A RAMSEY THEOREM FOR METRIC SPACES

SAHARON SHELAH, JONATHAN VERNER

We use the following variation of the standard “Hungarian” arrow notation which takes into account additional structure:

Definition 1. Let \mathcal{K} be a class of structures and κ, λ, ν be cardinals. The arrow

$$\kappa \rightarrow_{\mathcal{K}} (\lambda)^1_{\nu},$$

is shorthand for the statement that for every $K \in \mathcal{K}$ of size λ there is a $Y \in \mathcal{K}$ of size κ such that for any partition of Y into μ-many pieces one of the pieces contains an isomorphic copy of K.

In the talk we will investigate this arrow in the case where \mathcal{K} is the class of bounded metric spaces with “isomorphic copies” being scaled copies. We extend previous work on these questions (e.g. [1], [2], [3], [4]). In particular, W. Weiss shows in [4] that there is a limit to what one can prove:

Theorem 1 (Weiss). Assume that there are no measurable cardinals. If X is a topological space then there is a coloring of X by two colours such that X doesn’t contain a monochromatic homeomorphic copy of the Cantor set.

It follows that in the class of metric spaces there are no positive results if $\kappa > \omega$. However the case $\kappa = \omega$ is not ruled out and we prove a positive theorem*: Let \mathcal{M} be the class of bounded metric spaces with “X contains an isomorphic copy of Y” being “X contains a subspace which is a scaled copy of Y”. (K is a scaled copy of Y if there is a bijection $f : K \rightarrow Y$ onto Y and a scaling factor $c \in \mathbb{R}^+$ such that $d_K(x, y) = c \cdot d_Y(f(x), f(y))$).

Theorem 2.

$$2^\omega \rightarrow_{\mathcal{M}} (\omega)^1_{\omega}.$$

Time permitting we will also prove a version for ultrametric spaces where the size of the universal space (i.e. the cardinal on the left of the arrow) is \aleph_1. However, we must weaken the conclusion somewhat:

Theorem 3. There is a rational ultrametric (X, ρ) of size \aleph_1 such that for every coloring of X by countably many colors, X contains a monochromatic isometric copy of every finite rational ultrametric space.
REFERENCES

