first observe that full locking tech-
niques [6, 14] are not guaranteed to perform better than cache mod-
eling (with no locking) specially when some memory accesses can
be easily classified as cache hits (m3, m4, m5 in our example).
Locking these memory blocks with deterministic access pattern
does not yield any benefit. On the other hand, if the cache is fully
locked and these memory blocks with deterministic access pattern
are not chosen for locking, it can have serious impact on the WCET.

Our partial locking mechanism integrates cache locking with
cache modeling. We model the cache content at all program points
and select the memory blocks for locking based on the cache state
and their impact on the WCET. In particular, we use the concrete
cache states or the abstract cache states to model the cache content.
Concrete cache state captures the exact path behavior while abstract
cache state is a compact representation that merges multiple con-
crete cache states together. For concrete cache state, we use integer
linear programming (ILP) approach to optimally select the memory
blocks for locking. As no cache locking and full cache locking are
just two extreme instances of partial cache locking, partial locking
is guaranteed to be equivalent to or better than them. To improve
the efficiency, we also propose a heuristic partial locking strategy
based on abstract cache state. Experimental results show that our
partial cache locking technique reduces WCET by up to 68%.

2. RELATED WORK
Cache locking is used to improve timing predictability in real-

time systems. Puaut and Decotigny [16] explore static cache lock-
ing in multitasking real-time systems. Two content selection algo-
rithms have been proposed in their work to minimize the utilization
and inter-task interferences. Campoy et al. [4] employ genetic al-
gorithm to perform instruction cache locking. However, both [16]

and [4] do not model the change in worst-case path after locking.
Falk et al. [6] perform cache locking by taking into account

the change of worst-case path and achieve better WCET reduction.
Their greedy algorithm computes the worst-case path and selects
the procedure with maximum WCET reduction for locking. This
process continues until the cache is fully locked. Liu et al. [14]
present an optimal solution to minimize WCET via cache locking.
However, their approach is optimal on the premise that the cache is
fully locked. It may not be optimal towards minimizing WCET as
shown in our motivating example. More importantly, they do not
consider the cache mapping function at all in the locking algorithm.
They simply assume that any memory block can be locked in any
cache set (as if the cache is a scratchpad memory). After locking
decisions are taken, they have to use code placement/layout tech-
nique [7, 12] that force the locked memory blocks to be mapped
to the appropriate cache sets. This can lead to serious code size
blowup, which has not been addressed.

Vera et al. [20] combine compile-time cache analysis and data
cache locking in order to estimate a safe and tight worst-case mem-
ory performance. This work also assume full cache locking. Ar-
naud and Puaut [1] propose dynamic instruction cache locking for
hard real-time systems. In their approach, the program is parti-
tioned into regions, and static cache locking is performed for each
region. In [17], cache locking is explored for predictable shared
caches on multi-core systems. Cache locking are also shown to
be quite effective for improving average-case execution time [13].
Finally, optimal on-chip scratchpad memory allocation to improve
the WCET has been explored in [5, 18].

3. CACHE MODELING
Cache design depends on a few parameters: line (block) size L,

which defines the unit of transfer of instructions or data between
the cache and the main memory; number of sets K that the cache is
divided into; associativity A, which determines the number of lines
(blocks) in a set. Then the capacity of a cache is L × A ×K. We
assume LRU (Least Recently Used) cache replacement policy.

Given a memory block m, it is mapped to only one cache set.
Thus, the different cache sets are independent and can be modeled
independently. In the following, we describe our modeling tech-
nique for one cache set. The same modeling techniques can be
repeated for other cache sets. We use M to denote the set of mem-
ory blocks mapped to a cache set and use⊥ to indicate the absence
of any memory block in a cache line.

3.1 Cache States

DEFINITION 1 (Concrete Cache State). A concrete cache state
c is a vector 〈c[0], ..., c[A−1]〉 of length A where c[i] ∈M ∪{⊥}.
If c[i] = m, then m is the ith most recently used memory block
in the cache set. We also define a special concrete cache state
c⊥ = 〈⊥, ...,⊥〉 called the empty concrete cache state.

DEFINITION 2 (Concrete Cache State Hit). Given a concrete
cache state c and a memory access m ∈M

c_hit(c, m) =

{
1 if ∃i (0 ≤ i ≤ A− 1) s.t. c[i] = m
0 otherwise

We use Ω to denote the set of all possible concrete cache states of
a program. Note that a program point can be reached via multiple
paths and these paths may lead to different concrete cache states.
We use P to denote the set of all possible concrete cache states at
a program point, i.e., P ∈ 2Ω. We can easily compute P at each
program point through static program analysis as shown in [11].

Given the set of all possible cache states P at a program point
and a memory access m ∈M ,

p_hit(P, m) =

{
1 if ∀c ∈ P c_hit(c, m) = 1
0 otherwise

That is, an access m is a hit at a program point with the set of all
possible concrete cache states P if and only if m is hit in all the
concrete cache states of P .

Maintaining the set of all possible cache states may not be fea-
sible (and scalable) for large programs with complex control flows
where a program point can potentially have hundreds or even thou-
sands of cache states. Thus we also employ abstract interpretation
to compute the abstract cache state at every program point [19]. An
abstract cache state is derived by joining all possible concrete cache
states at a program point.

DEFINITION 3 (Abstract Cache State). An abstract cache
state a is a vector 〈a[0], ...a[A− 1]〉 of length A where a[i] ∈ 2M .

An abstract cache state maps a cache line to a set of memory
blocks. Must analysis and may analysis [19] are usually employed
to compute abstract cache states for WCET analysis. Given a pro-
gram point, must analysis determines the set of memory blocks that
are guaranteed to be present in the cache, while may analysis deter-
mines the set of memory blocks that are never in the cache. Must
analysis uses abstract cache states where the position of a mem-
ory block is an upper bound of its age. In may analysis, the lower
bound of the age of a memory block is used as its position in the
abstract cache state, in order to capture the set of all memory blocks
that may be in the cache. Figure 2 shows the relationship between
a set of concrete cache states and the corresponding abstract cache
states.

a
b
c
d

a
b
c
e

c
a
b
f

{}
{a}

{b,c}
{}

join

P

young

old

age

{a, c}
{b}
{}

{d,e,f}

abstract cache states
must analysis may analysis

Figure 2: Concrete cache states and abstract cache states.

4. CACHE LOCKING
In this paper, we consider static cache locking, where the se-

lected memory blocks are locked into the cache before the program
starts execution and remain unchanged throughout the execution.
Furthermore, we consider line locking mechanism, where different
number of lines can be locked in different cache sets. As discussed
before, for our purposes, we can treat each cache set independently
because the memory blocks mapped to different cache sets do not
interfere. Each cache set can be considered as a fully associative
cache containing A lines, where A is the associativity. Once a
memory block is locked in a cache line, it can not be evicted from
the cache. The remaining unlocked lines in the cache set serve as a
fully associative cache with reduced capacity.

Note that the mapping of instructions to the cache sets depends
on the code memory layout. Inserting additional code for cache
locking may tamper this layout. To avoid this problem, we use
the trampolines [2] approach. The extra code to fetch and lock the
memory blocks in the cache are inserted at the end of the program
as a trampoline. We leave a dummy NOP instruction at the entry
point of the program that gets replaced by a call to this trampoline.

The main challenge is in selecting the memory blocks for locking
so as to minimize the WCET. In the following, we propose two
solutions. The first one is an optimal solution employing Integer

Linear Programming (ILP) formulation based on concrete cache
states and the second one is a heuristic approach based on abstract
cache states.

4.1 Optimal solution with concrete cache states
The set of concrete cache states at any program point captures the

exact set of cache states resulting from all possible program paths.
Based on this accurate set of cache states, we formulate an ILP
problem to optimally select the memory blocks for partial locking.
In the following, we first show the ILP formulation for a loop and
then extend it to the whole program.

4.1.1 ILP Formulation for Loop
We represent the loop body as a Directed Acyclic Graph (DAG).

Each DAG is associated with a unique source and sink node. We
compute the set of possible concrete cache states P at any point
of the program through static program analysis [11]. Given the
set of all possible cache states P and a memory block access m,
p_hit(P, m) determines whether the access is a cache hit or miss
before locking. Next, we proceed to determine the cache access
behavior of m after locking.

For each memory block m, we define a 0-1 decision variable
Lm, which indicates whether m is locked in the cache. Thus,

0 ≤ Lm ≤ 1

There are only A (associativity) cache lines available for locking in
each cache set. Thus for each cache set i∑

m∈Mi

Lm ≤ A

where Mi is the set of memory blocks mapped to cache set i.
The accesses to the locked memory blocks are cache hits. Let

Locki denote the set of memory blocks locked in cache set i. For an
unlocked memory block m mapped to cache set i (m ∈ Mi, m /∈
Locki), its access can be classified as hit or miss depending on the
concrete cache states P at that program point and Locki.

For a concrete cache state c ∈ P , we define agec
m as the age of

the memory block m in c, where agec
m = 0 (agec

m = A− 1) if m
is the most (least) recently accessed memory block in c. If m /∈ c
(c_hit(c, m) = 0), then agec

m = A. Thus, 0 ≤ agec
m ≤ A. If

m ∈ Mi and m /∈ Locki, then given a concrete cache state c, the
access to m is cache hit ifagec

m +
∑

m′∈Locki∧agec
m′>agec

m

Lm′

 < A (1)

In other words, if a locked memory block m′ ∈ Locki is younger
than m in the cache state c, then locking m′ does not change the
hit classification of m. However, if m′ ∈ Locki is older than m in
cache state c (i.e., agec

m′ > agec
m), then locking m′ essentially in-

creases age of m by 1. If the number of such older memory blocks
added to agec

m exceeds the associativity, then m becomes a cache
miss due to locking.

We define a 0-1 variable hc
m, which specifies whether m is a

cache hit in c after locking. Based on Equation 1,

hc
m =

{
1 if

(
A− agec

m −
∑

m′∈Locki∧agec
m′>agec

m
Lm′

)
> 0

0 otherwise

However, the above equation is not linear. We substitute it with the
equivalent linear equations as follows.

A−
∑

m′∈Locki∧agec
m′>agec

m

Lm′ − agec
m − U × hc

m ≤ 0

A−
∑

m′∈Locki∧agec
m′>agec

m

Lm′ − agec
m + U − U × hc

m > 0

where U is a large constant (U ≥ A).
The set of concrete cache states P at a program point usually

contains more than one concrete cache states (|P| > 1). Memory
block access m is guaranteed as cache hit if and only if it is cache
hit for every concrete cache state c ∈ P . We define a 0-1 variable
hPm, which specifies whether m is a cache hit in P after locking.

hPm =

{
1 if

∑
c∈P hc

m = |P|
0 otherwise

We linearize the above equation as follows.∑
c∈P

hc
m − hPm ≤ |P| − 1

∑
c∈P

hc
m − |P| × hPm ≥ 0

Finally, for each memory block access m, we define a 0-1 decision
variable hitm, which specifies whether m is cache hit or miss after
locking. Locked memory blocks are guaranteed to be cache hits.
On the other hand, for an unlocked memory block m, we rely on
its corresponding cache state P to determine the cache behavior.

hitm =

{
1 if Lm = 1
hPm otherwise

We linearize the above equation as follows.

hitm ≥ Lm, hitm ≥ hPm and hitm ≤ Lm + hPm

Thus, the access latency of basic block B after cache locking is
calculated as follows

TB =
∑

m∈B

(miss_lat− (miss_lat− hit_lat)× hitm)

where miss_lat and hit_lat are the cache miss penalty and cache
hit latency, respectively.

We also define a variable WB for each basic block B in the loop,
which represents the latency of the worst-case path rooted at basic
block B in the DAG after cache locking. Then

WB = max
B′∈imsucc(B)

{WB′ + TB}

where imsucc(B) is the set of immediate successors of B in DAG.
Therefore, for any outgoing edge from node B to node B′ (B →
B′) in the DAG, we have the following constraint

WB ≥WB′ + TB

Since there is no outgoing edge for the sink node of the loop, it is
defined specially

Wsink = Tsink

Obviously, Wsrc will capture the latency of the worst-case acyclic
path in the DAG (src is the source node of DAG). Let lb be the loop
bound of this loop (maximum number of iterations of this loop).
Then, Wsrc×lb is the WCET of this loop after cache locking. Thus,
the optimal cache locking result for this loop can be obtained by
minimizing Wsrc × lb (the objective function of ILP formulation).

4.1.2 Extension to the Whole Program
In the previous section, we present an ILP formulation to obtain

the optimal cache locking for a loop. In order to obtain the ILP
formulation for the whole program, we are required to start from

the innermost loops of the program. We first generate the ILP for-
mulation for the innermost loops, and then each innermost loop is
treated as a dummy basic block of the outer loop. Therefore, we
can construct the ILP formulation for the next level of loop. We
continue this way until we reach the outmost loop in the program.
Clearly, Wentry represents the WCET of the whole program under
cache locking, where entry denotes the entry node of program.
Finally, the locking overhead (e.g., the execution of the locking in-
structions) are included in the WCET of the whole program.

4.2 Heuristic with abstract cache states
In the previous section, we develop an optimal ILP formulation

using concrete cache states. However, programs with complex con-
trol flow may have hundreds or even thousands of cache states at
a program point. For such programs, maintaining all possible con-
crete cache states may not be feasible. Also ILP formulation may
take very long to reach a solution specially for larger programs and
larger associativity. Thus, we propose a heuristic approach based
on abstract cache states. Abstract cache state is a more compact
representation compared to the set of concrete cache states.

We first perform WCET analysis with cache modeling based on
abstract interpretation [19]. Then we can easily determine cache
hit/miss classification for each memory access based on the abstract
cache states. As a by-product of the WCET analysis, we obtain
the abstract cache states under must analysis at all program points.
Meanwhile, we also collect the execution frequency of each basic
block along the worse-case path. Then we iteratively lock some
memory blocks on the worse-case path to improve the WCET.

Suppose memory block m is on the worst-case path. Let latm be
the access latency of m according to the hit/miss classification in
WCET analysis, and fm is its execution frequency along the worst-
case path. By locking memory block m, all accesses to m will be
cache hits. Therefore, we define the benefit of locking m as

benefitm = (latm − hit_lat)× fm

where hit_lat is the cache hit latency. Thus, locking a memory
block guaranteed to be hit before locking does not give any benefit.

On the other hand, locking memory block m in cache may have
negative impact for the memory blocks mapped to the same set as
the associativity for this set is reduced by 1. Similar to concrete
cache state, we define the age of a memory block m in abstract
must cache state C as ageCm. When m ∈ C, 0 ≤ ageCm ≤ A − 1,
where A is the associativity. Otherwise, we set its age to A.

Suppose we choose to lock memory block m in the cache and its
benefitm > 0. In other words, m is not in the abstract must cache
state before locking. Then, locking m will downgrade the memory
block m′ from cache hit to cache miss if ageCm′ = A−1. Note that
the associativity A here refers to the current associativity of the set.
That is A refers to the original associativity of the cache minus the
number of memory blocks locked in the set so far. Therefore, we
define the cost of locking m as follows.

costm =
∑

m′∈Mi∧ageC
m′=A−1

(miss_lat− hit_lat)× fm′

where as before m ∈Mi. Then, the overall gain of locking m is

gainm = benefitm − costm

We compare different memory blocks in terms of their gain and
select the most beneficial memory block m to be locked. However,
gainm may not be the actual WCET reduction because the worst-
case path may change after locking m. Thus, we update cache
state for instructions mapped to the affected cache set and perform

Table 1: Characteristic of benchmarks & analysis time
Benchmarks Code Size

(bytes)
Optimal

(sec)
Heuristic

(sec) Speedup

adpcm 12,480 313.37 1.28 245
cnt 1,648 0.43 0.05 9
compress 4,864 145.61 0.33 441
crc 2,048 1.44 0.10 14
edn 7,296 1.07 0.16 7
fir 1,152 0.10 0.02 5
jfdctint 5,520 0.35 0.06 6
matmult 1,632 0.37 0.07 5
minver 6,256 114.20 0.35 326
qurt 2,048 1.20 0.13 9

WCET analysis again to obtain the exact WCET after locking m.
If the WCET is actually reduced, we lock m in the cache. We
continually select memory blocks for locking until either there is
no actual WCET improvement after locking any memory block or
there is no gain in the cost-benefit analysis for any memory block
m (i.e., gainm ≤ 0). Finally, the locking overhead is included.
The detail algorithm is shown in Appendix A.

5. EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluation of partial

cache locking. We compare both the optimal and the heuristic so-
lutions with static cache analysis [19] and the full cache locking
approach proposed by Falk et al. [6].

5.1 Experimental Setup
We use the benchmarks from MRTC benchmark suite [8] as

shown in Table 1. We compile our benchmarks for SimpleScalar
PISA (Portable ISA) instruction set [3] — a MIPS like instruc-
tion set architecture — with gcc cross-compiler. The control flow
graphs of these benchmarks are extracted and provided as input to
our cache locking analysis. Our framework is built on top of the
open-source WCET analysis tool Chronos [9]. The binary code
size of each program is shown in the second column of Table 1.
We perform all the experiments on 2.53GHz Intel Xeon CPU with
24GB memory. IBM CPLEX is used as the ILP solver.

We assume only one level of instruction cache in the architecture.
In other words, an instruction access is either cache hit or it has to
be fetched from memory. The cache hit latency is 1 cycle, while
a cache miss takes 30 cycles. As we are modeling the instruction
cache, we assume a simple in-order processor with unit-latency for
all data memory references.

5.2 Partial Cache Locking vs. Static Analysis
Figure 3 shows the WCET improvement of partial cache locking

over static analysis with no locking based on abstract interpreta-
tion [19]. The instruction cache is 4-way set associative with block
size of 32 bytes, and its capacity is varied from 512B to 1KB (see
Appendix for other settings).

Our partial cache locking technique significantly improves the
WCET over static analysis with no locking for many benchmarks
(e.g., cnt, crc and qurt) for different cache sizes. However, some
benchmarks show limited improvement of WCET via partial cache
locking, especially when the cache size is small. This is mainly due
to the fact that locking memory blocks destroys the deterministic
access pattern for some unlocked blocks. Therefore, our partial
locking technique decides not to lock these memory blocks and the
result of partial locking is close to that of static analysis.

For most of the benchmarks, the improvement increases as the
cache size increases, because there is more space for locking and
more memory blocks can be locked into the cache. However, for

0%
10%
20%
30%
40%
50%
60%
70%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

(a) Cache size: 512B (b) Cache size: 1KB

0%
10%
20%
30%
40%
50%
60%
70%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

Figure 3: WCET improvement of partial cache locking (opti-
mal and heuristic solution) over static cache analysis with no
locking (cache: 4-way set associative, 32-byte block).

(a) Cache size: 512B (b) Cache size: 1KB

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

Figure 4: WCET improvement of partial cache locking (opti-
mal and heuristic solution) over Falk et al.’s method (cache:
4-way set associative, 32-byte block).

some benchmarks, the improvement decreases as cache size in-
creases, for example fir. For fir, when the cache size increases,
more memory accesses become deterministic, which can be suc-
cessfully identified by static cache analysis. Thus, cache locking
may not help to improve the WCET much compared to static cache
analysis. Overall, more WCET improvement is observed as the
cache size increases. On an average, 16% and 23% improvement
are achieved for 512B and 1KB size cache, respectively.

5.3 Partial versus Full Cache Locking
There exist two full cache locking techniques as mentioned in

Section 2 [14, 6]. Even though Liu et al. [14] show that their
approach can achieve better WCET reduction compared to [6], it
has several limitations. Liu et al. do not consider the cache map-
ping function in the locking algorithm. They simply assume that
any memory block can be locked in any cache set (as if the cache
is a scratchpad memory). After locking decisions are made, they
employ code placement techniques that force the locked memory
blocks to be mapped to the appropriate cache sets. This can lead to
code size blowup, which has not been addressed in their work.

Thus we decide to compare our partial locking results with that
of Falk et al.’s method [6] as both approaches do not require any
subsequent code placement/layout technique. We choose memory
blocks as locking granularity instead of procedures originally used
in Falk et al.’s method for a fair comparison. Note that this choice
of granularity does not change the core greedy heuristic algorithm
proposed in [6]. The instruction cache is 4-way set associative with
block size of 32 bytes, and we vary its size from 512B to 1KB (see
Appendix for other settings).

The WCET improvement of partial cache locking over Falk et
al.’s method is shown in Figure 4. Both optimal and heuristic par-
tial locking approaches outperform Falk et al.’s method for differ-
ent cache sizes. Our partial cache locking techniques usually lock
part of the cache. The number of locked cache lines vary for dif-
ferent cache sets (see Appendix for detailed results). Thus, after
locking, there are still some cache lines left for the unlocked mem-
ory blocks to exploit their locality of accesses. However, in Falk
et al.’s method, the cache is fully locked and all the accesses to the
unlocked memory blocks are cache misses.

5.4 Optimal vs. Heuristic Approach
As shown in Figure 3 and 4, our heuristic approach obtains nearly

the same results as the optimal solution. Table 1 presents the av-
erage analysis time of different algorithms for all the benchmarks.
Clearly, our heuristic approach produces comparable results to the
optimal solution while it is more efficient in analysis time.

6. CONCLUSION
In this paper, we propose partial cache locking for WCET reduc-

tion. We have proposed an optimal partial locking solution based
on concrete cache states as well as a heuristic approach based on
abstract cache states. Our partial cache locking significantly re-
duces the WCET compared to the static cache analysis and the
state-of-the-art cache locking techniques that fully lock the cache.
Our heuristic achieves comparable WCET reduction to the optimal
solution but it is more efficient in terms of runtime. In the future,
we will consider data cache locking and explore dynamic cache
locking for further improvement.

7. ACKNOWLEDGMENTS
This work was partially supported by Singapore Ministry of Ed-

ucation Academic Research Fund Tier 2, MOE2009-T2-1-033.

8. REFERENCES

[1] A. Arnaud and I. Puaut. Dynamic instruction cache locking in hard real-time
systems. In RTNS, 2006.

[2] B. Buck and J. K. Hollingsworth. An API for runtime code patching. Int. J.
High Perform. Comput. Appl., 14, 2000.

[3] D. Burger and T. M. Austin. The simplescalar tool set, version 2.0. SIGARCH
Comput. Archit. News, 25, 1997.

[4] A. M. Campoy, I. Puaut, A. P. Ivars, and J. V. B. Mataix. Cache contents
selection for statically-locked instruction caches: An algorithm comparison. In
ECRTS, 2005.

[5] H. Falk and J. C. Kleinsorge. Optimal static WCET-aware scratchpad allocation
of program code. In DAC, 2009.

[6] H. Falk, S. Plazar, and H. Theiling. Compile-time decided instruction cache
locking using worst-case execution paths. In CODES+ISSS, 2007.

[7] C. Guillon, F. Rastello, T. Bidault, and F. Bouchez. Procedure placement using
temporal-ordering information: Dealing with code size expansion. J. Embedded
Comput., 1, 2005.

[8] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The Mälardalen WCET
benchmarks – past, present and future. In WCET, 2010.

[9] X. Li, Y. Liang, T. Mitra, and A. Roychoudury. Chronos: A timing analyzer for
embedded software. Science of Computer Programming, 69(1-3), 2007.

[10] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling for real-time software:
beyond direct mapped instruction caches. In RTSS, 1996.

[11] Y. Liang and T. Mitra. Cache modeling in probabilistic execution time analysis.
In DAC, 2008.

[12] Y. Liang and T. Mitra. Improved procedure placement for set associative
caches. In CASES, 2010.

[13] Y. Liang and T. Mitra. Instruction cache locking using temporal reuse profile. In
DAC, 2010.

[14] T. Liu, M. Li, and C. J. Xue. Minimizing WCET for real-time embedded
systems via static instruction cache locking. In RTAS, 2009.

[15] F. Martin, M. Alt, R. Wilhelm, and C. Ferdinand. Analysis of loops. In CC,
1998.

[16] I. Puaut and D. Decotigny. Low-complexity algorithms for static cache locking
in multitasking hard real-time systems. In RTSS, 2002.

[17] V. Suhendra and T. Mitra. Exploring locking & partitioning for predictable
shared caches on multi-cores. In DAC, 2008.

[18] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen. WCET centric data
allocation to scratchpad memory. In RTSS, 2005.

[19] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise WCET prediction
by separated cache and path analyses. Real-Time Syst., 18, 2000.

[20] X. Vera, B. Lisper, and J. Xue. Data cache locking for higher program
predictability. SIGMETRICS Perform. Eval. Rev., 31, 2003.

APPENDIX
A. HEURISTIC ALGORITHM

Algorithm 1 presents the details of our heuristic approach de-
scribed in Section 4.2. This approach is based on abstract cache
states. The algorithm iteratively selects the most beneficial mem-
ory block for locking based on the cost and benefit metrics defined
in Section 4.2. This process continues until there is no WCET im-
provement with further locking.

Algorithm 1: Heuristic with abstract cache states
Input: Cache configuration cfg and binary executable prog
Output: Set of locked memory blocks lock_set and WCET

after locking wcet
begin1

stop_locking := false; lock_set = null;2
analyze_abstract_cache_states(prog, cfg);3
wcet := analyze_wcet();4
while (!stop_locking) do5

/* select candidate memory block to lock */6
cnd := null; gaincnd := 0;
foreach m ∈M do7

Suppose m is mapped to cache set s;8
Let assoc be the current associativity of s;9
if (m /∈ lock_set ∧ assoc > 0) then10

benefitm := calculate_benefit();11
costm := calculate_cost(assoc);12
gainm := benefitm - costm;13
if gainm > gaincnd then14

cnd = m; gaincnd = gainm;15
16

17

if cnd 6= null then18
lock_to_cache(cnd);19
/* update cache states for affected cache set */20
update_cache_state(prog, cfg, cnd);
new_wcet := analyze_wcet();21
if new_wcet < wcet then22

wcet := new_wcet;23
lock_set := lock_set ∪ cnd;24
update associativity for the affected cache set;25

else26
stop_locking := true;27

28

else29
stop_locking := true;30

31

32

end33

The input to the algorithm is the cache configuration cfg and the
binary executable cfg. First, we perform cache modeling based on
abstract interpretation [19] for this binary executable on line 3. The
output of this analysis are the abstract cache states at each program
point. Next we perform WCET analysis of the binary executable
(line 4) where memory accesses are categorized into always hit,
always miss, and unclassified based on abstract cache states. The
wcet obtained in this step is the original WCET obtained through
static cache analysis and no cache locking.

Now, we iteratively select the most beneficial memory block for
locking into the cache. Let M be the set of all memory blocks.
We perform cost-benefit analysis for each memory block m ∈ M
where m is not yet locked (m /∈ lock_set) and the cache set m is

mapped to still has some unlocked cache lines (assoc > 0). We
gain benefit from locking m if m was not guaranteed to be a hit
after static cache analysis (see Section 4.2). However, there is a
cost associated with locking m. Let s be the cache set where m is
mapped to. Then the other memory blocks mapped to cache set s
but not yet locked will have one less cache block available in the
cache set s. As discussed in Section 4.2, some of these blocks now
may incur cache miss (even though their accesses were hits under
static cache analysis) depending on their relative age with respect
to the age of m in cache set s. The additional latency incurred due
to these cache misses will contribute to the cost of locking m. If
difference between benefit and cost of locking m is the gain. We
identify the memory block cnd with maximum gain.

If we cannot identify any memory block with positive gain, then
the locking algorithm terminates. Note that the cost-benefit analy-
sis is approximate in nature because it depends on the frequency of
memory accesses along the worst-case path before locking mem-
ory block cnd. After locking memory block cnd, the worst-case
path may change. So we update the abstract cache states for the
cache set where cnd is mapped to and repeat WCET analysis with
this new abstract cache states. If the new WCET is indeed lower
than the previous WCET, then we add the memory block cnd to
lock_set. We also need to decrease the associativity of the corre-
sponding cache set. If the actual WCET after locking m is lower
than the previous WCET, then we terminate the algorithm.

B. EVALUATION WITH DIFFERENT
CACHE CONFIGURATIONS

In this section, we perform an extensive comparison of our par-
tial cache locking solutions (optimal and heuristic) with static cache
analysis (no locking) [19] and Falk et al.’s method (full cache lock-
ing) [6] for various cache configurations.

0%
10%
20%
30%
40%
50%
60%
70%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

0%
10%
20%
30%
40%
50%
60%
70%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

(a) Cache size:256B (b) Cache size:2KB

Figure 5: Comparison between partial cache locking and static
cache analysis with no locking for cache size of 256B and 2KB
(cache:4-way set associative, 32-byte block).

(a) Cache size:256B (b) Cache size:2KB

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

Figure 6: Comparison between partial cache locking and Falk
et al.’s method for cache size of 256B and 2KB (cache:4-way set
associative, 32-byte block).

0%
10%
20%
30%
40%
50%
60%
70%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

0%
10%
20%
30%
40%
50%
60%
70%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

0%
10%
20%
30%
40%
50%
60%
70%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

0%
10%
20%
30%
40%
50%
60%
70%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

(a) Cache size:256B (b) Cache size:512B

(c) Cache size:1KB (d) Cache size:2KB

Figure 7: WCET improvement of partial cache locking over
static cache analysis (no locking) for direct mapped cache, 32-
byte block.

0%
10%
20%
30%
40%
50%
60%
70%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

0%
10%
20%
30%
40%
50%
60%
70%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

0%
10%
20%
30%
40%
50%
60%
70%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

0%
10%
20%
30%
40%
50%
60%
70%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

(a) Cache size:256B (b) Cache size:512B

(c) Cache size:1KB (d) Cache size:2KB

Figure 8: WCET improvement of partial cache locking over
static cache analysis (no locking) for 2-way set-associative
cache, 32-byte block.

(a) Cache size:256B (b) Cache size:512B

(c) Cache size:1KB

0%
10%
20%
30%
40%
50%
60%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

0%
10%
20%
30%
40%
50%
60%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

(d) Cache size:2KB

0%
10%
20%
30%
40%
50%
60%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

0%
10%
20%
30%
40%
50%
60%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

Figure 9: WCET improvement of partial cache locking over
static cache analysis (no locking) for 2-way set-associative
cache, 64-byte block.

(a) Cache size:256B (b) Cache size:512B

(c) Cache size:1KB (d) Cache size:2KB

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

Figure 10: WCET improvement of partial cache locking over
Falk et al.’s method (full locking) for direct mapped cache, 32-
byte block.

(a) Cache size:256B (b) Cache size:512B

(c) Cache size:1KB (d) Cache size:2KB

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

Figure 11: WCET improvement of partial cache locking over
Falk et al.’s method (full locking) for 2-way set-associative
cache, 32-byte block.

(a) Cache size:256B (b) Cache size:512B

(c) Cache size:1KB (d) Cache size:2KB

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

W
C

E
T

im
pr

ov
em

en
t

Optimal Heuristic

Figure 12: WCET improvement of partial cache locking over
Falk et al.’s method (full locking) for 2-way set-associative
cache, 64-byte block.

B.1 Different Cache Sizes
In this subsection, we present the evaluation results for 256B and

2KB size caches, respectively. The block size (32-byte) and asso-
ciativity (4-way) are the same as the cache configuration presented
in Section 5. Figure 5 shows the WCET improvement of partial
cache locking over static cache analysis with no locking and Figure
6 shows the WCET improvement of partial cache locking over full
locking (Falk et al.’s method). As expected, WCET improvement
of partial cache locking over static analysis is much higher with
bigger cache size as more space is available for locking memory
blocks. As compared to Falk et al.’s method, when the cache is
large enough to hold the entire program, all the memory blocks can
be locked to achieve the minimum WCET. In that scenario, partial
and full cache locking obtain identical solutions (e.g., cnt, crc, fir,
and matmult).

B.2 Different Associativity
In this subsection, we evaluate our partial cache locking for dif-

ferent cache associativity values. In Section 5, 4-way cache asso-
ciativity results are presented. Here we show the results of direct
mapped and 2-way set associative caches, while the block size re-
mains constant at 32 bytes. Figure 7 and 8 present the improvement
of partial cache locking over static cache analysis with no locking
for direct mapped cache and 2-way set associative cache, respec-
tively. Figure 10 and 11 present the improvement over full locking
(Falk et al.’s method) for different cache associativity.

It is observed that the WCET improvement of direct mapped
cache is not as good as that of 2-way and 4-way set associative
cache, especially when the cache size is small. For direct mapped
cache, there is only one cache line available in each set. Locking
a memory block in a cache set implies that all the accesses to the
other memory blocks in the cache set will be cache miss. Thus our
partial cache locking method decides not to lock any memory block
for most of the benchmarks. Therefore, the partial cache locking re-
sults are similar to that of static cache analysis with no locking, es-
pecially when the cache size is small. 2-way set associative caches
provide more opportunities for partial cache locking. Thus, more
WCET improvement is achieved compared to direct mapped cache.
Finally, partial cache locking outperforms static cache analysis with
no locking and full locking (Falk et al.’s method) for different as-
sociativity.

B.3 Different Block Sizes
In this section, we evaluate our partial cache locking for differ-

ent block size. In Section 5, we present results for 32 byte block
size. Here we evaluate the benefits of partial cache locking for 64
bytes block size. Figure 9 and 12 present the WCET improvement
with partial cache locking over static cache analysis with no lock-

ing and full locking (Falk et al.’s method), respectively. As shown,
our partial locking still achieves significant improvement.

C. NUMBER OF LOCKED LINES
As mentioned before, the main strength of partial cache locking

lies in the fact that cache lines are locked judiciously after perform-
ing careful cost-benefit analysis. If it is beneficial to keep a cache
line unlocked so that multiple memory blocks can benefit from it,
partial cache locking can identify such situations. In this subsec-
tion, we present the cache locking solutions derived by our partial
cache locking mechanisms (optimal and heuristic) for a particu-
lar cache configuration. We choose a 512-byte cache with 32-byte
block size and 4-way associativity. This cache has four cache sets
and each set has four cache lines. Table 2 shows the number of
locked cache line (i.e., locked memory blocks) per cache set.

Table 2: Number of lines locked in each set (cache: 512-byte
capacity, 4-way set associative, 32-byte block).

Benchmarks Algorithms Set 0 Set 1 Set 2 Set 3

adpcm optimal 1 1 1 1
heuristic 1 1 1 1

cnt optimal 2 0 1 1
heuristic 2 1 0 1

compress optimal 3 2 1 1
heuristic 1 2 2 2

crc optimal 3 3 2 3
heuristic 3 3 2 3

edn optimal 0 0 2 1
heuristic 0 0 2 1

fir optimal 3 3 3 3
heuristic 3 3 3 3

jfdctint optimal 1 3 2 2
heuristic 3 3 3 3

matmult optimal 1 2 0 0
heuristic 1 2 0 0

minver optimal 1 0 1 0
heuristic 1 0 1 1

qurt optimal 3 3 3 4
heuristic 3 3 3 3

As can be observed, for all the benchmarks, our partial cache
locking algorithms (optimal and heuristic) locks only a fraction of
the cache lines. But the number of locked cache lines varies for
different benchmarks and cache sets. For example, for compress
benchmark, the number of locked cache lines vary from 1–3 per
cache set across all the cache sets for a 4-way set associative cache.
These results clearly confirm that partial cache locking is indeed
important to minimize WCET compared to the two extreme ends
of the spectrum of choices, namely, full cache locking and no cache
locking.

