Abstract

Wu Huishan

Nanyang Technological University

An abelian group admits an order iff it is torsion-free, we consider degrees of orders on computable torsion-free abelian groups. For a computable torsionfree abelian group \mathcal{G} , Solomon (2003) showed that if \mathcal{G} has rank 1, then it has exactly two computable orders; if \mathcal{G} has finite rank ≥ 2 , then it has orders of all Turing degrees; and if \mathcal{G} has infinite rank, then it has orders of all degrees $\geq 0'$. Motivated by the question whether the set of all degrees of orders on a computable torsion-free abelian group is closed upwards, Kach, Lange and Solomon (2013) constructed a computable torsion-free abelian group \mathcal{G} of infinite rank with exactly two computable orders and a noncomputable, computably enumerable (c.e. for short) set C such that every C-computable order on \mathcal{G} is computable, so this \mathcal{G} has no orders in deg(C) > 0, but has orders in $\mathbf{0}$, a negative answer is provided for above question.

One proposed research topic is to study the computational complexity of above c.e. set C from the standpoint of classical computability theory, we will present a recent work on this topic from the viewpoint of high/low hierarchy. This is a joint work with my supervisor Wu Guohua.