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Repetition 1

Given two dfas recognising L and H, one can form new dfas
recognising L ∩H, L ∪H, L−H, (L−H) ∪ (H− L), L∗ and
L ·H. Furthermore, there are dfas recognising any finite set.

In various cases (Kleene star, concatenation), one first
constructs an nfa recognising the correspdonding language
and then transforms it into a dfa recognising the same
language using Büchi’s power set construction.

Hence, one can prove by induction over the size of regular
expressions, that every language defined by a regular
expression is also recognised by a dfa.
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Repetition 2

If L and H are context-free, so are L ·H, L ∪H and L∗.

There are context-free languages L and H such that L−H

and L ∩H are both not context-free.

Example: L = {0n1n2m : n,m ∈ N} and

H = {0n1m2k : n,m,k ∈ N ∧m ≤ k}.

L ∩H = {0n1n2m : n ≤ m} and L−H = {0n1n2m : n > m}.
Both are not context-free by the Pumping Lemma.

L ∩H: Take n large enough and pump 0n1n2n. At most two
types of digits are pumped. If the pumped parts contain 2

then omitting the pumped parts produces a word outside
L∩H; if the pumped parts do not contain a 2, then inserting
the pumped parts twice makes the number of 0 and 1 to be
larger than the number of 2.

L−H: Take n large enough and pump 0n1n2n−1.
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Repetition 3

Theorem.
If L is context-free and H is regular then L ∩H is
context-free.

Construction.
Let (N,Σ,P,S) be a context-free grammar generating L

with every rule being either A → w or A → BC with
A,B,C ∈ N and w ∈ Σ∗.

Let (Q,Σ, δ, s,F) be a dfa recognising H.

Let S′ /∈ Q×N×Q and make the following new grammar
(Q×N×Q ∪ {S′},Σ,R,S′) with rules R:
S′ → (s,S,q) for all q ∈ F;
(p,A,q) → (p,B, r)(r,C,q) for all rules A → BC in P and
all p,q, r ∈ Q;
(p,A,q) → w for all rules A → w in P with δ(p,w) = q.
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Repetition 4

Context-sensitive languages are closed under union,
concatenation, Kleene star and intersection.

Construction for intersection most complicated (among
these).

Used method: Overlayed non-terminal characters with
upper and lower half. Word in upper half follows derivation
of first language, word in lower half follows derivation of
second language. Need to use spaces and have rules for
space management.

At the end, there is a word v ∈ Σ∗ coded into the upper half
and a word w ∈ Σ∗ coded into the lower half. Can be
terminalised only if v = w.

Closure under complement delayed to Lecture 7.
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Games

Here games are two-player games.
Anke versus Boris.
Anke starts to play and then Boris and Anke move
alternately.

Game in Graph.
“Board of the game” is a finite graph (G,E).
Players move a marker around in the graph.
The player who moves the marker into the target wins.

Although many games are not defined that way, they can be
represented as a game moving a marker on a graph.
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Digit Game

Make a number to 0.

Starting with a decimal number, say 257.

Each player replaces one digit by a smaller one.

The player who reaches 0 wins.

Sample Plays
Anke: 257 → 252 Anke: 257 → 157.
Boris: 252 → 222 Boris: 157 → 154.
Anke: 222 → 221 Anke: 154 → 114.
Boris: 221 → 211 Boris: 114 → 110.
Anke: 211 → 011 Anke: 110 → 100.
Boris: 011 → 001 Boris: 100 → 000.
Anke: 001 → 000.
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Digit Game as Graph

Game graph when starting at two sample positions.

111start

101110 011

100 010 001

002

003start

001

000000
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Winning Positions and Strategies

A winning strategy is an algorithm or table which tells Anke
in each position how to move (in dependence of the prior
moves which occurred in the game) such that Anke will
eventually win.

A node v is a winning position for Anke iff there is a winning
strategy which tells Anke how to win, provided that the
game starts from the node v.

Similarly one defines winning strategies and positions for
Boris.

Example 4.3: Assume Anke starts in the following nodes.
Then 001,012,111 are winning positions and 011,213,257
are losing positions.

Quiz: Assume that it is Anke’s turn in the following
positions. Which are for Anke winning and which are losing
positions: 125,323,246,555?
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Example 4.5

Consider the following game:

sstart t u v w

Assume that it is Anke’s move. If she is in v then she can
win, so v is a winning position.

What about u? If she moves from u to v, she loses and
Boris wins. So every player reaching u returns to s.

Positions which are neither winning nor losing positions are
called draw positions. Here s, t,u are draw positions and
when both players play optimally, then the game runs
forever.

Certain board games have specific rules like that a draw is
reached if a position is visited three times in order to abort
infinite sequences of moves.
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Theorem 4.6: Deciding Games

Theorem. There is an algorithm which determines which
player has a winning strategy. The algorithm runs in time
polynomial in the size of the graph.

Proof. Let Q be the set of all nodes and T be the set of
target nodes. The games starts in some node in Q−T.

1. Let T0 = T and S0 = ∅ and n = 0.

2. Let Sn+1 = Sn ∪ {q ∈ Q− (Tn ∪ Sn) : one can go in one
step from q to a node in Tn}.

3. Let Tn+1 = Tn ∪ {q ∈ Q− (Tn ∪ Sn+1) : if one goes
from q one step then one ends up in Sn+1}.

4. If Sn+1 6= Sn or Tn+1 6= Tn then let n = n+1 and goto 2.

5. Sn are winning positions, Tn −T are losing positions
and Q− (Tn ∪ Sn) are draw positions.
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Comments

“Winning position” and “Losing position” refers to the player
whose turn is to move. Assume that it is Anke’s turn to
move.

Sn is the set of positions such that Anke can win within n

rounds when she starts to play now. Tn are those positions
v where Anke loses within n rounds when she starts to
move now or where the game is already in the target (so
that the last player Boris moving it there has won).

Sn+1 is the set of nodes from which Anke can move into a
node in Tn; Tn+1 is the set of nodes where either Anke
cannot move or the game is terminated or any move ends
up in a node in Sn+1 so that the opposing player wins within
n+ 1 moves.

If a player is in a draw position, then the player can move
such that the game remains in a draw position.
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Example for Theorem 4.6

Winning and Losing Positions for Easy Game.

T2start S2 S2 T1 S1 S1 T0

So the above game is a losing game for Anke and a
winning game for Boris.

Rstart R R R S1 S1 T0

Here the players will always move inside the set R of nodes
and not move to the nodes of S1 as then the opponent wins.
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Exercise 4.7

Consider a graph with node-set Q = {0,1,2, . . . ,13}, target

T = {0} and the following edges between the nodes.

0 1 2 3 4 5 6

7 8 9 10 11 12 13

Determine which of the nodes 1,2,3,4,5,6,7,8,9,10,11,12,13
are winning-positions, losing-positions and draw-positions for player

Anke.
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Example 4.8: Tic Tac Toe

Code each possible 3 ∗ 3 board as a node of the graph.

Each possible board has n markers X placed by Anke and
m markers O placed by Boris such that
0 ≤ m ≤ n ≤ m+ 1 ≤ 5.

The empty board is the start position and the players move
alternately by placing X and O into empty fields. Anke wins
if there are three X in a row, column or diagonal; Boris wins
if there are three O in a row, column or diagonal. T is the
set of all nodes where a player wins or the board is full.

Players move alternately and the following invariants hold:
If the game is not in a target node and there are m of X and
O each then Anke can move and places an X in an empty
field; if the game is not in a target node and there are m+ 1

of X and m of O then Boris can move and places an O in
an empty field.
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Game Graph
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Comment

Tic Tac Toe is a bit different from previous games as the
game can get stuck without a winner to be declared.

Such positions are also considered as draw positions.

If such dead ends exist, the algorithm to decide which
nodes are winning and losing has to be adjusted.

Furthermore, Tic Tac Toe is a moderate game, as there are

only 39 = 19683 many board positions of which many
cannot be reached by alternate moves (like 6 times X and 3

times O or having a row full of X plus a row full of O).

Computers can play this game optimally and even compute
a table which gives for each possible board the optimal
move in the case that this situation arises; in the case that
there are several moves of the same quality, the computer
might chose by random one of them for having variations
when playing the game repeatedly.
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Deciding Games

For strategic games with two alternately moving players
without random aspects, there are three possibilities (plus
unknown). Here what is known for famous games.

• The first player has a winning strategy: Connect Four,
Hex (on n ∗n board), 15∗15 Gomoku (no opening rules).

• The second player has a winning strategy: 4∗4 Othello,
6∗6 Othello.

• Both players have a draw strategy: Draughts
(Checkers), Nine Men’s Morris, Tic Tac Toe.

• Unknown: Chess, Go, 19∗19 Gomoku, 8∗8 Othello
(conjecture: draw).

http://en.wikipedia.org/wiki/Solved_game
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Not in this list

Games involving random aspects (cards, dices, . . .) do not
have perfect strategies. The reason is that a move which is
good with high probability might turn out to be bad if some
unlikely random event happens. Nevertheless, computers
might be better than humans in playing these games.

Multiplayer games usually do not have winning strategies
as at 3 players, 2 might collaborate to avoid that the third
player wins (although they should not do it).

Therefore the above analysis was for 2-player games
without random aspects. If there is just a random starting
point (in the graph), but no other random event, one can
determine for each possible starting point which player has
a winning strategy when starting from there.

Games might still be unsolved due to the high complexity
which an algorithmic solution of the game would need.
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Exercise 4.10

Let Divandincn,m be given by the graph with domain

{1,2, . . . ,n}, starting state m ∈ {2, . . . ,n} and target state 1.
Furthermore, each player can move from k ∈ {2, . . . ,n} to
ℓ ∈ {1,2, . . . ,n} iff either ℓ = k+ 1 or ℓ = k/p for some
prime number p.

(a) Show that every position is either a winning position for
Anke or for Boris. In particular, whenever the game goes
through an infinite sequence of moves then some player
leaves out a possibility to win.

(b) Show that if m ≤ n ≤ n′ and n is a prime number, then
the player who can win Divandincn,m can also win
Divandincn′

,m.

(c) Find values m,n,n′ with m < n < n′ where Anke has a
winning strategy for Divandincn,m and Boris for
Divandincn′

,m.
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Variants of Graph Games

One can vary the setting of graph games:

• The set of nodes is partitioned into sets A,B such that
every node is in exactly one of these sets and player
Anke moves iff the marker is in A and player Boris
moves iff the marker is in B;

• There are three disjoint sets of nodes TA,TB,TD of
target nodes; Anke wins when the game ends up in TA,
Boris wins if the game ends up in TB, the game is draw
when ending up in TD. A node is in one of these three
sets iff it has no outgoing edges.

Tic Tac Toe can be made to satisfy the above constraints.
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Example 4.12

Assume that a game with states Q and target set T is
given. Now consider a new game with nodes Q×{a,b} and
edges (p, a) → (q,b) and (p,b) → (q, a) whenever p → q in
the old game, TA = T× {b}, TB = T× {a}. The game

0 1 2 3

with T = {0} is translated into the below one with
A = Q× {a}, B = Q× {b}, TA = {(0,b)}, TB = {(0, a)}.

(0, a) (1, a) (2, a) (3, a)

(0, b) (1, b) (2, b) (3, b)
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Exercise 4.13

Design a game with A,B being disjoint nodes of Anke and
Boris and the edges chosen such that

• the players move alternately;

• the sets TA,TB of the winning nodes are disjoint;

• every node outside TA ∪TB has outgoing edges, that
is, TD = ∅;

• the so designed game is not an image of a symmetric
game in the way it was done in the previous example.

Which properties of the game can be used to enforce that?
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Exercise 4.14

The following game satisfies the second constraint from
Remark 4.11 and has an infinite game graph.

Assume that Q = N, x+ 4,x+ 3,x+ 2,x+ 1 → x for all
x ∈ N with the exception that nodes in TA and TB have no
outgoing edges where TA = {0,6,9} and
TB = {5,7,12,17}.

If the play of the game reaches a node in TA then Anke
wins and if it reaches a node in TB then Boris wins. Note
that if the game starts in nodes from TA or TB then it is a
win for Anke or Boris in 0 moves, respectively.

Determine for both players (Anke and Boris) which are the
winning positions for them. Are there any draw positions?
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Alternating Automata

Definition. Anke and Boris decide on moves in nfa while
processing a word w. Three possibilities for pairs (q, a) of
states q and symbols a:

• (q, a) → r: Next state is r;

• (q, a) → r ∨ p: Anke picks r or p;

• (q, a) → r ∧ p: Boris picks r or p.

The afa accpets a word w iff Anke has a winning strategy.

Example. States {p,q, r}; alphabet {0,1}; language {0,1}∗ · 1.

state type 0 1

p start, rejecting p ∧ q ∧ r q ∨ r

q accepting p ∧ q ∧ r p ∨ r

r accepting p ∧ q ∧ r p ∨ q
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Determinising Afas

Given afa with state-set Q and accepting states F.

Alternating to Non-Deterministic Automaton
States: All non-empty P ⊆ Q; P is accepting iff P ⊆ F.
Non-deterministic transitions: P ⊆ Q to R on a by looking at
all p ∈ P and check the type of transition. If p → q ∨ r

choose one of the successors and put it into R else put all
successors into R.

Alternating to Deterministic Automaton
States are non-empty sets of non-empty subsets of Q.
For each set M of subsets of Q and each state A, put for all
P ∈ A all the R into the successor-state B which can be
chosen by above nfa. However, if there are R,R′ ∈ B with
R ⊂ R′ then one can remove R′ from B. State A is
accepting iff there is a P ⊆ F contained in A.
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Double Exponential Growth

Alphabet {0,1, . . . ,n}, states {s,q,p1, . . . ,pn, r1, . . . , rn}, set
{p1, . . . ,pn} of accepting states.

state 0 i j /∈ {0, i}

s s ∨ q s s

q p1 ∧ . . . ∧ pn q q

pi pi ri pi

ri ri pi ri

The language recognised by the afa contains all words of
the form x0y0z where x,y, z ∈ {0,1, . . . ,n}∗ and z contains
each non-zero digit an even number of times.

Afa has 2n+ 2 states, dfa has 22
n

+ 1 states.

Exercise 4.19. Show that an afa with two states can be
converted into a dfa with four states; this bound is optimal.
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Product of Automata

Theorem 4.20
If there are n dfas (Qi,Σ, δi, si,Fi) with m states each
recognising L1, . . . ,Ln, respectively, then there is an afa
recognising L1 ∩ . . . ∩ Ln with 1+mn states.

Wlog the Qi are pairwise disjoint and let s /∈
⋃

i
Qi and

Q = {s} ∪
⋃

i
Qi.

On a let s → δ1(s1, a) ∧ . . . ∧ δn(sn, a); furthermore, for all Qi

and qi ∈ Qi, on a let qi → δi(qi, a).

The state s is accepting iff ε ∈ L1 ∩ . . . ∩ Ln and qi ∈ Qi is
accepting iff qi ∈ Qi.
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Example 4.21

Let Li contain the word with an even number of digit i and
Σ = {0,1, . . . ,n}, n = 3. Now Qi = {si, ti} and Fi = {si}.
If i = j then δi(si, j) = ti, δi(ti, j) = si
else δi(si, j) = si, δi(ti, j) = ti.

Now Q = {s, s1, s2, s3, t1, t2, t3, on 0, s → s1 ∧ s2 ∧ s3, on 1,
s → t1 ∧ s2 ∧ s3, on 2, s → s1 ∧ t2 ∧ s3, on 3, s → s1 ∧ s2 ∧ t3.
On j, si → δi(si, j) and ti → δi(ti, j). The states s, s1, s2, s3
are accepting.

Word 2021: On 2: s → s1 ∧ t2 ∧ s3;
On 0: s1 ∧ t2 ∧ s3 → s1 ∧ t2 ∧ s3;
On 2: s1 ∧ t2 ∧ s3 → s1 ∧ s2 ∧ s3;
On 1: s1 ∧ s2 ∧ s3 → t1 ∧ s2 ∧ s3.
The last state rejects because the conjunction contains a
rejecting state.
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Intersection of nfas

Exercise 4.22
If there are n nfas (Qi,Σ, δi, si,Fi) with m states each
recognising L1, . . . ,Ln, respectively, show that there is an
afa recognising L1 ∩ . . . ∩ Ln with 1+ (m+ |Σ|) · n states.

In particular, for n = 2 and Σ = {0,1,2}, construct explicitly
nfas and the product afa where L1 is the language of all
words where the last letter has already appeared before
and L2 is the language of all words where at least one letter
appears an odd number of times.

The proof can be done by adapting the one of Theorem
4.20 and use nfas in place of dfas. The main adjustment is
that in the first step one goes to new, conjunctively
connected states which have to memorise the character
just seen. From then on, all rules are disjunctive and not
deterministic as in Theorem 4.20.
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Exercise 4.23

Assume that a game has an infinite board N and starts with
three numbers a,b, c such that a < b < c; the initial value is
a = 12,b = 13, c = 14. Possible moves are to increment
one of the numbers by 1, as long as the condition on the
order of the numbers is not violated. The game ends with a
winner, when c becomes the double of a. Anke starts to
move. Is this game a winning game for Anke, a winning
game for Boris or a draw game. Provide the winning
strategy of the respective player or the draw strategy for
both players.

Advanced Automata Theory 4 Games – p. 31



Exercises 4.24-4.26

4.24: A game has fields {0,1,2,3,4,5,6,7,8,9,10,11} and
two markers which initially stand on 0 and 6. The players
move alternately one of the markers by adding, modulo 12,
either 1 or 2 to its position. When a player makes a move
such that both markers stand on the same field, the game
ends and the player wins. Is this game a winning game for
Anke, a winning game for Boris or a draw game. Provide
the winning strategy of the respective player or the draw
strategy for both players.

4.25: Find a regular language L and a number n such that
both the best dfa and nfa have n states but some afa needs
less states.

4.26: Construct an afa for the language of all decimal
numbers which are not divisible by any 1-digit prime
number.
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Exercises 4.27-4.30

Consider games on decimal numbers anan−1 . . . a1a0.
Players Anke and Boris move alternately. Determine for the
below games which player wins from the following start
situations: 300, 288, 1111, 1024. The player who reaches 0

wins. Let x denote the current number when the move is to
be made, for each nonzero x, some move have to be made.

4.27: The player can replace x by x− y where y is odd and
y ≤ x.

4.28: The player can reduce one non-zero digit by 1.

4.29: The player can replace one digit by a digit which is
one or two or three smaller.

4.30: The player can reduce one nonzero digit am by 1 and
change (optional) one digit ak with k < m to an arbitrary
value from 0,1,2,3,4,5,6,7,8,9.
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Exercises 4.32-4.34

Consider the following game on binary numbers. The player
make the number smaller by either changing a 1 to a 0 or
by interchanging a 1 with a more behind 0. The player
making the number to 0 wins. In the next two exercises,
determine which of the given binary numbers are winning
for Anke, who moves first. Sketch the winning strategies for
the winner to win the games.

Exercise 4.32
1010, 10101010, 10000, 100001, 1111.

Exercise 4.33
1110, 111100, 110011001100, 101111, 101010, 10101000.

Exercise 4.34
Provide a regular infinite set of binary numbers such that
each of them is a winning position for Boris (the player who
moves second). Prove that this set works.
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