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1 Chomsky Hierarchy and Grammars

In theoretical computer science, one considers several main ways to describe a language
L; here a language is usually a set of strings w over an alphabet Σ. The alphabet Σ is
usually finite. For example, {ε, 01, 10, 0011, 0101, 0110, 1001, 1010, 1100, 000111, . . .}
is the language of all strings over {0, 1} which contain as many 0 as 1. Furthermore,
let vw or v ·w denote the concatenation of the strings v and w by putting the symbols
of the second string behind those of the first string: 001 · 01 = 00101. Sets of strings
are quite important, here some ways to define sets.

Definition 1.1. (a) A finite list in set brackets denotes the set of the corresponding
elements, for example {001, 0011, 00111} is the set of all strings which have two 0s
followed by one to three 1s.

(b) For any set L, let L∗ be the set of all strings obtained by concatenating finitely
many strings from L: L∗ = {u1 · u2 · . . . · un : n ∈ N ∧ u1, u2, . . . , un ∈ L}.

(c) For any two sets L and H, let L ∪ H denote the union of L and H, that is,
the set of all strings which are in L or in H.

(d) For any two sets L and H, let L∩H denote the intersection of L and H, that
is, the set of all strings which are in L and in H.

(e) For any two sets L and H, let L ·H denote the set {v · w : v ∈ L ∧ w ∈ H},
that is, the set of concatenations of members of L and H.

(f) For any two sets L and H, let L − H denote the set difference of L and H,
that is, L−H = {u : u ∈ L ∧ u /∈ H}.

Remarks 1.2. For finite sets, the following additional conventions are important:
The symbol ∅ is a special symbol which denotes the empty set – it could also be
written as { }. The symbol ε denotes the empty string and {ε} is the set containing
the empty string.

In general, sets of strings considered in this lecture are usually sets of strings over
a fixed alphabet Σ. Σ∗ is then the set of all strings over the alphabet Σ.

Besides this, one can also consider L∗ for sets L which are not an alphabet but
already a set of strings themselves: For example, {0, 01, 011, 0111}∗ is the set of all
strings which are either empty or start with 0 and have never more than three consec-
utive 1s. The empty set ∅ and the set {ε} are the only sets where the corresponding
starred set is finite: ∅∗ = {ε}∗ = {ε}. The operation L 7→ L∗ is called the “Kleene
star operation” named after Stephen Cole Kleene who introduced this notion.

An example for a union is {0, 11} ∪ {01, 11} = {0, 01, 11} and for an intersection
is {0, 11} ∩ {01, 11} = {11}. Note that L ∩H = L− (L−H) for all sets L and H.

Formal languages are languages L for which there is a mechanism to check mem-
bership in L or to generate all members of L. The various ways to describe a language
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L are given by the following types of mechanisms:

• By a mechanism which checks whether a given word w belongs to L. Such a
mechanism is called an automaton or a machine.

• By a mechanism which generates all the words w belonging to L. This mecha-
nism is step-wise and consists of rules which can be applied to derive the word
in question. Such a mechanism is called a grammar.

• By a function which translates words to words such that L is the image of
another (simpler) language H under this function. There are various types of
functions f to be considered and some of the mechanisms to compute f are
called transducers.

• An expression which describes in a short-hand the language considered like, for
example, {01, 10, 11}∗. Important are here in particular the regular expressions.

Regular languages are those languages which can be defined using regular expres-
sions. Later, various characterisations will be given for these languages. Regular
expressions are a quite convenient method to describe sets.

Definition 1.3. A regular expression denotes either a finite set (by listing its ele-
ments), the empty set by using the symbol ∅ or is formed from other regular expressions
by the operations given in Definition 1.1 (which are Kleene star, concatenation, union,
intersection and set difference).

Convention. For regular expressions, one usually fixes a finite alphabet Σ first. Then
all the finite sets listed are sets of finite strings over Σ. Furthermore, one does not
use complement or intersection, as these operations can be defined using the other
operations. Furthermore, for a single word w, one writes a∗ in place of {a}∗ and abc∗

in place of {ab} · {c}∗. For a single variable w, w∗ denotes (w)∗, even if w has several
symbols. L+ denotes the set of all non-empty concatenations over members of L; so
L+ contains ε iff L contains ε and L+ contains a non-empty string w iff w ∈ L∗. Note
that L+ = L · L∗. Sometimes, in regular expressions, L + H is written in place of
L ∪H. This stems from the time where typesetting was mainly done only using the
symbols on the keyboard and then the addition-symbol was a convenient replacement
for the union.

Example 1.4. The regular language {00, 11}∗ consists of all strings of even length
where each symbol in an even position (position 0, 2, . . .) is repeated in the next odd
position. So the language contains 0011 and 110011001111 but not 0110.

The regular language {0, 1}∗ · 001 · {0, 1, 2}∗ is the set of all strings where after
some 0s and 1s the substring 001 occurs, followed by an arbitrary number of 0s and
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1s and 2s.
The regular set {00, 01, 10, 11}∗ ∩ {000, 001, 010, 010, 100, 101, 110, 111}∗ consists

of all binary strings whose length is a multiple of 6.
The regular set {0}∪{1, 2, 3, 4, 5, 6, 7, 8, 9} · {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ consists of all

decimal representations of natural numbers without leading 0s.

The set of binary numbers (without leading zeroes) can be described by the regular
expression {0} ∪ ({1} · {0, 1}∗). Alternatively, one could describe these numbers also
in a recursive way as the following example shows.

Example 1.5. If one wants to write down a binary number, one has the following
recursive rules:

• A binary number can just be the string “0”;

• A binary number can be a string “1” followed by some digits;

• Some digits can either be “0” followed by some digits or “1” followed by some
digits or just the empty string.

So the binary number 101 consists of a 1 followed by some digits. These some digits
consists of a 0 followed by some digits; now these some digits can again be described
as a 1 followed by some digits; the remaining some digits are now void, so one can
describe them by the empty string and the process is completed. Formally, one can
use S to describe binary numbers and T to describe some digits and put the rules
into this form:

• S → 0;

• S → 1T ;

• T → T0, T → T1, T → ε.

Now the process of making 101 is obtained by applying the rules iteratively: S → 1T
to S giving 1T ; now T → 0T to the T in 1T giving 10T ; now T → 1T to the T in 10T
giving 101T ; now T → ε to the T in 101T giving 101. Such a process is described by
a grammar.

Grammars have been formalised by linguists as well as by mathematicians. They
trace in mathematics back to Thue [87] and in linguistics, Chomsky [17] was one of the
founders. Thue mainly considered a set of strings over a finite alphabet Σ with rules
of the form l → r such that every string of the form xly can be transformed into xry
by applying that rule. A Thue-system is given by a finite alphabet Σ and a finite set
of rules where for each rule l → r also the rule r → l exists; a semi-Thue-system does
not need to permit for each rule also the inverted rule. Grammars are in principle
semi-Thue-systems, but they have made the process of generating the words more
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formal. The main idea is that one has additional symbols, so called non-terminal
symbols, which might occur in the process of generating a word but which are not
permitted to be in the final word. In the introductory example, S (binary numbers)
and T (some digits) are the non-terminal symbols and 0, 1 are the terminal digits.
The formal definition is the following.

Definition 1.6. A grammar (N,Σ, P, S) consists of two disjoint finite sets of symbols
N and Σ, a set of rules P and a starting symbol S ∈ N .

Each rule is of the form l → r where l is a string containing at least one symbol
from N .

v can be derived from w in one step iff there are x, y and a rule l → r such that
v = xly and w = xrw. v can be derived from w in arbitrary steps iff there are n ≥ 0
and u0, u1, . . . , un ∈ (N ∪Σ)∗ such that u0 = v, un = w and um+1 can be derived from
um in one step for each m < n.

Now (N,Σ, P, S) generates the set L = {w ∈ Σ∗ : w can be derived from S}.

Convention. One writes v ⇒ w for saying that w can be derived from v in one step
and v ⇒∗ w for saying that w can be derived from v (in an arbitrary number of steps).

Example 1.7. Let N = {S, T}, Σ = {0, 1}, P contain the rules S → 0T1, T →
0T, T → T1, T → 0, T → 1 and S be the start symbol.

Then S ⇒∗ 001 and S ⇒∗ 011: S ⇒ 0T1 ⇒ 001 and S ⇒ 0T1 ⇒ 011 by applying
the rule S → 0T1 first and then either T → 0 or T → 1. Furthermore, S ⇒∗ 0011
by S ⇒ 0T1 ⇒ 0T11 ⇒ 0011, that is, by applying the rules S → 0T1, T → T1 and
T → 0. S 6⇒∗ 000 and S 6⇒∗ 111 as the first rule must be S → 0T1 and any word
generated will preserve the 0 at the beginning and the 1 at the end.

This grammar generates the language of all strings which have at least 3 symbols
and which consist of 0s followed by 1s where there must be at least one 0 and one 1.

Example 1.8. Let ({S}, {0, 1}, P, S) be a grammar where P consists of the four rules
S → SS|0S1|1S0|ε.

Then S ⇒∗ 0011 by applying the rule S → 0S1 twice and then applying S → ε.
Furthermore, S ⇒∗ 010011 which can be seen as follows: S ⇒ SS ⇒ 0S1S ⇒ 01S ⇒
010S1 ⇒ 0100S11 ⇒ 010011.

This grammar generates the language of all strings in {0, 1}∗ which contain as
many 0s as 1s.

Example 1.9. Let ({S, T}, {0, 1, 2}, P, S) be a grammar where P consists of the rules
S → 0T |1T |2T |0|1|2 and T → 0S|1S|2S.

Then S ⇒∗ w iff w ∈ {0, 1, 2}∗ and the length of w is odd; T ⇒∗ w iff w ∈ {0, 1, 2}∗
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and the length of w is even but not 0.
This grammar generates the language of all strings over {0, 1, 2} which have an

odd length.

Exercise 1.10. Make a grammar which generates all strings with four 1s followed by
one 2 and arbitrary many 0s in between. That is, the grammar should correspond to
the regular expression 0∗10∗10∗10∗10∗20∗.

The Chomsky Hierarchy. Noam Chomsky [17] studied the various types of gram-
mars and introduced the hierarchy named after him; other pioneers of the theory of
formal languages include Marcel-Paul Schützenberger. The Chomsky hierarchy has
four main levels; these levels were later refined by introducing and investigating other
classes of grammars and formal languages defined by them.

Definition 1.11. Let (N,Σ, P, S) be a grammar. The grammar belongs to the first
of the following levels of the Chomsky hierarchy which applies:

(CH3) The grammar is called regular (or right-linear) if every rule (member of P )
is of the form A → wB or A → w where A,B are non-terminals and w ∈ Σ∗.
A language is regular iff it is generated by a regular grammar.

(CH2) The grammar is called context-free iff every rule is of the form A → w with
A ∈ N and w ∈ (N ∪ Σ)∗. A language is context-free iff it is generated by a
context-free grammar.

(CH1) The grammar is called context-sensitive iff every rule is of the form uAw →
uvw with A ∈ N and u, v, w ∈ (N ∪ Σ)∗ and v 6= ε; furthermore, in the case
that the start symbol S does not appear on any right side of a rule, the rule
S → ε can be added so that the empty word can be generated. A language is
called context-sensitive iff it is generated by a context-sensitive grammar.

(CH0) There is the most general case where the grammar does not satisfy any of
the three restrictions above. A language is called recursively enumerable iff it is
generated by some grammar.

The next theorem permits easier methods to prove that a language is context-sensitive
by constructing the corresponding grammars.

Theorem 1.12. A language L not containing ε is context-sensitive iff it can be
generated by a grammar (N,Σ, P, S) satisfying that every rule l → r satisfies |l| ≤ |r|.

A language L containing ε is context-sensitive iff it can be generated by a grammar
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(N,Σ, P, S) satisfying that S → ε is a rule and that any further rule l → r satisfies
|l| ≤ |r| ∧ r ∈ (N ∪ Σ− {S})∗.

Example 1.13. The grammar ({S, T, U}, {0, 1, 2}, P, S) with P consisting of the
rules S → 0T12|012|ε, T → 0T1U |01U , U1 → 1U , U2 → 22 generates the language
of all strings 0n1n2n where n is a natural number (including 0).

For example, S ⇒ 0T12 ⇒ 00T1U12 ⇒ 00T11U2 ⇒ 00T1122 ⇒ 0001U1122 ⇒
00011U122 ⇒ 000111U22 ⇒ 000111222.

One can also see that the numbers of the 0s, 1s and 2s generated are always the
same: the rules S → 0T12 and S → 012 and S → ε produce the same quantity of
these symbols; the rules T → 0T1U and T → 01U produce one 0, one 1 and one U
which can only be converted into a 2 using the rule U2 → 22 but cannot be converted
into anything else; it must first move over all 1s using the rule U1 → 1U in order
to meet a 2 which permits to apply U2 → 22. Furthermore, one can see that the
resulting string has always the 0s first, followed by 1s and the 2s last. Hence every
string generated is of the form 0n1n2n.

Note that the notion of regular language is the same whether it is defined by a regular
grammar or by a regular expression.

Theorem 1.14. A language L is generated by a regular expression iff it is generated
by a regular grammar.

Proof. One shows by induction that every language generated by a regular expression
is also generated by a regular grammar. A finite language {w1, w2, . . . , wn} is gener-
ated by the grammar with the rules S → w1|w2| . . . |wn. For the inductive sets, assume
now that L and H are regular sets (given by regular expressions) which are generated
by the grammars (N1,Σ, P1, S1) and (N2,Σ, P2, S2), where the sets of non-terminals
are disjoint: N1 ∩N2 = ∅. Now one can make a grammar (N1 ∪N2 ∪ {S, T},Σ, P, S)
where P depends on the respective case of L ∪H, L ·H and L∗. The set P of rules
(with A,B being non-terminals and w being a word of terminals) is defined as follows
in the respective case:

Union L ∪H: P contains all rules from P1 ∪ P2 plus S → S1|S2;

Concatenation L ·H: P contains the rules S → S1, T → S2 plus all rules of the
form A → wB which are in P1 ∪ P2 plus all rules of the form A → wT with
A → w in P1 plus all rules of the form A → w in P2;

Kleene Star L∗: P contains the rules S → S1 and S → ε and each rule A → wB
which is in P1 and each rule A → wS for which A → w is in P1.
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It is easy to see that in the case of the union, a word w can be generated iff one uses
the rule S → S1 and S1 ⇒∗ w or one uses the rule S → S2 and S2 ⇒∗ w. Thus
S ⇒∗ w iff w ∈ L or w ∈ H.

In the case of a concatenation, a word u can be generated iff there are v, w such
that S ⇒∗ S1 ⇒∗ vT ⇒ vS2 ⇒∗ vw and u = vw. This is the case iff L contains v and
H contains w: S1 ⇒∗ vT iff one can, by same rules with only the last one changed to
have the final T omitted derive that v ∈ L for the corresponding grammar; T ⇒∗ w
iff one can derive in the grammar for H that w ∈ L. Here T was introduced for being
able to give this formula; one cannot use S2 directly as the grammar for H might
permit that S2 ⇒∗ tS2 for some non-empty word t.

The ingredient for the verification of the grammar for Kleene star is that S1 → uS
without using the rule S → S1 iff S1 → u can be derived in the original grammar
for L; now one sees that S →∗ uS for non-empty words in the new grammar is only
possible iff u = u1u2 . . . un for some n and words u1, u2, . . . , un ∈ L; furthermore, the
empty word can be generated.

For the converse direction, assume that a regular grammar with rules R1, R2, . . . , Rn

is given. One makes a sequence of regular expressions EC,D,m and EC,m where C,D
are any non-terminals and which will satisfy the following conditions:

• EC,D,m generates the language of words v for which there is a derivation C ⇒∗

vD using only the rules R1, R2, . . . , Rm;

• EC,m generates the language of all words v for which there is a derivation C ⇒∗ v
using only the rules R1, R2, . . . , Rm.

One initialises all EC,0 = ∅ and if C = D then EC,D = {ε} else EC,D = ∅. If EC,m and
EC,D,m are defined for m < n, then one defines the expressions EC,m+1 and EC,D,m+1

in dependence of what Rm+1 is.
If Rm+1 is of the form A → w for a non-terminal A and a terminal word w then

one defines the updated sets as follows for all C,D:

• EC,D,m+1 = EC,D,m, as one cannot derive anything ending with D with help of
Rm+1 what can not already be derived without help of Rm+1;

• EC,m+1 = EC,m ∪ (EC,A,m · {w}), as one can either only use old rules what is
captured by EC,m or go from C to A using the old rules and then terminating
the derivation with the rule A → w.

In both cases, the new expression is used by employing unions and concatenations
and thus is in both cases again a regular expression.

If Rm+1 is of the form A → wB for non-terminals A,B and a terminal word w
then one defines the updated sets as follows for all C,D:
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• EC,D,m+1 = EC,D,m∪EC,A,m ·w · (EB,A,m ·w)∗ ·EB,D,m, as one can either directly
go from C to D using the old rules or go to A employing the rule and producing
a w and then ending up in B with a possible repetition by going be to A and
employing again the rule making a w finitely often and then go from B to D;

• EC,m+1 = EC,m ∪ EC,A,m · w · (EB,A,m · w)∗ · EB,m, as one can either directly
generate a terminal word using the old rules or go to A employing the rule and
producing a w and then ending up in B with a possible repetition by going be
to A and employing again the rule making a w finitely often and then employ
more rules to finalise the making of the word.

Again, the new regular expressions put together the old ones using union, concate-
nation and Kleene star only. Thus one obtains also on level m + 1 a set of regular
expressions.

After one has done this by induction for all the rules in the grammar, the resulting
expression ES,n where S is the start symbol generates the same language as the given
grammar did. This completes the second part of the proof.

For small examples, one can write down the languages in a more direct manner, though
it is still systematic.

Example 1.15. Let L be the language ({0, 1}∗ · 2 · {0, 1}∗ · 2) ∪ {0, 2}∗ ∪ {1, 2}∗.
A regular grammar generating this language is ({S, T, U, V,W}, {0, 1, 2}, P, S) with

the rules S → T |V |W , T → 0T |1T |2U , U → 0U |1U |2, V → 0V |2V |ε and W →
1W |2W |ε.

Using the terminology of Example 1.17, LU = {0, 1}∗ · 2, LT = {0, 1}∗ · 2 · LU =
{0, 1}∗ · 2 · {0, 1}∗ · 2, LV = {0, 2}∗, LW = {1, 2}∗ and L = LS = LT ∪ LV ∪ LW .

Exercise 1.16. Let L be the language ({00, 11, 22}·{33}∗)∗. Make a regular grammar
generating the language.

Example 1.17. Let ({S, T}, {0, 1, 2, 3}, P, S) be a given regular grammar.
For A,B ∈ {S, T}, let LA,B be the finite set of all words w ∈ {0, 1, 2, 3}∗ such that

the rule A → wB exists in P and let LA be the finite set of all words w ∈ {0, 1, 2, 3}∗
such that the rule A → w exists in P . Now the grammar generates the language

(LS,S)
∗ · (LS,T · (LT,T )

∗ · LT,S · (LS,S)
∗)∗ · (LS ∪ LS,T · (LT,T )

∗ · LT ).

For example, if P contains the rules S → 0S|1T |2 and T → 0T |1S|3 then the language
generated is

0∗ · (10∗10∗)∗ · (2 ∪ 10∗3)
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which consists of all words from {0, 1}∗ · {2, 3} such that either the number of 1s is
even and the word ends with 2 or the number of 1s is odd and the word ends with 3.

Exercise 1.18. Let ({S, T, U}, {0, 1, 2, 3, 4}, P, S) be a grammar where the set P
contains the rules S → 0S|1T |2, T → 0T |1U |3 and U → 0U |1S|4. Make a regular
expression describing this language.

The Pumping Lemmas are methods to show that certain languages are not regular
or not context-free. These criteria are only sufficient to show that a language is
more complicated than assumed, they are not necessary. The following version is the
standard version of the pumping lemma.

Theorem 1.19: Pumping Lemma. (a) Let L ⊆ Σ∗ be an infinite regular language.
Then there is a constant k such that for every u ∈ L of length at least k there is a
representation x · y · z = u such that |xy| ≤ k, y 6= ε and xy∗z ⊆ L.

(b) Let L ⊆ Σ∗ be an infinite context-free language. Then there is a constant k
such that for every u ∈ L of length at least k there is a representation vwxyz = u
such that |wxy| ≤ k, w 6= ε ∨ y 6= ε and vwℓxyℓz ∈ L for all ℓ ∈ N.

Comment. Pumping Lemmas like this one can also be seen as a game. They come
with a pumping conditions and for a language L, there are two players. The first
player Anke wants to show that L satisfies the respective pumping condition and the
second player Boris wants to show that this is not the case. One player of the two
has a winning strategy, that is, the player always wins then the player does the right
moves. If Anke has a winning strategy then L satisfies the pumping condition; if Boris
has a winning strategy then L does not satisfy the pumping condition. The game is
the following (with options (a) and (b) in step 3 referring to the respective parts of
the puming lemma).

1. Anke selects a pumping constant k;

2. If there are words in L of length at least k then Boris selects such a word z else
Anke has won the game;

3. Anke splits the word into parts u, v, w, x, y such that z = uvwxy and |v| ≥ 1
and for (a) |uv| ≤ k and x = y = ε and for (b) |vwx| ≤ k;

4. Boris selects natural number h ∈ {0, 1, 2, . . .};
5. If uvhwxhy ∈ L then Anke wins the game else Boris wins the game.

So L satisfies the pumping condition iff Anke has a winning strategy; this strategy only
needs to exist, it does not need to be effective in any way; however, for regular and
context-free languages, the winning strategies can be computed from the respective
regular expression or grammar in cases (a) and (b), respectively.
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Proof. Part (a): One considers for this proof only regular expressions constructed
by finite sets and unions, concatenations and Kleene star of other expressions. For
regular expressions σ, let L(σ) be the language described by σ. Now assume that σ is
a shortest regular expression such that for L(σ) fails to satisfy the Pumping Lemma.
One of the following cases must apply to σ:

First, L(σ) is a finite set given by an explicit list in σ. Let k be a constant longer
than every word in L(σ). Then the Pumping Lemma would be satisfied as it only
requests any condition on words in L which are longer than k – there are no such
words.

Second, σ is (τ ∪ ρ) for further regular expressions τ, ρ. As τ, ρ are shorter than
σ, L(τ) satisfies the Pumping Lemma with constant k′ and L(ρ) with constant k′′; let
k = max{k′, k′′}. Consider any word w ∈ L(σ) which is longer than k. If w ∈ L(τ)
then |w| > k′ and w = xyz for some x, y, z with y 6= ε and |xy| ≤ k′ and xy∗z ⊆ L(τ).
It follows that |xy| ≤ k and xy∗z ⊆ L(σ). Similarly, if w ∈ L(ρ) then |w| > k′′ and
w = xyz for some x, y, z with y 6= ε and |xy| ≤ k′′ and xy∗z ⊆ L(ρ). It again follows
that |xy| ≤ k and xy∗z ⊆ L(σ). Thus the Pumping Lemma also holds in this case
with the constant k = max{k′, k′′}.

Third, σ is (τ · ρ) for further regular expressions τ, ρ. As τ, ρ are shorter than σ,
L(τ) satisfies the Pumping Lemma with constant k′ and L(ρ) with constant k′′; let
k = k′ + k′′. Consider any word u ∈ L(σ) which is longer than k. Now u = vw with
v ∈ L(τ) and w ∈ L(ρ). If |v| > k′ then v = xyz with y 6= ε and |xy| ≤ k′ and
xy∗z ⊆ L(τ). It follows that |xy| ≤ k and xy∗(zw) ⊆ L(σ), so the Pumping Lemma
is satisfied with constant k in the case |v| > k′. If |v| ≤ k′ then w = xyz with y 6= ε
and |xy| ≤ k′′ and xy∗z ⊆ L(ρ). It follows that |(vx)y| ≤ k and (vx)y∗z ⊆ L(σ), so
the Pumping Lemma is satisfied with constant k in the case |v| ≤ k′ as well.

Fourth, σ is τ ∗ for further regular expression τ . Then τ is shorter than σ and
L(τ) satisfies the Pumping Lemma with some constant k. Now it is shown that
L(σ) satisfies the Pumping Lemma with the same constant k. Assume that v ∈
L(σ) and |v| > k. Then v = w1w2 . . . wn for some n ≥ 1 and non-empty words
w1, w2, . . . , wn ∈ L(τ). If |w1| ≤ k then let x = ε, y = w1 and z = w2 · . . . · wn. Now
xy∗z = w∗

1w2 . . . wn ⊆ L(τ)∗ = L(σ). If |w1| > k then there are x, y, z with w1 = xyz,
|xy| ≤ k, y 6= ε and xy∗z ⊆ L(τ). It follows that xy∗(z · w2 · . . . · wn) ⊆ L(σ). Again
the Pumping Lemma is satisfied.

It follows from this case distinction that the Pumping Lemma is satisfied in all
cases and therefore the regular expression σ cannot be exist as assumed. Thus all
regular languages satisfy the Pumping Lemma.

Part (b) is omitted; see the lecture notes on Theory of Computation.

In Section 2 below a more powerful version of the pumping lemma for regular sets
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will be shown. The following weaker corollary might also be sufficient in some cases
to show that a language is not regular.

Corollary 1.20. Assume that L is an infinite regular language. Then there is a
constant k such that for each word w ∈ L with |w| > k, one can represent w as
xyz = w with y 6= ε and xy∗z ⊆ L.

Exercise 1.21. Let p1, p2, p3, . . . be the list of prime numbers in ascending order.
Show that L = {0n : n > 0 and n 6= p1 · p2 · . . . · pm for all m} satisfies Corollary 1.20
but does not satisfy Theorem 1.19 (a).

Exercise 1.22. Assume that (N,Σ, P, S) is a regular grammar and h is a constant
such that N has less than h elements and for all rules of the form A → wB or A → w
with A,B ∈ N and w ∈ Σ∗ it holds that |w| < h. Show that Theorem 1.19 (a) holds
with the constant k being h2.

Exercise 1.23. Prove a weaker version of Theorem 1.19 (b) without requesting that
the |wxy| ≤ k. The idea to be used is that there is a constant k such that for every
word u ∈ L which is longer than k, one can be split into vwxyz such that there is a
non-terminal A with S ⇒∗ vAz ⇒∗ vwAyz ⇒∗ vwxyz. Then A ⇒∗ wAy is equivalent
to vAz ⇒∗ vwAyz and use this fact to derive the pumping lemma.

Example 1.24. The set L = {0p : p is a prime number} of all 0-strings of prime
length is not context-free.

To see this, assume the contrary and assume that k is the constant from the
pumping condition in Theorem 1.19 (b). Let p be a prime number larger than k.
Then 0p can be written in the form vwxyz with q = |wy| > 0. Then every string of
the form vwℓxyℓz is in L; these strings are of the form 0p+q·(ℓ−1). Now choose ℓ = p+1
and consider 0p+q·p. The number p+ q · p = p · (q+1) is not a prime number; however
0p+q·p is in L by the pumping condition in Theorem 1.19 (b). This contradiction
proves that L cannot be context-free.

Example 1.25. The language L of all words which have as many 0 as 1 satisfies
the pumping condition in Corollary 1.20 but not the pumping condition in Theo-
rem 1.19 (a).

For seeing the first, note that whenever w has as many 0 as 1 then every element
of w∗ has the same property. Indeed, L = L∗ and Corollary 1.20 is satisfied by every
language which is of the form H∗ for some H.

For seeing the second, assume the contrary and assume that n is the constant used
in Theorem 1.19 (a). Now consider the word 0n1n. By assumption there is a repre-
sentation xyz = 0n1n with |xy| ≤ n and y 6= ε. As a consequence, xyyz = 0n+m1n for
some m > 0 and xyyz /∈ L. Hence the statement in Theorem 1.19 (a) is not satisfied.

13



Theorem 1.26. Let L ⊆ {0}∗. The following conditions are equivalent for L:

(a) L is regular;

(b) L is context-free;

(c) L satisfies the Theorem 1.19 (a) for regular languages;

(d) L satisfies the Theorem 1.19 (b) for context-free languages.

Proof. Clearly (a) implies (b),(c) and (b),(c) both imply (d). Now it will be shown
that (d) implies (a).

Assume that k is the pumping constant for the context-free Pumping Lemma.
Then, for every word u ∈ L, one can split 0n into vwxyz such that |wxy| ≤ k and at
least one of w, y is not empty and vwhxyhz ∈ L for all h.

Now when h − 1 = ℓ · k!/|wy| for some integer ℓ, the word vwhxyhz is equal to
0n · 0k!·ℓ. As all these vwhxyhz are in L, it follows that 0n · (0k!)∗ ⊆ L. For each
remainder m ∈ {0, 1, . . . , k!− 1}, let

nm = min{i : ∃j [i > k and i = m+ jk! and 0i ∈ L]}

and let nm = ∞ when there is no such i, that is, min ∅ = ∞.
Now L is the union of finitely many regular sets: First the set L∩{ε, 0, 00, . . . , 0k}

which is finite and thus regular; Second, all those sets 0nm · (0k!)∗ where m < k! and
nm < ∞. There are at most k! many of these sets of the second type and each is
given by a regular expression. Thus L is the union of finitely many regular sets and
therefore regular itself.

Exercise 1.27. Consider the following languages:

• L = {0n1n2n : n ∈ N};
• H = {0n1m : n2 ≤ m ≤ 2n2};
• K = {0n1m2k : n ·m = k}.

Show that these languages are not context-free using Theorem 1.19 (b).

Exercise 1.28. Construct a context-sensitive grammar for {10n1 : n is a power of
three}. Here the powers of three are 1, 3, 9, 27, . . . and include the zeroth power of
three.

Exercise 1.29. Construct a context-sensitive grammar for {10n1 : n is at least four
and not a prime}.

Exercise 1.30. Construct a context-free grammar for the language {uvw ∈ {0, 1}∗:
|u| = |v| = |w| and u 6= w.

14



Exercise 1.31. Let F (L) = {v : ∃w ∈ L [v is obtained by reordering the symbols in
w]}. Reorderings include the void reordering where all digits remain at their position.
So F ({0, 00, 01}) = {0, 00, 01, 10}. Determine the possible levels in Chomsky hierarchy
which F (L) can have when L is regular. For each possible level, exhibit a regular
language L such that F (L) is exactly on that level.

Exercise 1.32. Let F (L) as in Exercise 1.31 and consider the following weaker
version of Theorem 1.19 (b): There is a constant c such that all words in u ∈ F (L)
with |u| ≥ c can be represented as u = v ·w ·x ·y ·z with w ·y 6= ε and vwnxynz ∈ F (L)
for all n ∈ N. Provide a regular language L such that F (L) satisfies this weaker
version of the pumping lemma but neither Theorem 1.19 (b) nor Corollary 1.20.

Exercise 1.33. Let L = {0n1m2k : n 6= m ∨ n 6= k ∨m 6= k}. As L is context-free, it
satisfies all pumping lemmas satisfied by context-free languages. Show that L satisfies
also Corollary 1.20 with the additional constraint that both the constant and the length
of the pump is 1, that is the following holds: (∗) There is a constant k such that every
word w ∈ L of length at least k + 1 can be split into xyz = w with |y| = 1 such that
xy∗z ⊆ L. Show that F (L) also satisfies (∗). Furthermore, is it true that whenever
a language H satisfies (∗) so does F (H)? Here F (L) and F (H) are defined as in
Exercise 1.31.

Exercise 1.34. For given L, let G(L) = {vw : wv ∈ L and v, w ∈ Σ∗} and note that
L ⊆ G(L), as it can be that v or w is ε in the above formula for G(L). Provide all
levels of the Chomsky hierarchy for which there is an L exactly on this level such that
G(L) is regular; note that when the membership problem of a language L cannot be
solved by an algorithm in exponential time then L is not context-sensitive.

Exercise 1.35. Let L = {w ∈ {0, 1, 2, 3}∗ : if a < b then b occurs more frequently
than a}. What is the exact level of L in the Chomsky hierarchy? Use grammars and
pumping lemmas to prove the result.

Exercise 1.36. Let L be given by the grammar ({S}, {0, 1}, {S → 01S|01, S0 →
0S, S1 → 1S, 0S → S0, 1S → S1}, S). Determine the level of L in the Chomsky
hierarchy, it is one of regular, context-free and context-sensitive, as it is given by
a context-sensitive grammar. Determine all words up to length 6 in L and explain
verbally when a word belongs to L.

Exercise 1.37. Construct context-free grammars for the sets L = {0n1m2k : n <
m∨m < k}, H = {0n1m2n+m : n,m ∈ N} and K = {w ∈ {0, 1, 2}∗ : w has a subword
of the form 20n1n2 for some n > 0 or w = ε}.

Which of the versions of the Pumping Lemma (Theorems 1.19 (a) and 1.19 (b)
and Corollary 1.20) are satisfied by L, H and K, respectively.
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Exercise 1.38. Let L = {0h1i2j3k : (h 6= i and j 6= k) or (h 6= k and i 6= j)} be
given. Construct a context-free grammar for L and determine which of versions of the
Pumping Lemma (Theorems 1.19 (a) and 1.19 (b) and Corollary 1.20) are satisfied
by L.

Exercise 1.39. Consider the grammar ({S}, {0, 1, 2, 3}, {S → 00S|S1|S2|3}, S) and
construct for the language L generated by the grammar the following: a regular gram-
mar for L and a regular expression for L.

In the following exercises, let fL(n) be the number of words w ∈ L with |w| < n. So
if L = {0}∗ then fL(n) = n and if L = {0, 1}∗ then fL(n) = 2n − 1.

Exercise 1.40. Is there a context-free language L with fL(n) = ⌊√n⌋, where ⌊√n⌋ is
the largest integer bounded by

√
n? Either prove that there is no such set or construct

a set with the corresponding context-free grammar.

Exercise 1.41. Is there a regular set L with fL(n) = n(n + 1)/2? Either prove that
there is no such set or construct a set with the corresponding regular grammar or
regular expression.

Exercise 1.42. Is there a context-sensitive set L with fL(n) = nn, where 00 =
0? Either prove that there is no such set or construct a set with the corresponding
grammar.

Exercise 1.43. Is there a regular set L with fL(n) = (3n−1)/2+⌊n/2⌋? Either prove
that there is no such set or construct a set with the corresponding regular grammar or
regular expression.

Exercise 1.44. Is there a regular set L with fL(n) = ⌊n/3⌋ + ⌊n/2⌋? Either prove
that there is no such set or construct a set with the corresponding regular grammar or
regular expression.

For the following exercises, call y a pump of xyz ∈ L iff |y| ≥ 1 and {x}·{y}∗ ·{z} ⊆ L.
For infinite languages L the optimal pump length k as witnessed by h is the smallest
number k for which there is a h such that all w ∈ L with |w| ≥ h have a pump of
length up to k.

Exercise 1.45. Determine the optimal pump length k and the witness length h for the
language {000, 111, 222}∗ ∩ {0000, 1111, 2222}∗ ∩ {00000, 11111, 22222}∗ and explain
the solution.
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Exercise 1.46. Determine the optimal pump length k and the witness length h for
the language of all words where the length modulo 10 is in {1, 3, 7, 9} and explain the
solution.

Exercise 1.47. Determine the optimal pump length k and the witness length h for
the language of all words where the length modulo 10 is in {0, 2, 4, 5, 6, 8} and explain
the solution.

Exercise 1.48. Determine the optimal pump length k and the witness length h for the
language {001100110011} · {222}∗ ∪ {0011} · {2222}∗ ∪ {001100110011001100110011}
and explain the solution.

Exercise 1.49. Determine the optimal pump length k and the witness length h for
the language of all decimal numbers without leading zeroes which are multiples of 512
and explain the solution.

In the following exercises, the task is the following: Given a set H which is interpreted
as a set of decimal numbers, find an infinite set L ⊆ H having the property stated in
the exercise. Furthermore, if possible L should be regular and a regular expression or
grammar should witness this; if L cannot be taken to be regular, but can be taken
to be context-free then a context-free grammar should witness that L is context-free
and one should use the pumping lemma to show that L cannot be taken regular; if
L is context-sensitive then a grammar should witness this and one should use the
context-free pumping lemma to prove that no infinite context-free L can solve the
task.

Exercise 1.50. Find infinite L ⊆ H for H = {10n20m1 : n ≥ m ≥ 1 and n +m is
even} such that all members of L are square numbers.

Exercise 1.51. Find infinite L ⊆ H for H = {10n30m30k1 : 2n ≥ m + k and 3
divides n+m+ k} such that all members of L are third powers (cubes).

Exercise 1.52. Find infinite L ⊆ H for H = {1}·{0}+ ·{3}·{0}+ ·{3}·{0}+ ·{1}·{0}+
such that all members of L are third powers (cubes).
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2 Finite Automata

An automaton is in general a mechanism which checks whether a word is in a given
language. An automaton has a number of states which memorise some information.
Here an example.

Example 2.1: Divisibility by 3. Let a0a1 . . . an be a decimal number. One can
check whether a0a1 . . . an is a multiple of 3 by the following algorithm using a memory
s ∈ {0, 1, 2} and processing in step m the digit am. The memory s is updated
accordingly.

Case s=0 : If am ∈ {0, 3, 6, 9} then update s = 0;
if am ∈ {1, 4, 7} then update s = 1;
if am ∈ {2, 5, 8} then update s = 2.

Case s=1 : If am ∈ {0, 3, 6, 9} then update s = 1;
if am ∈ {1, 4, 7} then update s = 2;
if am ∈ {2, 5, 8} then update s = 0.

Case s=2 : If am ∈ {0, 3, 6, 9} then update s = 2;
if am ∈ {1, 4, 7} then update s = 0;
if am ∈ {2, 5, 8} then update s = 1.

The number a0a1 . . . an is divisible by 3 iff s = 0 after processing an. For example,
123456 is divisible by 3 as the value of s from the start up to processing the corre-
sponding digits is 0, 1, 0, 0, 1, 0, 0, respectively. The number 256 is not divisible by 3
and the value of s is 0, 2, 1, 1 after processing the corresponding digits.

Quiz 2.2. Which of the following numbers are divisible by 3: 1, 20, 304, 2913, 49121,
391213, 2342342, 123454321?

Description 2.3: Deterministic Finite Automaton. The idea of this algorithm
is to update a memory which takes only finitely many values in each step according
to the digit read. At the end, it only depends on the memory whether the number
which has been processed is a multiple of 3 or not. This is a quite general algorithmic
method and it has been formalised in the notion of a finite automaton; for this, the
possible values of the memory are called states. The starting state is the initial value
of the memory. Furthermore, after processing the word it depends on the memory
whether the word is in L or not; those values of the memory which say a0a1 . . . an ∈ L
are called “accepting states” and the others are called “rejecting states”.

One can display the automata as a graph. The nodes of the graph are the states
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(possible values of the memory). The accepting states are marked with a double bor-
der, the rejecting states with a normal border. The indicator “start” or an incoming
arrow mark the initial state. Arrows are labelled with those symbols on which a tran-
sition from one state to anothers takes place. Here the graphical representation of the
automaton checking whether a number is divisible by 3.

0start 1

2

0,3,6,9 1,4,7

2,5,8

2,5,8

0,3,6,9

1,4,7

1,4,7
2,5,8

0,3,6,9

Mathematically, one can also describe a finite automaton (Q,Σ, δ, s, F ) as follows: Q
is the set of states, Σ is the alphabet used, δ is the transition function mapping pairs
from Q× Σ to Σ, s is the starting state and F is the set of accepting states.

The transition-function δ : Q × Σ → Q defines a unique extension with domain
Q × Σ∗ as follows: δ(q, ε) = q for all q ∈ Q and, inductively, δ(q, wa) = δ(δ(q, w), a)
for all q ∈ Q, w ∈ Σ∗ and a ∈ Σ.

For any string w ∈ Σ∗, if δ(s, w) ∈ F then the automaton accepts w else the
automaton rejects w.

Example 2.4. One can also describe an automaton by a table mainly maps down
δ and furthermore says which states are accepting or rejecting. The first state listed
is usually the starting state. Here a table for an automaton which checks whether a
number is a multiple of 7:
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q type δ(q, a) for a = 0 1 2 3 4 5 6 7 8 9
0 acc 0 1 2 3 4 5 6 0 1 2
1 rej 3 4 5 6 0 1 2 3 4 5
2 rej 6 0 1 2 3 4 5 6 0 1
3 rej 2 3 4 5 6 0 1 2 3 4
4 rej 5 6 0 1 2 3 4 5 6 0
5 rej 1 2 3 4 5 6 0 1 2 3
6 rej 4 5 6 0 1 2 3 4 5 6

This automaton checks whether a number is a multiple of 7.
On input 343 the automaton goes on symbol 3 from state 0 to state 3, then on

symbol 4 from state 3 to state 2 and then on symbol 3 from state 6 to state 0. The
state 0 is accepting and hence 343 is a multiple of 7 (in fact 343 = 7 ∗ 7 ∗ 7).

On input 999 the state goes first from state 0 to state 2, then from state 2 to state
1, then from state 1 to state 5. The state 5 is rejecting and therefore 999 is not a
multiple of 7 (in fact 999 = 7 ∗ 142 + 5).

Example 2.5. One can also describe a finite automaton as an update function which
maps finite states plus symbols to finite states by some algorithm written in a more
compact form. In general the algorithm has variables taking its values from finitely
many possibilities and it can read symbols until the input is exhausted. It does not
have arrays or variables which go beyond its finite range. It has explicit commands to
accept or reject the input. When it does “accept” or “reject” the program terminates.

function div257

begin var a in {0,1,2,...,256};

var b in {0,1,2,3,4,5,6,7,8,9};

if exhausted(input) then reject;

read(b,input); a = b;

if b == 0 then

begin if exhausted(input) then accept else reject end;

while not exhausted(input) do

begin read(b,input); a = (a*10+b) mod 257 end;

if a == 0 then accept else reject end.

This automaton checks whether a number on the input is a multiple of 257; further-
more, it does not accept any input having leading 0s. Here some sample runs of the
algorithm.

On input ε the algorithm rejects after the first test whether the input is exhausted.
On input 00 the algorithm would read b one time and then do the line after the test
whether b is 0; as the input is not yet exhausted, the algorithm rejects. On input 0
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the algorithm goes the same way until but finally accepts the input as the input is
exhausted after the symbol b has been read for the first time. On input 51657, the
algorithm initialises a as 5 after having read b for the first time. Then it reaches the
while-loop and, while reading b = 1, b = 6, b = 5, b = 7 it updates a to 51, 2, 25,
0, respectively. It accepts as the final value of a is 0. Note that the input 51657 is
201 ∗ 257 and therefore the algorithm is correct in this case.

Such algorithms permit to write automata with a large number of states in a more
compact way then making a state diagram or a state table with hundreds of states.

Note that the number of states of the program is actually larger than 257, as not
only the value of a but also the position in the program contributes to the state of
the automaton represented by the program. The check “exhausted(input)” is there
to check whether there are more symbols on the input to be processed or not; so
the first check whether the input is exhausted is there to reject in the case that
the input is the empty string. It is assumed that the input is always a string from
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗.

Exercise 2.6. Such an algorithm might be written in a form nearer to a finite automa-
ton if one gives the set of states explicitly, names the starting state and the accepting
states and then only places an algorithm or mathematical description in order to de-
scribe δ (in place of a table). Implement the above function div257 using the state
space Q = {s, z, r, q0, q1, . . . , q256} where s is the starting state and z, q0 are the ac-
cepting states; all other states are rejecting. Write down how the transition-function
δ is defined as a function from Q × {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} → Q. Give a compact
definition and not a graph or table.

Quiz 2.7. Let ({s, t}, {0, 1, 2}, δ, s, {t}) be a finite automaton with δ(s, a) = t and
δ(t, a) = s for all a ∈ {0, 1, 2}. Determine the language of strings recognised by this
automaton.

sstart t

0,1,2

0,1,2

Theorem 2.8: Characterising Regular Sets. If a language L is recognised by a
deterministic finite automaton then L is regular.

Proof. Let an automaton (Q,Σ, δ, s, F ) be given. Now one builds the regular gram-
mar (Q,Σ, P, s) with the following rules:
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• the rule q → ar is in P iff δ(q, a) = r;

• the rule q → ε is in P iff q ∈ F .

So the non-terminals of the grammar are the states of the automaton and also the
roles of every q ∈ Q is in both constructs similar: For all q, r ∈ Q, it holds that
q ⇒∗ wr iff δ(q, w) = r.

To see this, one proves it by induction. First consider w = ε. Now q ⇒∗ wr iff
q = r iff δ(q, w) = r. Then consider w = va for some symbol a and assume that
the statement is already proven for the shorter word v. Now q ⇒∗ wr iff there is a
non-terminal t with q ⇒∗ vt ⇒ var iff there is a non-terminal t with δ(q, v) = t and
t ⇒ ar iff there is a non-terminal t with δ(q, v) = t and δ(t, a) = r iff δ(q, w) = r.

The only way to produce a word w in the new grammar is to generate the word
wq for some q ∈ F and then to apply the rule q → ε. Thus, the automaton accepts
w iff δ(s, w) ∈ F iff there is a q ∈ F with s ⇒∗ q ∧ q ⇒ ε iff s ⇒∗ w. Hence w is
accepted by the automaton iff w is generated by the corresponding grammar.

The converse of this theorem will be shown later in Theorem 2.42.
There is a stronger version of the pumping lemma which directly comes out of the

characterisation of regular languages by automata; it is called the “Block Pumping
Lemma”, as it says that when a word in a regular language is split into sufficiently
many blocks then one can pump one non-empty sequence of these blocks.

Theorem 2.9: Block Pumping Lemma. If L is a regular set then there is a
constant k such that for all strings u0, u1, . . . , uk with u0u1 . . . uk ∈ L and u1, . . . , uk−1

being nonempty there are i, j with 0 < i < j ≤ k and

(u0u1 . . . ui−1) · (uiui+1 . . . uj−1)
∗ · (ujuj+1 . . . uk) ⊆ L.

So if one splits a word in L into k + 1 parts then one can select some parts in the
middle of the word which can be pumped.

Block Pumping Lemma as a Game. Player Anke wants to prove that the block
pumping lemma is satisfied and Boris wants to disprove this.

1. Anke selects Pumping constant k;

2. Boris selects k + 1 blocks u0, u1, . . . , uk with the inner blocks u1, u2, . . . , uk−1

being nonempty and the concatenation u0u1 . . . uk of all blocks being a word in
L;

3. Anke selects i, j such that uiui+1 . . . uj is a pump and i, j satisfy 0 < i ≤ j < k;

4. Boris selects a value h ∈ N;

5. If u0u1 . . . ui−1(uiui+1 . . . uj)
huj+1 . . . uk is in L then Anke wins the game else

Boris wins the game.
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Here it is a matter of taste whether one says “Boris selects a word in L and cuts it
into k + 1 blocks” or “Boris selects k + 1 blocks such that their concatenation is a
word in L”.

Proof. Given a regular set L, let (Q,Σ, δ, s, F ) be the finite automaton recognising
this language. Let k = |Q|+1 and consider any strings u0, u1, . . . , uk with u0u1 . . . uk ∈
L where the inner strings u1, u2, . . . , uk−1 are not empty. There are i and j with
0 < i < j ≤ k such that δ(s, u0u1 . . . ui−1) = δ(s, u0u1 . . . uj−1); this is due to the
fact that there are |Q| + 1 many values for i, j and so two of the states have to
be equal. Let q = δ(s, u0u1 . . . ui−1). By assumption, q = δ(q, uiui+1 . . . uj−1) and
so it follows that q = δ(s, u0u1 . . . ui−1(uiui+1 . . . uj−1)

h) for every h. Furthermore,
δ(q, ujuj+1 . . . uk) ∈ F and hence u0u1 . . . ui−1(uiui+1 . . . uj−1)

hujuj+1 . . . uk ∈ L for all
h.

Example 2.10. Let L be the language of all strings over {0, 1, 2} which contains
an even number of 0s. Then the pumping-condition of Theorem 2.9 is satisfied with
parameter n = 3: Given u0u1u2u3 ∈ L, there are three cases:

• u1 contains an even number of 0s. Then removing u1 from the word or inserting
it arbitrarily often does not make the number of 0s in the word odd; hence
u0(u1)

∗u2u3 ⊆ L.

• u2 contains an even number of 0s. Then u0u1(u2)
∗u3 ⊆ L.

• u1 and u2 contain both an odd number of 0s. Then u1u2 contains an even
number of 0s and u0(u1u2)

∗u3 ⊆ L.

Hence the pumping condition is satisfied for L.
Let H be the language of all words which contain a different number of 0s and

1s. Let k be any constant. Now let u0 = 0, u1 = 0, . . . , uk−1 = 0, uk = 1k+k!. If the
pumping condition would be satisfied for H then there are i, j with 0 < i < j ≤ k
and

0i(0j−i)∗0k−j1k+k! ⊆ H.

So fix this i, j and take h = k!
j−i

+ 1 (which is a natural number). Now one sees that

0i0(j−i)h0k−j1k+k! = 0k+k!1k+k! /∈ H, hence the pumping condition is not satisfied.

Theorem 2.11: Ehrenfeucht, Parikh and Rozenberg [25]. A language L is
regular if and only if both L and its complement satisfy the block pumping lemma.

Proof. The proof is based on showing the even more restrictive block cancellation
property. That is, it is shown that L is regular iff there is a constant k ≥ 3 such that
the following condition holds for k:
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(Ek): for all words u0, u1, . . . , uk, there are i, j ∈ {0, 1, . . . , k − 1} with
i < j and L(u0 . . . uk) = L(u0 . . . ui · uj+1 . . . uk).

This says in particular, if one cuts a word into k + 1 blocks with the zeroth and the
last block possibly empty then one can find an interval of some blocks not containing
the zeroth and the last such that deleting the interval from the word does not change
membership in L, so if x is a member of L so is the shorter word and if x is a member
of the complement of L so again is the shorter word.

On one hand, it will be shown that every regular set satisfies (Ek) for some k and
on the other hand that whenever a set satisfies (Ek) for some k then it is regular.
Furthermore, for each k and for each fixed alphabet, there are only finitely many sets
satisfying (Ek).

That regular sets satisfy (Ek) comes directly out of analysing the states of a dfa
recognising the corresponding regular language with k states and by choosing i, j such
that there is the same state after reading u0 . . . ui and after reading u0 . . . uj.

For the other direction, one has to choose a constant c > k such that every two-
colouring of pairs (i, j) from {0, 1, . . . , c} has a homogeneous set of size k + 1; this
constant exists by the finite version of Ramsey’s Theorem of Pairs [73].

Ramsey’s Theorem of pairs says the following: For each k there is a c such that if
one assigns to each pair (i, j) with i < j and i, j ∈ {0, 1, . . . , c− 1} one of the colours
white or red then there is a subset {h0, h1, . . . , hk} of {0, 1, . . . , c} such that all pairs
(i, j), (i′, j′) with i < j and i′ < j′ and i, j, i′, j′ ∈ {h0, h1, . . . , hk−1} have the same
colour. Such a subset is called homogeneous.

Ramsey’s Theorem of Pairs has been a very useful tool in proving combinatorial
properties in many branches of mathematics including the block pumping lemma.

Now let H1, H2 be two sets which satisfy (Ek) and assume they are identical on
all strings of length up to c. Now assume by way of contradiction that H1 6= H2.

Let x be the length-lexicographically first string on which H1(x) 6= H2(x) and let
u0 be ε, uh be the h-th symbol of x for h = 1, . . . , c− 1 and uc is the remaining part
of the word x. Furthermore, for i, j ∈ {0, 1, . . . , c} with i < j, make a two-colouring
col such that the following holds: If H1(u0u1 . . . ui · uj+1uj+2 . . . uc) = H1(x) then
col(i, j) = white else col(i, j) = red.

By Ramsey’s Theorem of Pairs there are h0, h1, . . . , hk on which col is homogeneous
and one can consider the splitting of x into k + 1 blocks u0 . . . uh0 , uh0+1 . . . uh1 , . . .,
uhk−1+1 . . . uc. These splittings again satisfy the property (Ek) for H1. As there must
be i, j ∈ {h0, h1, . . . , hk−1} with i < j and H1(u0u1 . . . uhi

· uhj+1uhj+2 . . . uc) = H1(x),
the homogeneous colour is white.

Furthermore, there must, by (Ek) for H2, exist i
′, j′ ∈ {h0, h1, . . . , hk−1} with i′ <

j′ and H2(u1u2 . . . ui′ · uj′+1uj′+2 . . . uc′) = H2(x). Due to homogenicity, it also holds
thatH1(u1u2 . . . ui′ ·uj′+1uj′+2 . . . uc′) = H1(x). On one hand, this givesH1(u1u2 . . . ui′ ·

24



uj′+1uj′+2 . . . uc′) 6= H2(u1u2 . . . ui′ · uj′+1uj′+2 . . . uc′), on the other hand the choice of
x gives that H1, H2 coincide on this string as it is shorter than x. This contradiction
leads to the conclusion that H1 and H2 coincide on all strings whenever both satisfy
(Ek) and H1(y) = H2(y) for all strings up to length c. So, whenever two sets satisfy
(Ek) and when they coincide on strings up to length c then they are equal.

Note that when L satisfies (Ek), so do also all derivatives Lx = {y : xy ∈ L}:
If ũ0, ũ1, . . . , ũk are k + 1 strings then one considers xũ0, ũ1, . . . , ũk for L and selects
indices i, j ∈ {0, 1, . . . , k − 1} with i < j such that L(xũ0ũ1 . . . ũk) = L(xũ0 . . . ũi ·
ũj+1 . . . ũk). It follows that Lx(ũ0ũ1 . . . ũk) = Lx(ũ0 . . . ũi · ũj+1 . . . ũk) and hence also
Lx satisfies (Ek).

Each derivative Lx is determined by the values Lx(y) for the y with |y| ≤ c. So
there are at most 21+d+d2+...+dc many derivatives where d is the number of symbols in
the alphabet; in particular there are only finitely many derivatives. The language L
is regular by the Theorem of Myhill and Nerode (Theorem 2.19).

However, there are non-regular languages L which satisfy the block pumping lemma.
Morse as well as Thue [87] constructed an infinite binary sequence in which there
is no non-empty subword of the form www. This sequence witnesses that there are
cubefree strings of arbitrary length and this fact is used to construct nonregular set
L satisfying the block pumping lemma.

Theorem 2.12: Sequence of Morse and Thue [87]. Let a0 = 0 and, for all n,
a2n = an and a2n+1 = 1 − an. Then the infinite binary sequence a0a1 . . . does not
contain a subword of the form www.

Proof. In the following, call a word a “cube” if it is not empty and of the form www
for some string w.

Assume by way of contradiction that the sequence of Morse and Thue contains a
cube as a subword and let www be the first such subword of the sequence. Let k be
the length of w and w1w2 . . . wk be the symbols in w (in this order).

In the case that w has even length, then consider the first position 2n + m
with m ∈ {0, 1} of www in the sequence. If m = 0 then an = a2n+m, an+1 =
a2n+2+m, . . . , an+3k/2 = a2n+3k else an = 1−a2n+m+1, an+1 = 1−a2n+2+m+1, . . . , an+3k/2

= 1 − a2n+3k+1. In both cases, anan+1 . . . an+3k/2 is of the form vvv where v has the
length k/2 and occurs before www. As www was chosen to be the first cube occurring
in the sequence, this case does not apply and k must be odd.

For the case of an odd k and for each h ∈ {1, 2, . . . , k − 1}, either the first or the
second occurrence of w satisfies that wh is at a position of the form 2n and wh+1 at a
position of the form 2n+1 so that, by the construction of the sequence, wh+1 = 1−wh.
Furthermore, by the same principle applied to the position where one copy of w ends
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and the next starts, one has that w1 = 1 − wk. However, as w has odd length, one
also has w1 = wk; for example if w has length 5 then w is either 01010 or 10101. This
gives a contradiction and therefore this case does also not occur. Hence the sequence
of Morse and Thue has no subword which is a cube.

Theorem 2.13 [14]. There is a block pumpable language which is not regular.

Proof. Let L contain all words which either contain a cube or whose length is not a
power of 10, so nonmembers of L have one of the lengths 1, 10, 100, 1000, . . . and no
other length. Now one shows that L has the block pumping constant 5. Assume that
w ∈ L and w is split into blocks u0, u1, u2, u3, u4, u5 and assume that u1, u2, u3, u4 are
all non-empty, as if one of them is empty one can pump that empty block. Now it
is shown that one can select one of the possible pumps u1, u1u2, u3, u3u4 such that
when omitting or repeating an arbitrary time the selected pump in w, the so modified
word is again in L. In other words, one of the following languages is a subset of L:
u0(u1)

∗u2u3u4u5, u0(u1u2)
∗u3u4u5, u0u1u2(u3)

∗u4u5 and u0u1u2(u3u4)
∗u5.

First consider the case that |u1u2| ≤ |u3u4|. In this case, |u0u1u2u1u2u3u4u5| ≤
|u0u3u4u5| · 3 and only one of the words u0u3u4u5, u0u2u3u4u5, u0(u1)

2u2u3u4u5 and
u0(u1u2)

2u3u4u5 has a length which is a power of 10. Hence one can select the pump
to be either u1 or u1u2 such that when the pump is omitted or doubled the resulting
word does not have a length which is a power of 10 and is therefore in L. Furthermore,
for both possible pumps and h ≥ 3, the words u0(u1)

hu2u3u4u5 and u0(u1u2)
hu3u4u5

do both contain a cube and are in L. Thus, one can choose the pump such that all
pumped words are in L.

Second in the case that |u3u4| < |u1u2|, one can do the same proof as before, only
with the possible pumps being u3 and u3u4, one of them works.

To see that L is not regular, note that for each power of 10 there is a word in the
complement of L which consists of the corresponding first symbols of the sequence of
Morse and Thue. Note that the complement of L is now infinite but cannot satisfy
any pumping lemma as it contains only cubefree words. Thus the complement of L
and, hence, also L itself cannot be regular.

Quiz 2.14. Which of the following languages over Σ = {0, 1, 2, 3} satisfy the pumping-
condition from Theorem 2.9:
(a) {00, 111, 22222}∗ ∩ {11, 222, 00000}∗ ∩ {22, 000, 11111}∗,
(b) {0i1j2k : i+ j = k + 5555},
(c) {0i1j2k : i+ j + k = 5555},
(d) {w : w contains more 1 than 0}?

Exercise 2.15. Find the optimal constants for the Block Pumping Lemma for the
following languages:
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(a) {w ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ : at least one nonzero digit a occurs in w at least
three times};
(b) {w ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ : |w| = 255};
(c) {w ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ : the length |w| is not a multiple of 6};
Here the constant for a language L is the least n such that for all words u0, u1, . . . , un

the implication

u0u1u2 . . . un ∈ L ⇒ ∃i, j [0 < i < j ≤ n and u0 . . . ui−1(ui . . . uj−1)
∗uj . . . un ⊆ L]

holds.

Exercise 2.16. Find the optimal constants for the Block Pumping Lemma for the
following languages:
(a) {w ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ : w is a multiple of 25};
(b) {w ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ : w is not a multiple of 3};
(c) {w ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ : w is a multiple of 400}.

Exercise 2.17. Find a regular language L so that the constant of the Block Pumping
Lemma for L is 4 and for the complement of L is 4196.

Exercise 2.18. Give an example L of a language which satisfies Theorem 1.19 (a)
(where for every w ∈ L of length at least k there is a splitting xyz = w with |xy| ≤ k,
|y| > 0 and xy∗z ⊆ L) but does not satisfy Theorem 2.9 (the Block Pumping Lemma).

Theorem 2.19: Myhill and Nerode’s Minimal DFA [67]. Given a language L,
let Lx = {y ∈ Σ∗ : xy ∈ L} be the derivative of L to x. The language L is regular iff
the number of different derivatives Lx is finite; furthermore, for languages with exactly
n derivatives, one can construct a complete dfa having n and there is no complete dfa
with less than n states which recognises L.

Proof. Let (Q,Σ, δ, s, F ) be a deterministic finite automaton recognising L. If
δ(s, x) = δ(s, y) then for all z ∈ Σ∗ it holds that z ∈ Lx iff δ(δ(s, x), z) ∈ F iff
δ(δ(s, y), z) ∈ F iff z ∈ Ly. Hence the number of different sets of the form Lx is a
lower bound for the size of the states of the dfa.

Furthermore, one can directly build the dfa by letting Q = {Lx : x ∈ Σ∗} and
define for Lx ∈ Q and a ∈ Σ that δ(Lx, a) is the set Lxa. The starting-state is the set
Lε and F = {Lx : x ∈ Σ∗ ∧ ε ∈ Lx}.

In practice, one would of course pick representatives for each state, so there is a
finite subset Q of Σ∗ with ε ∈ Q and for each set Ly there is exactly one x ∈ Q with
Lx = Ly. Then δ(x, a) is that unique y with Ly = Lxa.

For the verification, note that there are only finitely many different derivatives, so
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the set Q is finite. Furthermore, each state can be reached: For x ∈ Q, one can reach
the state x by feeding the word x into the automaton. Assume now that Lx = Ly.
Then Lxa = {z : xaz ∈ L} = {z : az ∈ Lx} = {z : az ∈ Ly} = {z : yaz ∈ L} = Lya,
thus the transition function δ is indeed independent of whether x or y is chosen to
represent Lx and will select the unique member z of Q with Lz = Lxa = Lya. In
addition, the rule for making exactly the states x with ε ∈ Lx be accepting is correct:
The reason is that, for x ∈ Q, the automaton is in state x after reading x and x has
to be accepted by the automaton iff x ∈ L iff ε ∈ Lx.

In the case that some derivative is ∅, one can get an automaton which has one less state
if one decides not to represent ∅; the resulting dfa would then be incomplete, that is,
there would be nodes q and symbols a with δ(q, a) being undefined; if the automaton
ends up in this situation, it would just reject the input without further analysis. An
incomplete dfa is a variant of a dfa which is still very near to a complete dfa but has
already gone a tiny step in direction of an nfa (as defined in Description 2.32 below).

Remark 2.20. Although the above theorem is published by Anil Nerode [67], it
is general known as the Theorem of Myhill and Nerode and both scientists, John
Myhill and Anil Nerode, are today acknowledged for this discovery. The notion of a
derivative was fully investigated by Brzozowski when working on regular expressions
[8].

Example 2.21. If L = 0∗1∗2∗ then L0 = 0∗1∗2∗, L01 = 1∗2∗, L012 = 2∗ and L0121 = ∅.
Every further Lx is equivalent to one of these four: If x ∈ 0∗ then Lx = L; if x ∈ 0∗1+

then Lx = 1∗2∗ as a 0 following a 1 makes the word to be outside L; if x ∈ 0∗1∗2+

then Lx ∈ 2∗. If x /∈ 0∗1∗2∗ then also all extensions of x are outside L and Lx = ∅.
The automaton obtained by the construction of Myhill and Nerode is the following.

L0start L01

L012 L0121

0

1

2

1

2
0

2
0,1

0,1,2
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As L0121 = ∅, one could also omit this node and would get an incomplete dfa with
all states being accepting. Then a word is accepted as long as one can go on in the
automaton on its symbols.

Example 2.22. Consider the language {0n1n : n ∈ N}. Then L0n = {0m1m+n : m ∈
N} is unique for each n ∈ N. Hence, if this language would be recognised by a dfa,
then the dfa would need infinitely many states, what is impossible.

Lemma 2.23: Jaffe’s Matching Pumping Lemma [45]. A language L ⊆ Σ∗ is
regular iff there is a constant k such that for all x ∈ Σ∗ and y ∈ Σk there are u, v, w
with y = uvw and v 6= ε such that, for all h ∈ N, Lxuvhw = Lxy.

Jaffe’s Pumping Lemma as a Game. Anke wants to show that a given language
L satisfies the pumping condition of Jaffe’s Lemma and Boris wants to prove the
opposite.

1. Anke selects a pumping constant k;

2. Boris selects a word xy with |y| = k;

3. Anke splits y into u, v, w with v 6= ε and y = uvw;

4. Boris selects h ∈ N and z ∈ Σ∗;

5. If L(xyz) = L(xuvhwz) then Anke wins the game else Boris wins the game.

Note that Lxy = Lxuvhw iff for all z, L(xyz) = L(xuvhwz). Thus Boris tries to select
a word z which witnesses a difference in the derivatives and Anke wins if the witness
does not verify this.

Comment. This version of Jaffe’s Pumping Lemma pumps at the end of the word
xy inside the y-part. There is also an equivalent version where one pumps within the
first k digits.

Proof. Assume that L satisfies Jaffe’s Matching Pumping Lemma with constant k.
For every word z with |z| ≥ k there is a splitting of z into xy with |y| = k. Now
there is a shorter word xuw with Lxuw = Lxy; thus one can find, by repeatingly using
this argument, that every derivative Lz is equal to some derivative Lz′ with |z′| < k.
Hence there are only 1 + |Σ| + . . . + |Σ|k−1 many different derivatives and therefore
the language is regular by the Theorem of Myhill and Nerode.

The converse direction follows by considering a dfa recognising L and letting k be
larger than the number of states in the dfa. Then when the dfa processes a word xyz
and |y| = k, then there is a splitting of y into uvw with v 6= ε such that the dfa is in
the same state when processing xu and xuv. It follows that the dfa is, for every h,
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in the same state when processing xuvh and therefore it accepts xuvhwz iff it accepts
xyz. Thus Lxuvhw = Lxy for all h.

Exercise 2.24. Assume that the alphabet Σ has 5000 elements. Define a language
L ⊆ Σ∗ such that Jaffe’s Matching Pumping Lemma is satisfied with constant k = 3
while every deterministic finite automaton recognising L has more than 5000 states.
Prove the answer.

Exercise 2.25. Find a language which needs for Jaffe’s Matching Pumping Lemma
at least constant k = 100 and can be recognised by a deterministic finite automaton
with 100 states. Prove the answer.

Consider the following weaker version of Jaffe’s Pumping Lemma which follows from
it.

Corollary 2.26. Regular languages L and also some others satisfy the following
condition:

There is a constant k such that for all x ∈ Σ∗ and y ∈ Σk with xy ∈ L there are
u, v, w with y = uvw and v 6= ε such that, for all h ∈ N, Lxuvhw = Lxy.

That is, in Corollary 2.26, one postulates the property of Jaffe’s Pumping Lemma
only for members of L. Then it loses its strength and is no longer matching.

Exercise 2.27. Show that the language L = {ε} ∪ {0n1m2k3 : n = m or k = 0} is a
context-free language which satisfies Corollary 2.26 but is not regular. Furthermore,
show directly that this language does not satisfy Jaffe’s Pumping Lemma itself; this is
expected, as only regular languages satisfy it.

Exercise 2.28. Is the following statement true: If L satisfies Corollary 2.26 and H
is regular then L ·H satisfies Corollary 2.26?

Exercise 2.29. Call a language prefix-free if whenever vw ∈ L and w 6= ε then
v /∈ L. Does every prefix-free language L for which Lmi satisfies Theorem 1.19 (a)
also satisfy Corollary 2.26? Here xmi is the mirror image of x, so 01122mi = 22110
and Lmi = {xmi : x ∈ L}. Prove the answer.

Exercise 2.30. Let Σ = {0, 1, 2}. Call a word v square-containing iff it has a
non-empty subword of the form ww with w ∈ Σ+ and let L be the language of all
square-containing words; call a word v palindrome-containing iff it has a non-empty
subword of the form wwmi or wawmi with a ∈ Σ and w ∈ Σ+ and let H be the language

30



of all palindrome-containing words.
Are the languages L and H regular? If so, provide a dfa. Which of the pumping

lemmas (except for the block pumping lemma) do they satisfy?

There are quite simple tasks where an automaton to check this might become much
larger than it is adequate for the case. For example, to check whether a string contains
a symbol twice, one would guess which symbol is twice and then just verify that it
occurs twice; however, a deterministic finite automaton cannot do it and the following
example provides a precise justification. Therefore, this chapter will look into mecha-
nisms to formalise this intuitive approach which is to look at a word like 0120547869
where one, by just looking at it, might intuitively see that the 0 is double and then
verify it with a closer look. Such type of intuition is not possible to a deterministic
finite automaton; however, nondeterminism permits to model intuitive decisions as
long as their is a way to make sure that the intuitive insight is correct (like scanning
the word for the twice occurring letter).

Example 2.31. Assume that Σ has n elements. Consider the set L of all strings
which contain at least one symbol at least twice.

There are at least 2n + 1 sets of the form Lx: If x ∈ L then Lx = Σ∗ else ε /∈ Lx.
Furthermore, for x /∈ L, Σ ∩ Lx = {a ∈ Σ : a occurs in x}. As there are 2n subsets of
Σ, one directly gets that there are 2n states of this type.

On the other hand, one can also see that 2n + 1 is an upper bound. If the dfa has
not seen any symbol twice so far then it just has to remember which symbols it has
seen else the automaton needs just one additional state to go when it has seen some
symbol twice. Representing the first states by the corresponding subsets of Σ and the
second state by the special symbol #, the dfa would has the following parameters:
Q = Pow(Σ) ∪ {#}, Σ is the alphabet, ∅ is the starting state and # is the unique
final state. Furthermore, δ is is given by three cases: if A ⊆ Σ and a ∈ Σ − A then
δ(A, a) = A ∪ {a}, if A ⊆ Σ and a ∈ A then δ(A, a) = #, δ(#, a) = #.

Description 2.32: Nondeterministic Finite Automaton. A nondeterministic
automaton can guess information and, in the case that it guessed right, verify that a
word is accepting.

A nondeterministic automaton (Q,Σ, δ, s, F ) differs from the deterministic au-
tomaton in the way that δ is a multi-valued function, that is, for each q ∈ Q and
a ∈ Σ the value δ(q, a) is a set of states.

Now one defines the acceptance-condition using the notion of a run: One says a
string q0q1 . . . qn ∈ Qn+1 is a run of the automaton on input a1 . . . an iff q0 = s and
qm+1 ∈ δ(qm, am+1) for all m ∈ {1, . . . , n}; note that the run has one symbol more
than the string processed. The nondeterministic automaton accepts a word w iff there
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is a run on the input w whose last state is accepting.
Note that for accepting a word, there needs only to be at least one accepting run;

other rejecting runs might also exist. For rejecting a word, all runs which exist must
be rejecting, this includes the case that there is no run at all (neither an accepting
nor a rejecting).

Example 2.33: Large DFA and small NFA. For the dfa with 2n + 1 states
from Example 2.31, one can make an nfa with n + 2 states (here for n = 4 and
Σ = {0, 1, 2, 3}). Thus an nfa can be exponentially smaller than a corresponding dfa.

∅start

{1}{0} {2} {3}

#

0,1,2,3

0 1 2

3

1,2,3 0,2,3 0,1,3 0,1,2

0,1,2,3

0 1 2

3

In general, Q contains ∅ and {a} for all a ∈ Σ and #; δ(∅, a) = {∅, {a}}; δ({a}, b) is
{a} in the case a 6= b and is # in the case a = b; δ(#, a) = #; ∅ is the starting state;
# is the only accepting state.

So the nfa has n+2 and the dfa has 2n +1 states (which cannot be made better).
So the actual size of the dfa is more than a quarter of the theoretical upper bound
2n+2 which will be given by the construction found by Büchi [9, 10] as well as Rabin
and Scott [72]. Their general construction which permits to show that every nfa with
n states is equivalent to a dfa with 2n states, that is, the nfa and the dfa constructed
recognise the same language.

Theorem 2.34: Determinisation of NFAs [9, 10, 72]. For each nfa (Q,Σ, δ, s, F )
with n = |Q| states, there is an equivalent dfa whose 2n states are the subsets Q′ of Q,
whose starting state is {s}, whose update-function δ′ is given by δ′(Q′, a) = {q′′ ∈ Q :
∃q′ ∈ Q′ [q′′ ∈ δ(q′, a)]} and whose set of accepting states is F ′ = {Q′ ⊆ Q : Q′ ∩ F 6=
∅}.

Proof. It is clear that the automaton defined in the statement of the theorem is a
dfa: For each set Q′ ⊆ Q and each a ∈ Σ, the function δ′ selects a unique successor
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Q′′ = δ′(Q′, a). Note that Q′′ can be the empty set and that, by the definition of δ′,
δ′(∅, a) = ∅.

Assume now that the nfa accepts a word w = a1a2 . . . am of m letters. Then
there is an accepting run (q0, q1, . . . , qm) on this word with q0 = s and qm ∈ F . Let
Q0 = {s} be the starting state of the dfa and, inductively, Qk+1 = δ′(Qk, ak+1) for
k = 0, 1, . . . ,m−1. One can verify by induction that qk ∈ Qk for all k ∈ {0, 1, . . . ,m}:
This is true for q0 = s by definition of Q0; for the inductive step, if qk ∈ Qk and
k < m, then qk+1 ∈ δ(qk, ak+1) and therefore qk+1 ∈ Qk+1 = δ′(Qk, ak+1). Thus
Qm ∩ F contains the element qm and therefore Qm is an accepting state in the dfa.

For the converse direction on a given word w = a1a2 . . . am, assume that the run
(Q0, Q1, . . . , Qm) of the dfa on this word is accepting. Thus there is qm ∈ Qm ∩ F .
Now one can, inductively for k = m − 1,m − 2, . . . , 2, 1, 0 choose a qk such that
qk+1 ∈ δ(qk, ak+1) by the definition of δ′. It follows that q0 ∈ Q0 and therefore q0 = s.
Thus the so defined sequence (q0, q1, . . . , qm) is an accepting run of the nfa on the
word w and the nfa accepts the word w as well.

This shows that the dfa is equivalent to the nfa, that is, it accepts and it rejects
the same words. Furthermore, as an n-element set has 2n subsets, the dfa has 2n

states.

Note that this construction produces, in many cases, too many states. Thus one would
consider only those states (subsets of Q) which are reached from others previously
constructed; in some cases this can save a lot of work. Furthermore, once the dfa is
constructed, one can run the algorithm of Myhill and Nerode to make a minimal dfa
out of the constructed one.

Example 2.35. Consider the nfa ({s, q}, {0, 1}, δ, s, {q}) with δ(s, 0) = {s, q}, δ(s, 1)
= {s} and δ(q, a) = ∅ for all a ∈ {0, 1}.

Then the corresponding dfa has the four states ∅, {s}, {q}, {s, q} where {q}, {s, q}
are the final states and {s} is the initial state. The transition function δ′ of the dfa is
given as

δ′(∅, a) = ∅ for a ∈ {0, 1},
δ′({s}, 0) = {s, q}, δ′({s}, 1) = {s},
δ′({q}, a) = ∅ for a ∈ {0, 1},
δ′({s, q}, 0) = {s, q}, δ′({s, q}, 1) = {s}.

This automaton can be further optimised: The states ∅ and {q} are never reached,
hence they can be omitted from the dfa.

The next exercise shows that the exponential blow-up between the nfa and the dfa is
also there when the alphabet is fixed to Σ = {0, 1}.
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Exercise 2.36. Consider the language {0, 1}∗ · 0 · {0, 1}n−1:
(a) Show that a dfa recognising it needs at least 2n states;
(b) Make an nfa recognising it with at most n+ 1 states;
(c) Made a dfa recognising it with exactly 2n states.

Exercise 2.37. Find a characterisation when a regular language L is recognised by
an nfa only having accepting states. Examples of such languages are {0, 1}∗, 0∗1∗2∗
and {1, 01, 001}∗ · 0∗. The language {00, 11}∗ is not a language of this type.

Example 2.38. One can generalise the nfa to a machine (Q,Σ, δ, I, F ) where a set I
of starting states replaces the single starting state s. Now such a machine accepts a
string w = a1a2 . . . ai ∈ Σi iff there is a sequence q0q1 . . . qi of states such that

q0 ∈ I ∧ qi ∈ F ∧ ∀j < i [qi+1 ∈ δ(qi, ai)];

if such a sequence does not exist then the machine rejects the input w. The following
machine with three states recognises the set 0∗1∗ ∪ 2∗3∗, the nodes are labelled with
the regular expressions denoting the language of the words through which one can
reach the corresponding node.

0∗start 0∗1+ 2∗start 2∗3+
1 3

0
1

2
3

The corresponding nfa would need 5 states, as one needs a common start state which
the nfa leaves as soon as it reads a symbol.

εstart 0+ 0∗1+ 2+ 2∗3+
0

1
2

3

1 3

0
1

2
3

Exercise 2.39. Let Σ = {0, 1, . . . , n − 1} and L = {w ∈ Σ∗ : some a ∈ Σ does not
occur in w}. Show that there is a machine like in Example 2.38 with |Q| = n which
recognises L and that every complete dfa recognising L needs 2n states.
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The exact trade-off between the numbers of states of an nfa and of a complete dfa was
determined by Meyer and Fischer [65]. Their construction does not need the above
multiple start states.

Exercise 2.40. Given an nfa ({q0, q1, . . . , qn−1}, {0, 1}, δ, q0, {q0}) with δ(qm, 1) =
{q(m+1)modn}, δ(q0, 0) = ∅ and δ(qm, 0) = {q0, qm} for m ∈ {1, 2, . . . , n − 1}. Deter-
mine the number of states of an equivalent complete and minimal dfa and explain how
this number is derived.

Exercise 2.41. Assume that the alphabet is unary, that is, Σ = {0}. Now show that
every nfa with two states over this alphabet has an equivalent dfa with up to three
states. For this, carry out the Büchi construction and show that at least one state is
not reached.

Theorem 2.42. Every language generated by a regular grammar is also recognised
by an nfa.

Proof. If a grammar has a rule of the form A → w with w being non-empty, one
can add a non-terminal B and replace the rule A → w by A → wB and B → ε.
Furthermore, if the grammar has a rule A → a1a2 . . . anB with n > 1 then one can
introduce n−1 new non-terminals C1, C2, . . . , Cn−1 and replace the rule by A → a1C1,
C1 → a2C2, . . ., Cn−1 → anB. Thus if L is regular, there is a grammar (N,Σ, P, S)
generating L such that all rules in P are either of the form A → B or the form
A → aB or of the form A → ε where A,B ∈ N and a ∈ Σ. So let such a grammar be
given.

Now an nfa recognising L is given as (N,Σ, δ, S, F ) where N and S are as in the
grammar and for A ∈ N, a ∈ Σ, one defines

δ(A, a) = {B ∈ N : A ⇒∗ aB in the grammar};
F = {B ∈ N : B ⇒∗ ε}.

If now w = a1a2 . . . an is a word in L then there is a derivation of the word a1a2 . . . an
of the form

S ⇒∗ a1A1 ⇒∗ a1a2A2 ⇒∗ . . .⇒∗ a1a2 . . . an−1 An−1 ⇒∗ a1a2 . . . an−1anAn

⇒∗ a1a2 . . . an.

In particular, S ⇒∗ a1A1, Am ⇒∗ am+1Am+1 for allm ∈ {1, 2, . . . , n−1} and An ⇒∗ ε.
It follows that An is an accepting state and (S,A1, A2, . . . , An) an accepting run of
the nfa on the word a1a2 . . . an.

If now the nfa has an accepting run (S,A1, A2, . . . , An) on a word w = a1a2 . . . an
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then S ⇒∗ a1A1 and, for all m ∈ {1, 2, . . . , n−1}, Am ⇒∗ am+1Am+1 and An ⇒∗ ε. It
follows that w ∈ L as witnessed by the derivation S ⇒∗ a1A1 ⇒∗ a1a2A2 ⇒∗ . . . ⇒∗

a1a2 . . . an−1An−1 ⇒∗ a1a2 . . . an−1anAn ⇒∗ a1a2 . . . an. Thus the nfa constructed
recognises the language L.

Example 2.43. The language L = 0123∗ has a grammar with terminal alphabet Σ =
{0, 1, 2, 3}, non-terminal alphabet {S, T}, start symbol S and rules S → 012|012T ,
T → 3T |3.

One first updates the grammar such that all rules are of the form A → aB or
A → ε for A,B ∈ N and a ∈ Σ. One possible updated grammar has the non-
terminals N = {S, S ′, S ′′, S ′′′, T, T ′}, the start symbol S and the rules S → 0S ′,
S ′ → 1S ′′, S ′′ → 2S ′′′|2T , S ′′′ → ε, T → 3T |3T ′, T ′ → ε.

Now the nondeterministic finite automaton is given as (N,Σ, δ, S, {S ′′′, T}) where
δ(S, 0) = {S ′}, δ(S ′, 1) = {S ′′}, δ(S ′′, 2) = {S ′′′, T ′}, δ(T, 3) = {T, T ′} and δ(A, a) = ∅
in all other cases.

Examples for accepting runs: For 0 1 2, an accepting run is S (0)S ′ (1)S ′′ (2)S ′′′

and for 0 1 2 3 3 3, an accepting run is S (0)S ′ (1)S ′′ (2)T (3)T (3)T (3)T ′.

Exercise 2.44. Let the regular grammar ({S, T}, {0, 1, 2}, P, S) with the rules P
being S → 01T |20S, T → 01|20S|12T . Construct a nondeterministic finite automaton
recognising the language generated by this grammar.

Exercise 2.45. Consider the regular grammar ({S}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, P, S)
where the rules in P are all rules of the form S → aaaaaS for some digit a and
the rule S → ε and let L be the language generated by this grammar. What is the
minimum number of states of a nondeterministic finite automaton recognising this
language L? What is the trade-off of the nfa compared to the minimal dfa for the
same language L? Prove the answers.

Theorem 1.14 showed that a language L is generated by a regular expression iff it has
a regular grammar; Theorem 2.8 showed that if L is recognised by a dfa then it L is
also generated by a regular expression; Theorem 2.34 showed that if L is recognised
by an nfa then L is recognised by a dfa; Theorem 2.42 showed if L is generated by
a regular grammar then L is recognised by an nfa. Thus these four concepts are all
equivalent.

Corollary 2.46. A language L is regular iff it satisfies any of the following equivalent
conditions:

(a) L is generated by a regular expression;

(b) L is generated by a regular grammar;
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(c) L is recognised by a deterministic finite automaton;

(d) L is recognised by a nondeterministic finite automaton;

(e) L and its complement satisfy both the block pumping lemma;

(f) L satisfies Jaffe’s pumping lemma;

(g) L has only finitely many derivatives (Theorem of Myhill and Nerode).

It was shown above that deterministic automata can be exponentially larger than
nondeterministic automata in the sense that a nondeterministic automaton with n
states can only be translated into a deterministic complete automaton with 2n states,
provided that one permits multiple start states. One might therefore ask, how do
the other notions relate to the size of states of automata. For the sizes of regular
expressions, they depend heavily on the question of which operation one permits.
Gelade and Neven [34] showed that not permitting intersection and complement in
regular expressions can cause a double exponential increase in the size of the expression
(measured in number of symbols to write down the expression).

Example 2.47. The language L =
⋃

m<n({0, 1}m ·{1}·{0, 1}∗ ·{10m}) can be written
down in O(n2) symbols as a regular expression but the corresponding dfa has at least
2n states: if x = a0a1 . . . an−1 then 10m ∈ Lx iff x10m ∈ L iff a0a1 . . . an−110

m ∈ L iff
am = 1. Thus for x = a0a1 . . . an−1 and y = b0b1 . . . bn−1, it holds that Lx = Ly iff
∀m < n [10m ∈ Lx ⇔ 10m ∈ Ly] iff ∀m < n [am = bm] iff x = y. Thus the language L
has at least 2n derivatives and therefore a dfa for L needs at least 2n states.

One can separate regular expressions with intersections even from nfas over the unary
alphabet {0} as the following theorem shows; for this theorem, let p1, p2, . . . , pn be
the first n prime numbers.

Theorem 2.48. The language Ln = {0p1}+ ∩ {0p2}+ ∩ . . . ∩ {0pn}+ has a regular
expression which can be written down with approximately O(n2 log(n)) symbols if one
can use intersection. However, every nfa recognising Ln has at least 2n states and
every regular expression for Ln only using union, concatenation and Kleene star needs
at least 2n symbols.

Proof. It is known that pn ≤ 2·n·log(n) for almost all n. Each set 0pm can be written
down as a regular expression consisting of two set brackets and pm zeroes in between,
if one uses Kleene star and not Kleene plus, one uses about 2pm+6 symbols (two times
0pm and four set brackets and one star and one concatenation symbol, where Kleene
star and plus bind stronger than concatenation, union and intersection). The n terms
are then put into brackets and connected with intersection symbols what gives a total
of up to 2n · pn + 3n symbols. So the overall number of symbols is O(n2 log(n)) in
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dependence of the parameter n.
The shortest word in the language must be a word of the form 0k where each of

the prime numbers p1, p2, . . . , pn divides k; as all of them are distinct primes, their
product is at least 2n and the product divides k, thus k ≥ 2n. In an nfa, the length
of the shortest accepted word is as long as the shortest path to an accepting state; in
this path, each state is visited at most once and therefore the length of the shortest
word is smaller than the number of states. It follows that an nfa recognising L must
have at least 2n states.

If a regular expression generating at least one word and only consisting of listed
finite sets connected with union, concatenation, Kleene plus and Kleene star, then one
can prove that the shortest word generated by σ is at most as long as the length of the
expression. By way of contradiction, assume that σ be the length-lexicographically
first regular expression such that σ generates some words, but all of these are longer
than σ. Let sw(σ) denote the shortest word generated by σ (if it exists) and if there
are several, sw(σ) is the lexicographically first of those.

• If σ is a list of words of a finite set, no word listed can be longer than σ, thus
|sw(σ)| ≤ |σ|.

• If σ = (τ ∪ ρ) then at least one of τ, ρ is non-empty, say τ . As |τ | < |σ|,
|sw(τ)| ≤ |τ |. Now |sw(σ)| ≤ |sw(τ)| ≤ |τ | ≤ |σ|.

• If σ = (τ · ρ) then |τ |, |ρ| < |σ| and |sw(σ)| = |sw(τ)|+ |sw(ρ)|, as the shortest
words generated by τ and ρ concatenated give the shortest word generated by
σ. It follows that |sw(τ)| ≤ |τ |, |sw(ρ)| ≤ |ρ| and |sw(σ)| = |sw(τ)|+ |sw(ρ)| ≤
|τ |+ |ρ| ≤ |σ|.

• If σ = τ ∗ then ε = sw(σ) and clearly |sw(σ)| ≤ |σ|.
• If σ = τ+ then sw(σ) = sw(τ) and |τ | < |σ|, thus |sw(σ)| = |sw(τ)| ≤ |τ | ≤ |σ|.

Thus in all five cases the shortest word generated by σ is at most as long as σ.
It follows that any regular expression generating L and consisting only of finite sets,
union, concatenation, Kleene star and Kleene plus must be at least 2n symbols long.

Example 2.49: Inductive Definition of Shortest Word. A counterpart to
structural induction are inductive definitions, which can also run along the structure
of regular expressions. For this, recall that for an alphabet Σ, the length-lexicographic
order chooses the shorter string, if two strings v, w compared are not of the same
length, and the lexicographically first string in the case that both strings have the
same length. So, for Σ = {0, 1}, the order is ε <ll 0 <ll 1 <ll 00 <ll 01 <ll 10 <ll

11 <ll 000 <ll . . . and one uses this length-lexicographical order <ll to define the
shortest word of a regular experssion sw(reg exp). The inductive definition over the
structure of regular expressions follows the following case-distinction:

sw(∅) = ∞;
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sw({w1, . . . , wn}) = minll{w1, . . . , wn};

sw(σ ∪ τ) =







sw(σ) if sw(τ) = ∞;
sw(τ) if sw(σ) = ∞;
minll{sw(σ), sw(τ)} otherwise;

sw(σ · τ) =







∞ if sw(σ) = ∞
or sw(τ) = ∞;

sw(σ) · sw(τ) otherwise;

sw(σ∗) = ε.

Now one could also use this structural definition to prove along the above cases that
|sw(σ)| ≤ |σ| where {, }, (, ), ∅,∪, ·, ∗,∞ are extra symbols not in Σ which are used in
either regular expressions or the output to denote that the regular expression does not
produce a word. Furthermore, |ε| = 0. In listings of finite sets, one denotes the empty
string by just making a string of length 0 over Σ, for example the input {, 00, 001} to
sw stands for {ε, 00, 001}. Note that {} is therefore {ε} and not ∅. It is left to the
reader to adjust the above definition and the treatment of regular expressions such
that brackets are taking correctly into account.

Exercise 2.50. Assume that a regular expression uses lists of finite sets, Kleene star,
union and concatenation and assume that this expression generates at least two words.
Prove that the second-shortest word of the language generated by σ is at most as long
as σ. Either prove it by structural induction or by an assumption of contradiction as
in the proof before; both methods are nearly equivalent.

Exercise 2.51. Is Exercise 2.50 also true if one permits Kleene plus in addition to
Kleene star in the regular expressions? Either provide a counter example or adjust the
proof. In the case that it is not true for the bound |σ|, is it true for the bound 2|σ|?
Again prove that bound or provide a further counter example.

Example 2.52: Ehrenfeucht and Zeiger’s Exponential Gap [27]. Assume that
the alphabet Σ consists of all pairs of numbers in {1, 2, . . . , n}×{1, 2, . . . , n}. Then a
complete dfa with n+1 states accepts all sequences of the form (1, a1), (a1, a2), (a2, a3),
. . . , (am−1, am) for any numbers a1, a2, . . . , am, where the automaton has the following
transition-function: If it is in state a on input (a, b) then it goes to state b else it goes
to state 0. The starting state is 1; the set {1, 2, . . . , n} is the set of accepting states
and once it reaches the state 0, the automaton never leaves this state. Ehrenfeucht
and Zeiger showed that any regular expression for this language needs at least 2n−1

symbols.
If one would permit intersection, this gap would not be there for this example, as

one could write
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({(a, b) · (b, c) : a, b, c ∈ {1, 2, . . . , n}}∗ · (ε ∪ {(a, b) : a, b ∈ {1, 2, . . . , n}}))
∩ ({(1, b) : b ∈ {1, 2, . . . , n}} · {(a, b) · (b, c) : a, b, c ∈ {1, 2, . . . , n}}∗ · (ε ∪
{(a, b) : a, b ∈ {1, 2, . . . , n}}))

to obtain the desired expression whose size is polynomial in n.

Exercise 2.53. Assume that an nfa of k states recognises a language L. Show that
the language does then satisfy the Block Pumping Lemma (Theorem 2.9) with con-
stant k+ 1, that is, given any words u0, u1, . . . , uk, uk+1 such that their concatenation
u0u1 . . . ukuk+1 is in L then there are i, j with 0 < i < j ≤ k + 1 and

u0u1 . . . ui−1(uiui+1 . . . uj−1)
∗ujuj+1 . . . uk+1 ⊆ L.

Exercise 2.54. Given numbers n,m with n > m > 2, provide an example of a regular
language where the Block pumping constant is exactly m and where every nfa needs
at least n states.

In the following five exercises, one should try to find small nfas; however, full marks
are also awarded if the nfa is small but not the smallest possible.

Exercise 2.55. Consider the language H = {vawa : v, w ∈ Σ∗, a ∈ Σ}. Let n be the
size of the alphabet Σ and assume n ≥ 2. Determine the size of the smallest dfa of H
in dependence of n and give a good upper bound for the size of the nfa. Explain the
results and construct the automata for Σ = {0, 1}.

Exercise 2.56. Consider the language I = {ua : u ∈ (Σ − {a})∗, a ∈ Σ}. Let n be
the size of the alphabet Σ and assume n ≥ 2. Determine the size of the smallest dfa
of I in dependence of n and give a good upper bound for the size of the nfa. Explain
the results and construct the automata for Σ = {0, 1}.

Exercise 2.57. Consider the language J = {abuc : a, b ∈ Σ, u ∈ Σ∗, c ∈ {a, b}}.
Let n be the size of the alphabet Σ and assume n ≥ 2. Determine the size of the
smallest dfa of J in dependence of n and give a good upper bound for the size of the
nfa. Explain the results and construct the automata for Σ = {0, 1}.

Exercise 2.58. Consider the language K = {avbwc : a, b ∈ Σ, v, w ∈ Σ∗, c /∈ {a, b}}.
Let n be the size of the alphabet Σ and assume n ≥ 2. Determine the size of the
smallest dfa of K in dependence of n and give a good upper bound for the size of the
nfa. Explain the results and construct the automata for Σ = {0, 1}.

Exercise 2.59. Consider the language L = {w : ∃ a, b ∈ Σ [w ∈ {a, b}∗]}. Let n be
the size of the alphabet Σ and assume n ≥ 2. Determine the size of the smallest dfa
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of L in dependence of n and give a good upper bound for the size of the nfa. Explain
the results and construct the automata for Σ = {0, 1, 2}.

The next exercises deal with Jaffe’s Pumping Lemma and its constants.

Exercise 2.60. Show that an nfa for the language {0000000}∗ ∪ {00000000}∗ needs
only 16 states while the constant for Jaffe’s pumping lemma is 56.

Exercise 2.61. Generalise the idea of Exercise 2.60 to show that there is a family
Ln of languages such that an nfa for Ln can be constructed with O(n3) states while
Jaffe’s pumping lemma needs a constant of at least 2n. Provide the family of the Ln

and explain why it satisfies the corresponding bounds.

Exercise 2.62. Determine the constant of Jaffe’s pumping lemma and the sizes of
minimal nfa and dfa for ({00} · {00000}) ∪ ({00}∗ ∩ {000}∗).
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3 Combining Languages

One can form new languages from old ones by combining them with basic set-theore-
tical operations. In most cases, the complexity in terms of the level of the Chomsky
hierarchy does not change.

Theorem 3.1: Basic Closure Properties. Assume that L,H are languages which
are on the level CHk of the Chomsky hierarchy. Then the following languages are also
on the level CHk: L ∪H, L ·H and L∗.

Description 3.2: Transforming Regular Expressions into Automata. First
it is shown how to form dfas which recognise the intersection, union or difference of
given sets. So let (Q1,Σ, δ1, s1, F1) and (Q2,Σ, δ2, s2, F2) be dfas which recognise L1

and L2, respectively.
Let (Q1 ×Q2,Σ, δ1 × δ2, (s1, s2), F ) with (δ1 × δ2)((q1, q2), a) = (δ1(q1, a), δ2(q2, a))

be a product automaton of the two given automata; here one can choose F such that
it recognises the union or intersection or difference of the respective languages:

• Union: F = F1 ×Q2 ∪Q1 × F2;

• Intersection: F = F1 × F2 = F1 ×Q2 ∩Q1 × F2;

• Difference: F = F1 × (Q2 − F2);

• Symmetric Difference: F = F1 × (Q2 − F2) ∪ (Q1 − F1)× F2.

For example, let the first automaton recognise the language of words in {0, 1, 2} with
an even number of 1s and the second automaton with an even number of 2s. Both
automata have the accepting and starting state s and a rejection state t; they change
between s and t whenever they see 1 or 2, respectively. The product automaton is
now given as follows:

(s, s)start (s, t)

(t, s) (t, t)

0 0

0 0

1

2

1

2 2

1

2

1
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The automaton given here recognises the union. For the other operations like Kleene
star and concatenation, one needs to form an nfa recognising the corresponding lan-
guage first and can then use Büchi’s construction to transform the nfa into a dfa; as
every dfa is an nfa, one can directly start with an nfa.

So assume (Q,Σ, δ, s, F ) is an nfa recognising L. Now L∗ is recognised by (Q ∪
{s′},Σ, δ′, s′, {s′}) where δ′ = δ ∪ {(s′, a, p) : (s, a, p) ∈ δ} ∪ {(p, a, s) : (p, a, q) ∈ δ for
some q ∈ F}∪{(s′, a, s′) : a ∈ L}. The last part of the union is to add all one-symbol
words from L. This automaton has a new starting state s′ which is accepting, as
ε ∈ L∗. The other states in Q are kept so that the automaton can go through the
states in Q in order to simulate the original automaton on some word w until it is
going to process the last symbol when it then returns to s′; so it can process sequences
of words in Q each time going through s′. After the last word wn of w1w2 . . . wn ∈ L∗,
the automaton can either return to s′ in order to accept the word. Here an example.

sstart

t

s′start s

t

0

1

1 0

1

10

0

1
1

1
10

The next operation with nfas is the Concatenation. Here assume that (Q1,Σ, δ1, s1, F1)
and (Q2,Σ, δ2, s2, F2) are nfas recognising L1 and L2 with Q1 ∩ Q2 = ∅ and assume
ε /∈ L2. Now (Q1 ∪ Q2,Σ, δ, s1, F2) recognises L1 · L2 where (p, a, q) ∈ δ whenever
(p, a, q) ∈ δ1 ∪ δ2 or p ∈ F1 ∧ (s2, a, q) ∈ δ2.

Note that if L2 contains ε then one can consider the union of L1 and L1 ·(L2−{ε}).
An example is the following: L1 · L2 with L1 = {00, 11}∗ and L2 = 2∗1+0+.
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s1start

r1

q1 s2

q2

r2

11

0 0
2

1

0

1

0

2

1

0

Last but not least, one has to see how to build an automaton recognising a finite set, as
the above only deal with the question how to get a new automaton recognising unions,
differences, intersections, concatenations and Kleene star of given regular languages
represented by their automata. For finite sets, one can simply consider all possible
derivatives (which are easy to compute from a list of strings in the language) and then
connect the corresponding states accordingly. This would indeed give the smallest dfa
recognising the corresponding set.

Alternatively, one can make an automaton recognising the set {w} and then form
product automata for the unions in order to recognise sets of several strings. Here
a dfa recognising {a1a2 . . . an} for such a string of n symbols would have the states
q0, q1, . . . , qn plus r and go from qm to qm+1 on input am+1 and in all other cases would
go to state r. Only the state qn is accepting.

Exercise 3.3. The above gives upper bounds on the size of the dfa for a union, in-
tersection, difference and symmetric difference as n2 states, provided that the original
two dfas have at most n states. Give the corresponding bounds for nfas: If L and H
are recognised by nfas having at most n states each, how many states does one need
at most for an nfa recognising (a) the union L ∪ H, (b) the intersection L ∩ H, (c)
the difference L−H and (d) the symmetric difference (L−H) ∪ (H − L)? Give the
bounds in terms of “linear”, “quadratic” and “exponential”. Explain the bounds.

Exercise 3.4. Let Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Construct a (not necessarily com-
plete) dfa recognising the language (Σ · {aa : a ∈ Σ}∗) ∩ {aaaaa : a ∈ Σ}∗. It is not
needed to give a full table for the dfa, but a general schema and an explanation how
it works.
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Exercise 3.5. Make an nfa for the intersection of the following languages: {0, 1, 2}∗ ·
{001} · {0, 1, 2}∗ · {001} · {0, 1, 2}∗; {001, 0001, 2}∗; {0, 1, 2}∗ · {00120001} · {0, 1, 2}∗.

Exercise 3.6. Make an nfa for the union L0 ∪ L1 ∪ L2 with La = {0, 1, 2}∗ · {aa} ·
{0, 1, 2}∗ · {aa} · {0, 1, 2}∗ for a ∈ {0, 1, 2}.

Exercise 3.7. Consider two context-free grammars with terminals Σ, disjoint non-
terminals N1 and N2, start symbols S1 ∈ N1 and S2 ∈ N2 and rule sets P1 and P2

which generate L and H, respectively. Explain how to form from these a new context-
free grammar for (a) L ∪H, (b) L ·H and (c) L∗.

Write down the context-free grammars for {0n12n : n ∈ N} and {0n13n : n ∈ N}
and form the grammars for the union, concatenation and star explicitly.

Example 3.8. The language L = {0n1n2n : n ∈ N} is the intersection of the context-
free languages {0}∗ · {1n2n : n ∈ N} and {0n1n : n ∈ N} · {2}∗. By Exercise 1.27 this
language is not context-free.

Hence L is the intersection of two context-free languages which is not context-
free. However, the complement of L is context-free. The following grammar generates
{0k1m2n : k < n}: the non-terminals are S, T with S being the start symbol, the
terminals are 0, 1, 2 and the rules are S → 0S2|S2|T2, T → 1T |ε. Now the comple-
ment of L is the union of eight context-free languages. Six languages of this type:
{0k1m2n : k < m}, {0k1m2n : k > m}, {0k1m2n : k < n}, {0k1m2n : k > n},
{0k1m2n : m < n} and {0k1m2n : m > n}; furthermore, the two regular languages
{0, 1, 2}∗·{10, 20, 21}·{0, 1, 2}∗ and {ε}. So the so-constructed language is context-free
while its complement L itself is not.

Although the intersection of two context-free languages might not be context-free,
one can still show a weaker version of this result. This weaker version can be useful
for various proofs.

Theorem 3.9. Assume that L is a context-free language and H is a regular language.
Then the intersection L ∩H is also a context-free language.

Proof. Assume that (N,Σ, P, S) is the context-free grammar generating L and
(Q,Σ, δ, s, F ) is the finite automaton accepting H. Furthermore, assume that every
production in P is either of the form A → BC or of the form A → w for A,B,C ∈ N
and w ∈ Σ∗.

Now make a new grammar (Q×N ×Q∪ {S},Σ, R, S) generating L∩H with the
following rules:

• S → (s, S, q) for all q ∈ F ;

45



• (p,A, q) → (p,B, r)(r, C, q) for all p, q, r ∈ Q and all rules of the form A → BC
in P ;

• (p,A, q) → w for all p, q ∈ Q and all rules A → w in P with δ(p, w) = q.

For each A ∈ N , let LA = {w ∈ Σ∗ : A ⇒∗ w}. For each p, q ∈ Q, let Hp,q = {w ∈
Σ∗ : δ(p, w) = q}. Now one shows that (p,A, q) generates w in the new grammar iff
w ∈ LA ∩Hp,q.

First one shows by induction over every derivation-length that a symbol (p,A, q)
can only generate a word w iff δ(p, w) = q and w ∈ LA. If the derivation-length
is 1 then there is a production (p,A, q) → w in the grammar. It follows from the
definition that δ(p, w) = q and A → w is a rule in P , thus w ∈ LA. If the derivation-
length is larger than 1, then one uses the induction hypothesis that the statement is
already shown for all shorter derivations and now looks at the first rule applied in
the derivation. It is of the form (p,A, q) → (q, B, r)(r, C, q) for some B,C ∈ N and
r ∈ Q. Furthermore, there is a splitting of w into uv such that (q, B, r) generates
u and (r, C, q) generates v. By induction hypothesis and the construction of the
grammar, u ∈ LB, v ∈ LC , δ(p, u) = r, δ(r, v) = q and A → BC is a rule in P .
It follows that A ⇒ BC ⇒∗ uv in the grammar for L and w ∈ LA. Furthermore,
δ(p, uv) = δ(r, v) = q, hence w ∈ Hp,q. This completes the proof of this part.

Second one shows that the converse holds, now by induction over the length of
derivations in the grammar for L. Assume that w ∈ LA and w ∈ Hp,q. If the
derivation has length 1 then A → w is a rule the grammar for L. As δ(p, w) = q, it
follows that (p,A, q) → w is a rule in the new grammar. If the derivation has length
n > 1 and the proof has already been done for all derivations shorter than n, then
the first rule applied to show that w ∈ LA must be a rule of the form A → BC.
There are u ∈ LB and v ∈ LC with w = uv. Let r = δ(p, u). It follows from the
definition of δ that q = δ(r, v). Hence, by induction hypothesis, (p,B, r) generates u
and (r, C, q) generates v. Furthermore, the rule (p,A, q) → (p,B, r)(r, C, q) is in the
new grammar, hence (p,A, q) generates w = uv.

Now one has for each p, q ∈ Q, A ∈ N and w ∈ Σ∗ that (p,A, q) generates w iff
w ∈ LA ∩Hp,q. Furthermore, in the new grammar, S generates a string w iff there is
a q ∈ F with (s, S, q) generating w iff w ∈ LS and δ(s, w) ∈ F iff w ∈ LS and there
is a q ∈ F with w ∈ Hs,q iff w ∈ L ∩H. This completes the proof.

Exercise 3.10. Recall that the language L of all words which contain as many 0s as 1s
is context-free; a grammar for it is ({S}, {0, 1}, {S → SS|ε|0S1|1S0}, S). Construct
a context-free grammar for L ∩ (001+)∗.

Exercise 3.11. Let again L be the language of all words which contain as many 0s
as 1s. Construct a context-free grammar for L ∩ 0∗1∗0∗1∗.
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Theorem 3.12. The concatenation of two context-sensitive languages is context-
sensitive.

Proof. Let L1 and L2 be context-sensitive languages not containing ε and consider
context-sensitive grammars (N1,Σ, P1, S1) and (N2,Σ, P2, S2) generating L1 and L2,
respectively, where N1 ∩ N2 = ∅ and where each rule l → r satisfies |l| ≤ |r| and
l ∈ N+

e for the respective e ∈ {1, 2}. Let S /∈ N1 ∪N2 ∪ Σ. Now the automaton

(N1 ∪N2 ∪ {S},Σ, P1 ∪ P2 ∪ {S → S1S2}, S)
generates L1 ·L2: If v ∈ L1 and w ∈ L2 then S ⇒ S1S2 ⇒∗ vS2 ⇒∗ vw. Furthermore,
the first rule has to be S ⇒ S1S2 and from then onwards, each rule has on the left
side either l ∈ N∗

1 so that it applies to the part generated from S1 or it has in the
left side l ∈ N∗

2 so that l is in the part of the word generated from S2. Hence every
intermediate word z in the derivation is of the form xy = z with S1 ⇒∗ x and S2 ⇒∗ y.

In the case that one wants to form (L1∪{ε}) ·L2, one has to add the rule S → S2,
for L1 · (L2 ∪{ε}), one has to add the rule S → S1 and for (L1 ∪{ε}) · (L2 ∪{ε}), one
has to add the rules S → S1|S2|ε to the grammar.

As an example consider the following context-sensitive grammars generating two sets
L1 and L2 not containing the empty string ε, the second grammar could also be
replaced by a context-free grammar but is here only chosen to be context-sensitive:

• ({S1, T1, U1, V1}, {0, 1, 2, 3, 4}, P1, S1) with P1 containing the rules S1 → T1U1

V1S1 | T1U1V1, T1U1 → U1T1, T1V1 → V1T1, U1T1 → T1U1, U1V1 → V1U1,
V1T1 → T1V1, V1U1 → U1V1, T1 → 0, V1 → 1, U1 → 2 generating all words with
the same nonzero number of 0s, 1s and 2s;

• ({S2, T2, U2}, {0, 1, 2, 3, 4}, P2, S2) with P2 containing the rules S2 → U2T2S2 |
U2T2, U2T2 → T2U2, T2U2 → U2T2, U2 → 3, T2 → 4 generating all words with
the same nonzero number of 3s and 4s.

The grammar ({S, S1, T1, U1, V1, S2, T2, U2}, {0, 1, 2, 3, 4}, P, S) with P containing S →
S1S2, S1 → T1U1V1S1|T1U1V1, T1U1 → U1T1, T1V1 → V1T1, U1T1 → T1U1, U1V1 →
V1U1, V1T1 → T1V1, V1U1 → U1V1, T1 → 0, V1 → 1, U1 → 2, S2 → U2T2S2|U2T2,
U2T2 → T2U2, T2U2 → U2T2, U2 → 3, T2 → 4 generates all words with consisting of n
0s, 1s and 2s in any order followed by m 3s and 4s in any order with n,m > 0. For
example, 01120234434334 is a word in this language. The grammar is context-sensitive
in the sense that |l| ≤ |r| for all rules l → r in P .

Theorem 3.13. If L is context-sensitive so is L∗.

Proof. Assume that (N1,Σ, P1, S1) and (N2,Σ, P2, S2) are two context-sensitive gram-
mars for L with N1 ∩ N2 = ∅ and all rules l → r satisfying |l| ≤ |r| and l ∈ N+

1 or
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l ∈ N+
2 , respectively. Let S, S

′ be symbols not in N1 ∪N2 ∪ Σ.
The new grammar is of the form (N1 ∪N2 ∪{S, S ′},Σ, P, S) where P contains the

rules S → S ′|ε and S ′ → S1S2S
′ |S1S2 |S1 plus all rules in P1 ∪ P2.

The overall idea is the following: if w1, w2, . . . , w2n are non-empty words in L,
then one generates w1w2 . . . w2n by first generating the string (S1S2)

n using the rule
S → S ′, n − 1 times the rule S ′ → S1S2S

′ and one time the rule S ′ → S1S2. After-
words one derives inductively S1 to w1, then the next S2 to w2, then the next S1 to w3,
. . ., until one has achieved that all S1 and S2 are transformed into the corresponding
wm.

The alternations between S1 and S2 are there to prevent that one can non-terminals
generated for a word wk and for the next word wk+1 mix in order to derive something
what should not be derived. So only words in L∗ can be derived.

Exercise 3.14. Recall that the language L = {0n1n2n : n ∈ N} is context-sensitive.
Construct a context-sensitive grammar for L∗.

Theorem 3.15. The intersection of two context-sensitive languages is context-sensi-
tive.

Proof Sketch. Let (Nk,Σ, Pk, S) be grammars for L1 and L2. Now make a new
non-terminal set N = (N1 ∪ Σ ∪ {#}) × (N2 ∪ Σ ∪ {#}) with start symbol

(

S
S

)

and
following types of rules:
(a) Rules to generate and manage space;
(b) Rules to generate a word v in the upper row;
(c) Rules to generate a word w in the lower row;
(d) Rules to convert a string from N into v provided that the upper components and
lower components of the string are both v.

(a):
(

S
S

)

→
(

S
S

)(

#
#

)

for producing space;
(

A
B

)(

#
C

)

→
(

#
B

)(

A
C

)

and
(

A
C

)(

B
#

)

→
(

A
#

)(

B
C

)

for
space management.

(b) and (c): For each rule in P1, for example, for AB → CDE ∈ P1, and all symbols
F,G,H, . . . in N2, one has the corresponding rule

(

A
F

)(

B
G

)(

#
H

)

→
(

C
F

)(

D
G

)(

E
H

)

. So rules
in P1 are simulated in the upper half and rules in P2 are simulated in the lower half
and they use up # if the left side is shorter than the right one.

(d): Each rule
(

a
a

)

→ a for a ∈ Σ is there to convert a matching pair
(

a
a

)

from Σ×Σ
(a nonterminal) to a (a terminal).

The idea of the derivation of a word w is then to first use rules of type (a) to produce

a string of the form
(

S
S

)(

#
#

)|w|−1
and afterwards to use the rules of type (b) to derive
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the word w in the upper row and the rules of type (c) to derive the word w in the
lower row; these rules are used in combination with rules for moving # to the front
in the upper or lower half. If both derivations have produced terminal words in the
upper and lower half (terminals in the original grammar, not with respect to the new
intersection grammar) and if these words match, then one can use the rules of type
(d) which are

(

a
a

)

→ a for terminals a to indeed derive w. However, if the derivations
of the words in the upper row and lower row do not match, then the rules of type (d)
cannot derive any terminal word, as there are symbols of the type

(

a
b

)

for different
terminals a, b in the original grammar. Thus only words in the intersection can be
derived this way. If ε is in the derivation, some special rule can be added to derive
ε directly from a new start state which can only be mapped to either ε or

(

S
S

)

by a
derivation rule.

Example 3.16. Let Eqa,b be the language of all non-empty words w over Σ such that
w contains as many a as b where a, b ∈ Σ. Let Σ = {0, 1, 2} and L = Eq0,1 ∩ Eq0,2.
The language L is context-sensitive.

Proof. First one makes a grammar for Eqa,b where c stands for any symbol in
Σ− {a, b}. The grammar has the form

({S},Σ, {S → SS|aSb|bSa|ab|ba|c}, S)
and one now makes a new grammar for the intersection as follows: The idea is to pro-
duce two-componented characters where the upper component belongs to a derivation
of Eq0,1 and the lower belongs to a derivation of Eq0,2. Furthermore, there will in
both components be a space symbol, #, which can be produced on the right side of
the start symbol in the beginning and later be moved from the right to the left. Rules
which apply only to the upper or lower component do not change the length, they just
eat up some spaces if needed. Then the derivation is done on the upper and lower part
independently. In the case that the outcome is on the upper and the lower component
the same, the whole word is then transformed into the corresponding symbols from
Σ.

The non-terminals of the new grammar are all of the form
(

A
B

)

where A,B ∈
{S,#, 0, 1, 2}. In general, each non-terminal represents a pair of a symbols which
can occur in the upper and lower derivation; pairs are by definition different from
terminals in Σ = {0, 1, 2}. The start symbol is

(

S
S

)

. The following rules are there:

1. The rule
(

S
S

)

→
(

S
S

)(

#
#

)

. This rule permits to produce space right of the start
symbol which is later used independently in the upper or lower component.
For each symbols A,B,C in {S,#, 0, 1, 2} one introduces the rules

(

A
B

)(

#
C

)

→
(

#
B

)(

A
C

)

and
(

A
C

)(

B
#

)

→
(

A
#

)(

B
C

)

which enable to bring, independently of each
other, the spaces in the upper and lower component from the right to the left.
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2. The rules of Eq0,1 will be implemented in the upper component. If a rule of the
form l → r has that |l|+ k = |r| then one replaces it by l#k → r. Furthermore,
the rules have now to reflect the lower component as well, so there are entries
which remain unchanged but have to be mentioned. Therefore one adds for each
choice of A,B,C ∈ {S,#, 0, 1, 2} the following rules into the set of rules of the
grammar:
(

S
A

)(

#
B

)

→
(

S
A

)(

S
B

)

,
(

S
A

)(

#
B

)(

#
C

)

→
(

0
A

)(

S
B

)(

1
C

)

|
(

1
A

)(

S
B

)(

0
C

)

,
(

S
A

)(

#
B

)

→
(

0
A

)(

1
B

)

|
(

1
A

)(

0
B

)

,
(

S
A

)

→
(

2
A

)

;

3. The rules of Eq0,2 are implemented in the lower component and one takes again
for all A,B,C ∈ {S,#, 0, 1, 2} the following rules into the grammar:
(

A
S

)(

B
#

)

→
(

A
S

)(

B
S

)

,
(

A
S

)(

B
#

)(

C
#

)

→
(

A
0

)(

B
S

)(

C
2

)

|
(

A
2

)(

B
S

)(

C
0

)

,
(

A
S

)(

B
#

)

→
(

A
0

)(

B
2

)

|
(

A
2

)(

B
0

)

,
(

A
S

)

→
(

A
1

)

;

4. To finalise, one has the rule
(

a
a

)

→ a for each a ∈ Σ, that is, the rules
(

0
0

)

→ 0,
(

1
1

)

→ 1,
(

2
2

)

→ 2 in order to transform non-terminals consisting of matching
placeholders into the corresponding terminals. Nonmatching placeholders and
spaces cannot be finalised, if they remain in the word, the derivation cannot
terminate.

To sum up, a word w ∈ Σ∗ can only be derived iff w is derived independently in the
upper and the lower component of the string of non-terminals according to the rules
of Eq0,1 and Eq0,2. The resulting string of pairs of matching entries from Σ is then
transformed into the word w.

The following derivation of the word 011022 illustrates the way the word is gen-
erated: in the first step, enough space is produced; in the second step, the upper
component is derived; in the third step, the lower component is derived; in the fourth
step, the terminals are generated from the placeholders.

1.
(

S
S

)

⇒
(

S
S

)(

#
#

)

⇒
(

S
S

)(

#
#

)(

#
#

)

⇒
(

S
S

)(

#
#

)(

#
#

)(

#
#

)

⇒
(

S
S

)(

#
#

)(

#
#

)(

#
#

)(

#
#

)

⇒
(

S
S

)(

#
#

)(

#
#

)(

#
#

)(

#
#

)(

#
#

)

⇒

2.
(

S
S

)(

S
#

)(

#
#

)(

#
#

)(

#
#

)(

#
#

)

⇒
(

S
S

)(

2
#

)(

2
#

)(

#
#

)(

#
#

)(

#
#

)

⇒∗ (S
S

)(

#
#

)(

#
#

)(

#
#

)(

2
#

)(

2
#

)

⇒
(

S
S

)(

S
#

)(

#
#

)(

#
#

)(

2
#

)(

2
#

)

⇒
(

S
S

)(

#
#

)(

S
#

)(

#
#

)(

2
#

)(

2
#

)

⇒
(

0
S

)(

1
#

)(

S
#

)(

#
#

)(

2
#

)(

2
#

)

⇒
(

0
S

)(

1
#

)(

1
#

)(

0
#

)(

2
#

)(

2
#

)

⇒

3.
(

0
0

)(

1
S

)(

1
2

)(

0
#

)(

2
#

)(

2
#

)

⇒∗ (0
0

)(

1
S

)(

1
#

)(

0
#

)(

2
#

)(

2
2

)

⇒
(

0
0

)(

1
S

)(

1
S

)(

0
#

)(

2
#

)(

2
2

)

⇒
(

0
0

)(

1
1

)(

1
S

)(

0
#

)(

2
#

)(

2
2

)

⇒
(

0
0

)(

1
1

)(

1
S

)(

0
S

)(

2
#

)(

2
2

)

⇒
(

0
0

)(

1
1

)(

1
1

)(

0
S

)(

2
#

)(

2
2

)

⇒
(

0
0

)(

1
1

)(

1
1

)(

0
0

)(

2
2

)(

2
2

)

⇒
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4. 0
(

1
1

)(

1
1

)(

0
0

)(

2
2

)(

2
2

)

⇒ 01
(

1
1

)(

0
0

)(

2
2

)(

2
2

)

⇒ 011
(

0
0

)(

2
2

)(

2
2

)

⇒ 0110
(

2
2

)(

2
2

)

⇒
01102

(

2
2

)

⇒ 011022.

In this derivation, each step is shown except that several moves of characters in
components over spaces are put together to one move.

Exercise 3.17. Consider the language L = {00} ·{0, 1, 2, 3}∗∪{1, 2, 3} ·{0, 1, 2, 3}∗∪
{0, 1, 2, 3}∗ · {02, 03, 13, 10, 20, 30, 21, 31, 32} · {0, 1, 2, 3}∗ ∪ {ε} ∪ {01n2n3n : n ∈ N}.
Which of the pumping conditions from Theorems 1.19 (a) and 1.19 (b), Corollary 1.20
and Theorem 2.9 does the language satisfy? Determine its exact position in the Chom-
sky hierarchy.

Exercise 3.18. Let xmi be the mirror image of x, so (01001)mi = 10010. Further-
more, let Lmi = {xmi : x ∈ L}. Show the following two statements:
(a) If an nfa with n states recognises L then there is also an nfa with up to n + 1
states recognising Lmi.
(b) Find the smallest nfas which recognise L = 0∗(1∗ ∪ 2∗) as well as Lmi.

Description 3.19: Palindromes. The members of the language {x ∈ Σ∗ : x = xmi}
are called palindromes. A palindrome is a word or phrase which looks the same from
both directions.

An example is the German name “OTTO”; furthermore, when ignoring spaces
and punctuation marks, a famous palindrome is the phrase “A man, a plan, a canal:
Panama.” This palindrome was from Leigh Mercer (1893-1977), a British hobby-
writer, who created lots of palindromes, Eckler [23] lists at the end of his article 100
of them.

The grammar with the rules S → aSa|aa|a|ε with a ranging over all members of
Σ generates all palindromes; so for Σ = {0, 1, 2} the rules of the grammar would be
S → 0S0 | 1S1 | 2S2 | 00 | 11 | 22 | 0 | 1 | 2 | ε.

The set of palindromes is not regular. This can easily be seen by the pumping
lemma, as otherwise L∩ 0∗10∗ = {0n10n : n ∈ N} would have to be regular. However,
this is not the case, as there is a constant k such that one can pump the word 0k10k

by omitting some of the first k characters; the resulting word 0h10k with h < k is not
in L as it is not a palindrome. Hence L does not satisfy the pumping lemma when
the word has to be pumped among the first k characters.

Exercise 3.20. Let w ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ be a palindrome of even length and
n be its decimal value. Prove that n is a multiple of 11. Note that it is essential that
the length is even, as for odd length there are counter examples (like 111 and 202).
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Exercise 3.21. Given a context-free grammar for a language L, is there also one
for L ∩ Lmi? If so, explain how to construct the grammar; if not, provide a counter
example where L is context-free but L ∩ Lmi is not.

Exercise 3.22. Is the following statement true or false? Prove the answer: Given a
language L, the language L ∩ Lmi equals to {w ∈ L : w is a palindrome}.

Exercise 3.23. Let L = {w ∈ {0, 1, 2}∗ : w = wmi} and consider H = L ∩
{012, 210, 00, 11, 22}∗∩ ({0, 1}∗ · {1, 2}∗ · {0, 1}∗). This is the intersection of a context-
free and regular language and thus context-free. Construct a context-free grammar for
H.

Definition 3.24. Let PUMPsw, PUMPst and PUMPbl be the classes of languages
which can be pumped somewhere as formalised in Corollary 1.20, pumped at the start
as formalised in Theorem 1.19 (a) and pumped according to a splitting in blocks as
described in the Block Pumping Lemma (Theorem 2.9), respectively.

The proof of Theorem 1.19 (a) showed that when L and H are in PUMPst then so
are L ∪H, L ·H, L∗ and L+.

Proposition 3.25. The classes PUMPsw and PUMPst are closed under union, con-
catenation, Kleene star and Kleene plus.

The next example establishes that these two classes are not closed under intersection,
even not under intersection with regular languages.

Example 3.26. Consider L = {0h1k2m3n : h = 0 or k = m = n} and consider
H = {00} · {1}∗ · {2}∗ · {3}∗. The language L is in PUMPsw and PUMPst and so is
the language H as the latter is regular; however, the intersection L∩H = {021n2n3n :
n ≥ 0} does not satisfy any pumping lemma. Furthermore, Lmi is not in PUMPst.

Proposition 3.27. If L is in PUMPsw so is Lmi; if L is in PUMPbl so is Lmi.

Exercise 3.28. Show that PUMPbl is closed under union and concatenation. Fur-
thermore, show that the language L = {v3w4 : v, w ∈ {0, 1, 2}∗ and if v, w are both
square-free then |v| 6= |w| or v = w} is in PUMPbl while L+ and L∗ are not.

Theorem 3.29: Chak, Freivalds, Stephan and Tan [14]. If L,H are in PUMPbl

so is L ∩H.

Proof. The proof uses Ramsey’s Theorem of Pairs. Recall that when one splits a word
x into blocks u0, u1, . . . , up then the borders between the blocks are called breakpoints;
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furthermore, u1, . . . , up−1 should not be empty (otherwise one could pump the empty
block).

Ramsey’s Theorem of pairs says now that for every number c there is a number
c′ > c such that given a word x with a set I of c′ breakpoints, if one colours each
pair (i, j) of breakpoints (pairs have always i strictly before j) in one of the colours
“white” and “red”, then one can select a subset J ⊆ I of c breakpoints and a colour
q ∈ {white,red} such that each pair of the breakpoints in J has the colour q.

Now the idea is the following: Let c be a common upper bound of the two block
pumping constants for L and H, this c is then also a valid block pumping constant.
Then choose c′ according to Ramsey’s Theorem of Pairs and consider a word x ∈ L∩H
split into c′ + 1 parts by a set I of c′ breakpoints. Now for each pair of breakpoints
i, j ∈ I splitting x into u, v, w, let the colour “white” denote that u · v∗ · w ⊆ L and
“red” that this is not the case. By Ramsey’s Theorem of Pairs there is a subset J ⊆ I
of c breakpoints which split x and a colour q such that each pair of breakpoints in J
has colour q. As J consists of c breakpoints, there must be a pair (i, j) of breakpoints
in J splitting x into u ·v ·w with u ·v∗ ·w ⊆ L, thus the colour q is white and therefore
every pair of breakpoints in J has this property.

Now, as c is also the block pumping constant for H, there is a pair (i, j) of
breakpoints in J which splits the word into u, v, w such that u · v∗ · w ⊆ H. As
seen before, u · v∗ · w ⊆ L and thus u · v∗ · w ⊆ L ∩ H. Thus L ∩ H is satisfies the
Block Pumping Lemma with constant c′ and L ∩H is in PUMPbl.

A linear grammar is a grammar where every rule is either of the form A → u or
of the form A → vBw; here A,B are nonterminals and u, v, w are terminal words.
Languages generated by linear grammars are called linear languages. An example for
a linear language is the language of all palindromes; this example shows also that such
languages do not need to be regular.

Exercise 3.30. Show that the intersection of a linear language and a regular language
is linear.

A linear grammar is called balanced iff for every rule of the form A → vBw it holds
that |v| = |w| and a language is called balanced linear iff it is generated by a balanced
linear grammar.

Exercise 3.31. Is the intersection of two balanced linear languages again balanced
linear? Prove the answer.

Exercise 3.32. Provide an example of a language which is linear but not balanced
linear. Prove the answer.
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In the following, one considers regular expressions consisting of the symbol L of the
language of palindromes over {0, 1, 2} and the mentioned operations. What is the
most difficult level in the hierarchy “regular, linear, context-free, context-sensitive”
such expressions can generate. It can be used that the language {10i10j10k1 : i 6= j,
i 6= k, j 6= k} is not context-free.

Exercise 3.33. Determine the maximum possible complexity of the languages given
by expressions containing L and ∪ and finite sets.

Exercise 3.34. Determine the maximum possible complexity of the languages given
by expressions containing L and ∪ and · and Kleene star and finite sets.

Exercise 3.35. Determine the maximum possible complexity of the languages given
by expressions containing L and ∪ and · and ∩ and Kleene star and finite sets.

Exercise 3.36. Determine the maximum possible complexity of the languages given
by expressions containing L and · and set difference and Kleene star and finite sets.
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4 Games on Finite Graphs

The easiest game in a finite graph is a race to reach a member of a set of targets. Two
players, Anke and Boris, move a marker alternately and that player who moves the
marker first into a target-node wins the game, the game is supposed to start outside
the set of targets. Without loss of generality, Anke is the player who moves first.
So a game is given by a graph with a special set of vertices being the targets plus a
starting-position of the marker (unless that is random). Furthermore, one might say
that if a player ends up being unable to move, this player also loses the game.

Example 4.1. Consider a graph whose vertices are all labeled with 3-digit figures,
so with 000, 001, . . . , 999, the start point is random. Now a player can move from ijk
to i′j′k′ iff two digits are the same and the third digit is smaller than the previous
one; the player who moves into 000 is the one who wins the game. The players move
alternately.

Assume that 257 is the randomly chosen starting configuration. Now Anke moves
257 → 157. Boris replies by 157 → 156. Anke now moves 156 → 116. Boris replies
116 → 110. Now Anke moves 110 → 100 and Boris wins moving 100 → 000.

Assume now that 111 is the randomly chosen starting configuration. Then Anke
wins: in each move, the number of 1s goes down by 1 and so Anke, Boris and then
Anke can move where Anke reaches 000. For example Anke: 111 → 110; Boris:
110 → 010; Anke: 010 → 000. The game has a quite large graph, here just the small
parts of the last play and the next one.

111start

101110 011

100 010 001

002

003start

001

000000

In the second play, starting at 003, Anke could win by 003 → 000; if she plays
003 → 002, Boris could win or make a bad move as well. So it depends on the move
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which player wins.

Definition 4.2: Winning Positions and Winning Strategies. A winning strat-
egy is an algorithm or table which tells Anke in each position how to move (in depen-
dence of the prior moves which occurred in the game) such that Anke will eventually
win. A node v is a winning position for Anke iff there is a winning strategy which
tells Anke how to win, provided that the game starts from the node v. Similarly one
defines winning strategies and positions for Boris.

Example 4.3. In the game from Example 4.1, the node 111 is a winning position
for each of the player (when it is his or her turn). The node 012 is also a winning
position, as the player (whose turn it is) moves to 011; the opponent can only either
move to 010 or 001 after which the player wins by moving to 000.

Exercise 4.4. Consider the game from Example 4.1 and the following starting posi-
tions: 123, 232, 330, 333. Which of these starting positions are winning positions for
Anke and which of these are winning positions for Boris? Explain the answer.

Example 4.5. Consider the following game:

sstart t u v w

Each player who is in u cannot go directly to w but only to v; if the player decides,
however, to go to v then the opponent would reach w and win the game. Therefore,
if the player does not want to lose and is in u, the player would have to move to s.
Thus the nodes s, t, u are not a winning position for either player, instead in these
positions the player can preserve a draw. Such a draw might result in a play which
runs forever; many board games have special rules to terminate the game as draw in
the case that a situation repeats two or three times.

Several games (like the above) do not have that the starting position is a winning
position for either player. Such games are called draw games.

Theorem 4.6. There is an algorithm which determines which player has a winning
strategy. The algorithm runs in time polynomial in the size of the graph.

Proof. Let Q be the set of all nodes and T be the set of target nodes. The games
starts in some node in Q− T .

1. Let T0 = T and S0 = ∅ and n = 0.
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2. Let Sn+1 = Sn ∪ {q ∈ Q − (Tn ∪ Sn) : one can go in one step from q to a node
in Tn}.

3. Let Tn+1 = Tn ∪ {q ∈ Q − (Tn ∪ Sn+1) : if one goes from q one step then one
ends up in Sn+1}.

4. If Sn+1 6= Sn or Tn+1 6= Tn then let n = n+ 1 and goto 2.

5. Now Sn is the set of all winning positions for Anke and Tn − T is the set of all
winning positions for Boris and the remining nodes in Q − (Tn ∪ Sn) are draw
positions.

One can see that the algorithm terminates, as it can run the loop from steps 2 to 4
only as long as it adds nodes to the sets Sn or Tn, hence it runs at most |Q| times
through the loop.

Now one shows by induction that every set Sn consists of winning positions for
Anke and Tn of winning positions for Boris. Clearly the nodes in S1 permit Anke to
win in one move. If Anke has to move from a node in T1−T0 then she can either only
move to nodes in S1 or cannot move at all; in the first case, Boris wins the game (by
symmetry), in the second case Anke loses the game as she cannot move.

Assume now that the Sn consists of winning-positions for Anke and Tn of losing-
positions for her, that is, winning-positions for Boris. Now Sn+1 is the set of all nodes
on which Anke can go into a node in Tn, that is, either Anke would win the game
directly or Boris would lose it when continuing to play from that position. Hence
every node in Sn+1 is a winning-position for Anke. Furthermore, every node in Tn+1

is a losing-position for Anke, for the nodes in Tn this is true by induction hypothesis
and for the nodes in Tn+1 − Tn, Anke can only move into a node in Sn+1 from which
on then Boris would win the game.

Hence, by induction, the final sets Sn are all winning positions for Anke and
Tn are all winning-positions for Boris. Consider now any position in q ∈ R with
R = Q−Sn−Tn. Each node in R has at least one successor in R and every successor
of it is either in R or in Sn. Hence the player (whether Anke or Boris) would move
to a successor node in R and avoid going to Sn so that the opponent cannot win the
game; as a result, the marker would circle indefinitely between the nodes in R.

The proof is illustrated by the following two examples of graphs. The nodes are
labelled with the names of the sets to which they belong, therefore several nodes can
have the same label, as they belong to the same set.

T2start S2 S2 T1 S1 S1 T0

So the above game is a losing game for Anke and a winning game for Boris.
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Rstart R R R S1 S1 T0

Here the players will always move inside the set R of nodes and not move to the nodes
of S1 as then the opponent wins.

Exercise 4.7. Consider a graph with node-set Q = {0, 1, 2, . . . , 13}, target T = {0}
and the following edges between the nodes.

0 1 2 3 4 5 6

7 8 9 10 11 12 13

Determine which of the nodes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 are winning-positions,
losing-positions and draw-positions for player Anke.

Example 4.8: Tic Tac Toe. Tic Tac Toe is a board game with a 3∗3 board. Anke
and Boris place alternately an X and an O on the board until either there are three
times the same symbol in a row, diagonal or column or all fields are full. In the case
that a player makes the three symbols in a row / diagonal / column full, this player
wins. Otherwise the game is a draw.

One can represent this as a game on a graph. Each possible board configuration
represents a node and one makes an edge from one node to another one if the board
of the second node is obtained from the board of the first node by placing one X or
O into one field, respectively; furthermore, if there are as many X as O, an X has to
be placed. If there are more X than O, an O has to be placed.

. X O
X X .
. O O

. X O
X X .
X O O

. X O
X X O
X O O
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There are two more conditions to be taken care off: The starting configuration is the
empty board and there is no outgoing edge in the case that the target has already
been reached, that is, three symbols of the same type are already in a row / diagonal
/ column.

It should be noted that there are two types of nodes: Those nodes which equally
many X and O are the nodes where Anke moves and places an X, those nodes with
more X than O are the nodes where Boris moves and places an O.

One might ask how many nodes one needs to represent the game. An upper bound
is certainly 39 = 19683 which is the number of all 3 ∗ 3 boards with a space, X or
O on each cell. So the graph of the game can easily be analysed by a computer.
Furthermore, the number of nodes is even smaller as there are many cases which do
not occur in a play, for example a board where there are all X in the top row and all
O in the bottom row or a board with 5 X and 2 O in total. Indeed, the graph of the
game has been analysed well and it has been shown that the game is a draw game;
good human players can also always obtain a draw.

Description 4.9: Board Games. Many games have a default starting position
and are played by two players with alternating moves where the set of possible
configurations is finite, that is, such games can be represented as a graph game as
done for Tic Tac Toe above. Traditionally, for board games with pieces, the start-
ing player Anke has white pieces in the board game and the second player Boris
the black pieces, so they are sometimes also referred as “White” or “First Player”
and “Black” or “Second player”, respectively. There are now three possible out-
comes: The first player always wins the game when playing optimally, the second
player always win the game when playing optimally, the game always ends up in a
draw when both players play optimally. For some famous games it has been com-
puted which player can force a win or whether the game ends up in a draw, see
http://en.wikipedia.org/wiki/Solved_game for a current list of solved games and
descriptions of the corresponding games. Here just an overview with the most famous
games:

• The first player wins: Connect Four, Hex (on n ∗ n board), 15 ∗ 15 Gomoku (no
opening rules).

• The second player wins: 4 ∗ 4 Othello, 6 ∗ 6 Othello.

• Draw: Draughts (also known as Checkers), Nine Men’s Morris, Tic Tac Toe.

• Unknown: Chess, Go, 19 ∗ 19 Gomoku (conjecture: second player wins), 8 ∗ 8
Othello (conjecture: draw).

Gomoku is played on both sizes, 15∗15 and 19∗19; the latter is popular due to being
the size of a Go board. The Wikipedia page on Gomoku has an example with a 15∗15
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board. Opening rules are introduced in order to balance the chances for the winner
and computers were not able to solve the balanced version of the 15 ∗ 15 Gomoku so
far.

Furthermore, 8∗8 is the usual board size for Othello. Also this game has only been
solved for smaller board sizes, so one does not know how the game would behave on
the traditional size. Although an algorithm is known in principle, it uses up too much
resources (computation time and space) to run on current computers. Nevertheless,
computers can for some still unsolved games like chess compute strategies which are
good although not optimal; such computer programs can defeat any human player,
even the world chess champion Garry Kasparov was defeated by a computer in a
tournament of six games in 1997.

Games involving random aspects (cards, dices, . . .) do not have perfect strategies.
The reason is that a move which is good with high probability might turn out to be
bad if some unlikely random event happens. Nevertheless, computers might be better
than humans in playing these games.

Multiplayer games with more than two players usually do not have winning strate-
gies as at three players, two of them might collaborate to avoid that the third player
wins (although they should not do it). So it might be impossible for a single player
to force a win.

Therefore the above analysis was for games with two players games without ran-
dom aspects. If there is just a random starting point (in the graph), but no other
random event, one can determine for each possible starting point which player has a
winning strategy when starting from there.

Exercise 4.10. Let Divandincn,m be given by the graph with domain {1, 2, . . . , n},
starting state m ∈ {2, . . . , n} and target state 1. Furthermore, each player can move
from k ∈ {2, . . . , n} to ℓ ∈ {1, 2, . . . , n} iff either ℓ = k+1 or ℓ = k/p for some prime
number p. Hence the game is called “Divandincn,m” (Divide and increment).

(a) Show that there is no draw play, that is, whenever the game goes through an
infinite sequence of moves then some player leaves out a possibility to win.

(b) Show that if m ≤ n ≤ n′ and n is a prime number, then the player who can
win Divandincn,m can also win Divandincn′,m.

(c) Find values m,n, n′ with m < n < n′ where Anke has a winning strategy for
Divandincn,m and Boris for Divandincn′,m.

Remark 4.11. One can consider a variant of the game on finite graphs satisfying
the following constraints:

• The set of nodes is partitioned into sets A,B such that every node is in exactly
one of these sets and player Anke moves iff the marker is in A and player Boris
moves iff the marker is in B;
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• There are three different disjoint sets TA, TB, TD of target nodes and Anke wins
whenever the game reaches one of the nodes in TA and Boris wins whenever the
game reaches one of the nodes in TB and the game is draw when it ends up in
TD. Furthermore, a node is in TA ∪ TB ∪ TD iff it has no outgoing edges.

Tic Tac Toe, as described above, satisfies both constraints. A 3 ∗ 3 board is in A iff
there are as many Xs as Os; a 3 ∗ 3-board is in B iff there are one X more than Os.
Furthermore, TA contains those boards from A ∪ B for which there is at least one
row / diagonal / column with three Xs and none with three Os. TB contains those
boards from A∪B for which there is at least one row / diagonal / column with three
Os and none with three Xs. TD contains those 3 ∗ 3-boards where every field is either
O or X but where there is no row, column or diagonal with all three symbols being
the same. Boards with rows for both / diagonals / columns of three own symbols for
both players cannot be reached in a play starting at the empty board without going
through TA ∪ TB, thus one can ignore those.

Example 4.12. Assume that a game with states Q and target set T is given. Now
one can consider a new game with nodes Q×{a, b}, there are the edges (p, a) → (q, b)
and (p, b) → (q, a) in the new game whenever the edge p → q exists in the old game,
TA = T ×{b}, TB = T ×{a}. Now q0 → q1 → q2 → . . . → q2n → q2n+1 is a play in the
old game iff (q0, a) → (q1, b) → (q2, a) → . . . → (q2n, a) → (q2n+1, b) is a play in the
new game. Furthermore, that play is a winning play for Anke in the old game, that
is, q2n+1 ∈ T and no node before is in T , iff it is a winning play for Anke in the new
game, that is, (q2n+1, a) ∈ TA and no node before is in TA ∪ TB. One can now show
the following: A node q ∈ T − Q is a winning position for Anke in the old game iff
(q, a) is a winning position for Anke in the new game.

0 1 2 3

The above graph with T = {0} is translated into the below one with TA = {(0, b)},
TB = {(0, a)}.

(0, a) (1, a) (2, a) (3, a)

(0, b) (1, b) (2, b) (3, b)
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As 1, 3 are the winning positions and 2 is a losing position in the old game, (1, a), (3, a)
are now winning positions and (2, a) is a losing position for Anke in the new game.
Furthermore, Boris wins from (1, b), (3, b) and loses from (2, b).

Exercise 4.13. Design a game with A,B being disjoint nodes of Anke and Boris and
the edges chosen such that

• the players move alternately;

• the sets TA, TB of the winning nodes are disjoint;

• every node outside TA ∪ TB has outgoing edges, that is, TD = ∅;
• the so designed game is not an image of a symmetric game in the way it was
done in the previous example.

Which properties of the game can be used to enforce that?

Exercise 4.14. The following game satisfies the second constraint from Remark 4.11
and has an infinite game graph.

Assume that Q = N, x + 4, x + 3, x + 2, x + 1 → x for all x ∈ N with the
exception that nodes in TA and TB have no outgoing edges where TA = {0, 6, 9} and
TB = {5, 7, 12, 17}.

If the play of the game reaches a node in TA then Anke wins and if it reaches a
node in TB then Boris wins. Note that if the game starts in nodes from TA or TB then
it is a win for Anke or Boris in 0 moves, respectively.

Determine for both players (Anke and Boris) which are the winning positions for
them. Are there any draw positions?

Alternation. Assume that an nfa is given and two players Anke and Boris. They
process an input word w by alternatingly doing a move. Anke wins if the nfa is after
the moves in an accepting state, Boris wins if the nfa is after the moves in a rejecting
state.

This alternation game has been investigated in automata theory. However, it
turned out that it is for many applications better if the two players do not move
alternatingly but if there is an indication depending on state and character who moves.
This gives rise to the notion of an alternating automaton.

Definition 4.15. An alternating finite automaton (afa) is a finite automaton where
for each pair q, a there are the following three possibilities:

• On (q, a) there is exactly one successor state q′. Then the automaton goes to q′.

• On (q, a) there is a disjunctive list like q′ ∨ q′′ ∨ q′′′ of successor states. Then
player Anke picks the successor among q′, q′′, q′′′.
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• On (q, a) there is a conjunctive list like q′ ∧ q′′ ∧ q′′′ of successor states. Then
player Boris picks the successor among q′, q′′, q′′′.

Anke wins a play of the automaton on a word w iff the automaton after all characters
being processed is in an accepting state. An alternating automaton accepts a word w
iff Anke has a winning strategy for w, that is, if Anke can win the game independent
of whatever moves Boris makes when it is his turn to choose.

Example 4.16. Consider the alternating finite automaton with states {p, q, r}, al-
phabet {0, 1} and the transition-rules as given by the following table:

state type 0 1
p start, rejecting p ∧ q ∧ r q ∨ r
q accepting p ∧ q ∧ r p ∨ r
r accepting p ∧ q ∧ r p ∨ q

This alternating finite automaton accepts all words which ends with 1. To see this,
consider any word w ending with 1. When the last 1 comes up, it is Anke to move. If
the current state is p, she can either move to q or r, both are accepting; if the current
state is q, she moves to the accepting state r; if the current state is r, she moves to
the accepting state q. The empty word is rejected and a word with 0 is rejected as
well. When the last digit 0 comes up, Boris moves and he can in all three cases choose
the rejecting state p.

One can simulate an afa by an nfa. The idea is similar to Büchi’s construction. Given
an afa with a state Q of states, the states of the new nfa are the subsets of Q. When
the nfa is in a state P , then the new state P ′ can be chosen by Anke as follows: For
every p ∈ P , if the transition on (p, a) is to a conjunctive list q1 ∧ q2 ∧ . . . ∧ qm then
Anke has to put all the states q1, q2, . . . , qm into P ′; if the transition for (p, q) is a
disjunctive list q1 ∨ q2 ∨ . . . ∨ qm then Anke can choose one of these states and put it
into P ′. If there is exactly one successor state (no choice), Anke puts this one into P ′.
The successor state for the full set P is then the list of states which Anke has put into
P ′. This defines a nondeterministic run and that is successful iff after processing the
word all members of the state of the nfa are accepting states of the afa. This permits
to state the below theorem.

Theorem 4.17. If an afa with n states recognises a language L then there is an nfa
with up to 2n states which recognises L.

For Example 4.16 from above, the initial state would be {p}. If a 0 comes up, the next
state is {p, q, r}, if a 1 comes up, the next state would be either {q} or {r}. In the
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case that the nfa is in {p, q, r} and a 0 comes up, the nfa remains in {p, q, r}. If a 1
comes up, all the states are mapped to {q, r} and the state is accepting. Furthermore,
in the case that the state is {q}, the successor chosen on 1 is {r}; in the case that
the state is {r}, the successor chosen on 1 is {q}, in the case that the state is {q, r},
the successor chosen on 1 is {q, r} again. These nondeterministic choices guarantee
that the nfa accepts whenever the run ends with a 1 and one could eliminate other
possible choices in order to obtain a dfa recognising the language {0, 1}∗ · 1. Indeed,
there is even a two-state dfa doing the same.

One might ask in general how much the blow-up is when translating an afa into
a dfa. This blow-up is double-exponential although it is slightly smaller than 22

n
. In

fact, using Büchi’s construction to make the nfa from above a dfa would then lead
to a dfa whose states are sets of subsets of Q. These sets, however, do not need to
contain two subsets A,B ⊆ Q with A ⊂ B. The reason is that any future set of states
derived from B contains as a subset a future set of states derived from A and when
all those of B are accepting, the same is true for those in A. Thus, it is safe to drop
from a state P ∈ Powerset(Powerset(Q)) all those members B ∈ P for which there
is an A ∈ P with A ⊂ B. Furthermore, the afa is defined above such that it has to be
complete, so in both exponentiations the empty set is not used. Thus the cardinality
of the so remaining states is smaller than 22

n
. The next example, however, shows that

the blow-up is still very large.

Example 4.18. There is an afa with 2n + 2 states such that the corresponding dfa
has at least 22

n
states.

Proof. The alternating finite automaton has the states s, q and p1, . . . , pn and
r1, . . . , rn. The alphabet is {0, 1, . . . , n} (all considered as one-symbol digits). The
transitions are given by the following table, where i ∈ {1, . . . , n} refers in the first
two rows to some arbitrary value and in the last two rows to the index of pi and ri,
respectively.

state 0 i j ∈ {1, . . . , n} − {i}
s s ∨ q s s
q p1 ∧ . . . ∧ pn q q
pi pi ri pi
ri ri pi ri

Let L be the language recognised by the afa. It contains all words u of the form x0y0z
such that x, y, z ∈ {0, 1, . . . , n}∗ and z contains each of the digits 1, . . . , n an even
number of times.

Now consider for each subset R ⊂ {1, . . . , n} the word vR consisting of the digits
occurring in R taken once and wR = vR0vR. Let S be some non-empty set of such
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sets R and R′ be a member of S and u be the concatenation of 00vR′ with all wR such
that R ∈ S. For R ⊆ {1, . . . , n}, the following statements are equivalent:

• vR ∈ Lu;

• uvR ∈ L;

• there is a 0 in uvR such that all non-zero digits after this 0 appear an even
number of times;

• either vR0vR belongs to the components from which u is built or R = R′;

• R ∈ S.

Furthermore, one can see that Lε does not contain any vR. Thus for each S ⊆
Powerset({1, . . . , n}) there is an u with R ∈ S ⇔ vR ∈ Lu for all R ∈ S and so
there are 22

n
many different derivatives. Any dfa recognising L must have at least 22

n

states.
Indeed, one can make a dfa with 22

n
+ 1 states: It has a starting state s which it

only leaves on 0. All other states are members of Powerset(Powerset({1, . . . , n})).
On a 0, the state s is mapped to ∅. On each further 0, the state P is mapped to P∪{∅}.
On symbol k > 0, a state P is mapped to {A∪{k} : A ∈ P ∧k /∈ A}∪{A−{k} : A ∈
P ∧ k ∈ A}. A state P is accepting iff P is different from s and P is a set containing
∅ as an element.

If one scales the n in the above construction such that it denotes the number of
states, then the theorem says that given an afa with n states, it might be that the
corresponding dfa has at least 22

n/2−2
states. This is near to the theoretical upper

bound 22
n
which, as said, is not the optimal upper bound. So the real upper bound

is between 22
n/2−2

and 22
n
.

Exercise 4.19. Show that every afa with two states is equivalent to a dfa with up to
four states. Furthermore, give an afa with two states which is not equivalent to any
dfa with three or less states.

Theorem 4.20. If there are n dfas (Qi,Σ, δi, si, Fi) with m states each recognising
L1, . . . , Ln, respectively, then there is an afa recognising L1 ∩ . . . ∩ Ln with 1 + mn
states.

Proof. One assumes that the Qi are pairwise disjoint; if they were not, this could be
achieved by renaming. Furthermore, one chooses an additional starting state s /∈ ⋃

i Qi

and let Q = {s} ∪⋃

i Qi.
On symbol a, let s → δ1(s1, a)∧ . . .∧ δn(sn, a); furthermore, for all Qi and qi ∈ Qi,

on a let qi → δi(qi, a). In other words, in the first step Boris chooses which of the
automata for the Li he wants to track down and from then on the automaton tracks
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exactly this automaton; Boris can win iff the word on the input is not in the Li chosen.
The state s is accepting iff ε ∈ L1 ∩ . . . ∩ Ln and a state qi ∈ Qi is accepting iff

qi ∈ Qi. Thus, in the case that the word on the input is in all Li, whatever Boris
choses, Anke will win the game; in the case that the word on the input is not in some
Li, Boris can choose this Li in the first step to track and from then onwards, the
automaton will follow this language and eventually accept.

Example 4.21. Let Li contain the word with an even number of digit i and Σ =
{0, 1, . . . , n}, n = 3. Now Qi = {si, ti}, Fi = {si} and if i = j then δi(si, j) =
ti, δi(ti, j) = si else δi(si, j) = si, δi(ti, j) = ti.

Now Q = {s, s1, s2, s3, t1, t2, t3}, on 0, s → s1 ∧ s2 ∧ s3, on 1, s → t1 ∧ s2 ∧ s3, on
2, s → s1 ∧ t2 ∧ s3, on 3, s → s1 ∧ s2 ∧ t3. On j, si → δi(si, j) and ti → δi(ti, j). The
states s, s1, s2, s3 are accepting.

The automaton does the following on the word 2021: First, on 2, the automaton
transits by s → s1∧t2∧s3; then, on 0, the automaton updates s1∧t2∧s3 → s1∧t2∧s3;
then, on 2, it updates s1 ∧ t2 ∧ s3 → s1 ∧ s2 ∧ s3; lastly, on 1, it updates s1 ∧ s2 ∧ s3 →
t1 ∧ s2 ∧ s3.

Note that one can write the states of the dfa equivalent to a given afa as a formula
of alternatingly “and” and “or” between the afa states; then, when transiting on a,
one replaces the afa states in the leaves by the corresponding formula on the right
side of the arrow; at the end, when all input symbols are processed, one replaces
all accepting afa states by the logical constant “true” and all rejecting afa states by
the logical constant “false” and then evaluates the formula. So the above formula
evaluates to “false” as t1 is a rejecting states and it only contains conjunctions.

Exercise 4.22. If there are n nfas (Qi,Σ, δi, si, Fi) with m states each recognising
L1, . . . , Ln, respectively, show that there is an afa recognising L1 ∩ . . . ∩ Ln with 1 +
(m+ |Σ|) · n states.

In particular, for n = 2 and Σ = {0, 1, 2}, construct explicitly nfas and the product
afa where L1 is the language of all words where the last letter has already appeared
before and L2 is the language of all words where at least one letter appears an odd
number of times.

The proof can be done by adapting the one of Theorem 4.20 where one has to
replace dfas by nfas. The main adjustment is that, in the first step, one goes to new,
conjunctively connected states which have to memorise the character just seen, as they
can not yet do the disjunction of the nfa. The next step has therefore to take care of
the disjunctions of two steps of the nfa, the one of the memorised first step plus the
one of the next step. From then on, all rules are now disjunctive and not deterministic
as before.

Exercise 4.23. Assume that a game has an infinite board N and starts with three
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numbers a, b, c such that a < b < c; the initial value is a = 12, b = 13, c = 14. Possible
moves are to increment one of the numbers by 1, as long as the condition on the
order of the numbersis not violated. The game ends with a winner, when c becomesthe
double of a. Anke starts to move. Is this game a winning game for Anke, a winning
game for Boris or a draw game. Provide the winning strategy of the respective player
or the draw strategies for both players.

Exercise 4.24. A game has fields {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} and two markers
which initially stand on 0 and 6. The players move alternately one of the markers by
adding, modulo 12, either 1 or 2 to its position. When a player makes a move such
that both markers stand on the same field, the game ends. Is this game a winning game
for Anke, a winning game for Boris or a draw game. Provide the winning strategy of
the respective player or the draw strategies for both players.

Exercise 4.25. Find a regular language L and a number n such that both the best
dfa and nfa have n states but some afa needs less states.

Exercise 4.26. Construct an afa for the language of all decimal numbers which are
not divisible by any 1-digit prime number.

Exercise 4.27. Consider a game on decimal numbers anan−1 . . . a1a0. Players Anke
and Boris move alternately. Determine for the below games which player wins from
the following start situations: 300, 288, 1111, 1024. The player who reaches 0 wins.
Let x denote the current number when the move is to be made, for each nonzero x,
some move have to be made. Here the rule to move for players is as follows: The
player can replace x by x− y where y is odd and y ≤ x.

Exercise 4.28. Do the same as in Exercise 4.27 with the only difference that the
move-rule is now as follows: The player who moves has to reduce one non-zero digit
by 1.

Exercise 4.29. Do the same as in Exercise 4.27 with the only difference that the
move-rule is now as follows: The player who moves replaces one digit by a digit which
is one or two or three smaller.

Exercise 4.30. Do the same as in Exercise 4.27 with the only difference that the
move-rule is now as follows: The player can reduce one nonzero digit am by 1 and
change (optional) one digit ak with k < m to an arbitrary value from 0, 1, 2, 3, 4, 5, 6, 7,
8, 9.

Description 4.31. Consider the following game G on binary numbers. The “board”
of the game is one binary number x. The players move alternatingly. In a move, the
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player makes the number smaller by either changing a 1 to a 0 or by interchanging
a 1 with a more behind 0. The game terminates when 0 is reached and the player
reaching 0 wins.

Exercise 4.32. Determine which of the given binary numbers are winning for Anke
in the game G from Description 4.31. Sketch the winning strategies for the winner to
win the games. The numbers are 1010, 10101010, 10000, 100001, 1111.

Exercise 4.33. Determine which of the given binary numbers are winning for Anke
in the game G from Description 4.31. Sketch the winning strategies for the winner
to win the games. The numbers are 1110, 111100, 110011001100, 101111, 101010,
10101000.

Exercise 4.34. For the game G from Description 4.31, provide a regular infinite set
of binary numbers such that each of them is a winning position for Boris (the player
who moves second). Prove that this set works.
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5 Games Played for an Infinite Time

Infinite games are games where plays can go for an infinite time and nevertheless been
won. A bit, the above finite games touched already this case, as for some case the draw
was obtained by playing forever without going into a winning node for either player.
The first type of game is a parallel situation: Anke wins iff the game runs forever.

Description 5.1: Survival Games. Mathematicians consider time often as an
infinite number of steps numbered as 0, 1, 2, . . .; so while there is a first time 0, there
is no last time and the game runs forever. Nevertheless, there is an evaluation of
the overall play of the two players. Such games might be still of some interest. The
most easy of these is the survival game: One player (representing a human) can
influence the environment by going from one state to another, the other player (nature
or weather) can modify the environment in its own way and react to the human.
Both player move alternating and the Human wins if he can avoid the bad nodes
(representing unacceptable environment conditions) all the time. One can represent
the bad nodes by nodes without outgoing edge; then the goal of the first player (Anke)
would be to be able to move as long as possible while the goal of the second player
(Boris) would be that the game after some time ends up in a node without outgoing
edge.

Example 5.2. Anke and Boris move alternately in the following game. Anke starts
in node 0. The game has a winning strategy for Anke, as it will always be her turn to
move when the game is in node 4 and Boris cannot force the game to move into the
dead end 5. The reason is that Anke will always move on nodes with even numbers
and Boris on nodes with odd numbers.

0start 1 2 3 4 5

The next game is a slight modification of the above. Here now, when Anke wants is in
node 4, she can only move back to 0 or 2 so that Boris gets to move on even numbers
while she will end up on moving on odd numbers. So the next time Boris has the
choice to move on node 4 and can terminate the game by moving into 5.

0start 1 2 3 4 5
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If one writes the possible plays with Boris moving into 5 whenever possible, then the
plays which arise in a way consistent with this strategy are 0−1−2−3−4−5 (where
Anke gives up), 0− 1− 2− 3− 4− 0− 1− 2− 3− 4− 5 (where Anke moves from 4 to
0 and then Boris moves from 4 to 5 at the next time), 0− 1− 2− 3− 4− 2− 3− 4− 5
(where Anke moves from 4 to 2 and then Boris moves form 4 to 5 at the next time).

The winning strategy of Boris is memoryless: That is, whenever Boris makes a
move, he does not have to consider the past, he has only to use the information in
which node the game currently is. One can show that for a survival game, either Anke
or Boris have always a memoryless winning strategy.

Quiz 5.3. Consider the following game. Here Boris wins if the player reaches node
5 and Anke wins if the game never reaches this node.

0start 1 2 3 4 5

6 7 8 9

Which player has a winning strategy? Give a memoryless winning strategy for the
player.

Theorem 5.4. There is an algorithm which can check which player wins a survival
game (when playing optimally). The algorithm runs in polynomial time.

Proof. Let V be the set of vertices of the graph. Now one constructs a function f
with domain V × {Anke,Boris} which tells for every node and every player whether
the game will be lost for Anke within a certain amount of moves.

Make the partial function f as follows: f(v,Anke) = 0 or f(v,Boris) = 0 if the
node v has no outgoing edge. Having once defined this, one extends the definition
in rounds n = 1, 2, . . . , 2 · |V | as follows: For each v ∈ V , if the value f(v,Anke) is
still undefined and every outgoing edge v → w satisfies that f(w,Boris) < n then let
f(v,Anke) = n; if the value f(v,Boris) is still undefined and there is an outgoing edge
v → w with f(w,Anke) < n then let f(v,Boris) = n.

After 2 ∗ |V | rounds, all values of f which can be defined in this way are de-
fined, so further rounds would not add further values. Therefore, one now says that
f(v, player) = ∞ for the remaining, not yet defined entries.

Now it is shown that the function f can be used to implement a memoryless win-
ning strategy for that player who can win the game.

Let s be the starting node. If f(s,Anke) = ∞ then Anke has a winning strategy.
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Each time, when its Anke’s turn to move, she moves from the current node v with
f(v,Anke) = ∞ to a node w with f(w,Boris) = ∞; if such a w would not exist then

f(v,Anke) < max{1 + f(w,Boris) : v → w is an edge in the graph.} < ∞

in contradiction to the assumption on f(v,Anke). Now, Boris cannot move from w to
any node u where f(u,Anke) < ∞, hence Boris moves to a node u with f(u,Anke) =
∞. So Anke can play in a way that the f remains on the value ∞ and will not end
up in a node without outgoing edge. This strategy is obviously memoryless.

In the case that f(s,Anke) < ∞, Boris could play the game in a way that it takes
at most f(s,Anke) moves. When the game is in a node with f taking the value 0, it
has terminated; so consider the case that the value is larger than 0. If it is Anke’s
turn, she can only move from a node v to a node w with f(w,Boris) < f(v,Anke).
If it is Boris’ turn and 0 < f(v,Boris) < ∞ then he can move to a node w with
f(w,Anke) < f(v,Boris), so again the f value goes down. Also this strategy for Boris
is obviously memoryless.

It is easy to see that the algorithm goes only through 2 ∗ |V | rounds and in each
round checks for 2 ∗ |V | entries whether a certain condition is satisfied; this condition
needs to follow all edges originating from v; therefore the overall algorithm is in
O(|V |3), hence polynomial time. Note that this algorithm is not optimised for its
runtime and that the cubic bound is not optimal; it is a special case of the algorithm
in Theorem 4.6.

Exercise 5.5. Consider the following game G(p, q, u, v, w) which is played on a graph
G with u, v, w being vertices and p ∈ {Anke,Boris} and q ⊆ {Anke,Boris}. Anke
wins a play in this game if the game starts in node u and player p starts to move and
the player moves alternately and the game goes through node v at some time and the
game ends after finitely many steps in w with a player in the set q being the next to
move.

Note that if q = {Anke,Boris} then the last condition on the last player to move
is void. Furthermore, going through v includes the possibility that v is the first or last
node to be visited so that the constraint on v is void in the case that v = u or v = w.
Furthermore, the graph might have more nodes than u, v, w; u, v, w are just the nodes
mentioned as parameters of the game.

Give an algorithm to determine which player in this game has a winning strategy.

Description 5.6: Update Games. An update game is given by a graph with
vertices V and edges E and a set W of special nodes such that Anke wins a game iff
she visits during the infinite play each node inW infinitely often. Update games are so
a special form of survival games, as they do not only require Anke to survive forever,
but also to visit the nodes in W infinitely often; if the game gets stuck somewhere or
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runs forever without visiting every node in W infinitely often, then Boris wins.
Such a game might, for example, model a maintenance task where the maintenance

people have to visit various positions regularly in order to check that they are in
order and where various constraints — moves by own choice (player Anke) and moves
imposed by other conditions beyond their control (player Boris) — influence how they
navigate through this graph.

Example 5.7. Update games do not necessarily have memoryless strategies, as the
following example shows (where the nodes in W are those with double boundaries).

sstart t

u

Anke starts the game in s; whenever she moves to t or u, Boris moves the game back
into s. Now, if Anke would have a memoryless strategy, she would always move to
one of the two nodes in W , say to t, but then the other node in W , here u, will never
be visited. So Anke has no memoryless winning strategy.

She has, however, a winning strategy using memory. Anke moves from node t to
u, from node u to t and from node s to that node of u and t which has longer not
yet been visited. So if Anke has to move in node s, she remembers from which node
the game came to s. If the previous move (of Boris) was t → s then Anke moves
s → u else Anke moves s → t. This makes sure that after each visit of u, the node t is
visited within 2 moves; furthermore, after each visit of t, the node u is visited within
2 moves.

Theorem 5.8. There is an algorithm which determines which player has a winning
strategy for an update game.

Proof. Let s be the starting node and w1, w2, . . . , wn be the nodes in W .
Now one first decides the following games G(p, q, u, v, w) where u, v, w ∈ V and

p ∈ {Anke,Boris} and q is a non-empty subsets of {Anke,Boris}. Now Anke wins
the game G(p, q, u, v, w), if it starts with some player p moving from u and it runs
only finitely many steps visiting the node v in between and then ends up in w with
a player in q being the next one to move. There are algorithms to decide this games,
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similar to those given in Theorem 4.6 and Theorem 5.4; Exercise 5.5 asks to design
such an algorithm.

Now Anke has a winning strategy for the game iff one of the following conditions
are satisfied:

• In Case 1 there is a node v and a player p ∈ {Anke,Boris} such that Anke can
win the game G(Anke, {p}, s, v, v) and for each w ∈ W Anke can win the game
G(p, {p}, v, w, v).

• In Case 2 there is a node v such that for every w ∈ W and every player
p ∈ {Anke,Boris}, Anke can win the games G(Anke, {Anke,Boris}, s, v, v) and
G(p, {Anke,Boris}, v, w, v).

By assumption, this can be checked algorithmically. The algorithm is in polynomial
time.

First it is verified that Anke has a winning strategy in the first case. She then
can force from s that the game comes to node v and that it is player p to move.
Furthermore, she can now alternatively for w = w1, w2, . . . , wn force that the game
visits this node and eventually returns to v with player p being the one to move. So
she can force an infinite play which visits each of the nodes in W infinitely often.

Second it is verified that Anke has a winning strategy in Case 2. Anke can force
the game into v without having a control which player will move onwards from v.
Then, for each of the two cases, she can force that the game visits any given node
w ∈ W and returns to v, hence she can force that the game visits each of the nodes
in W infinitely often.

Third assume that Case 1 and Case 2 both fail and that this is due because there
is a player p and a node u ∈ W such that Anke does not win G(Anke, {Anke,Boris}−
{p}, s, u, u) and Anke does not win G(p, {Anke,Boris}, u, v, u) for some v ∈ W . Hence
Boris can first enforce that either Anke visits u only finitely often or is at some point
in u with the player to move being p; from then onwards Boris can enforce that the
game either never reaches v or never returns to u after visiting v. Hence Boris has a
winning strategy in this third case.

Fourth, assume that Cases 1 and 2 fail and that there are nodes u, v, v′ ∈ W such
that Anke loses the games G(Anke, {Anke}, u, v, u) and G(Boris, {Boris}, u, v′, u);
hence Anke cannot enforce that a game visiting all nodes in W infinitely often has
always the same player being on move when visiting u. As Case 2 fails, there is a
node w ∈ W and p ∈ {Anke,Boris} such that Boris has a winning strategy for the
game G(p, {Anke,Boris}, u, w, u). It follows that once the player p is on the move in
node u, Boris can enforce that either w or u is not visited again. Hence Boris can
enforce that at least one of the nodes u, v, v′, w is not visited infinitely often and so
Boris has a winning strategy in this fourth case. This case distinction completes the
proof.
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Quiz 5.9. Which player has a winning strategy for the following update game?

0start 1 2 3 4

5 6 7 8 9

How much memory needs the strategy?

Exercise 5.10. Let n > 4, n be odd, V = {m : 0 ≤ m < n} and E = {(m,m + 1) :
m < n− 1} ∪ {(m,m+ 2) : m < n− 2} ∪ {(n− 2, 0), (n− 1, 0), (n− 1, 1)} and s = 0.
Show that Anke has a winning strategy for the update game (V,E, s, V ) but she does
not have a memoryless one.

0start 1 2 3 4

Here the game for n = 5.

Description 5.11. A Büchi game (V,E, s,W ) is played on a finite graph with nodes
V and edges E, starting node s and a special set W ⊆ V (like an update game). Anke
wins a play in the game iff, when starting in s, the game makes infinitely many moves
and during these moves visits one or more nodes in W infinitely often.

0start 1 2 3 4

Anke has a winning strategy for this game. The game is visiting node 0 infinitely
often as all backward arrows end up in this node.

In the case that it is Anke’s turn, she moves from 0 to 1. Then Boris can either
move to 3 and visit one node in W or to 2 so that Anke in turn can move to 3 or 4
and hence visiting one of the accepting nodes.

In the case that it is Boris’ move, he moves to 1 or 2 and Anke can go to the
accepting node 3 from either of these nodes.
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Theorem 5.12. There is a polynomial time algorithm which decides which player
can win a given Büchi game.

Proof. Given a Büchi game (V,E, s,W ), the idea is to make a function f : V ×
{Anke,Boris} → {0, 1, . . . , 30 · |V |2} which guides the winning strategies of Anke and
Boris (which are memoryless).

Initialise f(v, p) = 0 for all nodes v and players p. The algorithm to compute f is
to do the below updates as long as one of the if-conditions applies; if several apply,
the algorithm does the statement of the first if-condition which applies:

• If there are nodes v ∈ V − W and w ∈ V with (v, w) ∈ E and f(v,Anke) <
f(w,Boris)− 1 then update f(v,Anke) = f(v,Anke) + 1;

• If there is v ∈ V − W with an outgoing edge and all w ∈ V with (v, w) ∈ E
satisfy f(v,Boris) < f(w,Anke)− 1 then update f(v,Boris) = f(v,Boris) + 1;

• If there are v ∈ W with f(v,Anke) ≤ 30 · |V |2 − 3 · |V | and w ∈ V with
(v, w) ∈ E and f(v,Anke) ≤ f(w,Boris) + 6 · |V | then update f(v,Anke) =
f(v,Anke) + 3 · |V |;

• If there is v ∈ W with outgoing edge and f(v, p) ≤ 30 · |V |2 − 3 · |V | and all
w ∈ V with (v, w) ∈ E satisfy f(v,Boris) ≤ f(w,Anke) + 6 · |V | then update
f(v,Boris) = f(v,Boris) + 3 · |V |.

Note that there are at most 60 · |V |3 updates as each update increases one value of
f by one and the domain has cardinality 2 · |V | and the values in the range can be
increased at most 30 · |V |2 times. Hence the whole algorithm is polynomial in the size
of |V |.

Now the strategy of Anke is to move from v to that node w with (v, w) ∈ E for
which f(w,Boris) is maximal; the strategy of Boris is to move from v to that node w
with (v, w) ∈ E for which f(v,Anke) is minimal.

As there are only 2 · |V | many values in the range of f but the range can be
spread out between 0 and 30 · |V |2, there must, by the pigeon hole principle, be
a natural number m ≤ 2 · |V | such that there are no nodes v and players p with
10 · |V | ·m ≤ f(v, p) < 10 · |V | · (m + 1). Let m be the least such number. Now one
shows the following claim.

Claim. If f(v, p) ≥ 10 ·m · |V | then Anke can win the game else Boris can win the
game.

To prove the claim, first observe that for all w ∈ V −W with f(w,Anke) > 0 there
is a node u with (w, u) ∈ E and f(u,Boris) = f(w,Anke) + 1. The reason is that
when f(w,Anke) was updated the last time, there was a successor u ∈ V such that
f(u,Boris) > f(w,Anke) − 1. Now this successor causes f(w,Anke) to be updated
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until f(w,Anke) ≥ f(u,Boris)− 1. Similarly, for all w ∈ V −W with f(w,Boris) > 0
one has that f(w,Boris) = min{f(u,Anke) : (w, u) ∈ E}− 1; again, this follows from
the update rules. In particular as long as the game is in V −W , either the values of f
remain constant at 0 or they go up. As there are only finitely many values, it means
that the game eventually visits a node in W whenever the f -values of the current
situation in the game is positive.

Now consider the case of any w ∈ W and a player p moves from w to u following
its strategy. If p = Anke then f(u,Boris) ≥ f(w,Anke) − 6 · |V |; if p = Boris then
f(u,Anke) ≥ f(w,Boris) − 6 · |V |, as otherwise f(w, p) would not have reached the
final value in the update algorithm. Furthermore, unless f(w, p) > 30 · |V |2 − 3 · |V |,
one also can conclude that f(w, p) ≤ f(u, q) + 3 · |V | for q 6= p, as otherwise a further
update on f(w, p) would have been done.

Thus, if f(w, p) ≥ 10 ·m · |V | and the move from w to u is done in a play where
Anke follows her winning strategy then actually f(w, p) ≥ 10 ·m · |V | + 10 · |V | and
f(u, q) ≥ 10 ·m · |V |+ 10 · |V | as well. Thus the game will go forever and visit nodes
in W infinitely often.

However, consider now the case that the starting point satisfies f(v, p) < 10·m·|V |.
Then in particular f(v, p) < 30 · |V |2− 3 · |V |. For all (w, q) with f(w, q) < 10 ·m · |V |
it holds that f(w, q) cannot be increased as the conditions of the update-rules for
f do no longer apply. This means that when f(w,Anke) < 10 · m · |V | then all
successor configurations satisfy the same condition; if f(w,Boris) < 10 · m · |V |
then some successor configuration satisfies the same condition. Furthermore, when
w ∈ W and f(w,Anke) < 10 · m · |V | then all successor configurations (u,Boris)
satisfy f(u,Boris) < f(w,Anke) − 6 · |V |, if f(w,Boris) < 10 · m · |V | and at least
one successor configuration exists then there is a successor-node u with f(u,Anke) <
f(w,Boris) − 6 · |V |. Thus the play reduces each time by at least 3 · |V | whenever
it goes through a node in W . Furthermore, there is a constant c such that there is
no w, p taking a value f(w, p) having the remainder c modulo 3 · |V |; thus, the game
cannot go up from a value of the form 3k · |V | to 3(k + 1) · |V | without in between
visiting a node in W . Therefore the game cannot visit a node in W infinitely often
when starting at (v, p) with f(v, p) ≤ 10 ·m · |V |.

This two case distinctions complete the proof that the function f defines a mem-
oryless winning strategy for one of the players in the given Büchi game.

Description 5.13: Parity Games. A parity game is given by a graph (V,E) and
a function val which attaches to each node v ∈ V a value and a starting node s ∈ V .
The players Anke and Boris move alternately in the graph with Anke moving first.
Anke wins a play through nodes v0, v1, . . . in the game iff the limit superior of the
sequence val(v0), val(v1), . . . is an even number.
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0start 1 2 3 4

In this game, the nodes are labeled with their value, which is unique (what does not
need to be). Anke has now the following memoryless winning strategy for this game:
0 → 0, 1 → 2, 2 → 0, 3 → 4, 4 → 0. Whenever the game leaves node 0 and Boris
moves to node 1, then Anke will move to node 2. In the case that Boris moves the
game into node 3, Anke will move to node 4. Hence whenever the game is in a node
with odd value (what only happens after Boris moved it there), the game will in the
next step go into a node with a higher even value. So the largest infinitely often
visited node is even and hence the limit superior of this numbers is an even number.
Hence Anke has a winning strategy for this parity game given here.

One can show that in general, whenever a player has a winning strategy for a parity
game, then this winning strategy can be chosen to be memoryless; furthermore, there
is always a player which has a winning strategy.

Quiz 5.14. Which player wins this parity game? Give a winning strategy.

0start 1 2 3 4

Exercise 5.15. Consider the following parity game:

0start 1 4 7

2 3 6 9
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Which player has a winning strategy for this parity game? Give the winning strategy
as a table (it is memoryless).

Description 5.16: Infinite games in general. The following general concept
covers all the examples of games on finite graphs (V,E) with starting node s seen so
far: The players Anke and Boris move alternately with Anke starting in s along the
edges of the graph (which can go from a node to itself) and the winning condition
consists of a function F from subsets of V to {Anke,Boris} such that the winner of a
play is F (U) where U is the set of nodes visited infinitely often during the play. Here
U = ∅ stands for the case that the game gets stuck after finitely many moves and no
node is visited infinitely often. Here an overview how the winning conditions of the
above games are translated into this general framework.

In the case of a survival game, F (∅) = Boris and F (U) = Anke for all non-empty
subsets U ⊆ V .

In the case of an update game with parameter W , if W ⊆ U then F (U) = Anke
else F (U) = Boris.

In the case of a Büchi game with parameter W , if W ∩ U 6= ∅ then F (U) = Anke
else F (U) = Boris.

In the case of a parity game, F (∅) = Boris. For each non-empty set W , if
max{val(w) : w ∈ U} is an even number (where the function val assigns to each
node in V a natural number, see above) then F (U) = Anke else F (U) = Boris.

There are games which can be captured by this framework and which are not of
any of the types given above. For example, a game with V = {s, t, u} where the
players can move from each node to each node such that if |U | = 2 then F (U) = Anke
else F (U) = Boris.

Exercise 5.17. Determine the function F for the following game: V = {0, 1, 2, 3, 4, 5}
the edges go from each node v to the nodes (v + 1) mod 6 and (v + 2) mod 6. The
game starts in 0 and the players move alternately. Anke wins the game iff for each
infinitely often visited node v, also the node (v + 3) mod 6 is infinitely often visited.

Define the function F on all possible values of U which can occur as an outcome of
the game. List those values of U which cannot occur, that is, for which a value F (U)
does not need to be assigned. For example, as the game graph has for each node two
outgoing edges, so it cannot get stuck somewhere and therefore U = ∅ is irrelevant.

Which player has a winning strategy for this game? Can this winning strategy be
made memoryless?

Exercise 5.18. Let a game (V,E, s,W ) given by set V of nodes, possible moves E,
starting node s and a set of nodes W to be avoided eventually. Let U be the infinitely
often visited nodes of some play.

Say that if U ∩ W = ∅ and U 6= ∅ then Anke wins the game else Boris wins the
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game.
Determine an easy way mapping from (V,E, s,W ) to (V ′, E ′, s′, F ′) and players

p to p′ such that player p wins the avoidance game (V,E, s,W ) iff p′ wins the game
(V ′, E ′, s′, F ′) (see Description 5.16) where the type of (V ′, E ′, s′, F ′) is one of survival
game, update game, Büchi game or parity game. Say which type of game it is and
how the mapping is done and give reasons why the connection holds.

Exercise 5.19. Describe an algorithm which transforms a parity game (V,E, s, val)
into a new parity game (V ′, E ′, s′, val′) such that this game never gets stuck and Anke
wins (V,E, s, val) iff Boris wins (V ′, E ′, s′, val′); without loss of generality it can be
assumed that V is a finite subset of N and val(v) = v. Do the mapping such that V ′

has at most two nodes more than V .

Exercise 5.20. Consider the following game on the board N: The game terminates
at 1 and one can move from number 2n + 2 to n + 1 and from number 2n + 1 to
(2n+ 1) · k+ h for some k, h ∈ {1, 3, 5, 7, 9}. Anke wins if the game runs forever and
Boris wins if the game eventually reaches 1. Clearly Boris wins if the game starts in
2, 4, 8, 16 and other powers of 2. Determine for all further numbers up to 20 who has
a winning strategy when Anke starts at this number.

Exercise 5.21. Consider the game on the board N with the following moves: One
can move from number 2n + 2 to n + 1 and from number 2n + 1 to one of 2n + 2,
2n+4, 6n+6, 6n+8. If the game reaches 1, Boris wins; if the game visits each node
only finitely often without going to 1, Anke wins; if the game goes through some number
infinitely often, it is draw. Give an algorithm which says which starting numbers are
wins for Anke, wins for Boris and draw.

Exercise 5.22. Consider an update game on the board {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
where players move by adding 1 or 3 modulo 12 to the current position and where
Anke wins when 0, 4, 8 are visited infinitely often. Which starting positions are wins
for Anke and which are wins for Boris?

Exercise 5.23. Consider a Büchi game on {abcd : a, b, c, d ∈ {0, 1, 2, 3}}. One can
add 1 or 2 modulo 4 to one out of four digits abcd. So from 0123, one can move to
1123, 2123, 0223, 0323, 0133, 0103, 0120, 0121. Let F = {0000, 1111, 2222, 3333}. De-
termine the winner of the Büchi game where during the infinite duration of this game,
one node in F has to be visited infinitely often.

Exercise 5.24. If one plays the game from Exercise 5.23 as a update game where
each node in F has to be visited infinitely often and F is any nonempty set. Which
player has a winning strategy?
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Exercise 5.25. If one plays the Büchi game from Exercise 5.23 but with a modified
set F which contains all nodes where three digits are equal, which player has a winning
strategy?

Exercise 5.26. If one plays the Büchi game from Exercise 5.23 but with a modified
set F which contains all nodes which have exactly one 0, which player has a winning
strategy?

Exercise 5.27. Consider a game on {abcd : a, b, c, d ∈ {0, 1, 2, 3}}, where in a move
one can add 1 or 3 modulo 4 to one out of four digits abcd. So from 0123, one can
move to 1123, 3123, 0223, 0023, 0133, 0113, 0120, 0122. Let F contain all nodes which
have at least two digits 3. Determine the winning positions of player Anke in a Büchi
game and in the survival game. Recall that in a Büchi game, some node in F has to
be visited infinitely often and that in a survival game, all the nodes in F have to be
avoided forever. The survival game is lost for Anke if it starts in a node of F .

Exercise 5.28. Modify F from Exercise 5.27 such that F contains all nodes where at
least one digit is 3. Determine the winning positions of the Büchi game and survival
game for Anke in this game.
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6 Automata on Infinite Sequences

An infinite sequence b0b1b2 . . . ∈ Σω is a function from N to Σ; such sequences are called
ω-words. One can for example represent all the real numbers between 0 and 1 by ω-
words with b0b1b2 . . . ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 8}ω representing the sum

∑

k∈N 10
−k · bk

where only the finite decimal fractions are not uniquely represented and have two
representatives; for example 256

1000
is represented by 25600000 . . . and 255999999 . . .

while 1
3
has the unique representative 333 . . . in this set. Representing real numbers

is indeed one of the motivations in the study of ω-words and one can make more
advanced systems which represent all numbers in R. Richard Büchi and Lawrence
Landweber [9, 10] investigated methods to deal with such representations in a way
similar to what can be done with sets of finite words.

Description 6.1: Büchi Automata [9, 10]. A Büchi automaton is a nondeter-
ministic automaton (Q,Σ, δ, s, F ) where Q is the set of states, Σ the finite alphabet
used, δ a set of possible transitions (p, a, q) ∈ Q × Σ × Q such that the automaton
can on symbol a go from p to q, s the starting state and F a set of states. Given an
infinite word b0b1b2 . . . ∈ Σω, a run on this sequence is a sequence q0q1q2 . . . ∈ Qω of
states such that q0 = s and (qk, bk, qk+1) ∈ δ for all k ∈ N. Let

U = {p ∈ Q : ∃∞k [qk = p]}

be the set of infinitely often visited states on this run. The run is accepting iff
U ∩ F 6= ∅. The Büchi automaton accepts an ω-word iff it has an accepting run on
this ω-word, otherwise it rejects the ω-word.

A Büchi automaton is called deterministic iff for every p ∈ Q and a ∈ Σ there is
at most one q ∈ Q with (p, a, q) ∈ δ; in this case one also writes δ(p, a) = q. The
following deterministic Büchi automaton accepts all decimal sequences which do not
have an infinite period of 9; that is, each real number r with 0 ≤ r < 1 has a unique
representation in the set of sequences accepted by this automaton.

sstart t

9 0, 1, 2, 3, 4, 5, 6, 7, 8
9

0, 1, 2, 3, 4, 5, 6, 7, 8

This automaton goes infinitely often through the accepting state t iff there is infinitely
often one of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and therefore the word is not of the form
w9ω.
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Exercise 6.2. Make a deterministic Büchi automaton which accepts an ω-word from
{0, 1, 2}ω iff it contains every digit infinitely often.

Exercise 6.3. Make a deterministic Büchi automaton which accepts an ω-word from
{0, 1, 2}ω iff it contains at least two digits infinitely often.

Exercise 6.4. Make a deterministic Büchi automaton with three states which accepts
all ω-words in which at least six of the usual ten decimal digits occur infinitely often
and which rejects all ω-words where only one digit occurs infinitely often. There is no
requirement what the automaton does on other ω-words.

While nondeterministic and deterministic finite automata have the same power, this
is not true for Büchi automata.

Example 6.5. Let L be the language of all ω-words which from some point onwards
have only 9s, so L = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ · 9ω. Then there is a nondeterministic
but no deterministic Büchi automaton accepting L. Furthermore, the languages recog-
nised by deterministic Büchi automata are not closed under complement.

First, one shows that a nondeterministic Büchi automaton recognises this lan-
guage. So an accepting run would at some time guess that from this point onwards
only 9s are coming up and then stay in this state forever, unless some digit different
from 9 comes up.

sstart t u

0, 1, 2, 3, 4, 5, 6, 7, 8, 9 9 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

9 0, 1, 2, 3, 4, 5, 6, 7, 8

Second, it has to be shown that no deterministic Büchi automaton recognises this
language. So assume by way of contradiction that (Q, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, δ, s, F )
would be such an automaton. Now one searches inductively for strings of the form
σ0, σ1, . . . ∈ 09∗ such that δ(s, σ0σ1 . . . σn) ∈ F for all n. If there is an n such that
σn cannot be found then the sequence σ0σ1 . . . σn−109

ω is not accepted by the Büchi
automaton although it is in L, as states in F are visited only finitely often in the
run. If all σn are found, then the infinite sequence σ0σ1 . . . has the property that it
contains infinitely many symbols different from 9 and that it is not in L; however,
the automaton visits infinitely often a state from F . This contradiction shows that L
cannot be recognised by a deterministic Büchi automaton.

Quiz 6.6. Show the following: if L and H are languages of ω-words recognised by
deterministic Büchi automata then also L∪H and L∩H are recognised by deterministic
Büchi automata. Show the same result for nondeterministic Büchi automata.
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Quiz 6.7. Make a Büchi automaton which recognises the language of all ω-words in
which exactly two digits from {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} occur infinitely often. Describe
how the automaton is build; it is not necessary to make a complete diagram of its
states.

Product Automata 6.8. Given ω-languages L and H, assume that the automata
(QL,Σ, δL, sL, FL) and (QH ,Σ, δH , sH , FH) recognise L and H, respectively.

Now let Q = QL ×QH × {10, 01, 11} and for each (qL, qH) ∈ QL ×QH and a ∈ Σ
let δ((qL, qH , r), a) = (δL(qL, a), δH(qH , a), r

′) where r′ = r if qL /∈ FL and qH /∈ FH

and r′ = FL(qL)FH(qH) if at least one of these bits is 1.
For the union, (qL, qH , r) ∈ F if either qL ∈ FL or qH ∈ FH . For the intersection,

(qL, qH , r) ∈ F iff qL ∈ FL and the second bit or r is 1 or qH ∈ FH and the first bit of
r is 1.

Example 6.9. Let L is the set of all ω-words containing infinitely many even digits
and let H is the set of all ω-words containing infinitely often either 0 or 5.

A Büchi automaton for L consists of two states sL, tL where the automaton goes
to tL iff it has just seen an even digit and to sL iff it has just seen an odd digit.
FL = {tL}.

A Büchi automaton for H consits of two states sH , tH where the automaton goes
to tH iff it has just seen 0 or 5 and to sH otherwise. FH = {tH}.

The intersection L∩H contains all ω-words where infinitely many even digits and
also infinitely many digits from 0, 5 appear in the ω-word.

Product automaton has states from {sL, tL} × {sH , tH} × {01, 10, 11}.
The successor of (qL, qH , r) on input a is determined as follows: Let r′ = r for

(sL, sH , r), r
′ = 10 for (tL, sH , r), r

′ = 01 for (sL, tH , r) and r′ = 11 for (tL, tH , r).
Now

δ((qL, qH , r), 0) = (tL, tH , r
′);

δ((qL, qH , r), 5) = (sL, tH , r
′);

δ((qL, qH , r), a) = (tL, sH , r
′) for a ∈ {2, 4, 6, 8};

δ((qL, qH , r), a) = (sL, sH , r
′) for a ∈ {1, 3, 7, 9}.

Starting state is (sL, sH , 11). The set F of accepting states contains all nodes of form
(tL, qH , x1) and of form (qL, tH , 1x). Here qL, qH are any states in the corresponding
automata and x is any bit 0 or 1.

Example 6.10. Consider the following automaton Bi,j with i 6= j.
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sstart qi,j ri,j ti,j

0, 1, 2, 3, 4, 5, 6, 7, 8, 9 j i

i, j i j

i, j

Now make a central starting node s connected to cycles of three nodes qi,j, ri,j , ti,j for
all pairs of distinct digits i, j as in the diagramme above. The nodes ti,j are the only
accepting ones.

Exercise 6.11. Construct deterministic Büchi automata for the language Lab of all ω-
word which do not contain the subword ab anywhere. Then construct the intersection
automaton for L01 ∩ L23. The alphabet is {0, 1, 2, 3}.

Exercise 6.12. Cnstruct a deterministic Büchi automaton for the language Hab of
all ω-words which in which the subword ab occurs infinitely often. Then construct the
intersection via a product automaton for H01 ∩H23. The alphabet is {0, 1, 2, 3}.

Exercise 6.13. Construct a deterministic Büchi automaton with four states for H01∪
H23 with Hab as in Exercise 6.12. This automaton does not need to be of the form of
a product automaton. The alphabet is {0, 1, 2, 3}.

Büchi [9] found the following characterisation of the languages of ω-words recognised
by nondeterministic Büchi automata.

Theorem 6.14: Büchi’s Characterisation [9]. The following are equivalent for a
language L of ω-words:
(a) L is recognised by a nondeterministic Büchi automaton;
(b) L =

⋃

m∈{1,...,n} AmB
ω
m for some n and 2n regular languages A1, B1, . . . , An, Bn.

Proof, (a)⇒(b). Assume that a nondeterministic Büchi automaton (Q,Σ, δ, s, F )
recognises L. Let n be the cardinality of F and p1, p2, . . . , pn be the states in F .
Now let Am be the language of strings recognised by (Q,Σ, δ, s, {pm}) when viewed
as an nfa and Bm be the set of non-empty words in the language recognised by
(Q,Σ, δ, pm, {pm}) when viewed as an nfa. It is clear that all these languages are
regular. Furthermore, for each ω-word in Am ·Bω

m there is a run of the original Büchi
automaton which goes infinitely often through the state pm. Furthermore, if a ω-word
has a run which goes infinitely often through states in the set F then there is at least
one state pm which is infinitely often visited by this run; one can now partition this
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ω-word in parts σ0, σ1, σ2, . . . such that the run is after processing σ0σ1 . . . σk in pm for
visit number k (with the first visit having number 0). Note that all σk are non-empty
and that σ0 ∈ Am and each σk with k > 0 is in Bm. Hence the ω-word is in AmB

ω
m.

(b)⇒(a). Assume that L = A1·Bω
1 ∪A2·Bω

2 ∪. . .∪Am·Bω
n . Assume that each language

Am is recognised by the nfa (N2m−1,Σ, δ2m−1, s2m−1, F2m−1) and each language Bm ∪
{ε} is recognised by the nfa (N2m,Σ, δ2m, s2m, F2m); note that here s2m ∈ F2m for
all m.

Now let N0 = {s0} ∪N1 ∪N2 ∪ . . .∪N2n where all these sets are considered to be
disjoint (by renaming the non-terminals, if necessary). The start symbol of the new
automaton is s0. Furthermore, let δ0 be δ1∪δ2∪ . . .∪δ2n plus the following transitions
for each a ∈ Σ: first, (s0, a, q) if there is an m such that (s2m−1, a, q) ∈ δ2m−1; second,
(s0, a, q) if there is an m such that ε ∈ Am and (s2m, a, q) ∈ δ2m; third, (s0, a, s2m)
if a ∈ Am; fourth, (q, a, s2m), if there are m and p ∈ F2m−1 with q ∈ N2m−1 and
(q, a, p) ∈ δ2m−1; fifth, (q, a, s2m), if there are m and p ∈ F2m with q ∈ N2m and
(q, a, p) ∈ δ2m. These added rules reconnect the transitions from the starting state
into Am (first case) or directly into BM (when ε ∈ Am for the second case or a ∈ Am

for the third case) and the transition from Am into Bm on the reach of an accepting
state of Am (fourth case) and the return to the starting state of Bm when an accepting
state can be reached (fifth case). In the fourth or fifth case, the automaton could go
on in Am or Bm instead of going to s2m, this choice is left nondeterministic on purpose;
indeed, one cannot in all cases make this Büchi automaton deterministic.

Now {s2, s4, s6, . . . , s2n} is the set F0 of final states of the newly constructed Büchi
automaton (N0,Σ, δ0, s0, F0). That is, this Büchi automaton accepts an ω-word iff
there is a run of the automaton which goes infinitely often through a node of the form
s2m; by the way how δ0 is defined, this is equivalent to saying that the given ω-word
is in Am ·Bω

m. The further verification of the construction is left to the reader.

Muller introduced a notion of automata which overcomes the shortage of deterministic
Büchi automata and can nevertheless be made deterministic.

Description 6.15: Muller automaton. A Muller automaton (Q,Σ, δ, s, G) con-
sists of a set of states Q, an alphabet Σ, a transition relation δ, a starting state s and
a set G of subsets of Q. A run of the Muller automaton on an ω-word b0b1b2 . . . ∈ Σω

is a sequence q0q1q2 . . . with q0 = s and (qk, a, qk+1) ∈ δ for all k. A run of the Muller
automaton is accepting iff the set U of infinitely often visited states satisfies U ∈ G.
The Muller automaton accepts the ω-word b0b1b2 . . . iff it has an accepting run on it.

A Muller automaton is deterministic iff the relation δ is a function, that is, for
each p ∈ Q and a ∈ Σ there is at most one q ∈ Q with (p, a, q) ∈ δ.

While the language of all ω-words of the form w9ω is not recognised by a de-
terministic Büchi automaton, it is recognised by the following deterministic Muller
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automaton: ({s, t}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, δ, s, {{s}}) where δ(s, a) = t for t < 9,
δ(s, 9) = s and δ(t, a) = s. The following diagram illustrates the Muller automaton:

sstart t G = {{s}}

9 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

0, 1, 2, 3, 4, 5, 6, 7, 8

If the ω-word consists from some time onwards only of 9s then the automaton will
after that time either go to s or be in s and then remain in s forever so that U = {s}
and U ∈ G; hence the run of the automaton on this ω-word is accepting.

If the ω-word consists of infinitely many symbols different from 9 then the au-
tomaton will leave on its run infinitely often the state s for the state t and U = {s, t}
what is not in G. Hence the run of the automaton on this ω-word is rejecting.

As the automaton is deterministic, the automaton accepts a word iff it contains
from some point onwards only 9s.

Exercise 6.16. Make a deterministic Muller automaton which accepts all those ω-
words in which at least one of the symbols from the alphabet {0, 1, 2} occurs only
finitely often.

Exercise 6.17. Make a deterministic Muller automaton with alphabet {0, 1, 2} which
recognises the language of all ω-words for which there is an even number of ab ∈
{01, 12, 20} which occurs infinitely often as a subword in the ω-word.

Exercise 6.18. Make a deterministic Muller automaton with alphabet {0, 1, 2} which
recognises the language of all ω-words for which there are no ab ∈ {21, 10, 02} which
occur infinitely often as a subword in the ω-word.

McNaughton [62] established the equivalence of these three conditions. The direct
translation from (a) to (b) was also optimised by Safra [76, 77].

Theorem 6.19: McNaughton’s Characterisation [62]. The following are equiv-
alent for a language L of ω-words:
(a) L is recognised by a nondeterministic Büchi automaton;
(b) L is recognised by a deterministic Muller automaton;
(c) L is recognised by a nondeterministic Muller automaton.

Proof, (a)⇒(b). Let a nondeterministic Büchi automaton (Q,Σ, δ, s, F ) be given.
Without loss of generality, the given Büchi automaton has on every ω-word some
infinite run; if not, one could add one state q such that one can go from every state
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into q, q /∈ F and one can go from q only into q itself (irrespective of the input).
The idea is that the corresponding deterministic Muller automaton keeps track

of which non-terminals can be reached and how the history of visiting accepting
states before the current state is. So for each initial part of a nondeterministic run
q0q1q2 . . . qn of the Büchi automaton while processing input b1b2 . . . bn, the Muller au-
tomaton machine would ideally archive the current state qn and a string τ ∈ {0, 1}n+1

representing the history where τ(m) = 0 for qm ∈ F and τ(m) = 1 for qm /∈ F . So the
overall goal would be to have as many 0 as possible in the string τ and to have them
as early as possible (what might be even more important than the actual number).

Hence, if there are two different runs having the traces τ and η, both ending up in
the same state qn, then the learner would only archive minlex{τ, η}. For that reason,
after processing b1b2 . . . bn, the Muller automaton would represent the current state
by a set of pairs (p, τ) with p being a state reachable on input b1b2 . . . bn and τ being
the lexicographically least string representing the history of some run on this input.
Note that if one can go with histories τ, τ ′ from s to p on b1b2 . . . bn and with histories
η, η′ from p to q on bn+1bn2 . . . bm then one can also go with each of the histories τη,
τη′, τ ′η, τ ′η′ from s to q on b1b2 . . . bm. Furthermore, the lexicographic minimum of
these four strings is minlex{τ, τ ′} ·minlex{η, η′}. For that reason, it is save always only
to store the lexicographic minimum. Furthermore, for determining the lexicographic
minimum for going from s to q on b1b2 . . . bm, it is sufficient to know for each state p
the lexicographic minimum of the history on the first n steps and then the history for
the resulting m steps will be one of these strings in {0, 1}n+1.

The disadvantage of this approach is that the information archived is growing and
growing, that is, in each step the strings archived in the pairs get longer and longer.
Therefore, one does the more complicated following algorithm to update the state,
which is represented by a set of pairs (p, τ) where all the strings in the state are of
same length and where for each p ∈ Q there is at most one pair (p, τ) in the state
of the Muller automaton. Furthermore, one stores in the state besides these pairs
one special symbol representing a number between 0 and the maximum length of a τ
which represents a column deleted in the last step. For the next state, this number is
irrelevant.

First one creates the initial state s̃ of the Muller automaton by taking {∞, (s, 0)}
in the case that s ∈ F and {∞, (s, 1)} in the case that s /∈ F . Now, one determines
for each state p̃ created so far and each symbol b a successor state δ(p) as follows; one
keeps adding these successor states to the set P of states of the Muller automaton
until no new state is created this way. Let a state p̃ ∈ P and a symbol b ∈ Σ be given.

1. Let Q′ = {q : ∃σq [(q, σq) ∈ p̃]}.
2. Now one determines whether there is a k such that for all σq, σp: The first bit

differing in σp, σq is not at position k and if σp(k) = 0 then there is a k′ > k
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with σp(k
′) = 0 as well. If this k exists then choose the least among all possible

values else let k = ∞.

3. Start creating the state ∆(p̃, b) by putting the element k into this state (which
is considered to be different from all pairs).

4. Let τq be obtained from σq by omitting the bit at position q in the case k < ∞
and by letting τq = σq in the case k = ∞.

5. For each q ∈ F , determine the set {τp0 : p ∈ Q′ ∧ (p, b, q) ∈ δ}. If this set is not
empty, then let ηq is lexicographic minimum and put (q, ηq) into the new state
∆(p̃, b).

6. For each q ∈ Q − F , determine the set {τp1 : p ∈ Q′ ∧ (p, b, q) ∈ δ}. If this set
is not empty, then let ηq is lexicographic minimum and put (q, ηq) into the new
state ∆(p̃, b).

7. The new state ∆(p̃, b) consists of all the information put into this set by the
above algorithm.

Now one shows that whenever the σq in the state p̃ have at least length 2 ∗ |Q| then
k < ∞ and therefore the ηq in the state ∆(p̃, b) will have the same length as the σq,
hence the length of the archived strings is not increasing and so the number of states
created is finite, actually P has at most 22∗|Q|2+|Q| ∗ (2 ∗ |Q|+ 1)2 members.

To see this, assume that all the strings σq in p̃ have length 2 ∗ |Q|. There are at
most |Q| of these strings. They and their prefixes form a binary tree with up to |Q|
leaves of length 2∗ |Q| and so there are at most |Q|−1 branching nodes σ′ in the tree.
For each branching node σ′, there are σ′0, σ′1 in the tree. Now let K = {|σ′| : σ′ is a
branching node in the tree}. Furthermore, for each leave σp, let k

′ be the largest value
where σp(k

′) = 0; for each σp add this k′ into K. Then K has at most 2∗|Q|−1 many
members. Hence k = min({0, 1, . . . , 2 ∗ |Q| − 1} −K) exists and is identical to the k
chosen in step 2, as for all σp, σq, if σp(k) = 0 then some σp(k

′) = 0 for k′ > k and if
σp(k) 6= σq(k) then there is some k′ < k with σp(k

′) 6= σq(k
′). Hence the τq are shorter

than the σq by one bit and the ηq have the same length as the τq. Furthermore, it is
clear that ∆ is a function and the resulting Muller automaton will be deterministic.

The remaining part of the Muller automaton to be defined is G: So let G contain
every set W such that there is a k < ∞ satisfying k = min{k′ : ∃p̃ ∈ W [k′ ∈ p̃]} and
W ∩ Uk 6= ∅ where

Uk = {p̃ : ∃ϑ ∈ {0, 1}k [∃(q, σ) ∈ p̃ [σ ∈ ϑ · {0, 1}∗] ∧ ∀(q, σ) ∈ p̃ [σ /∈ ϑ · 1∗]]}.
Consider any given ω-word and let W be the set of states which the Muller automaton
visits on this ω-word infinitely often. Let p̃m denote ∆(s̃, b1b2 . . . bm). There is an n
so large that p̃m ∈ W for all m ≥ n.

First assume that there is an p̃n′ ∈ Uk for some n′ > n. Now the Muller au-
tomaton accepts b1b2 . . ., as pn′ ∈ W . So one has to show that b1b2 . . . is also
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accepted by the Büchi automaton. As p̃n′ ∈ Uk there is a ϑ ∈ {0, 1}k satisfying
∃(q, σ) ∈ p̃n′ [σ ∈ ϑ · {0, 1}∗] ∧ ∀(q, σ) ∈ p̃n′ [σ /∈ ϑ · 1∗]. Now consider ∆(p̃n′ , bn′).
By construction, whenever (q, σ) ∈ p̃n′ and σ extends ϑ then σ(k′) = 0 for some
k′ ≥ k; this property is preserved by the corresponding τ associated with q in p̃n′ .
Furthermore, each pair (q′, σ) ∈ p̃n′+1 satisfies that σ = τa for some a and the lexico-
graphically least τ which belongs to some q ∈ Q with (q, bn′ , q′) ∈ δ; whenever that τ
extends ϑ then it contains a 0 after position k and therefore η has the same property.
Hence every pair (q′, σ) ∈ p̃n′+1 satisfies that either σ does not extend ϑ or σ extends
ϑ with a string containing a 0. Furthermore, if some of the p̃m with m > n′ would
not contain any (q, σq) with σq extending ϑ, then this property would inherit to all p̃o
with o > m; as p̃n′ = p̃o for infinitely many o, this cannot happen. Hence all members
of W are in Uk as witnessed by the same ϑ.

Now let T be the tree of all finite runs q0q1 . . . qm such that there is an associated
sequence (σ0, σ1, . . . , σm) of strings with (qh, σh) ∈ p̃h for all h ≤ m and ϑ � σh for all
h with n ≤ h ≤ m and satisfying for all h < m and the k′ ∈ p̃h+1 that (qh, bh, qh+1) ∈ δ
and σh+1 is obtained from σh by omitting the k′-th bit (in the case that k′ 6= ∞) and
then appending 0 in the case that qh+1 ∈ F and appending 1 in the case that qh+1 /∈ F .
Each pair in each p̃m for each m must be reachable by such a sequence; hence T is
infinite. By König’s Lemma there is an infinite sequence of qm of states with the
corresponding sequence of σm with the same property. This sequence then satisfies
that from some n onwards there is always a 0 somewhere after the k-th bit in σm;
furthermore, the k-th bit is infinitely often deleted; hence it is needed that infinitely
often a 0 gets appended and so the sequence q0q1 . . . satisfies that qm ∈ F for infinitely
many m. Hence b0b1 . . . has the accepting run q0q1 . . . of the Büchi automaton.

Second assume that there is no p̃m ∈ Uk for any m ≥ n. Then the Muller automa-
ton rejects the run and one has to show that the Büchi automaton does the same.
Assume by way of contradiction that there is an accepting run q0q1q2 . . . of the Büchi
automaton on this sequence and let σ0, σ1, σ2, . . . be the corresponding strings such
that (qm, σm) ∈ p̃m for all m. There is a string ϑ ∈ {0, 1}k which is for almost all m a
prefix of the σm. Furthermore, by assumption, there is for all m ≥ n a state rm ∈ Q
with (rm, η1

ℓ) ∈ p̃m. There are infinitely many m with σm � ϑ ∧ σm 6= ϑ1ℓ. Let k′

be the minimum of the k′ ≥ k such that σn′′(k′) = 0 ∧ ϑ � σn′′ for some m ≥ n; the
minimal k′ exists; fix some n′′ with the chosen property. Then the number k′′ ∈ p̃n′′+1

satisfies that k′′ ≥ k. Furthermore, k′′ 6= k′ as (rn′′ , ϑ1ℓ) and (qn′′ , σn′′) are both in p̃n′′

and k′ is the first position where they differ. Furthermore, it does not happen that
k ≤ k′′ < k′ as then σn′′+1 would have the 0 at k′ − 1 and k′ − 1 ≥ k in contradiction
to the choice of k′. Hence not k but k′ + 1 would be the limit inferior of all the
numbers in p̃m with m ≥ n′′ which equals to the states in W , a contradiction. Thus
such an accepting run of the Büchi automaton on b0b1b2 . . . does not exists and the
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Büchi automaton rejects the input in the same way as the Muller automaton does.
So it follows from the case distinction that both automata recognise the same lan-

guage. Furthermore, the deterministic Muller automaton constructed from the Büchi
automaton has exponentially many states in the number of states of the original
nondeterministic Büchi automaton.

(b)⇒(c). This holds, as every deterministic Muller automaton can by definition also
be viewed as a nondeterministic one.

(c)⇒(a). Let a nondeterministic Muller automaton (Q,Σ, δ, s, G) be given. Let
succ(w,W ) be a function which cycles through the set W : if W = {w1, w2, w3}
then succ(w1,W ) = w2, succ(w2,W ) = w3 and succ(w3,W ) = w1. Now let P =
Q × Q × (G ∪ {∅}) is the set of states of the equivalent Büchi automaton, the al-
phabet Σ is unchanged, the starting state is (s, s, ∅) and for each transition (p, a, q)
and each r and each W ∈ G with p, q, r ∈ W , put the following transitions into
∆: ((p, p, ∅), a, (q, q, ∅)), ((p, p, ∅), a, (q, q,W )), ((p, r,W ), a, (q, r,W )) in the case that
p 6= r and ((p, p,W ), a, (q, Succ(p,W ),W )). The set F is the set of all (p, p,W ) with
p ∈ W and W ∈ G (in particular, W 6= ∅). Now it is shown that (P,Σ, (s, s, ∅),∆, F )
is a nondeterministic Büchi automaton recognising L.

Given a word recognised by the Büchi automaton, there is an accepting run which
goes infinitely often through a node of the form (p, p,W ) with p ∈ W . When it is in
(p, p,W ), the next node is of the form (q, p′,W ) with p′ = Succ(p,W ) and q ∈ W ,
the second parameter will remain p′ until the run reaches (p′, p′,W ) from which it
will transfer to a state of the form (q′, p′′,W ) with p′′ = Succ(p′,W ). This argument
shows that the run will actually go through all states of the form (q, q,W ) with q ∈ W
infinitely often and that the first component of the states visited after (p, p,W ) will
always be a member of Q. Hence, if one takes the first components of the run, then
almost all of its states are in W and all states occur in W infinitely often and it forms
a run in the given Muller automaton. Hence the given ω-word is recognised by the
Muller automaton as well.

On the other hand, if one has a run q0q1 . . . accepting an ω-word in the given
Muller automaton and if W is the set of states visited infinitely often and if n is
the position in the run from which onwards only states in W are visited, then one
can translate the run of the Muller automaton into a run of the Büchi automaton as
follows: (q0, q0, ∅), (q1, q1, ∅), . . . , (qn, qn, ∅), (qn+1, qn+1,W ). For m > n and the m-th
state being (qm, rm,W ) then the rm+1 of the next state (qm+1, rm+1,W ) is chosen such
that rm+1 = Succ(W, rm) in the case qm = rm and rm+1 = rm in the case qm 6= rm. It
can be seen that all the transitions are transitions of the Büchi automaton. Further-
more, one can see that the sequence of the rm is not eventually constant, as for each
rm there is a k ≥ m with qk = rm, rk = rm and rm+1 = Succ(rm,W ). Hence one can
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conclude that the states of the form (p, p,W ) with p ∈ W are infinitely often visited
in the run and the Büchi automaton has also an accepting run for the given word.
Again the construction gives an exponential upper bound on the number of states of
the Büchi automaton constructed from the Muller automaton. This completes the
proof.

In the above proof, an exponential upper bound on the number of states means
that there is a polynomial f such that the number of states in the new automaton is
bounded by 2f(|Q|) whereQ is the set of states of the old automaton and |Q| denotes the
number of states. So the algorithm gives the implicit bound that if one computes from
some nondeterministic Büchi automaton another nondeterministic Büchi automaton
recognising the complement then the number of states is going up in an double-
exponential way, that is, there is some polynomial g such that the number of states in
the Büchi automaton recognising the complement is bounded by 22

g(|Q|)
. This bound

is not optimal, as the next result shows, but it can be improved to an exponential
upper bound. Schewe [80] provides a tight exponential bound, the following theorem
just takes the previous construction to give some (non-optimal) way to complement
a Büchi automaton which still satisfies an exponential bound.

Theorem 6.20. Assume that (Q,Σ, δ, s, F ) is a nondeterministic Büchi automaton
recognising the language L. Then there is an only exponentially larger automaton
recognising the complement of L.

Proof. For the given automaton for a language L, take the construction from The-
orem 6.19 (a)⇒(b) to find a deterministic Muller automaton for L with a set P of
states, a transition function ∆, p̃ and the numbers k and sets Uk defined as there.
Now define the new state-space as R = P ∪ {p̃ ∪ {ĥ} : ∃k [h ≤ k < ∞ ∧ k ∈ p̃]}
where 0̂, 1̂, . . . are considered as different from 0, 1, . . . (for avoiding multi-sets) and
the mapping h 7→ ĥ is one-one. So besides the states in P , there are states with
an additional number ĥ which is considered as a commitment that the value of the
numbers in future states will never be below h. Note that |R| ≤ (2 ∗ |Q|+ 1) ∗ |P | so
that the exponential bound on R is only slightly larger than the one on P . The idea is
that the transition relation on R follows in general ∆ with the additional constraints,
that at any time a commitment can be made but it can never be revised; furthermore,
the commitment cannot be violated. So the following transitions are possible:

1. (p̃, a,∆(p̃, a)) if p̃ ∈ P ;

2. (p̃, a,∆(p̃, a) ∪ {ĥ}) if p̃ ∈ P and h is any number between 0 and 2 ∗ |Q|;
3. (p̃ ∪ {ĥ}, a,∆(p̃, a) ∪ {ĥ}) if p̃ ∈ P and there is a h′ ≥ h with h′ ∈ ∆(p̃).

The set F has the role to enforce that for the limit inferior k of the numbers occurring
in the states p̃, the commitment k̂ is made eventually and some state p̃ ∪ {k̂} is
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visited infinitely often with k ∈ p̃∧ p̃ /∈ Uk. Note that Theorem 6.19 (a)⇒(b) showed
that this is exactly the behaviour of the underlying Muller automaton (without the
commitments) when running on an ω-word: it rejects this ω-word iff it runs through a
state p̃ infinitely often such that k ∈ p̃ for the limit inferior k of the numbers encoded
into each of the infinitely often visited states and p̃ /∈ Uk. Indeed, all the states visited
infinitely often are either all in Uk or all outside Uk. Therefore, one can choose F as
follows:

F = {p̃ ∪ {k̂} : p̃ ∈ P ∧ k ∈ p̃ ∧ p̃ /∈ Uk}.
Now the nondeterministic part of this Büchi automaton is to eventually guess k and
do the corresponding commitment; if it then goes infinitely often through a node
p̃ ∪ {k̂} of F , then the fact that k ∈ p̃ enforces that the limit inferior of the positions
deleted in the strings is k; furthermore, the commitment enforces that it is not below
k. Hence the simulated Muller automaton has the parameter k for its limit and cycles
infinitely often through a node not in Uk; this implies that it rejects the ω-word and
that the word is not in L. It is however accepted by the new Büchi automaton.

On the other hand, if the new Büchi automaton has only rejecting runs when
chosing the right parameter k, then therefore all the states through which the Büchi
automaton cycles through an infinite run with the right commitment are of the form
p̃∪ {k̃} with p̃ ∈ Uk; hence the underlying Muller automaton accepts the ω-word and
the Büchi automaton correctly rejects the ω-word. Hence the new Büchi automaton
recognises the complement of L.

Exercise 6.21. Let Σ = {0, 1, 2} and a parameter h be given. Make a nondeterminis-
tic Büchi automaton recognising the language L of all ω-words b1b2 . . . in which there
are infinitely many m such that bm = bm+h. Give a bound on the number of states
of this automaton. Construct a Muller automaton recognising the same language
and a Büchi automaton recognising the complement of L. How many states do these
automata have (in terms of the value h)?

Exercise 6.22. Let h = |Σ| and let L be any language where for each ω-word α the
membership of α in L only depends on the set of symbols which appears infinitely often
in α. Show that there is a deterministic Muller automaton with h states recognising
L.

Exercise 6.23. Let L contain all ω-words α ∈ Σω for which at least half of the
symbols in Σ occurs infinitely often.

1. Make a deterministic Büchi automaton recognising L with up to 2|Σ|−1 states.

2. Make a nondeterministic Büchi automaton recognising L with up to |Σ|2/2 + 2
states.
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Description 6.24: Rabin and Streett Automata. Rabin and Streett automata
are automata of the form (Q,Σ, δ, s,Ω) where Ω is a set of pairs (E,F ) of subsets
of Q and a run on an ω-word b0b1b2 . . . is a sequence q0q1q2 . . . with q0 = s and
(qn, bn, qn+1) ∈ δ for all n; such a run is accepting iff the set U = {p ∈ Q : ∃∞n [p =
qn]} of infinitely often visited nodes satisfies

• in the case of Rabin automata that U ∩ E 6= ∅ and U ∩ F = ∅ for one pair
(E,F ) ∈ Ω;

• in the case of Streett automata that U ∩ E 6= ∅ or U ∩ F = ∅ for all pairs
(E,F ) ∈ Ω.

Given a deterministic Rabin automaton (Q,Σ, δ, s,Ω), the Streett automaton

(Q,Σ, δ, s, {(F,E) : (E,F ) ∈ Ω})
recognises the complement of the Rabin automaton.

Example 6.25. Assume that an automaton with states Q = {q0, q1, . . . , q9} on seeing
digit d goes into state qd. Then the condition Ω consisting of all pairs (Q−{qd}, {qd})
produces an Rabin automaton which accepts iff some digit d appears only finitely
often in a given ω-word.

Assume that an automaton with states Q = {s, q0, q1, . . . , q9}, start state s and
transition function δ given by δ(s, d) = qd and if d = e then δ(qd, e) = d else δ(qd, e) =
s. Let E = {q0, q1, . . . , q9} and F = {s} and Ω = {(E,F )}. This automaton is
a deterministic Rabin automaton which accepts all ω-words where exactly one digit
occurs infinitely often.

Furthermore, if one takes Ω = {(∅, {s})} then one obtains a Streett automaton
which accepts exactly the ω-words where exactly one digit occurs infinitely often, as
the automaton cannot obtain that a state in ∅ comes up infinitely often and therefore
has to avoid that the state s is visited infinitely often. This happens exactly when
one digit comes infinitely often.

Quiz 6.26. Give an algorithm to translate a Büchi automaton into a Streett automa-
ton.

Exercise 6.27. Assume that, for k = 1, 2, an ω-language Lk is recognised by a Streett
automaton (Qk,Σ, sk, δk,Ωk). Prove that then there is a Streett automaton recognising
L1 ∩ L2 with states Q1 ×Q2, start state (s1, s2), transition relation δ1 × δ2 and an Ω
containing |Ω1|+ |Ω2| pairs. Here (δ1 × δ2)((q1, q2), a) = (δ1(q1, a), δ2(q2, a)). Explain
how Ω is constructed.

Description 6.28. A alternating Büchi automaton is an adjustment of an alternating
finite automaton to the procssing of infinite words. So the automaton has states Q,
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input alphabet Σ, transition rules δ, start state s and final states F . The alternating
Büchi automaton processes an ω-word w in a way similar to an alternating automaton
processing finite words. There are three cases of transition rules for current state q
and next input symbol a:

• (q, a) → r: Next state is r;

• (q, a) → r ∨ p: Anke picks r or p;

• (q, a) → r ∧ p: Boris picks r or p.

Now the alternating Büchi automaton accepts an ω-word w iff Anke has a winning
strategy to ensure that the game always goes infinitely often through states from F ,
independently of what moves Boris does.

Example 6.29. The following alternating Büchi automaton has states {p, q, r}, al-
phabet {0, 1} and recognises the ω-language ({0}∗ · {1})ω, that is, all ω-words with
infinitely many 1:

state type 0 1
p start, rejecting p ∧ q ∧ r q ∨ r
q accepting p ∧ q ∧ r p ∨ r
r accepting p ∧ q ∧ r p ∨ q

The idea for the verification is if a 0 comes then Boris can enforce that the game goes
into a rejecting state and if a 1 comes then Anke can enforce that the game goes to
an accepting state. enforce to go to go to an accepting or a rejecting node. If the
symbol is a 1 then Anke decides where to go; if the symbol is a 0 then Boris decides
where to go. Thus Anke can force the game to go infinitely often into an accepting
states iff the ω-word has infinitely many digits 1.

Example 6.30. Assume a Büchi Game (G,E, s,W ) is given. Now one can construct
a Büchi alternating automaton as follows: The set G is the state set, the alphabet is
{Anke,Boris}. Assume that for a node q the outgoing edges to nodes p1, p2, . . . , pk.
Then the Büchi alternating automaton has the following transitions:
δ(q,Anke) = p1 ∨ p2 ∨ . . . ∨ pk;
δ(q,Boris) = p1 ∧ p2 ∧ . . . ∧ pk.
So the input tells which player selects the next move. The accepting states of the
Büchi AFA are those in W .

Now Anke has a winning strategy for the game (G,E, s,W ) iff the Büchi alternat-
ing automaton accepts (AnkeBoris)ω.

94



Exercise 6.31. Given a Büchi game (G,E, s,W ), construct a deterministic Büchi
automaton which reads plays (sequences of nodes visited by alternating moves of Anke
and Boris) and which accepts iff all moves in the play are possible and Anke wins the
play.

Exercise 6.32. Given a Büchi game (G,E, s,W ), a nondeterministic Büchi automa-
ton is using the states G ∪ {r} with W ∪ {r} being accepting and the input is every
second node of a play, so if the play is s q1 q2 q3 q4 . . . then Anke does the moves to
q1, q3, q5, . . . and Boris to q2, q4, q6, . . .; now the game is that Anke reads q2k with q0 = s
and if one cannot go from the current state q2k−1 to q2k then Anke moves to r else
Anke moves to a successor node of q2k which is called q2k+1. From r, one can only
move to r (independently of the input).

Show that Anke has a winning strategy for the Büchi game iff the so constructed
nondeterministic finite automaton accepts all halfplays as described here.

Exercise 6.33. Construct the Büchi automaton from the previous exercise explic-
itly for the Büchi game given by G = {1, 2, 3, 4}, s = 1, W = {2, 3} and E =
{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 1), (3, 3), (3, 1), (4, 4)}.
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Selftest 6.34. Assume that a finite game has the nodes {00, 01, . . . , 99} and the game
can go from ab to bc for all a, b, c ∈ {0, 1, . . . , 9}; except for the node 00 which is the
target node. The player reaching 00 first wins the game. Which nodes are winning
nodes for Anke and which are winning nodes for Boris and which are draw nodes?

Selftest 6.35. Consider a game on N3 where each player can move from (a, b, c) to
(a′, b′, c′) if either a = a′ ∧ b = b′ ∧ c = c′ + 1 or a = a′ ∧ b = b′ + 1 ∧ c = 0 or
a = a′ + 1 ∧ b = 0 ∧ c = 0. The player which moves into (0, 0, 0) loses the game, so
other than in the previous task, each player has to try to avoid moving to (0, 0, 0). Are
there draw nodes in the game? Is every play of the game finite? The node (0, 0, 0) is
not counted.

Selftest 6.36. Let V = {0, 1, . . . , 19} and E = {(p, q) : q ∈ {p + 1, p + 2, p + 3}
(modulo 20)}; the starting node is 0. Does Anke have a memoryless winning strategy
for the set {6, 16} of nodes which must be visited infinitely often? If so, list out this
memoryless winning strategy, if not, say why it does not exist.

Selftest 6.37. Explain the differences between a Büchi game, a survival game and
an update game.

Selftest 6.38. Construct a nondeterministic Büchi automaton recognising the ω-
language {0, 1, 2}∗ · {001, 002}ω ∪ {0, 1, 2}∗ · {01, 02}ω.

Selftest 6.39. Construct a deterministic Büchi automaton which recognises the ω-
language {00}∗ · {11, 22}+ · {00} · {22, 00}ω.

Selftest 6.40. Prove that if a Rabin automaton recognises an ω-language L so does
a Büchi automaton.
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Solution for Selftest 6.34. The winning nodes for Anke are {10, 20, . . . , 90} where
she moves to 00; for all other nodes, Anke must avoid that Boris can move to 00 and
would move from ab to any number bc with c 6= 0. Boris does the same, hence all
numbers of the form ab with b 6= 0 are draw nodes.

Solution for Selftest 6.35. One can see that every move of the game from (a, b, c)
to (a′, b′, c′) satisfies (a′, b′, c′) <lex (a, b, c) for the lexicographic order on triples of
numbers. As this ordering is, on N3, a well ordering, every play of the game must
eventually go to (0, 0, 0) and one of the players loses and the other one wins. So there
are no infinite plays and thus also no draw nodes from which both players could enforce
an infinite play.

Solution for Selftest 6.36. Yes, Anke has a memoryless winning-strategy and it is
given by the following table: 0 → 3, 1 → 3, 2 → 3, 3 → 6, 4 → 6, 5 → 6, 6 → 7,
7 → 8, 8 → 9, 9 → 10, 10 → 13, 11 → 13, 12 → 13, 13 → 16, 14 → 16, 15 → 16,
16 → 17, 17 → 18, 18 → 19, 19 → 0. When the game is in node p with 0 ≤ p ≤ 2
then it goes to Anke either in p or in some node q with p+1 ≤ q ≤ p+3. If it goes to
Anke in node p then she moves to 3; now Boris can either move to 6 and satisfy the
visit-requirement or to 4 or 5 in which case Anke satisfies the visit-requirement for 6
in the next move. If it is Boris move while the game is in 0 or 1 or 2, he can move it
to 1, 2, 3, 4 or 5 and either Anke will move to 3 or to 6 directly, if the game goes to 3
it will also eventually visit 6. Similarly one shows when the game comes across some
of the nodes 10, 11, 12 it will eventually go to 16 with Anke’s winning strategy. Thus
Anke can play a memoryless winning strategy which enforces infinitely many visits of
6 and 16 in this update game.

Solution for Selftest 6.37. A survival game is a game where Anke wins if the game
runs forever. A Büchi game has in addition to the set V of nodes also a subset W
such that Anke wins iff the game runs forever and at least one node of W is visited
infinitely often. Every survival game is also a Büchi game (by chosing W = V ) but
not vice versa. An update game is a game which has like a Büchi game a selected
set W of nodes; the difference to the Büchi game is, however, that every node in W
must be visited infinitely often. While Büchi games have always memoryless winning
strategies, update games might fail to do so (at least for player Anke).

Solution for Selftest 6.38. The Büchi automaton has states q0, q1, q2, q3, q4, q5 and
q0 is the start state, q1, q3 are the accepting states and one can go on 0, 1, 2 from q0
to q0, q1, q3, from q1 on 0 to q2 and from q2 on 1, 2 to q1, from q3 on 0 to q4, from q4
on 0 to q5 and from q5 on 1, 2 to q3. Thus when going to q1 the automaton only will
process further inputs from {01, 02}ω and when going to q3, the automaton will only
process further inputs from {001, 002}ω.
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Solution for Selftest 6.39. The table of the Büchi automaton looks as follows:

state type 0 1 2
q0 start,reject q0,0 q0,1 q1,2
q0,0 reject q0 – –
q0,1 reject – q1 –
q1 reject q2,0 q1,1 q1,2
q1,1 reject – q1 –
q1,2 reject – – q1
q2 accept q2,0 – q2,2
q2,0 reject q2 – –
q2,2 reject – – q2

It accepts an infinite word iff it goes infinitely often through q2. After the first time it
went thorough this node, it will only process concatenations of 00 and 22, as required.

Solution for Selftest 6.40. The idea is that for every e, E, F with (E,F ) ∈ Ω
and e ∈ E, one considers the regular language Ae of all words w such that the given
Rabin automaton can go on w from the start state to e and the language Be,F of all
non-empty words v such that the Rabin automaton can go from e to e on v without
visiting any state in F . Now the automaton can on every ω-word from Ae · Bω

e,F go
in the Ae-part of the ω-word from the start state to e and then in the Bω

e,F -part of the
ω-word cycle from e to e without visiting any state from F . Thus there is an infinite
run on the ω-word where the state e from E is visited infinitely often while no state
from F is visited infinitely often and so Ae ·Be,F is a subset of the language recognised
by the Rabin automaton. One can see that the language of all ω-words recognised by
the Rabin automaton is the union of all Ae · Bω

e,F for which there is an E with e ∈ E
and (E,F ) ∈ Ω. So the ω-language recognised by the Rabin automaton is of the form
from Theorem 6.14 and therefore recognised by a Büchi automaton.
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7 Automatic Functions and Relations

So far, only regular sets were considered. The notion of the regular sets has been
generalised to automatic relations and functions.

Definition 7.1: Automatic Relations and Functions [5, 41, 42, 53]. A relation
R ⊆ X×Y is automatic iff there is an automaton reading both inputs at the same speed
(one symbol per cycle with a special symbol # given for inputs which are exhausted)
such that (x, y) ∈ R iff the automaton is in an accepting state after having read both,
x and y, completely.

Similarly one can define that a relation of several parameters is automatic.
A function f : X → Y is automatic iff the relation {(x, y) : x ∈ dom(f)∧y = f(x)}

is automatic.

Example 7.2. The relation |x| = |y| is an automatic relation, given by an automaton
which remains in an accepting starting state as long as both inputs are in Σ and
transfers to a rejecting state (which it does not leave) whenever exactly one of the
inputs x, y is exhausted.

sstart r

(

0
0

)

,
(

0
1

)

,
(

1
0

)

,
(

1
1

)

(

0
#

)

,
(

1
#

)

,
(

#
0

)

,
(

#
1

)

(

0
#

)

,
(

1
#

)

,
(

#
0

)

,
(

#
1

)

Here
(

a
b

)

means that the first input (x) provides an a and the second input (y) provides
a b; the alphabet is {0, 1}.

For example, if x = 00 and y = 1111, then the automaton starts in s, reads
(

0
1

)

and remains in s, reads
(

0
1

)

and remains in s, reads
(

#
1

)

and goes to r, reads
(

#
1

)

and
remains in state r. As now both inputs are exhausted and the automaton is in a
rejecting state, it rejects the input; indeed, |00| 6= |1111|.

If x = 010 and y = 101, then the automaton starts in s and remains in s while
processing

(

0
1

)

,
(

1
0

)

and
(

0
1

)

.

Notation 7.3. A set of pairs, or in general of tuples, can be directly be written in the
way as the automaton would read the inputs. For this let conv(x, y) be the set of pairs
with symbols from x and y at the same position, where # is used to fill the shorter
string (if applicable). So conv(00, 111) =

(

0
1

)(

0
1

)(

#
1

)

, conv(101, 222) =
(

1
2

)(

0
2

)(

1
2

)

and

conv(0123, 33) =
(

0
3

)(

1
3

)(

2
#

)(

3
#

)

. For this, it is always understood that the symbol #
is not in the alphabet used for x and y; if it would be, some other symbol has to be
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used for denoting the empty places of the shorter word. So a relation R ⊆ Σ∗ ×Σ∗ is
automatic iff the set {conv(x, y) : (x, y) ∈ R} is regular. Similarly for relations with
an arity other than two.

Example 7.4. Assume that the members of Σ are ordered; if Σ = {0, 1} then the
default ordering is 0 < 1. One says that a string v = a1a2 . . . an is lexicographic before
a string w = b1b2 . . . bm iff either n < m and a1 = b1 ∧ a2 = b2 ∧ . . .∧ an = bn or there
is a k < min{n,m} with a1 = b1 ∧ a2 = b2 ∧ . . . ∧ ak = bk ∧ ak+1 < bk+1. One writes
v <lex w if v is lexicographic before w; v ≤lex w means either v <lex w or v = w. So
000 <lex 00110011 <lex 0101 <lex 010101 <lex 1 <lex 10 <lex 100 <lex 11.

The lexicographic ordering is an automatic relation. For the binary alphabet
{0, 1}, it is recognised by the following automaton.

x = ystart x < y

x > y

(

0
0

)

,
(

1
1

)

(

0
1

)

,
(

#
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)

,
(

#
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)

(

1
0

)

,
(

0
#

)

,
(

1
#

)

(

a
b

)

(

a
b

)

Here
(

a
b

)

on an arrow means that the automaton always goes this way.

Exercise 7.5. Say in words which automatic relations are described by the following
regular expressions:

• {
(

0
0

)

,
(

0
1

)

,
(

1
0

)

,
(

1
1

)

}∗ · {
(

0
0

)

,
(

1
1

)

} · ({
(

#
0

)

,
(

#
1

)

}∗ ∪ {
(

0
#

)

,
(

1
#

)

}∗),
• {

(

0
1

)

,
(

1
0

)

}∗ · ({ε} ∪ {
(

2
#

)

} · {
(

0
#

)

,
(

1
#

)

,
(

2
#

)

}∗),
• {

(

0
0

)

,
(

1
0

)

,
(

2
0

)

, . . . ,
(

9
0

)

}∗?
Which of these three relations define functions? What are the domains and ranges of
these functions?

Exercise 7.6. Which of the following relations are automatic (where xk is the k-th
symbol of x = x1x2 . . . xn and |x| = n):
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• R1(x, y, z) ⇔ ∀k ∈ {1, 2, . . . ,min{|x|, |y|, |z|}} [xk = yk ∨ xk = zk ∨ yk = zk];

• R2(x, y, z) ⇔ |x|+ |y| = |z|;
• R3(x, z) ⇔ ∃y [|x|+ |y| = |z|];
• R4(x, y, z) ⇔ ∃k ∈ {1, 2, . . . ,min{|x|, |y|, |z|}} [xk = yk = zk];

• R5(x, y, z) ⇔ ∃i, j, k [xi = yj = zk];

• R6(x, y) ⇔ y = 012 · x · 012.

Give a short explanations why certain relations are automatic or not; it is not needed
to construct the corresponding automata by explicit tables or diagrams.

Theorem 7.7: First-Order Definable Relations [53]. If a relation is first-order-
definable using automatic functions and relations then it is automatic; if a function
is first-order-definable using automatic functions and relations, then it is automatic.
Furthermore, one can construct the automata effectively from the automata used in
the parameters to define the relation or function.

Example 7.8. The length-lexicographic or military ordering can be defined from the
two previously defined orderings: v <ll w iff |v| < |w| or |v| = |w| ∧ v <lex w. Hence
the length-lexicographic ordering is automatic.

Furthermore, for every automatic function f and any regular subset R of the
domain of f , the image f(R) = {f(x) : x ∈ R} is a regular set as well, as it is
first-order definable using f and R as parameters:

y ∈ f(R) ⇔ ∃x ∈ R [f(x) = y].

Exercise 7.9. Let I be a regular set and {Le : e ∈ I} be an automatic family, that
is, a family of subsets of Σ∗ such that the relation of all (e, x) with e ∈ I ∧ x ∈ Le is
automatic. Note that D =

⋃

i∈I Li is first-order definable by

x ∈ D ⇔ ∃i ∈ I [x ∈ Li],

hence D is a regular set. Show that the following relations between indices are also
automatic:

• {(i, j) ∈ I × I : Li = Lj};
• {(i, j) ∈ I × I : Li ⊆ Lj};
• {(i, j) ∈ I × I : Li ∩ Lj = ∅};
• {(i, j) ∈ I × I : Li ∩ Lj is infinite}.
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Show this by showing that the corresponding relations are first-order definable from
given automatic relations. One can use for the fourth the length-lexicographic order
in the first-order definition.

Example 7.10. Let (N,Σ, P, S) be a grammar and R = {(x, y) ∈ (N∪Σ)∗×(N∪Σ)∗ :
x ⇒ y} be the set of all pairs of words where y can be derived from x in one step.
The relation R is automatic.

Furthermore, for each fixed n, the relation {(x, y) : ∃z0, z1, . . . , zn [x = z0 ∧ y =
zn ∧ z0 ⇒ z1 ∧ z1 ⇒ z2 ∧ . . . ∧ zn−1 ⇒ zn]} of all pairs of words such that y can be
derived from x in exactly n steps is automatic.

Similarly, the relation of all (x, y) such that y can be derived from x in at most n
steps is automatic.

Remark 7.11. In general, the relation ⇒∗ is not automatic for a non-regular gram-
mar, even if the language generated by the grammar itself is regular. For exam-
ple, one could consider the grammar ({S}, {0, 1, 2}, {S → SS|0|1|2}, S) generating
all non-empty words over {0, 1, 2}. Then consider a derivation S ⇒∗ S01m2S ⇒∗

0k1m2n. If ⇒∗ would be automatic, so would be the relation of all pairs of the form
(S01m2S, 0k1m2n) with k > 1 ∧ m > 0 ∧ n > 1; this is the set of those pairs in ⇒∗

where the first component is of the form S011∗2S. If the set of the convoluted pairs
in ⇒∗ is regular, so is this set.

Now, choose n = h + 4, m = h, k = h + 4 for a h much larger than the pumping
constant of the assumed regular set; then the regular set of the convoluted pairs in
the relation would contain for every r the string

(

S

0

)(

0

0

)(

1

0

)c(
1

0

)dr(
1

0

)h−c−d(
2

0

)(

S

0

)(

#

1

)h(
#

2

)h+4

;

where c ≥ 0, d > 0 and h− c−d ≥ 0. In contrast to this, the condition on ⇒∗ implies
that the first S is transformed in a sequence of 0 and the second S into a sequence of
2 while the number of 1 is preserved; therefore the number c+ dr+ h− c− d must be
equal to h, which gives a contradiction for r 6= 1. Hence the relation ⇒∗ cannot be
automatic.

It should however be noted, that the relation ⇒∗ is regular in the case that the
grammar used is regular. In this case, for N denoting the non-terminal and Σ the
terminal alphabet and for every A,B ∈ N , let LA,B denote the set of all words w
such that A ⇒∗ wB and LA be the set of all words w such that A ⇒∗ w. All sets
LA and LA,B are regular and now x ⇒∗ y iff either x = y or x = vA and y = vwB
with w ∈ LA,B or x = vA and y = vw with w ∈ LA for some A,B ∈ N ; hence the
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convoluted pairs of the relation ⇒∗ form the union

{conv(x, y) : x ⇒∗ y} =
⋃

A,B∈N
({conv(vA, vwB) : v ∈ Σ∗, w ∈ LA,B} ∪

{conv(vA, vw) : v ∈ Σ∗, w ∈ LA})

which is a regular set.

Exercise 7.12. Let R be an automatic relation over Σ∗ ∪ Γ∗ such that whenever
(v, w) ∈ R then |v| ≤ |w| and let L be the set of all words x ∈ Σ∗ for which there
exists a sequence y0, y1, . . . , ym ∈ Γ∗ with y0 = ε, (yk, yk+1) ∈ R for all k < m and
(ym, x) ∈ R. Note that ε ∈ L iff (ε, ε) ∈ R. Show that L is context-sensitive.

Note that the converse direction of the statement in the exercise is also true. So assume
that L is context-sensitive. Then one can take a grammar for L−{ε} where each rule
v → w satisfies |v| ≤ |w| and either v, w ∈ N+ or |v| = |w| ∧ v ∈ N+ ∧ w ∈ Σ+. Now
let (x, y) ∈ R if either x, y ∈ N+ ∧ x ⇒ y or x ∈ N+ ∧ y ∈ Σ+ ∧ (x ⇒∗ y by rules
making non-terminals to terminals) or (x, y) = (ε, ε) ∧ ε ∈ L.

Theorem 7.13: Immerman and Szelepcsényi’s Nondeterministic Count-
ing [44, 84]. The complement of a context-sensitive language is context-sensitive.

Proof. The basic idea is the following: Given a word x of length n and a context-
sensitive grammar (N,Σ, P, S) generating the language L, there is either a derivation
of x without repetition or there is no derivation at all. One can use words over Σ∪N
to represent the counter values for measuring the length of the derivation as well as
the number of counted values; let u be the largest possible counter value. Now one
determines using nondeterminism for each ℓ how many words can be derived with
derivations up to length ℓ; the main idea is that one can obtain the number for ℓ+ 1
from the number for ℓ and that the number for ℓ = 0 is 1 (namely the start symbol
S). The idea is to implement a basic algorithm is the following:

Choose an x ∈ Σ∗ and verify that x /∈ L as follows;
Let u be the length-lexicographically largest string in (N ∪ Σ)|x|;
Let i = Succll(ε);
For ℓ = ε to u Do Begin

Let j = ε;
For all y ≤ll u Do Begin

Derive the words w1, w2, . . . , wi nondeterminis-
tically in length-lexicographic order in up to
ℓ steps each and do the following checks:
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If there is a wm with wm ⇒ y or wm = y then
let j = Succll(j);

If there is a wm with wm = x or wm ⇒ x then
abort the computation End;

Let i = j; End;

If the algorithm has not yet aborted then generate x;

This algorithm can be made more specific by carrying over the parts which use plain
variables and replacing the indexed variables and meta-steps. For this, the new vari-
ables v, w to run over the words and k to count the derivation length; h is used to
count the words processed so far. Recall that the special case of generating or not
generating the empty word is ignored, as the corresponding entry can be patched
easily in the resulting relation R, into which the algorithm will be translated.

1: Choose an x ∈ Σ+ and initial all other variables as ε;

2: Let u = (maxll(N ∪ Σ))|x|;

3: Let i = Succll(ε) and ℓ = ε;

4: While ℓ <ll u Do Begin

5: Let j = ε;

6: Let y = ε;

7: While y <ll u Do Begin

8: Let y = Succll(y);

9: Let h = ε and w = ε;

10: While h <ll i Do Begin

11: Nondeterministically replace w by w′ with w <ll w
′ ≤ll u;

12: Let v = S;

13: Let k = ε;

14: While (v 6= w) ∧ (k <ll ℓ) Do Begin

15: Nondeterministically replace (k, v) by (k′, v′) with k <ll k
′ and

v ⇒ v′ End;

16: If v 6= w Then abort the computation (as it is spoiled);

17: If w = x or w ⇒ x Then abort the computation (as x ∈ L);

18: If w 6= y and w 6⇒ y

19: Then let h = Succll(h);
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20: Else let h = i;

21: End (of While Loop in 10);

22: If w = y or w ⇒ y Then j = Succll(j);

23: End (of While Loop in 7);

24: Let i = j;

25: Let ℓ = Succll(ℓ) End (of While Loop in 4);

26: If the algorithm has not yet aborted Then generate x;

The line numbers in this algorithm are for reference and will be used when making
the relation R. Note that the algorithm is nondeterministic and that x is generated
iff some nondeterministic path through the algorithm generates it. Pathes which lose
their control information are just aborted so that they do not generate false data.

The variables used in the algorithm are h, i, j, k, ℓ, u, v, w, x, y whose values range
over (N∪Σ)∗ and furthermore, one uses a for the line numbers of the algorithm where a
takes one-symbol words representing line numbers from the set {4, 7, 10, 14, 16, 18, 22,
24, 26}. Now the relation R is binary and connects words in Σ∗ with intermediate non-
terminal words represented by convolutions of the form conv(a, h, i, j, k, ℓ, u, v, w, x, y).
The relation contains all the pairs explicitly put into R according to the following list,
provided that the “where-condition” is satisfied. The arrow “→” indicates the order
of the two components of each pair.

Input: ε → conv(4, h, i, j, k, ℓ, u, v, w, x, y) where h = ε, i = Succll(ε), j = ε, k = ε,
ℓ = ε, u ∈ (max(N ∪ Σ))+, v = ε, w = ε, x ∈ Σ|u|, y = ε;

4: Put conv(4, h, i, j, k, ℓ, u, v, w, x, y) → conv(26, h, i, j, k, ℓ, u, v, w, x, y) intoR where
ℓ = u (for the case where the while-loop terminates);
Put conv(4, h, i, j, k, ℓ, u, v, w, x, y)→conv(7, h, i, ε, k, Succll(ℓ), u, v, w, x, ε) into
R where ℓ <ll u (for the case there another round of the loop is started with
resetting j and y in lines 5 and 6 and then continuing in line 7);

7: Put conv(7, h, i, j, k, ℓ, u, v, w, x, y) → conv(24, h, i, j, k, ℓ, u, v, w, x, y) intoR where
y = u (for the case where the while-loop terminates);
Put conv(7, h, i, j, k, ℓ, u, v, w, x, y) → conv(10, ε, i, j, k, ℓ, u, v, ε, x, Succll(y))
into R (for the case that the while-loop starts and y, h, w are updated in lines
8,9);

10: Put conv(10, h, i, j, k, ℓ, u, v, w, x, y) → conv(22, h, i, j, k, ℓ, u, v, w, x, y) into R
where h = i (for the case where the while-loop terminates);
Put conv(10, h, i, j, k, ℓ, u, v, w, x, y) → conv(14, h, i, j, ε, ℓ, u, S, w′, x, y) into R
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where h <ll i and w <ll w′ ≤ll u (for the case that the body of the loop is
started and the commands in lines 11, 12 and 13 are done);

14: Put conv(14, h, i, j, k, ℓ, u, v, w, x, y) → conv(14, h, i, j, k′, ℓ, u, v′, w, x, y) into R
where v 6= w and k <ll k

′ ≤ll ℓ and v ⇒ v′ (for the case that the body of the
loop in line 15 is done one round);
Put conv(14, h, i, j, k, ℓ, u, v, w, x, y) → conv(18, h, i, j, k, ℓ, u, v, w, x, y) into R
where v = w and w 6= x and w 6⇒ x (for the case that the loop leaves to line 18
without the computation being aborted);

18: Put conv(18, h, i, j, k, ℓ, u, v, w, x, y) → conv(10, Succll(h), i, j, k, ℓ, u, v, w, x, y)
into R where w 6= y or w 6⇒ y (in the case that the program goes through the
then-case);
Put conv(18, h, i, j, k, ℓ, u, v, w, x, y) → conv(10, i, i, j, k, ℓ, u, v, w, x, y) into R
where w = y or w ⇒ y (in the case that the program goes through the else-case);

22: Put conv(22, h, i, j, k, ℓ, u, v, w, x, y)→conv(7, h, i, Succll(j), k, ℓ, u, v, w, x, y) into
R where w = y or w ⇒ y (for the case that the condition of line 22 applies before
going to line 7 for the next round of the loop);
Put conv(22, h, i, j, k, ℓ, u, v, w, x, y) → conv(7, h, i, j, k, ℓ, u, v, w, x, y) into R
where w 6= y and w 6⇒ y (for the case that the condition of line 22 does not
apply and the program goes to line 7 for the next round of the loop directly);

24: Put (22, h, i, j, k, ℓ, u, v, w, x, y) → conv(4, h, j, j, k, Succll(ℓ), u, v, w, x, y) into R
(which reflects the changes from lines 24 and 25 when completing the body of
the loop starting in line 4);

Output: Put (26, h, i, j, k, ℓ, u, v, w, x, y) → x into R (which produces the output
after the algorithm has verified that x /∈ L);

Special Case: Put ε → ε into R iff ε /∈ L.

The verification that this relation is automatic as well as the proof of Exercise 7.12
are left to the reader.

Exercise 7.14. Consider the following algorithm to generate all non-empty strings
which do not have as length a power of 2.

1. Guess x ∈ Σ+; Let y = 0;
2. If |x| = |y| then abort;
3. Let z = y;
4. If |x| = |y| then generate x and halt;
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5. Remove last 0 in z;
6. Let y = y0;
7. If z = ε then goto 2 else goto 4.

Make an R as in Exercise 7.12 choosing Γ such that Γ∗ contains all strings in

{conv(line, x, y, z) : line ∈ {1, 2, 3, 4, 5, 6, 7} ∧ x ∈ Σ+ ∧ y, z ∈ {0}∗}

but no non-empty string of Σ∗ – the symbols produced by the convolution of these
alphabets are assumed to be different from those in Σ. A pair (v, w) should be in R
iff |v| ≤ |w| and one of the following conditions hold:

1. v = ε and w is a possible outcome of line 1, that is, of the form conv(2, x, 0, ε)
for some x ∈ Σ+;

2. v is the configuration of the machine before executing the line coded in v and w
the configuration after executing this line where the line number in w is either the
next one after the one in v or a line number to which the program has branched
by a condition or unconditional goto-command (whatever is applicable);

3. v is the configuration in line 4 and w is the value of x, provided that y and x
have the same length and that x is as long as conv(4, x, y, z).

Give a full list of all the pairs which can occur such that, when starting from ε and
iterating along the relation in R, exactly those x ∈ Σ∗ can be reached which do not
have a length of a power of 2.

The following dfas are supposed to compute automatic functions, that is, to check
whether the value y is the output of x under the corresponding function.

Exercise 7.15. Let x = a0a1 . . . an be a ternary number representing
∑

m≤n 3
m ·

am over the alphabet {0, 1, 2}. Construct a dfa which is correct on all convolutions
conv(x, y) and which checks whether y = x+ 1.

Exercise 7.16. Let x = a0a1 . . . an be a ternary number representing
∑

m≤n 3
m ·

am over the alphabet {0, 1, 2}. Construct a dfa which is correct on all convolutions
conv(x, y) and which checks whether y = x+ x+ x+ x.

Exercise 7.17. Let x = a0a1 . . . an be a ternary number representing
∑

m≤n 3
m ·

am over the alphabet {0, 1, 2}. Construct a dfa which is correct on all convolutions
conv(x, y) and which checks whether y = x+ x+ 1.

Exercise 7.18. Let x = a0a1 . . . an be a ternary number representing
∑

m≤n 3
m ·

am over the alphabet {0, 1, 2}. Construct a dfa which is correct on all convolutions
conv(x, y) and which checks whether y = 3n+1 − x− 1.
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Exercise 7.19. Let x = a0a1 . . . an be a ternary number representing
∑

m≤n 3
m ·

am over the alphabet {0, 1, 2}. Construct a dfa which is correct on all convolutions
conv(x, y) and which checks whether y = (x− a0)/3 + 3n · a0.

Exercise 7.20. Let x = a0a1 . . . an be a ternary number representing
∑

m≤n 3
m ·

am over the alphabet {0, 1, 2}. Construct a dfa which is correct on all convolutions
conv(x, y) and which checks whether y = Even(x) where Even(x) is 1 if x is even
and is 0 if x is odd.
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8 Groups, Monoids and Automata Theory

There are quite numerous connections between group theory and automata theory. On
one hand, concepts from group theory are used in automata theory; on the other hand,
one can also use automata theory to describe certain types of groups and semigroups.
First the basic definitions.

Definition 8.1: Groups and Semigroups. Let G be a set and ◦ be an operation
on G, that is, ◦ satisfies for all x, y ∈ G that x ◦ y ∈ G.
(a) The structure (G, ◦) is called a semigroup iff x ◦ (y ◦ z) = (x ◦ y) ◦ z for all
x, y, z ∈ G, that is, if the operation ◦ on G is associative.
(b) The structure (G, ◦, e) is called a monoid iff e ∈ G and (G, ◦) is a semigroup and
e satisfies x ◦ e = e ◦ x = x for all x ∈ G.
(c) The structure (G, ◦, e) is called a group iff (G, ◦, e) is a monoid and for each x ∈ G
there is an y ∈ G with x ◦ y = e.
(d) A semigroup (G, ◦) is called finitely generated iff there is a finite subset F ⊆ G
such that for each x ∈ G there are n and y1, y2, . . . , yn ∈ F with x = y1 ◦ y2 ◦ . . . ◦ yn.
(e) A semigroup (G, ◦) is finite iff G is finite as a set.

Example 8.2. The set ({1, 2, 3, . . .},+) forms a semigroup, the neutral element 0
is not in the base set and therefore it is not a monoid. Adding 0 to the set and
using N = {0, 1, 2, 3, . . .} gives the additive monoid (N,+, 0) of the natural numbers.
The integers (Z,+, 0) form a group; similarly the rationals with addition, denoted by
(Q,+, 0). Also the multiplicative structure (Q−{0}, ∗, 1) of the non-zero rationals is
a group.

Example 8.3. A semigroup with a neutral element only from one side does not nec-
essarily have a neutral element from the other side, furthermore, the neutral element
from one side does not need to be unique.

To see this, consider G = {0, 1} and the operation ◦ given by x ◦ y = x. This
operation is associative, as x ◦ (y ◦ z) = x ◦ y = x and (x ◦ y) ◦ z = x ◦ z = x. Both
elements, y = 0 and y = 1, are neutral from the right side: x ◦ y = x. On the other
hand, none of these two elements is neutral from the left side, as the examples 0◦1 = 0
and 1 ◦ 0 = 1 show.

Example 8.4. Let Q be a finite set and G be the set of all functions from Q to Q.
Let f ◦ g be the function obtained by (f ◦ g)(q) = g(f(q)) for all q ∈ Q. Let id be the
identity function (id(q) = q for all q ∈ Q). Then (G, ◦, id) is a finite monoid.

Let G′ = {f ∈ G : f is one-one}. Then (G′, ◦, id) is a group. The reason is that
for every f ∈ G′ there is an inverse f−1 with f−1(f(q)) = q for all q ∈ Q. Indeed,
G′ = {f ∈ G : ∃g ∈ G [id = f ◦ g]}.
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Example 8.5. Let (Q,Σ, δ, s, F ) be a complete dfa and G be the set of all mappings
f from Q to Q and id be the identity function. Now one considers the set

G′ = {f ∈ G : ∃w ∈ Σ∗ ∀q ∈ Q [δ(q, w) = f(q)]}

which is the monoid of those functions which are all realised as operations given by a
word in Σ∗. Then (G′, ◦, id) is a monoid as well. Note that if f is realised by v and g
is realised by w then f ◦ g is realised by w · v. The identity id is realised by the empty
word ε.

This monoid defines an equivalence-relation on the strings: Every function realises
only one string, so one can chose for each string w the function fw ∈ G′ realised by
w. Now let v ∼ w iff fv = fw. This equivalence relation partitions Σ∗ into finitely
many equivalence classes (as G′ is finite).

Furthermore, v ∼ w and x ∼ y imply vx ∼ wy: Given any q ∈ Q, it is mapped
by fvx to fx(fv(q)) and by fwy to fy(fw(q)). As fv = fw and fx = fy, it follows that
fvx(q) = fwy(q). Hence fvx = fwy and vx ∼ wy. A relation ∼ with this property is
called a congruence-relation on all strings.

Let L be the language recognised by the given dfa. Recall the definition Lx =
{y : xy ∈ L} from Theorem 2.19. Note that x ∼ y implies that Lx = Ly: Note that
fx(s) = fy(s) and therefore δ(s, xz) = δ(s, yz) for all z; hence z ∈ Lx iff z ∈ Ly and
Lx = Ly. Therefore L is the union of some equivalence classes of ∼.

If the dfa is the smallest-possible dfa, that is, the dfa produced in the proof of
Theorem 2.19, then the monoid (G′, ◦, id) derived from it is called the syntactic monoid
of the language L.

The syntactic monoid is a widely used tool in formal language theory. An immediate
consequence of the ideas laid out in the above example is the following theorem.

Theorem 8.6. A language is regular iff it is the finite union of equivalence classes
of some congruence relation with finitely many congruence classes.

Example 8.7. Let a dfa have the alphabet Σ = {0, 1} and states Q = {s, s′, q, q′, q′′}
and the following state transition table:

state s s′ q q′ q′′

successor at 0 s′ s q q′ q′′

successor at 1 q′ q′ q′ q′′ q

Now the syntactic monoid contains the transition functions fε (the identity), f0, f1,
f11 and f111. The functions f0 and f1 are as in the state transition diagramme and
f11 and f111 are given by the following table.
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state s s′ q q′ q′′

f11 q′′ q′′ q′′ q q′

f111 q q q q′ q′′

Other functions are equal to these, for example f110 = f11 and f0000 = fε.

Definition 8.8. Let (G, ◦) be a semigroup and w ∈ G∗ be a string of elements in G.
Then elG(w) denotes that element of G which is represented by w. Here elG(ε) denotes
the neutral element (if it exists) and elG(a1a2 . . . an) the group element a1◦a2◦ . . .◦an.
Furthermore, if R is a set of strings over G∗ such that for every x ∈ G there is exactly
one w ∈ R with elG(w) = x, then one also uses the notation elR(v) = w for every
v ∈ G∗ with elG(v) = elG(w).

Let F ⊆ G be a finite set of generators of G, that is, F is finite and satisfies for
every x ∈ G that there is a word w ∈ F ∗ with elG(w) = x. Now the word-problem of
G asks for an algorithm which checks for two v, w ∈ F ∗ whether elG(v) = elG(w).

Definition 8.9. A language L defines the congruence {(v, w) : Lv = Lw} and further-
more L also defines the syntactic monoid (GL, ◦) of its minimal deterministic finite
automaton.

Theorem 8.10. Every finite group (G, ◦) is the syntactic monoid of a language L.

Proof. Let L = {v ∈ G∗ : elG(v) = ε} be the set of words which are equal to the
neutral element.

The corresponding dfa is (G,G, δ, s, {s}) with δ(a, b) = a ◦ b for all a, b ∈ G; here
the same names are used for the states and for the symbols. In order to avoid clashes
with the empty word, the neutral element of G is called s for this proof; it is the start
symbol and also the only accepting symbol.

For each a ∈ G, the inverse b of a satisfies that b is the unique one-letter word in
G∗ such that Lab = L. Therefore, for all a ∈ G, the languages La are different, as two
different elements a, b ∈ G have different inverses. Thus the dfa is a minimal dfa and
has a congruence ∼ satisfying v ∼ w iff elG(v) = elG(w) iff Lv = Lw. Note that every
word w ∈ G∗ satisfies elG(w) = a for some a ∈ G. For each a ∈ G, the function fa
belonging to G is the function which maps every b ∈ G to b ◦ a ∈ G. It is easy to see
that the syntactic monoid given by the fw with w ∈ G∗ is isomorphic to the original
group (G, ◦).

Example 8.11. There is a finite monoid which is not of the form (GL, ◦) for any
language L.

Let ({ε, 0, 1, 2}, ◦) be the semigroup with ε ◦ ε = ε, a ◦ ε = ε ◦ a = a and a ◦ b = b
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for all a, b ∈ {0, 1, 2}.
The set {0, 1, 2} generates the given monoid. Consider all words over {0, 1, 2}∗.

Two such words v, w define the same member of the semigroup iff either both v, w
are empty (and they represent ε) or both v, w end with the same digit a ∈ {0, 1, 2}
(and they represent a).

The monoid is the syntactic monoid of the dfa which has alphabet Σ = {0, 1, 2},
states Q = {s, 0, 1, 2}, start state s and transition function δ(q, a) = a for all symbols
a and states q. One can easily see that after reading a word wa the automaton is in
the state a and initially, after reading the empty word ε, it is in s.

Consider now any language L ⊆ Σ∗ which would be a candidate for (GL, ◦) =
(G, ◦). Furthermore, assume that L 6= ∅ and L 6= Σ∗. Then (GL, ◦) must contain
equivalence classes of the form Σ∗ · {a} with a ∈ Σ and one equivalence class of the
form {ε} which belongs to the neutral element of the monoid — note that there is
always a neutral element, as the semigroup operation belonging to reading ε does
not change any state, so the equivalence class of {ε} will not be not be fusionated
with any other one except for the case that there is only one equivalence class Σ∗.
Furthermore, the equivalence classes of the form Σ∗ · {a} are due to the fact that for
each non-neutral element b ∈ G, b is idempotent and c ◦ b = b for all other monoid
elements c.

Furthermore, if for a, b ∈ Σ the condition L(a) = L(b) holds then in the minimal
automaton of L both a, b lead to the same state: for further c ∈ Σ, the transition
goes to the state representing the equivalence class Σ∗ · {c}. Thus there are besides
ε at most two further states in the minimal automaton of L and the corresponding
syntactic monoid is one of the following three (with names 0, 1 used for the monoid
elements different from ε):

(a) ({ε, 0, 1}, ◦) with ε being the neutral element and a ◦ 0 = 0 and a ◦ 1 = 1 for all
group elements a;

(b) ({ε, 0}, ◦) with ε being the neutral element and a◦ 0 = 0 for all group elements a;

(c) ({ε}, ◦) with ε ◦ ε = ε.

These three syntactic monoids are all different from the given one.

Exercise 8.12. Determine the syntactic monoids (GLk
, ◦) for the following languages

L1 and L2:

1. L1 = {0n1m : n+m ≤ 3};

2. L2 = {w : w has an even number of 0 and an odd number of 1}.

Exercise 8.13. Determine the syntactic monoids (GLk
, ◦) for the following languages

L3 and L4:
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1. L3 = {00}∗ · {11}∗;

2. L4 = {0, 1}∗ · {00, 11}.

Quiz 8.14. Determine the syntactic monoids (GL5 , ◦) for the languages L5 = {0}∗ ·
{1}∗.

Notation. For a semigroup (G, ◦), researchers have found various ways to introduce
for it the notion of automaticity. In particular there is the approach of Hodgson
[41, 42] and later Khoussainov and Nerode [53] who required that the group elements
are represented in some arbitrary way but the full semigroup operation is automatic as
a function in both inputs while there is also the approach of Epstein, Cannon, Holt,
Levy, Paterson and Thurston [28] who only consider finitely generated groups and
semigroups and who furthermore only require that multiplication with constants is
automatic; while this is a weakening to the case of automatic groups, they also require
that the representatives of the group elements are words over the generators. In order
to distinguish these two notions of “automatic semigroups”, Hodgson’s model will
from now on be called “fully automatic” (as the full semigroup operation is automatic)
while the more popular model of Epstein, Cannon, Holt, Levy, Paterson and Thurston
[28] will just be called “automatic”.

Description 8.15: Automatic groups and semigroups [28]. An automatic
semigroup is a finitely generated semigroup which is represented by a regular subset
G ⊆ F ∗ such that the following conditions hold:

• G is a regular subset of F ∗;

• Each element of the semigroup has exactly one representative in G;

• For each y ∈ G the mapping x 7→ elG(xy) is automatic.

The second condition is a bit more strict than usual; usually one only requires that
there is at least one representative per semigroup element and that the relation which
checks whether two representatives are equal is automatic. Furthermore, for monoids
and groups, unless noted otherwise, ε is used as the representative of the neutral
element.

Furthermore, an automatic semigroup (G, ◦, ε) is called biautomatic if for each
y ∈ G both mappings x 7→ elG(xy) and x 7→ elG(yx) are automatic functions.

A semigroup (G′, ∗, ε) is isomorphic to (G, ◦, ε) iff there is a bijective function
f : G′ → G with f(ε) = ε and f(v ∗w) = f(v) ◦ v(w) for all v, w ∈ G′. One says that
(G′, ∗, ε) has an automatic representation iff it is isomorphic to a automatic semigroup
and (G′, ∗, ε) has a biautomatic representation iff it is isomorphic to a biautomatic
semigroup.
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Example 8.16. Let F = {a, a} and G = a∗∪a∗. Then (G, ◦, ε) is a automatic group
with

an ◦ am = an+m;

an ◦ am = an+m;

an ◦ am =







an−m if n > m;
ε if n = m;
am−n if n < m;

an ◦ am =

{

an−m if n > m;
ε if n = m;
am−n if n < m.

One can see that the multiplication is realised by an automatic function whenever
one of the operands is fixed to a constant. In general, it is sufficient to show that
multiplication with the elements in F is automatic.

The additive group of integers (Z,+, 0) is isomorphic to this automatic group;
in other words, this group is a automatic representation of the integers. The group
element an represents +n (so aaa is +3), an represents −n and ε represents 0. The
operation ◦ is isomorphic to the addition +, for example an ◦ am has as result the
representative of n−m.

Example 8.17. Let F = {a, a, b, c} generate a monoid with the empty string rep-
resenting the neutral element, G = (a∗ ∪ a∗) · {b, c}∗ and assume that the following
additional rules governing the group operations: ba = c, ca = ab, aa = ε, aa = ε.
These rules say roughly that a is inverse to a and c is an element representing ba.
One can derive further rules like ab = baa and ba2n = anb.

Now one uses these rules see that the monoid is automatic, where w ∈ G and n is
the number of c at the beginning of w (when multiplying with a) and the number of
b at the end of w (when multiplying with a), the parameters m,n can be any number
in N:

w ◦ b = wb;

w ◦ c = wc;

w ◦ a =







am+1bn if w = amcn;
ambn if w = am+1cn;
vcbn if w = vbcn;

w ◦ a =







amcn if w = am+1bn;
am+1cn if w = ambn;
vbcn if w = vcbn;
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To see these rules, consider an example: bcbb◦a = bbabb◦a = bbbaab◦a = bbbabaa◦a =
bbbaba = bbcc, so vcb2 ◦ a = vbc2.

Note that multiplication from the other side is not realised by an automatic func-
tion in this representation; indeed, b◦a2nbc = anbbc and this would involve halving the
length of the part a2n what is impossible. Indeed, some problem of this type occurs
in every automatic representation of this monoid and the monoid does not have a
biautomatic representation.

Exercise 8.18. Consider a monoid G = a∗b∗ with the additional rule that b ◦ a = b
and neutral element ε. Show that this representation is automatic but not biautomatic.
Does the monoid have a biautomatic representation?

Hodgson [41, 42] as well as Khoussainov and Nerode [53] took a more general ap-
proach where they did not require that group elements are represented by strings over
generators. This representation can be used for all semigroups.

Description 8.19: Automatic groups and semigroups in the framework of
Hodgson, Khoussainov and Nerode [41, 42, 53]. A structure (G, ◦) is called
a fully automatic semigroup iff G is a regular subset of Σ∗ for some finite alphabet
Σ, the function ◦ : G × G → G is an automatic function and ◦ satisfies the law of
associativity, that is, satisfies x ◦ (y ◦ z) = (x ◦ y) ◦ z for all x, y, z ∈ G. A fully
automatic monoid / group is a fully automatic semigroup with a neutral element /
a neutral element and an inverse for every group element. A semigroup has a fully
automatic presentation iff it is isomorphic to a fully automatic semigroup (G, ◦).

Exercise 8.20. In order to represent (Z,+, 0), use Σ = {0, 1,+,−} and use 0 to
represent the 0 and a0a1 . . . an+ with an = 1 and a0, a1, . . . , an−1 ∈ {0, 1} to represent
the positive integer

∑

m≤n am · 2m and a0a1 . . . an− with an = 1 and a0, a1, . . . , an−1 ∈
{0, 1} to represent the negative integer −∑

m≤n am · 2m. Show that now the addition
on the so represented group of the integers is an automatic function (with two inputs).
Explain why numbers like 000000001+ (256) and 0101+ (10) and 010100001+ (266)
are given with the least significant bits first and not last in this presentation.

Exercise 8.21. Consider again the monoid G = a∗b∗ with the additional rule that
b ◦ a = b from Exercise 8.18. Now, for h, k, i, j ∈ N,

ahbk ◦ aibj =
{

ah+ibj if k = 0;
ahbk+j if k > 0;

use these rules to find a fully automatic presentation in the sense of Hodgson, Khous-
sainov and Nerode for this group.
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Theorem 8.22. The strings over a finite alphabet ∆ with at least two symbols plus the
concatenation form a semigroup which has an automatic representation in the sense
of Epstein, Cannon, Holt, Levy, Paterson and Thurston [28] but not a fully automatic
representation in the sense of Hodgson, Khoussainov and Nerode.

Proof. First, one can easily see that ∆∗ itself is a regular set in which every string
over ∆ has a unique representation and in which ∆ is the set of generators of the
corresponding semigroup; concatenation with a fixed string y is an automatic function
mapping x to xy.

Assume now that some regular set G ⊆ Σ∗ represents the semigroup ∆∗ and that ◦
represents the concatenation in this semigroup G and that ◦ is fully automatic. Now
let F ⊆ G be the set of representatives of ∆ in G. Let F1 = F and Fn+1 = {v ◦ w :
v, w ∈ Fn}. There is a constant c such that each word in F1 has at most length c
and that v ◦ w has at most length max{|v|, |w|} + c for all v, w ∈ G. It follows by
induction that all words in Fn have at most length cn.

By induction one can see that F1 represents the strings in ∆1 and Fn represents
the strings in ∆2n . As ∆ has at least 2 elements, there are at least 22

n
members in

the set Fn. On the other hand, Fn has at most
∑

m≤nc |Σ|m elements, which can —
assuming that |Σ| ≥ 2 — be estimated with |Σ|nc+1. This gives a contradiction for
large n as the upper bound n 7→ |Σ|nc+1 is exponential while the lower bound n 7→ 22

n

is double-exponential. So, for large n, the lower bound is not below the upper bound.
Hence the above mentioned fully automatic representation of the monoid of strings
over a finite alphabet with at least two letters cannot exist.

Exercise 8.23. Assume that F is finite and has at least two elements. Let (G, ◦, ε)
be the free group generated by F . Show that this group is not isomorphic to a fully
automatic group (in the sense of Hodgson, Khoussainov and Nerode); that is, this
group does not have a fully automatic presentation.

Example 8.24. Let a, b, c be generators of the monoid satisfying c◦b = c and b◦a = a
and a ◦ c = c ◦ a which gives the equation

aibjck ◦ ai′bj′ck′ =















aibj+j′ck
′

if k = 0 ∧ i′ = 0;
ai+i′bj

′
ck

′
if k = 0 ∧ i′ > 0;

aibjck+k′ if k > 0 ∧ i′ = 0;
ai+i′ck+k′ if k > 0 ∧ i′ > 0;

where i, j, k, i′, j′, k′ ∈ N. This monoid is fully automatic. One can represent the
group as a convolution of three copies of (N,+) and use above formula for ◦. When
adding these components, one has both entries available of the input and those three
of the output available. Then one can test for each entry whether they are zero or
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whether the sum of two entries give a third. This is sufficient to verify that the update
is done according to the formula above.

However, the monoid is not automatic. Intuitively, the reason is that when mul-
tiplying with c from the front or with a from the back, the corresponding deletions
of the entries for b cannot be done. The deletion is needed. Assume that i, j, k are
given with j much larger than i, k. Note that (ai−1 ◦ bj ◦ ck) ◦ a and ai ◦ ck represent
the aame semigroup elements, thus the last multiplication in the first expression must
match the long representation of ai−1 ◦ bj ◦ ck whose length is linear in j to the shorter
representation of ai ◦ ck whose length is linear in i+ k. During this shrinking process,
the representation of ck at the end of both words must be moved to the front. This is
something what an automatic function can only do for a constant value of k but not
when k is a parameter ranging over many values as it is here the case.

Similarly if one would consider multiplication with constants from the front only,
then the corresponding representation would also not be automatic, as when multi-
plying aibjck−1 from the front with c, a deletion operation as indicated above has to be
done and the representatives of ck have moved a lot to the front, what the automatic
function cannot do.

Exercise 8.25. Let a, b be generators of a group satisfying

ahbk ◦ aibj =
{

ah+ibk+j if k is even;
ah−ibk+j if k is odd;

where h, k, i, j ∈ Z. Show that this group is biautomatic as well as fully automatic;
find for both results representations.

There is no finitely generated group which is fully automatic in the sense of Hogdson
[41, 42], Khoussainov and Nerode [53], but not automatic in the sense of Epstein,
Cannon, Holt, Levy, Paterson and Thurston [28]. But for monoids, there is such an
example.

Exercise 8.26. Use the pumping lemma to show the following: If (G, ◦) is a finitely
generated semigroup which on one hand has a fully automatic semigroup operation
and on the other hand uses natural representatives, that is, all members of G are
words over generators from a finite set F of generators, then G is a finite semigroup.

Note that there are indeed infinite groups which have both an automatic representa-
tion in the sense of Epstein, Cannon, Holt, Levy, Paterson and Thurston [28] and a
fully automatic representation in the sense of Hodgson [41, 42]. What the above ex-
ercise shows is that these two representations have for infinite semigroups necessarily
to be distinct, they cannot be the same.
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Exercise 8.27. Construct an automatic representation of the group H of all rationals
(positive or negative) with multiplication which have only one-digit prime factors – so
they are of the form 2h · 3i · 5j · 7k or −2h · 3i · 5j · 7k with h, i, j, k ∈ Z.

Exercise 8.28. Construct a fully automatic representation for the group H from
Exercise 8.27. Note that one cannot use the same representation by Exercise 8.26.

Exercise 8.29. Let a representation (G, ◦) of a group be given and let f map each
x ∈ G to its inverse. Are the following true: (a) If (G, ◦) is automatic then f is
automatic; (b) If (G, ◦) is fully automatic then f is automatic?

For an automatic or fully automatic semigroup (G, ◦), let fG(n) be the number of
elements which have representatives in G of length shorter than n. The next exercise
ask for possible values of fG(n).

Exercise 8.30. Prove that every automatic representation of (Z,+) satisfies that the
function fG is bounded by the expression cn for some constant c.

Exercise 8.31. Provide an example of an automatic group with quadratic function
fG.

Exercise 8.32. Determine the function fG of the monoid with alphabet {a, a, b, c}
and the rules ab = baa, ba = c, aa = ε, aa = ε, where ε is the neutral element and the
set of representatives is G = ({a}∗ ∪ {a}∗) · {b, c}∗.

Exercise 8.33. For fully automatic semigroups, the above questions would be quite
easy by showing the folloinwg fact: For every nonempty regular set G there is an
Abelian semigroup operation ◦ such that (G, ◦) is fully automatic.
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9 Automatic Structures in General

Fully automatic groups (in the sense of Hodgson, Khoussainov and Nerode) are only
a special case of an automatic structure. For automatic structures which are nei-
ther semigroups nor groups, one just uses the term “automatic” instead of “fully
automatic”, as there are no competing concepts with the same name for this type of
structure.

Definition 9.1: Automatic Structure [41, 42, 53]. A structure (A,R1, R2, . . . ,
Rh, f1, f2, . . . , fk) is called automatic iff A is a regular subset of some domain Σ∗ and
all relations R1, R2, . . . , Rh and functions f1, f2, . . . , fk are automatic. More general,
also structures which are isomorphic to automatic structures are called automatic.

Example 9.2. The automatic structure (0∗, Succ) with Succ(x) = x0 is isomorphic
to the automatic structure of the natural numbers with successor Succ(n) = n+1. In
this structure, the addition is not automatic, as the function n 7→ n + n has in that
representation the graph {conv(0n, 02n) : n ∈ N} which is not regular.

An automatic semigroup can be represented as an automatic structure consisting
of a regular set R plus functions fa mapping x to x ◦ a for every generator a of the
semigroup. So ({0, 1}∗, x 7→ 0x, x 7→ 1x, ε) is an automatic structure representing
the monoid of binary strings with concatenation; here is, however, instead of the full
concatenation only the concatenation with the fixed strings 0 and 1 given.

({0, 1}∗, {0}∗, <ll) is the set of binary strings with length-lexicographical order plus
an additional set representing all those strings which only consist of 0s. Now |x| < |y|
is definable in this structure as

|x| < |y| ⇔ ∃z ∈ {0}∗ [x <ll z ∧ (z = y ∨ z <ll y)].

So a string in {0}∗ is the shortest string among the strings of its length; if one could
compare the length of strings, then one could define

x ∈ {0}∗ ⇔ ∀y <ll x [|y| < |x|].

So comparison of sizes and {0}∗ are definable from each other using the ordering <ll.

Description 9.3: Semirings and Rings. A commutative ring (A,⊕,⊗, 0, 1) with
1 satisfies the following axioms:

• ∀x, y ∈ A [x⊕ y = y ⊕ x];

• ∀x, y, z ∈ A [x⊕ (y ⊕ z) = (x⊕ y)⊕ z];

• ∀x, y ∈ A [x⊗ y = y ⊗ x];
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• ∀x, y, z ∈ A [x⊗ (y ⊗ z) = (x⊗ y)⊗ z];

• ∀x, y, z ∈ A [x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z)];

• ∀x ∈ A [x⊕ 0 = x ∧ x⊗ 1 = x];

• ∀x ∈ A∃y ∈ A [x⊕ y = 0].

The laws listed here are the commutative and associative laws for ⊕ and ⊗, the law
of distributivity, the law on the neutral elements and the existence of an inverse with
respect to ⊕.

If one replaces the last axiom (existence of an inverse for addition) by x ⊗ 0 =
0⊗ x = 0 for all x, the structure (A,⊕,⊗, 0, 1) is called a commutative semiring with
1. Note that the statement that x⊗ 0 = 0 is true in all rings, for semirings one needs
to postulate it explicitly.

Furthermore, “commutative” refers to the multiplication ⊗. Also for rings which
are not commutative, one assumes that the addition ⊕ is commutative. A structure
without any law of commutativity is called a near-ring or a near-semiring which is
defined as follows: Here a near-semiring (A,⊕,⊗, 0) satisfies the associative laws
for ⊕ and ⊗, the neutrality of 0 for the addition ⊕, one of the distributive laws
(x ⊕ y) ⊗ z = (x ⊗ z) ⊕ (y ⊗ z) or x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z) and 0 ⊗ x = 0
for all x, y, z ∈ A. A near-ring has the additional property that (A,⊕, 0) is a group,
that is, that every element has an inverse for ⊕. Which of the distributive laws is
used in a near-ring is a convention; each near-ring satisfying one distributive law can
be transformed into a near-ring satisfying the other distributive law (by inverting the
order of the operations in the near-ring).

An example for a ring is (Z,+, ∗, 0, 1); furthermore, for every n ∈ {2, 3, . . .}, the
structure ({0, 1, . . . , n− 1},+, ∗, 0, 1) with addition and multiplication taken modulo
n is a ring. (Z × Z,+, ∗, (0, 0), (1, 1)) with + and ∗ carried out componentwise is a
ring.

Example 9.4. Let (F,+, ·) be the finite ring of addition and multiplication modulo
a fixed number r ∈ {2, 3, . . .}; so the domain F is {0, 1, . . . , r−1} and for i, j ∈ F one
defines that i⊕ j = i+ j if i+ j < r and i⊕ j = i+ j − r if i+ j ≥ r. Furthermore,
i⊗ j is the last digit of i ∗ j when written in an r-adic number system.

Now consider in the set FN all functions f : N → F which are eventually constant.
Each such function can be represented by a string a0a1 . . . an ∈ F ∗ where f(m) = am
for m ≤ n and f(m) = an for m > n. Furthermore, let rep(a0a1 . . . an) = a0a1 . . . am
for the least m ∈ {0, 1, . . . , n} such that an = ak for all k ∈ {m,m + 1, . . . , n}. Let
A = {rep(a0a1 . . . an) : n ∈ N∧ a0, a1, . . . , an ∈ F}. Now one can define the pointwise
operations ⊕ and ⊗ on A as follows:

Given a0a1 . . . an and b0b1 . . . bm, one says that c0c1 . . . ck = a0a1 . . . an⊕ b0b1 . . . bm
iff for all h, cmin{k,h} = amin{n,h} ⊕ bmin{m,h}. Similarly for ⊗. These operations corre-
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spond to the pointwise addition and multiplication on eventually constant functions
in FN. The element 0 represents the neutral element for the addition, that is, the
function which is everywhere 0; the element 1 represents the neutral element for the
multiplication, that is, the function which is everywhere 1.

The resulting structure is automatic. Furthermore, it is an example of a well-
known type of mathematical structures, namely of an infinite ring.

Description 9.5: Orderings. An ordering ⊏ on a base set A is a relation which
satisfies the following two axioms:

• ∀x, y, z ∈ A [x ⊏ y ∧ y ⊏ z ⇒ x ⊏ z];

• ∀x[¬x ⊏ x].

The first law is called transitivity, the second irreflexivity. An ordering is called linear
iff any two x, y ∈ A are comparable, that is, satisfy x ⊏ y or x = y or y ⊏ x. Often
one writes x ⊑ y for x ⊏ y ∨ x = y.

There are well-known automatic orderings, in particular <lex and <ll can be intro-
duced on any set of strings. Also the ordering which says that x ⊏ y iff x is shorter
than y can be introduced on every regular set. Another one x � y says that y extends
x, that is, y = xz for some z.

Exercise 9.6. Consider ({0}·{0, 1}∗∪{1},maxlex,minlex, 0, 1). Show that this struc-
ture is an automatic semiring and verify the corresponding properties as well as the
automaticity.

Does this work for the maximum and minimum of any automatic linear ordering
⊏ when the least element 0 and greatest element 1 exist?

Given the commutative automatic semiring (R,+, ∗, 0, 1), consider the extension
on R×R×R with the componentwise operation + and the new multiplication ⊙ given
by (x, y, z) ⊙ (x′, y′, z′) = (x ∗ x′, y ∗ y′, x ∗ z′ + z ∗ y′)? Is this a semiring? Is ⊙
commutative? What are the neutral elements for + and ⊙ in this ring? Prove the
answer.

A field is a ring with 1 where there exists for every x ∈ A − {0} an y ∈ A with
x⊗ y = 1. The next result shows that infinite automatic fields do not exist.

Theorem 9.7. There is no infinite automatic field.

Proof. Assume that (A,+, ∗, 0, 1) is an infinite automatic field; one can enrich this
structure with the length-lexicographic ordering which is also automatic.

Now let f(x) be the length-lexicographically first y ∈ A such that for all a, a′, b, b′

≤ll x with a 6= a′ it holds that (a − a′) ∗ y 6= b′ − b. The y exists. To see this,
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note that for each quadruple (a, a′, b, b′) with a − a′ 6= 0 there is at most one y
with (a − a′) ∗ y = b′ − b. If there would be a second y′ with the same property
then (a − a′) ∗ (y − y′) = 0 and now one can derive a contradiction. Let z be the
multiplicative inverse of y−y′, that is, (y−y′)∗z = 1. Now ((a−a′)∗ (y−y′))∗z = 0
and (a−a′)∗ ((y−y′)∗z) = a−a′. However, by assumption, a−a′ 6= 0, hence the law
of associativity would be violated, a contradiction. Hence each quadruple (a, a′, b, b′)
with a 6= a′ disqualifies only one y and as A has infinitely many y, there is some y
which can be f(x).

The function f is first-order defined using automatic parameters and therefore
automatic.

Now consider g(x, a, b) = a∗f(x)+b and h(x) = maxll{g(x, a, b) : a, b ∈ A∧a, b ≤ll

x}. Both functions are automatic. Furthermore, if there are m elements in A up to
x then there are at least m2 elements up to h(x); the reason is that if (a, b) 6= (a′, b′)
and a, b ≤ll x then one of the following two cases holds: in the case a = a′, it holds
that a ∗ f(x) = a′ ∗ f(x) and b 6= b′ and this gives a ∗ f(x) + b 6= a′ ∗ f(x) + b′; in the
case a 6= a′, it holds that (a− a′) ∗ f(x) 6= b′ − b and again a ∗ f(x)+ b 6= a′ ∗ f(x)+ b′

by a simple transformation of the inequality. So A has at least m2 many elements of
the form a ∗ f(x) + b with a, b ≤ll x and a ∗ f(x) + b ≤ll h(x).

Now let k ∈ N be a constant so large that the field-elements A has at least 2
elements shorter than k and that |h(x)| ≤ |x| + k for all x ∈ A. Now let Ar = {x ∈
A : |x| ≤ r · k}. By induction, A0 has at least 2

20 elements and Ar+1 has at least 2
2r+1

elements, as the number of elements in Ar+1 is at least the square of the number of
elements in Ar, hence |Ar+1| ≥ |Ar| · |Ar| ≥ 22

r · 22r = 22
r+2r = 22

r+1
. This would

mean that the function r 7→ |Ar| grows at least double-exponentially in contradiction
to the fact that all strings in Ar have length up to r · k so that there are at most
(1 + |Σ|)r·k+1 elements in Ar where Σ is the alphabet used. This contradiction shows
that a field cannot be automatic.

Description 9.8: Ordinals. In particular of interest are sets of ordinals. Small
ordinals — and only they are interesting — can be viewed as expressions using finitely
often exponentiation, power and addition and as constants ω and 1, where 1 stands
for ω0. Each exponentiation is of the form ωα where α is an ordinal defined in the
same way. If α ≤ β then ωα ≤ ωβ. Furthermore, α < ωα for all the α considered
here. Sums are always written with ω-powers in descending order. For example,
ωω+ω + ωω+1+1 + ω1+1+1+1 + ω1+1+1 + ω1+1+1 + 1 + 1 + 1 + 1. To simplify notation,
repeated additions can be replaced by the corresponding natural numbers and ωα · 5
abbreviates that one has a sum of 5 identical terms ωα. Above example gives ωω·2 +
ωω+2+ω4+ω3 · 2+4. One can compare two ordinals given by sums by looking at the
first ω-power from above which has a different coefficient in both ordinals and then
the ordinal with the larger coefficient is the larger one: ωω+2 + ωω · 3 + ω256 · 373 <
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ωω+2 + ωω · 4 < ωω+2 + ωω+1 < ωω+2 + ωω+1 + ω256.
There is furthermore an addition of ordinals. Given the ordinals as descending

sums of ω-powers, the rule is to write the ω-powers of the second operand behind
those of the first and then to remove all powers ωα for which there is a power ωβ

behind with α < β. The coefficients of the highest ω-power occurring in the second
operand are added in the case that this ω-power occurs in both operands. Here an
example: ω8 + ω5 + ω2 plus ω5 + ω4 gives ω8 + ω5 + ω5 + ω4 = ω8 + ω5 · 2 + ω4.

Note that the addition of the ordinals is not commutative. On one hand ω+1 6= ω
and on the other hand 1 + ω = ω by the cancellation-rule. Furthermore, one can
introduce a multiplication for ordinals and show that the resulting structure is a
near-semiring. As (N,+, ·, 0, 1) is a substructure of the ordinals whenever they go up
to ω or beyond and as that structure is not automatic, the multiplication of ordinals
is uninteresting for automatic structures.

So one investigates the ordinals with respect to the automaticity of their ordering
and their addition. In particular, for given ordinal α one is interested in the linearly
ordered set {β : β < α} and the following question had been investigated for years:
For which α is the structure ({β : β < α}, <) isomorphic to an automatic linear order?

Example 9.9: Ordinals [21]. The ordinals below ω4 are automatic. For this, recall
that there is an automatic copy of (N,+, <). One can now represent each such ordinal
by conv(a0, a1, a2, a3) standing for ω3 · a3 + ω2 · a2 + ω · a1 + a0. Now the addition
follows the following equation:

conv(a0, a1, a2, a3)+
conv(b0, b1, b2, b3) =















conv(a0 + b0, a1, a2, a3) if b1 = 0, b2 = 0, b3 = 0;
conv(b0, a1 + b1, a2, a3) if b1 > 0, b2 = 0, b3 = 0;
conv(b0, b1, a2 + b2, a3) if b2 > 0, b3 = 0;
conv(b0, b1, b2, a3 + b3) if b3 > 0.

This function is automatic, as one can decide with automatic predicates which case
applies and then form a convolution of functions which either copy one of the input-
components or add two of them. Furthermore, the relation < is first-order definable
from the addition:

conv(a0, a1, a2, a3) < conv(b0, b1, b2, b3) ⇔
∃conv(c0, c1, c2, c3) 6= conv(0, 0, 0, 0)
[conv(a0, a1, a2, a3) + conv(c0, c1, c2, c3) = conv(b0, b1, b2, b3)].

Hence the ordinals below the power ω4 form a fully automatic monoid with ordering.
Delhommé [21] showed the following more general result.

Theorem 9.10: Delhommé’s Characterisation of Automatic Ordinals [21].
The following is equivalent for any ordinal α:
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(a) α < ωω;
(b) ({β : β < α}, <) is an automatic structure;
(c) ({β : β < α},+) is an automatic structure.
Here, in the case of (c), the domain of + is the set of all pairs (β, γ) with β + γ < α;
in the case of α being an ω-power, this domain is the set {β : β < α} × {γ : γ < α}.

Proof. Above it was shown for α = ω4 that the ordinals below α with addition and
ordering can be represented as an automatic structure. This proof generalises to all
ωn. Furthermore, if α ≤ ωn for some n ∈ N, then the set {β : β < α} can be defined
in the automatic structure ({β : β < ωn},+, <) using α as a parameter and the result-
ing structure can serve to satisfy (b) and (c), simultaneously. So assume by way of
contradiction that α ≥ ωω and that the structure ({β : β < α}, <) is automatic with
a regular domain A and an automatic relation <. Add the string extension relation �
on the domain to this structure as well as a relation to compare the length of strings.
Assume that un represents ωn in this structure. Now consider for all strings v with
|v| = |un| the sets Bun,v = {w ∈ A : v � w ∧ w < un}.

Each set Bun,v is defined in an uniform way and there is a finite automaton check-
ing whether w ∈ Bun,v when reading conv(un, v, w). Furthermore, for w1, w2 ∈
Bun,v, there is a further automaton checking whether w1 < w2 in a way uniform
in conv(un, v, w1, w2). It is now easy to see that the structure B′

un,v = ({w′ : vw′ ∈
Bun,v}, <′) with w′

1 <′ w′
2 ⇔ vw1 < vw2 only depends on the states of the automata

recognising Bun,v and < after having read the first |un| symbols of conv(un, v, vw
′)

and conv(un, v, vw
′
1, vw

′
2), respectively. Hence there are only finitely many different

such structures.
However, the set {w : w < un} is for each un the union of finitely many sets

Bun,v and a finite set (of ordinals represented by strings shorter than un). One of
the partially ordered sets (Bun,v, <) must be isomorphic to ({β : β < ωn}, <) and
therefore the same holds for (B′

un,v, <
′). As there are infinitely many such sets (differ-

ent ordinals give non-isomorphic linearly ordered sets), this is a contradiction to the
assumption that the structure of the ordinals below α is automatic.

Exercise 9.11. The above proof used one fact implicit: If {β : β < ωn} is the
union of finitely many sets A1, A2, . . . , Am then one of the sets satisfies that (Ak, <)
is isomorphic to ({β : β < ωn}, <). For n = 1 this is easily to be seen: Every infinite
subset of the ordinals below ω is isomorphic to (N, <) and hence isomorphic to the set
of ordinals below ω. For n = 2, this can be seen as follows: For each set Ak let

Ãk = {i : ∃∞j [ω · i+ j ∈ Ak]}.

Each i ∈ N must appear in at least one set Ãk. Hence there is a k for which Ãk is
infinite. Now do the following: First, complete the case n = 2 by showing that for
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each k with Ãk being infinite the linearly ordered set (Ak, <) is isomorphic to the set
of ordinals below ω2; second, generalise the whole proof to all n ∈ {3, 4, 5, 6, . . .}.

Remarks 9.12. There are quite many structures for which one was able to show
that they are not automatic structures (that is, not fully automatic monoids): the
multiplicative monoid of the natural numbers, of the rationals, of the positive rationals
and so on. Furthermore, the polynomial ring in one or more variables over a finite
field is not an automatic structure.

It had also been investigated when a graph can be automatic, that is, be isomorphic
to an automatic graph. Here (V,E) is an automatic graph iff V is a regular set and the
set of edges E on V is an automatic relation. A graph on an infinite and countable set
V is called a random graph iff the graph is undirected (that is, (x, y) ∈ E ⇔ (y, x) ∈ E
for all x, y ∈ V ) and for any disjoint finite sets A,B there is a node x with (x, y) ∈ E
for all y ∈ A and (x, y) /∈ E for all y ∈ B. It is known that all random graphs are
isomorphic, that is, if (V,E) and (V ′, E ′) are random graphs then there is a bijection
f : V → V ′ with ∀x, y ∈ V [(x, y) ∈ E ⇔ (f(x), f(y)) ∈ E ′]. Delhommé showed that
no random graph is automatic [21]. The next paragraphs give a proof of this result.

Assume that (V,E) would be an automatic copy of the random graph. Further-
more, let <ll be the automatic length-lexicographic order on V .

Now define a relation R(x, y) as there is no z <ll y with ∀u ≤ll x [(u, z) ∈ E ⇔
(u, y) ∈ E]. This relation says that y is the first of all nodes z which connect to the
nodes up to x in the same way as y. Note that for every x there are only finitely many
y with R(x, y), as there are only finitely many ways how a node can connect with the
finitely many nodes up to x. As R is first-order defined with automatic parameters,
R is automatic. Furthermore, fR(x) = maxll{y : R(x, y)} is an automatic function;
thus there is constant c with |fR(x)| ≤ |x|+ c for all x and c ≥ |minll(V )|.

Let g(n) be the number of element of V up to length c · n. Now g(1) ≥ 1 and
g(n + 1) ≥ 2g(n), as for each splitting (A,B) of the elements of V up to length c · n
there is an y connecting to those in A and not to those in B. On one hand g(n) grows
superexponentially and on the other hand there are only exponentially many elements
up to length c · n. Due to this contradiction, (V,E) cannot be automatic.

Exercise 9.13. Let (G, ◦) be a fully automatic group and F be a regular subset of G.
Is the graph (G,E) with E = {(x, y) : ∃z ∈ F [x ◦ z = y]} automatic?

To which extent can the result be transferred to automatic groups? Consider the
special cases for F being finite and F being infinite. In which cases are there automatic
groups (G, ◦) in the sense of Epstein, Cannon, Holt, Levy, Paterson and Thurston
[28] such that for given finite F the graph (G,E) is automatic? How about infinite
F?
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Exercise 9.14. Consider the following structure: For a = (a0, a1, . . . , an) ∈ Nn+1, let

fa(x) =
n

∑

m=0

am ·
(

x

m

)

and let F be the set of all so defined fa (where n is not fixed). For which of the
following orderings <k is (F,<k) an automatic partially ordered set?

(1) a <1 b ⇔ fa 6= fb and fa(x) < fb(x) for the first x where they differ;

(2) a <2 b ⇔ ∃∞x [fa(x) < fb(x)];

(3) a <3 b ⇔ ∀∞x [fa(x) < fb(x)].

Give reasons for the answer.

For the following exercises, let the binary string val(a0a1 . . . an) denote
∑

m 2m · am
where am ∈ {0, 1} and allow leading zeroes. For convolutions, there is in this specific
case no need to distinguish # and 0.

Exercise 9.15. Construct a two-state dfa which checks whether val(x) ≤ val(y) for
binary strings x, y.

Exercise 9.16. Construct a dfa which checks whether val(x) < val(y) + val(z) for
binary strings x, y, z.

Exercise 9.17. Construct a dfa which checks whether

max{val(x), val(y)} ≤ val(z) + val(z)

for binary strings x, y, z.

Exercise 9.18. Construct a dfa which checks for binary strings x, y, z whether
max{val(x), val(y)} ≤ min{val(y), val(z)}.

Exercise 9.19. The structure ({0, 1}∗, Pal, u 7→ u0, u 7→ u1) is not automatic in the
current representations, as the set Pal of all palindromes is not regular. Is there any
other automatic presentation of this structure? Prove the answer.

Yuri Matiyasevich [59] showed that there is a polynomial p(x, y1, . . . , y9) with inte-
ger coefficients such that one cannot decide whether for given x ∈ N one can find
y1, . . . , y9 ∈ N with p(x, y1, . . . , y9) = 0.

Exercise 9.20. Show that the ring (Z,+, ·, <, 0, 1) is not automatic.
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Exercise 9.21. Show that the structure (Z,+, S,<, 0, 1) is not automatic, where S
is the set of square numbers.

Exercise 9.22. Call a subset A ⊆ N eventually k-periodic, iff there are i, j with
1 ≤ j ≤ k such that, for all x ≥ i, A(x) = A(x + j). Prove that for each k ∈ N with
k > 0 there is an automatic representation of all eventually k-periodic sets such that
union, intersection and symmetric difference are fully automatic.

Exercise 9.23. Call a function f : Z → Z to be a k-step function iff there are at
most k vaues x with f(x) 6= f(x+ 1). Construct an automatic structure of all k-step
functions which has a two-place automatic function e, x → fe(x) mapping x ∈ Z to
the value fe(x) for the e-th member of this class Fk.

Exercise 9.24. Prove that one can define Fk, F2k from Exercise 9.23 such that there
is an automatic function gk mapping each two indices i, j for functions in Fk to an
index gk(i, j) for a function in F2k with ∀x [fgk(i,j)(x) = fi(x) + fj(x)].
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10 Transducers and Rational Relations

There are two ways to generalise regular sets to regular relations: One is the notion of
an automatic relation where all inputs are processed at the same speed (and exhausted
shorter inputs padded with #) and the other notion is that of a rational relation which
is defined below, where different inputs can be processed at different speed; rational
relations are also called asynchronously automatic relations.

Definition 10.1: Rational Relation. A relation R ⊆ (Σ∗)n is given by an non-
deterministic finite state machine which can process n inputs in parallel and does
not need to read them in the same speed. Transitions from one state p to a state
q are labelled with an n-tuple (w1, w2, . . . , wn) of words w1, w2, . . . , wn ∈ Σ∗ and the
automaton can go along this transition iff for each input k the next |wk| symbols in the
input are exactly those in the string wk (this condition is void if wk = ε) and in the
case that the automaton goes on this transition, |wk| symbols are read from the k-th
input word. A word (x1, x2, . . . , xn) is in R iff there is a run of the machine which
ends up in an accepting state after having reached the end-positions of all n words.

Example 10.2: String Concatenation. The concatenation of strings over Σ∗ is a
rational relation. The following machine is given for Σ = {0, 1, 2} and works for other
alphabets correspondingly.

sstart

q

(0, ε, 0), (1, ε, 1), (2, ε, 2)

(ε, 0, 0), (ε, 1, 1), (ε, 2, 2)

(ε, 0, 0), (ε, 1, 1), (ε, 2, 2)

In the following graphical notation of a run on three input-words, the state is written
always at that position which separates the read and not yet read parts of the input-
words; the triple of input-words is (01, 210, 01210) and the run is (s01, s210, s01210)⇒
(0s1, s210, 0s1210) ⇒ (01s, s210, 01s210) ⇒ (01q, 2q10, 012q10) ⇒ (01q, 21q0, 0121q0)
⇒ (01q, 210q, 01210q).

Example 10.3: Subsequence-Relation. A string x is a subsequence of y iff it can
be obtained by from y by deleting symbols at some positions. The following one-state
automaton recognises this relation for the binary alphabet {0, 1}.
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sstart (0, 0), (1, 1), (ε, 0), (ε, 1)

In general, there are one initial accepting state s with self-loops s → s labelled with
(ε, a) and (a, a) for all a ∈ Σ.

So if x = 0101 and y = 00110011 then the automaton goes from s to itself
with the transitions (0, 0), (ε, 0), (1, 1), (ε, 1), (0, 0), (ε, 0), (1, 1), (ε, 1) and has after-
wards exhausted both, x and y. As it is in an accepting state, it accepts this pair.

However, if x = 00111 and y = 010101 then the automaton cannot accept this
pair: it gets stuck when processing it. After the first (0, 0), it has to use the transition
(ε, 1) in order to go on and can afterwards use the transition labelled (0, 0) again.
But once this is done, the automaton has now on the x-side of the input 111 and on
the y-side 101 so that it could go on with using (1, 1) once and would then have to
use (ε, 0) and afterwards (1, 1) again. However, now the automaton gets stuck with
1 being on the x-side while the y-side is exhausted. This is indeed also correct this
way, as x is not a subsequence of y.

Example 10.4. This rational relation recognises that x is a non-empty substring of
y, that is, x 6= ε and y = vxw for some v, w ∈ {0, 1}∗. The automaton is the following.

sstart t u

(ε, 0), (ε, 1)

(0, 0), (1, 1)

(0, 0), (1, 1)

(0, 0), (1, 1)

(0, 0), (1, 1)

(ε, 0), (ε, 1)

When the automaton is in s or u, it parses the parts of x which are not in y while
when going forward from s to u with perhaps cycling in t, the automaton compares
x with the part of y which is equal to it in order to verify that x is a subword of y;
furthermore, the automaton can do this only if x contains at least one symbol.

Exercise 10.5. Rational relations got their name, as one can use them in order to
express relations between the various inputs words which are rational. For example,
one can look at the set of all (x, y) with |x| ≥ 2

3
|y|+5. This relation could be recognised

by the following automaton (assuming that x, y ∈ {0}∗):

sstart t
(00000, ε)

(0, ε), (0, 0), (00, 000)
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Make automata which recognise the following relations:

(a) {(x, y) ∈ (0∗, 0∗) : 5 · |x| = 8 · |y|};

(b) {(x, y, z) ∈ (0∗, 0∗, 0∗) : 2 · |x| = |y|+ |z|};

(c) {(x, y, z) ∈ (0∗, 0∗, 0∗) : 3 · |x| = |y|+ |z| ∨ |y| = |z|}.
Which automaton needs more than one state?

Description 10.6: Transducers. A rational function f mapping strings over Σ to
strings over Σ is a function for which there is a rational relation R such that for each
x, y ∈ Σ∗, (x, y) ∈ R iff x ∈ dom(f) and f(x) = y. Transducers are mechanisms to
describe how to compute such a rational function and there are two types of them:
Mealy machines and Moore machines. Both define the same class of functions.

A Mealy machine computing a rational function f is a nondeterministic finite
automaton such that each transition is attributed with a pair (v, w) of strings and
whenever the machine follows a transition (p, (v, w), q) from state p to state q then
one says that the Mealy machine processes the input part v and produces the output
part w. If some run on an input x ends up in an accepting state and produces the
output y, then every run on x ending up in an accepting state produces the same
output and f(x) = y; if no run on an input x ends up in an accepting state then f(x)
is undefined.

Every automatic function is also a rational function and computed by a transducer,
but not vice versa. For example, the function π preserving all symbols 0 and erasing
the symbols 1, 2 is given by the following one-state transducer: Starting state and
accepting state is s, the transitions are (s, (0, 0), s), (s, (1, ε), s), (s, (2, ε), s). This
function π is not automatic.

Description 10.7: Moore machines [66]. Edward Moore [66] formalised functions
computed by transducers by the concept of an automaton which is now known as a
Moore machine. This is a nondeterministic finite automaton with possibly several
starting states such that each state q owns a word wq and each transition if of the
form (q, a, p) for states q, p and elements a ∈ Σ. On input a1a2 . . . an, an accepting
run is a sequence (q0, q1, . . . , qn) of states starting with a starting state q0 and ending
in an accepting state qn such that the transition-relation of the nfa permits for each
m < n to go from qm to qm+1 on symbol am+1 and the output produced by the run
is the word wq0wq1 . . . wqn . A function f is computed by a Moore machine iff for
each x ∈ dom(f) there is an accepting run on input x with output f(x) and for each
string x and accepting run on input x with output y it holds that f(x) is defined and
f(x) = y.

First, consider the projection π from {0, 1, 2}∗ to {0}∗ which erases all 1, 2 and
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preserves all 0; for example, π(012012) = 00. It needs a Moore machine having two
states.

εstart 0

1,2

0

0

1,2

Second, let f(a1a2 . . . an) = 012a1a1a2a2 . . . anan012. That is f doubles each symbol
and places 012 before and after the output. The Moore machine given by the following
table computes f :

state starting acc/rej output succ on 0 succ on 1 succ on 2
s yes rej 012 p, p′ q, q′ r, r′

p no rej 00 p, p′ q, q′ r, r′

q no rej 11 p, p′ q, q′ r, r′

r no rej 22 p, p′ q, q′ r, r′

s′ yes acc 012012 – – –
p′ no acc 00012 – – –
q′ no acc 11012 – – –
r′ no acc 22012 – – –

Now f(0212) has the accepting run sprqr′ and this accepting run produces the out-
put wswpwrwqwr′ = 012001100012. The nondeterminism mainly stems from the fact
that the automaton does not know when the last symbol is read; therefore, it has
nondeterministically choose between the states and their primed versions: s versus s′,
p versus p′, q versus q′ and r versus r′.

For an example with a more severe amount of nondeterminism, consider the func-
tion g given by g(a1a2 . . . an) = (max({a1, a2, . . . , an}))n, so g(ε) = ε, g(000) = 000,
g(0110) = 1111 and g(00512) = 55555. Now the Moore machine has to produce out-
put in each state, but it has to choose in the first state which output to produce. So
one has a starting state s with ws = ε and for each symbol a two states qa and ra with
wqa = wra = a. The states s and ra are accepting, the states qa are rejecting. The
following transitions exist: (s, b, qa) for all a, b with b < a, (s, a, qa) for all a, (qa, b, qa)
for all a, b with b < a and (ra, b, ra) for all a, b with b ≤ a. So when the Moore machine
sees the first symbol and that is a 0, it has to decide which symbol a to write and
there is no way to avoid this nondeterminism.

Exercise 10.8. Write down Mealy machines for the functions f and g from De-
scription 10.7 of the Moore machines. For both, the alphabet can be assumed to be
{0, 1, 2}.
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Exercise 10.9. Determine the minimum number m such that every rational function
can be computed by a nondeterministic Moore machine with at most m starting states.
Give a proof that the number m determined is correct.

Exercise 10.10. Say that a Moore machine / Mealy machine is deterministic, if it
has exactly one starting state and for it always reads one symbol from the input and
for each state and each input symbol it has at most one transition which applies.

Make a deterministic Moore machine and make also a deterministic Mealy machine
which do the following with binary inputs: As long as the symbol 1 appears on the
input, the symbol is replaced by 0; if at some time the symbol 0 appears, it is replaced
by 1 and from then onwards all symbols are copied from the input to the output without
a change.

So the function f computed by these machines satisfies f(110) = 001, f(1111) =
0000, f(0) = 1 and f(110011) = 001011.

Exercise 10.11. Let the alphabet be {0, 1, 2} and let R = {(x, y, z, u) : u has has |x|
many 0s, |y| many 1s and |z| many 2s}. Is R a rational relation? Prove the result.

Theorem 10.12 [68]. Assume that Σ1,Σ2, . . . ,Σm are disjoint alphabets. Further-
more, let πk be the function which preserves all symbols from Σk and erases all other
symbols. Then a relation R ⊆ Σ∗

1 ×Σ∗
2 × . . .×Σ∗

m is rational iff there is a regular set
P over a sufficiently large alphabet such that (w1, w2, . . . , wn) ∈ R ⇔ ∃v ∈ P [π1(v) =
w1 ∧ π2(v) = w2 ∧ . . . ∧ πm(v) = wm].

Proof. First, assume that a nondeterministic finite automaton recognises the rational
relation R. Let Q be the set of states of this finite automaton and assume that Q is
disjoint to all alphabets Σk. Furthermore, let the word q0w1,1w1,2 . . . w1,mq1w2,1w2,2 . . .
w2,mq2 . . . wn,1wn,2 . . . wn,mqn be in P iff q0 is a starting state, qn is an accepting state
and for each k < n the automaton goes from qk on (wk+1,1, wk+1,2, . . . , wk+1,m) to qk+1.
In other words, P consists of representations of all accepting runs of the nfa on some in-
put and if v ∈ P then the input-tuple processed in this run is (π1(v), π2(v), . . . , πm(v)).

Second, for the converse direction, assume that a regular language P is given and
that the dfa with starting state s and accepting states F is recognising P . Let Q be
its states. Now one can make an nfa recognising the relation R by replacing every
transition (p, a, q) of the original dfa with (p, (π1(a), π2(a), . . . , πm(a)), q) in the new
nfa. One has now to show that the new nfa recognises exactly the relation R.

Assume that there is a word v = a1a2 . . . an ∈ P with (w1, w2, . . . , wm) = (π1(v),
π2(v), . . . , πm(v)). There is a run q0a1q1a2 . . . anqn of the dfa which accepts the word v.
Now one translates this run into q0 (π1(a1), π2(a1), . . . , πm(a1)) q1 (π1(a2), π2(a2), . . . ,
πm(a2)) q2 . . . (π1(an), π2(an), . . . , πm(an)) qn and one can see that this is an accepting
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run of the nfa. Hence (w1, w2, . . . , wn) ∈ R.
Assume that (w1, w2, . . . , wn) ∈ R. Then the nfa accepts (w1, w2, . . . , wn). This

acceptance is witnessed by a run of the form q0 (π1(a1), π2(a1), . . . , πm(a1)) q1 (π1(a2),
π2(a2), . . . , πm(a2)) q2 . . . (π1(an), π2(an), . . . , πm(an)) qn where q0 is a starting state
and qn is an accepting state and the tuples between two states indicate the symbols
read from the corresponding inputs. Then corresponds to an accepting run q0 a1 q1
a2 q2 . . . an qn on the original dfa which then accepts the word v = a1a2 . . . an. Hence,
v ∈ P and (w1, w2, . . . , wm) = (π1(v), π2(v), . . . , πm(v)).

Remark 10.13. Above Theorem of Nivat can also be stated in a more general form.
Recall that a homomorphism is a mapping which preserves concatenation and maps
every symbol to a finite word. Now an n-ary relation R is rational iff there are n
homomorphisms π1, . . . , πn such that for each symbol at most one of them maps it to
a nonempty word and there is a regular set P such that

∀x1, . . . , xn [R(x1, . . . , xn) ⇔ ∃y ∈ P [π1(y) = x1 ∧ . . . ∧ πn(y) = xn]].

This allows to use pumping lemmas to show that certain relations are not rational.
For the ease of notation, the two letters are different in the next example, so that the
Theorem of Nivat applies in its original form.

The relation R = {(0n, 1n2
) : n ≥ 1} is not rational.

To see this, one uses the Theorem of Nivat and considers a regular set P such that
for each n there is a word y ∈ P with 0n = π1(y) and 1n

2
= π2(y).

As the set is regular, it satisfies the block pumping lemma with a constant k.
There is an n which is large enough so that n2 > (k + 1) · (n+ 1). Thus there are at
least k+1 many 1 without a 0 between them in any word y ∈ P with 0n = π1(y) and
1n

2
= π2(y). Thus one can cut the word into blocks such that all inner blocks contain

each at least one 1 and no 0.
Now when one pumps up with the block pumping lemma, the number of 1 increases

while the number of 0 remains the same. The pumping destroys R and R is not
rational.

Description 10.14: Rational Structures. One could replace the requirement that
relations are automatic by the requirement that relations are rational in oder to obtain
a notion of rational structures. These are more general than automatic structures,
but here various properties of automatic structures are lost:

• There are relations and functions which are first-order definable from rational
relations without being a rational relation;

• There is no algorithm to decide whether a given first-order formula on automatic
relations is true.
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So the counterpart of the Theorem of Khoussainov and Nerode on automatic struc-
tures does not exist. While some properties are lost, the expressibility is in general
higher. So various structures which are not automatic can be represented using ra-
tional relations. One example is given above: The monoid given by concatenation of
strings over the alphabet {0, 1}.

Post’s Correspondence Problem allows to define a rational structure where one
cannot decide the first-order theory with an algorithm which uses the automata de-
scribing a specific instance as input. In the current context, an instance of Post’s
Correspondence Problem consists of two homomorphism f, g – given as transducers –
which maps words of an index set Σ∗ to words over Σ∗ (as long as there are at least
two indices, what is needed for making the structure interesting, one can use the same
alphabet for the indices and the words over it). So the homomorphism f is given by
f(a) for all a ∈ Σ and maps a word a1a2 . . . an ∈ Σ∗ to f(a1) · f(a2) · . . . · f(an).
Similarly for g. It is easy to see that every homomorphism is rational: The corre-
sponding transducer has a single state s which is the starting state and accepting;
there are transitions are from s to s which are labelled (a, f(a)) for each a ∈ Σ. Now
the rational structure also has equality and one considers the following first-order
formula:

∃u ∈ Σ∗ [u 6= ε ∧ f(u) = g(u)].

This formula is true iff the instance (Σ, f, g) of Post’s Correspondence Problem has a
solution. As Post’s Correspondence Problem is undecidable, the corresponding class
of structures does not have a decidable first-order theory.

Nicer would it of course to have a single structure with an undecidable first-order
theory. This is indeed possible and the structure is a quite easy one: ({0, 1}∗, ·,≺,
0, 1, ε). This is the structure of all binary words with concatenation · and strict
prefix-relation ≺ as well as the constants for the empty word and the two single-letter
words. The result that this theory is undecidable is well-known. Recent work by
Kristiansen and Murwananshyaka [56] analyses which types of first-order formulas
are already undecidable and finds that the set of all existentially quantified formulas
with additional bounded quantifiers is undecidable while the usage of only bounded
quantifiers leads to a decidable fragment of the first-order theory of this structure.

Exercise 10.15. There is a rational representation of the random graph. Instead
of coding (V,E) directly, one first codes a directed graph (V, F ) with the following
properties:

• For each x, y ∈ V , if (x, y) ∈ F then |x| < |y|/2;
• For each finite W ⊆ V there is a y with ∀x [(x, y) ∈ F ⇔ x ∈ W ].

This is done by letting V = {00, 01, 10, 11}+ and defining that (x, y) ∈ F iff there are
n,m, k such that y = a0b0a1b1 . . . anbn and am = ak = 0 and ah = 1 for all h with
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m < h < k and x = bmbm+1 . . . bk−1. Give a transducer recognising F and show that
this F satisfies the two properties above.

Now let (x, y) ∈ E ⇔ (x, y) ∈ F ∨ (y, x) ∈ F . Show that (V,E) is the random
graph by constructing to any given disjoint finite sets of strings A,B a string y longer
than every string in A and B satisfying that for all x ∈ A∪B, (x, y) ∈ E iff (x, y) ∈ F
iff x ∈ A.

Example 10.16. The multiplicative monoid (N−{0}, ∗, 1) has a rational representa-
tion. Note that every natural number is given by its primefactors: So (n1, n2, . . . , nk)
with nk > 0 represents the number 2n1 ∗3n2 ∗ . . .∗pknk and the empty vector represents
1. So 36 is represented by (2, 2) (for 22 ∗ 32) and 3 is represented by (0, 1). Now one
has that 36 ∗ 3 is represented by (2, 3) which is the componentwise sum of (2, 2) and
(0, 1). Furthermore, 30 is represented by (1, 1, 1) so that 36∗30 needs that one adjust
the length of the shorter vector before one does the componentwise addition: 36∗30 is
represented by (2, 2) + (1, 1, 1) = (2, 2, 0) + (1, 1, 1) = (3, 3, 1). In other words the set
N−{0} with multiplication and the finite vectors of natural numbers with a non-zero
last component with the operation of componentwise addition (where 0 is invoked for
missing components) are isomorphic monoids.

In the next step, one has to represent each vector (n1, n2, . . . , nk) by a string, so
one takes 0n110n21 . . . 0nk1 and represents the empty vector (standing for the natural
number 1) by ε. Now 36 ∗ 3 = 108 is represented by 001001 ∗ 101 = 0010001 and
36 ∗ 30 = 1080 is represented by 001001 ∗ 010101 = 0001000101. The domain is
{ε} ∪ {0, 1}∗ · {01} and is therefore regular. The following automaton recognises the
graph of the rational relation ∗:
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sstart t

u

v

(ε, ε, ε)

(ε, ε, ε)

(ε, ε, ε)

(0, ε, 0), (ε, 0, 0), (1, 1, 1)

(1, 1, 1)

(ε, 0, 0), (ε, 1, 1)

(1, 1, 1)

(0, ε, 0), (1, ε, 1)

When verifying that x ∗ y = z, t is the node which is used as long as x and y are
both not exhausted; u is the node to be used when the end of x is reached while the
end of y has still to be found while v is the node to be used when the end of y has
been reached while the end of x has still to be found. There are transitions on empty
tuples from s to all of these three nodes as the two extreme cases that one of x and
y is ε need to be covered as well.

For the following exercises, given a a binary rational relation R and a ternary rational
relation S and any languages L and H, let R(L) = {v : ∃w ∈ L [R(v, w)]} and
S(L,H) = {u : ∃v ∈ L ∃w ∈ H [S(u, v, w)]}.

Exercise 10.17. Show that if L and H are regular, so are R(L) and S(L,H).

Exercise 10.18. Show that if L is context-free, so is R(L).

Exercise 10.19. If L,H are context-free, is then also S(L,H) context-free? Prove
the answer.

Exercise 10.20. If L is context-sensitive, is then also R(L) context-sensitive?

Exercise 10.21. For which Boolean operations (union, intersection, set difference,
symmetric difference) is there a rational relation S such that S(L,H) is the corre-
sponding combination of L and H?
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Exercise 10.22. Is there a transducer Q which recognises the relation of all pairs
(0n, 1n2n) with n ∈ N?

Exercise 10.23. Assume that the alphabet is Σ = {0, 1}. Construct a transducer R
which accepts a triple (u, v, w) iff there is a common subsequence of length at least |u|
of v and w. Here x is a subsequence of y iff x can be split into parts x1, x2, . . . , xk

with y ∈ Σ∗ · x1 · Σ∗ · x2 · . . . · Σ∗ · xk · Σ∗.

Exercise 10.24. Is there a transducer S which recognises a pair (v, w) iff v = wmi,
that is, v is the mirror image of w?

Exercise 10.25. Is there a transducer T which recognises a pair (v, w) iff v occurs
in w two times as a subword?

Exercise 10.26. Is there a transducer U which recognises all pairs (v, w) such that
in v, w occur the same symbols the same number of times?
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Selftest 10.27. Let f be an automatic function from a regular set A to a regular set
B. Let Bn = {y ∈ B : y = f(x) for exactly n words x ∈ A} and let B∞ = {y ∈ B :
y = f(x) for infinitely many x ∈ A}. Which of the sets B0, B1, . . . , B∞ are regular?

Selftest 10.28. Assume that a group is generated by elements a, b, c and their in-
verses a, b, c and has the following rules: a ◦ b = c ◦ a, a ◦ c = b ◦ a, b ◦ c = c ◦ b and
correspondingly for the inverses, that is, a ◦ b = c ◦ a, a ◦ b = c ◦ a and so on.

Show that this group is fully automatic by providing a fully automatic representa-
tion and explain why the group operation conv(x, y) 7→ x ◦ y is an automatic function
(with two inputs) in this representation.

Selftest 10.29. Let L = {00, 11}∗ be a regular language over the alphabet {0, 1, 2, 3}.
Determine the syntactic monoid GL for this language.

Selftest 10.30. Let G = {a∗ ∪ a∗} · {b∗ ∪ b
∗} be a representation for the automatic

group generated by a, b and the inverses a, b with the rule a ◦ b = b ◦ a. Let L be the
set of all strings over {a, a, b, b} which are equivalent to the neutral element ε in this
group.

What is the complexity of L? (a) regular, (b) context-free and not regular, (c)
context-sensitive and not context-free, (d) recursively enumerable and not context-
sensitive.

Give a justification for the taken choice.

Selftest 10.31. Let {Ld : d ∈ I} and {He : e ∈ J} be two automatic families with
regular sets of indices I, J . Prove or disprove the following claim.

Claim. There are an automatic relation R ⊆ I × I and an automatic function
f : R → J with domain R such that for all d, d′ ∈ I the following statement holds: if
there is an e ∈ J with Ld∩Ld′ = He then (d, d′) ∈ R and Hf(d,d′) = He else (d, d

′) /∈ R.

Selftest 10.32. Is every function which is computed by a nondeterministic Moore
machine also computed by a deterministic Moore machine?

If the answer is “yes” then explain how the Moore machine is made deterministic;
if the answer is “no” then give an example of a function which is computed only by a
nondeterministic Moore machine and not by a deterministic one.

Selftest 10.33. Construct a Mealy machine which recognises the following function:
f(x) doubles every 0 and triples every 1 if x does not contain a 2; f(x) omits all 0
and 1 from the input if x contains a 2.

Sample outputs of f are f(01) = 00111, f(01001) = 001110000111, f(021) = 2
and f(012210012) = 222.
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Solution for Selftest 10.27. All of the sets B0, B1, . . . , B∞ are regular. The reason
is that one can first-order define each of the sets using automatic functions (like f)
and relations (like membership in A and length-lexicographic order). For example,

y ∈ B0 ⇔ y ∈ B ∧ ∀x ∈ A [y 6= f(x)]

and

y ∈ B2 ⇔ ∃x1, x2 ∈ A∀x ∈ A

[f(x1) = y ∧ f(x2) = y ∧ x1 6= x2 ∧ f(x) = y → (y = x1 ∨ y = x2)].

The formula for B∞ has to be a bit different, as one has to say that there are infinitely
many x which are mapped to y. For this one assumes that A is infinite, as otherwise
B∞ = ∅. Now the formula is

y ∈ B∞ ⇔ ∀x ∈ A∃x′ ∈ A [x <ll x
′ ∧ f(x′) = y].

It is okay to introduce new automatic parameters (like the length-lexicographic order-
ing on A) in order to show that some set or relation or function is regular / automatic
by providing the corresponding first-order definition.

Solution for Selftest 10.28. Take any fully automatic representation (A,+) of the
integers and note that the set B = {x : ∃y [y+ y = x]} of the even integers is regular.
Now represent the group (G, ◦) by {conv(i, j, k) : i, j, k ∈ A} where conv(i, j, k) stands
for ai ◦ bj ◦ ck. Now conv(i, j, k) ◦ conv(i′, j′, k′) is conv(i + i′, j + j′, k + k′) in the
case that i′ is even and conv(i + i′, k + j′, j + k′) in the case that i′ is odd. As B is
regular, this case-distinction is automatic; furthermore, the addition is automatic in
A and can therefore be carried out on the components.

Solution for Selftest 10.29. For the language {00, 11}∗, one has first to make the
minimal dfa which has four states, namely s, z, o, t. Its transition table is the following
(where s is the starting state):

state acc/rej 0 1 2 3
s accept z o t t
z reject s t t t
o reject t s t t
t reject t t t t

The corresponding monoid has the following function fu where for each fu only one
representative word u is taken.
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word u fu(s) fu(z) fu(o) fu(t)
ε s z o t
0 z s t t
00 s z t t
001 o t t t
0011 s t t t
01 t o t t
011 t s t t
0110 t z t t
1 o t s t
10 t t z t
100 t t s t
1001 t t o t
11 s t o t
110 z t t t
2 t t t t

Solution for Selftest 10.30. The answer should be (c) “context-sensitive and not
context-free”. Let La be the set of all words in {a, a, b, b}∗ which have as many a
as a and Lb be the set of all words in {a, a, b, b}∗ which have as many b as b. Then
L = La ∩ Lb, thus L is the intersection of two context-free languages and therefore
context-sensitive or context-free or regular.

Note that all levels of the Chomsky hierarchy are closed with respect to intersection
with regular sets. Now one forms the set L ∩ a∗(ba)∗b∗. This set consists of all words
of the form an(ba)nbn and this is a well-known example of a context-sensitive language
which is not context-free. Therefore the language L cannot be regular and cannot be
context-free; so context-sensitive is the right level.

Solution for Selftest 10.31. The claim is true. The main idea is that the function
f plus its domain is first-order definable from automatic parameters. Indeed, one can
introduce a relation R′ and then derive R, f from R′ as follows:

(d, d′, e) ∈ R′ ⇔ d, d′ ∈ I ∧ e ∈ J ∧ ∀x [x ∈ He ⇔ x ∈ Ld ∧ x ∈ Ld′ ];

(d, d′) ∈ R ⇔ ∃e ∈ J [R′(d, d′, e)];

f(d, d′) = e ⇔ R′(d, d′, e) ∧ ∀e′ ∈ J [R′(d, d′, e′) ⇒ e ≤ll e
′].

Here again one uses the automatic length-lexicographic ordering and the automaticity
of the membership problem of the corresponding automatic families.

Solution for Selftest 10.32. The answer is “no” and the reason is that a non-
deterministic Moore machine can anticipate some information which the deterministic
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Moore machine cannot anticipate.
For example, a Moore machine should map any input a0a1 . . . an to (an)

n+1, that
is, replace all am by the last digit an. For this the Moore machine needs nondetermi-
nistically to anticipate what an is. So the Moore machine has a start state s without
any output and for each symbol a ∈ Σ it has two states ra (rejecting) and qa (accept-
ing). Now on the first symbol b the Moore machine nondeterministically chooses a
and if b = a then it goes to qa else it goes to ra. On each further symbol c, if a = c
then the machine goes to qa else it goes to ra. Both states ra and qa output in each
cycle one symbol a. If the last input symbol is a then the automaton will be in the
accepting state qa else it will be in the rejecting state ra. So if the input ends with a
the run is accepting and the output is correct; if the input does not end with a then
the run ends in a rejecting state and the output is not valid.

A deterministic Moore machine cannot compute this function. If the Moore ma-
chine sees an input 0, it needs to respond with a 0 immediately, as it otherwise would
not map 0 to 0, hence it goes on 0 to a state with output 0. If then a 1 follows, the
output has to be 11, what is impossible for the deterministic Moore machine to do,
as it has already written a 0.

Solution for Selftest 10.33.

sstart t

u v

(0, 00), (1, 111)

(0, 00), (1, 111)

(0, ε), (1, ε)
(2, 2)

(0, ε), (1, ε)

(2, 2)

(0, ε), (1, ε), (2, 2)
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11 Regular Languages and Learning Theory

Angluin [3] investigated the question on how to learn a dfa by a dialogue between a
learner (pupil) and teacher. The learner can ask questions to the teacher about the
concept (dfa) to be learnt and the teacher answers. The learner can ask two types of
questions:

• Is the following dfa equivalent to the one to be learnt?

• Does the dfa to be learnt accept or reject the following word w?

The first type of questions are called “equivalence queries” and the second type of
questions are called “membership queries”. The teacher answers an equivalence query
either with “YES” (then the learner has reached the goal) or “NO” plus a counterex-
ample w on which the dfa given by the learner and the dfa to be learnt have different
behaviour; the teacher answers a membership query by either “YES” or “NO”.

Theoretically, the learner could just take a listing of all dfas and ask “Is dfa1 cor-
rect?”, “Is dfa2 correct?”, “Is dfa3 correct?” . . . and would need s equivalence queries
to find out whether dfas is correct. This strategy is, however, very slow; as there are
more than 2n dfas with n states, one would for some dfas with n states need more
than 2n queries until the dfa is learnt. Angluin showed that there is a much better
algorithm and she obtained the following result.

Theorem 11.1: Angluin’s algorithm to learn dfas by queries [3]. There is a
learning algorithm which has polynomial response time in each step and which learns
in time polynomial in the number of states of the dfa to be learnt and the longest coun-
terexample given an arbitrary dfa using equivalence queries and membership queries.

Proof. A simplified version of Angluin’s algorithm is given. The idea of Angluin
is that the learner maintains a table (S,E, T ) which is updated in each round. In
this table, S is a set of words which represent the set of states. E consists of all the
counterexamples observed plus their suffixes. S and E are finite sets of size polynomial
in the number and length of counterexamples seen so far and T is a function which
for all members w ∈ S ·E ∪S ·Σ ·E says whether the automaton to be learnt accepts
or rejects w.

Angluin defines the notion of a row: For u ∈ S ∪ S · Σ, let (v1, v2, . . . , vk) be a
listing of the current elements in E and for each u ∈ S∪S ·Σ, let the vector row(u) be
(T (uv1), T (uv2), . . . , T (uvk)). The table (S,E, T ) is called closed, if for every u ∈ S
and a ∈ Σ there is a u′ ∈ S with row(u′) = row(ua).

Now Anlguin defines for each closed (S,E, T ) the finite automaton DFA(S,E, T )
where the set of states is S, the alphabet is Σ and the transition function finds to a
state u and a ∈ Σ the unique u′ ∈ S with row(u′) = row(ua). The starting state is
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represented by the empty word ε (which is in S). A state u is accepting iff T (u) = 1.
Note that DFA(S,E, T ) is complete and deterministic. The learning algorithm is now
the following.

Teacher has regular set L and learner makes membership and equivalence
queries.

1. Initialise S = {ε} and E = {ε}.
2. For all w ∈ S · E ∪ S · Σ · E where T (w) is not yet defined, make a

membership query to determine L(w) and let T (w) = L(w).
3. If there are u ∈ S and a ∈ Σ with row(ua) 6= row(u′) for all u′ ∈ S

then let S = S ∪ {ua} and go to 2.
4. Make an equivalence query whether DFA(S,E, T ) recognises L.
5. If the answer is “YES” then terminate with DFA(S,E, T ).
6. If the answer is “NO” with counterexample w then let E = E ∪ {v :

∃u [uv = w]} and go to 2.

Now one shows various properties in order to verify the termination of the algorithm
and the polynomial bounds on the number of membership and equivalence queries.
For this, assume that (Q,Σ, δ, s, F ) is the minimal dfa recognising L. Now various
invariants are shown.

If u, u′ are different elements of S then δ(s, u) 6= δ(s, u′) as there is a word v ∈ E with
L(uv) 6= L(u′v). Hence |S| ≤ |Q| throughout the algorithm.

If (S,E, T ) is closed and w ∈ E then the DFA accepts w iff w ∈ L.
To see this, one does the following induction: Let w = a1a2 . . . an. Clearly T (w) =

L(w) by the corresponding membership query. Form = 0, 1, . . . , n, one shows that the
automaton is after processing a1a2 . . . am is in a state um with T (umam+1am+2 . . . an) =
T (w). This is true form = 0 as u0 = ε is the initial state of DFA(S,E, T ). Assume now
that it is correct for m < n. Then um+1 is the unique state in S with row(um+1) =
row(umam+1). It follows that T (umam+1v) = T (um+1v) for v = am+2am+3 . . . an.
Hence the induction hypothesis is preserved and DFA(S,E, T ) is after processing the
full word in a state un with T (un) = T (w). This state is accepting iff T (un) = 1 iff
T (w) = 1. Hence DFA(S,E, T ) is correct on w.

Assume that the algorithm has the parameters (S,E, T ) before observing counterex-
ample w and has the parameters (S ′, E ′, T ′) after it has done all the updates before
the next equivalence query is made. Then S ⊂ S ′.

Let rowE(u) and rowE′(u) denote the rows of u based on E and E ′; note that
E ⊆ E ′ and therefore rowE(u) 6= rowE(u

′) ⇒ rowE′(u) 6= rowE′(u′). Now, as
DFA(S,E, T ) 6= DFA(S ′, E ′, T ′) on w, the states in which these two automata are
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after processing w must be different. As both dfas have the initial state ε, there must
be a first prefix of the form ua of w such that the two automata are in different states
u′, u′′ after processing ua. Now rowE(ua) = rowE(u

′) and u′ ∈ S and rowE′(ua) =
rowE′(u′′). It cannot be that u′′ ∈ S −{u′}, as then rowE(u

′′) 6= rowE(ua). Hence u
′′

must be a new state in S ′ − S and S ⊂ S ′.

Let r be the sum of all lengths of the counterexamples observed. The algorithm makes
at most |Q| equivalence queries and at most |Q| · (|Σ|+1) · (r+1) membership queries.

As seen, |S| ≤ |Q| throughout the algorithm. As each equivalence query increases
the size of S, there are at most |Q| equivalence queries. Furthermore, E contains all
non-empty prefixes of counterexamples observed plus ε, hence |E| ≤ r + 1. Now the
table T has at each time the domain S · E ∪ S · Σ · E what gives then the bound on
the number of membership queries.

The overall runtime of each update is polynomial in the size of the counterexamples
observed so far and in |Q|. So latest when |S| = |Q| the answer to the equivalence
query is “YES” and the learner has learnt the language L.

Remark 11.2: Angluin’s original algorithm [3]. Angluin did not put the suffixes
of the counterexamples into E but she put the prefixes of the counterexamples into S.
Therefore, S could contain words u, u′ with row(u) = row(u′). In order to avoid that
this is harmful, Angluin increased then E so long until the table T is consistent, that
is, if row(u) = row(u′) then row(ua) = row(u′a) for all u, u′ ∈ S and a ∈ Σ. This
consistency requirement was explicitly added into the algorithm. The verification of
the original algorithm is given in Angluin’s paper [3].

Teacher has regular set L and learner makes membership and equivalence
queries.

1. Initialise S = {ε} and E = {ε}.
2. For all w ∈ S · E ∪ S · Σ · E where T (w) is not yet defined, make a

membership query to determine L(w) and let T (w) = L(w).
3. If there are u, u′ ∈ S, a ∈ Σ and v ∈ E such that row(u) = row(u′)

and T (uav) 6= T (u′av) then let E = E ∪ {av} and go to 2.
4. If there are u ∈ S and a ∈ Σ with row(ua) 6= row(u′) for all u′ ∈ S

then let S = S ∪ {ua} and go to 2.
5. Make an equivalence query whether DFA(S,E, T ) recognises L.
6. If the answer is “YES” then terminate with DFA(S,E, T ).
7. If the answer is “NO” with counterexample w then let S = S ∪ {u :

∃v [uv = w]} and go to 2.

Description 11.3: Learning from positive data [2, 4, 36]. Gold [36] introduced
a general framework of learning in the limit. His idea was that a learner reads more
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and more data and at the same time outputs conjectures; from some time on, the
learner should always output the same correct conjecture. More precisely, the learner
consists of a memory mem and an update function uf . In each round, the update
function uf maps pairs (mem, x) consisting of the current memory and a current
datum x observed to pairs (mem′, e) where mem′ is the new memory which is based
on some calculations and intended to have incorporated some way to memorise x and
where e is the conjectured hypothesis. In the case of learning regular languages, this
hypothesis could just be a dfa. Gold [36] observed already in his initial paper that
a class is unlearnable iff it contains an infinite set and all of its finite sets. As Σ∗

and each of its finite subsets is regular, the class of regular sets is not learnable from
positive data. Nevertheless, one still might learn some subclasses of regular languages.

For this, one considers so called automatic families. An automatic family is given
by an index set I and a family of sets {Ld : d ∈ I} such that the relation of all (d, x)
with x ∈ Ld is automatic, that is, the set {conv(d, x) : d ∈ I ∧ x ∈ Ld} is a regular
set.

Here the size of the minimal index of each language is invariant up to a constant
with respect to different indexings. So given two indexed families {Ld : d ∈ I} and
{He : e ∈ J}, one can define the automatic functions i : I → J and j : J → I with
i(d) = minll{e ∈ J : He = Ld} and j(e) = minll{d ∈ I : Ld = He}. Then there is a
constant k such that the following holds: if i(d) is defined then |i(d)| ≤ |d|+ k; if j(e)
is defined then |j(e)| ≤ |e| + k. Hence the sizes of the minimal indices of a language
in both families differ at most by k [48].

The data on the language L to be learnt are presented in form of a text. A text
T for a language L is an infinite sequence of words and pause symbols # such that
L = {w : w 6= # ∧ ∃n [T (n) = w]}. The learner starts now with some fixed initial
memory mem0 and initial hypothesis e0, say ε and a hypothesis for the empty set. In
round n, the new memory and hypothesis are computed by the update function uf :
(memn+1, en+1) = uf (memn, T (n)). The learner learns L using the hypothesis space
{Ld : d ∈ I} iff there is a d ∈ I with Ld = L and ∀∞n [en = d].

Angluin [2] showed in a very general framework a learnability result which covers the
case of automatic families.

Theorem 11.4: Angluin’s tell-tale criterion [2]. An automatic family {Ld : d ∈
I} is learnable from positive data iff there is for every d ∈ I a finite subset Fd ⊆ Ld

such that there is no further index e with Fd ⊆ Le ⊂ Ld.

Proof. Assume that {Ld : d ∈ I} has a learner. Blum and Blum [4] showed that
for each Ld there must be a finite initial part T (0)T (1) . . . T (n) of a text for Ld

such that for every extension T (n+ 1)T (n+ 2) . . . T (m) using elements from Ld and
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pause symbols # it holds that the learner conjectures an index for Ld after processing
T (0)T (1) . . . T (m). If such an initial part would not exist, one could inductively define
a text T for Ld on which the learner infinitely often outputs an index for a set different
from Ld. Now Fd = {T (m) : m ≤ n ∧ T (m) 6= #}. This is obviously a subset of
Ld; furthermore, when seeing only data of Ld after this initial part T (0)T (1) . . . T (n),
the learner outputs a conjecture for Ld, hence the learner does not learn any proper
subset of Ld from a text starting with T (0)T (1) . . . T (n). It follows that there cannot
be any e with Fd ⊆ Le ⊂ Ld.

For the other direction, consider that the sets Fd exist. Therefore the following
value f(d) is defined for every d ∈ I:

f(d) = min ll{b : ∀e ∈ I [{x ∈ Ld : x ≤ll b} ⊆ Le ⊆ Ld ⇒ Le = Ld]}.

Then it is clear that one can choose Fd = {x ∈ Ld : x ≤ll f(b)}. One can first-order
define the subset-relation and equality-relation on sets:

Ld ⊆ Le ⇔ ∀x [x ∈ Ld ⇒ x ∈ Le];

Ld = Le ⇔ ∀x [x ∈ Ld ⇔ x ∈ Le].

Hence the function f is first-order definable using automatic parameters and is auto-
matic. Thus one can make the following learning algorithm which for doing its search
archives all the data seen so far: memn is a list of data seen so far; en is the least
member of I which satisfies that all elements of Ld up to f(d) have been observed so
far and no non-elements of Ld have been observed prior to round n; if such an index
does currently not exist, the learner can output ? in order to signal that there is no
valid hypothesis.

Assume that the learner reads a text for a language and that d is the minimal
index of this language. Assume that n is so large that the following condition are
satisfied:

• For every w ∈ Ld with w ≤ll f(d) there is an m < n with T (m) = w;

• For every e <ll d with Le 6⊇ Ld there is an m < n with T (m) ∈ Ld − Le.

Note that if e <ll d and Le ⊃ Ld then there must be an element w ∈ Le − Ld with
w ≤ll f(e); this element does not appear in the text T . Hence, for the n considered
above it holds that the hypothesis of the learner is d. Thus the learner converges on
the text T to the minimal index d of the language described by the text T ; it follows
that the learner learns the family {Ld : d ∈ I} from positive data.

This characterisation answers when a class is learnable in general. One could now
ask what additional qualities could be enforced on the learner for various classes. In
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particular, can one make the update function uf automatic? Automatic learners are
defined as follows.

Description 11.5: Automatic learners [12, 47, 48]. An automatic learner is
given by its initial memory mem0, initial hypothesis e0 and the update function uf
which computes in round n from conv(memn, xn) the new memory and the hypothesis,
represented as conv(memn+1, en+1). An automatic learner for an indexed family {Ld :
d ∈ I} (which is assumed to be one-one) might use another hypothesis space {He :
e ∈ J} and must satisfy that there is an n with Hen = Ld and em ∈ {en, ?} for all
m > n where ? is a special symbol the learner may output if memory constraints do
not permit the learner to remember the hypothesis.

Memory constraints are there to quantify the amount of information which an
automatic learner is permitted to archive on data seen in the past. In general, this
data never permits to recover the full sequence of data observed, although it is in many
cases still helpful. The following memory constraints can be used while learning Ld

where the current conjecture of the learner is Hen+1 and where x0, x1, . . . , xn are the
data observed so far; i is the function with Li(e) = He for all e representing a language
in the class to be learnt.

None: The automaticity of uf gives that even in the absence of an explicit constraint
it holds that |memn+1| ≤ max{|xn|, |memn|} + k for some constant k and all
possible values of memn and xn.

Word-sized: |memn+1| ≤ max{|x0|, |x1|, . . . , |xn|}+ k for some constant k.

Hypothesis-sized: |memn+1| ≤ |en+1|+ k for some constant k.

Original-hypothesis-sized: |memn+1| ≤ |i(en+1)| + k for some constant k with the
additional constraint that i(en+1) is defined, that is, Hen+1 must be in the class
to be learnt.

Target-sized: |memn+1| ≤ |d|+ k for some constant k.

Constant: memn+1 ∈ C for a fixed finite set C of possible memory values.

Memoryless: memn+1 = mem0.

Note that target-sized always refers to the size of the original target; otherwise the
constraint would not be the same as hypothesis-sized, as the learner could use a
hypothesis space where every language has infinitely many indices and would choose at
every revision a hypothesis longer than the current memory size. Note that one could
fix the constant k to 1 for word-sized, hypothesis-sized, original-hypothesis-sized and
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target-sized learners as one can adjust the alphabet-size and store the last k symbols in
a convolution of one symbol. As this would, however, make the construction of learners
at various times more complicated, it is easier to keep the constant k unspecified.

Furthermore, a learner is called iterative iff memn = en for all n and e0 is a
hypothesis for the empty set (which is added to the hypothesis space, if needed).
Iterative learners automatically have a hypothesis-sized memory; furthermore, one
writes uf (en, xn) = en+1 in place of uf (en, xn) = conv(en+1, en+1) in order to simplify
the notation.

Example 11.6. If I is finite then there is a bound b such that for all different d, d′

there is an w ≤ll b which is in one but not both of Ld, Ld′ . Hence one can make a
learner which memorises for every w ≤ll b whether the datum w has been observed.
In the limit, the learner knows for every w ≤ll b whether w ∈ Ld for the language Ld

to be learnt and therefore the learner will eventually converge to the right hypothesis.
The given learner has constant-sized memory.

If one would require that the learner repeats the correct conjecture forever once it
has converged to the right index, then only finite classes can be learnt with constant-
sized memory. If one permits ? after convergence, then a memoryless learner can
learn the class of all Ld = {d} with d ∈ I for any given infinite regular I: the learner
outputs d on datum d and ? on datum # and does not keep any records on the past.

Example 11.7. Assume that Σ = {0, 1, 2} and that I = {conv(v, w) : v, w ∈
Σ∗ ∧ v ≤lex w} ∪ {conv(3, 3)} with Lconv(v,w) = {u ∈ Σ∗ : v ≤lex u ≤lex w} for all
conv(v, w) ∈ I. Note that Lconv(3,3) = ∅.

This class has an iterative learner whose initial memory is conv(3, 3). Once it sees
a word u ∈ Σ∗, the learner updates to conv(u, u). From that onwards, the learner up-
dates the memory conv(v, w) on any word u ∈ Σ∗ to conv(minlex{u, v},maxlex{u, w}).
This hypothesis always consists of the convolution of the lexicographically least and
greatest datum seen so far and the sequence of hypotheses has converged once the
learner has seen the lexicographically least and greatest elements of the set to be
learnt (which exist in all languages in the class to be learnt).

Data seen so far Hypothesis Language of hypothesis
— conv(3,3) ∅
# conv(3,3) ∅
# 00 conv(00,00) {00}
# 00 0000 conv(00,0000) {00, 000, 0000}
# 00 0000 1 conv(00,1) {u : 00 ≤lex u ≤lex 1}
# 00 0000 1 0 conv(0,1) {u : 0 ≤lex u ≤lex 1}
# 00 0000 1 0 112 conv(0,112) {u : 0 ≤lex u ≤lex 112}
# 00 0000 1 0 112 011 conv(0,112) {u : 0 ≤lex u ≤lex 112}
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Exercise 11.8. Make an automatic learner which learns the class of all Ld = {dw :
w ∈ Σ∗} with d ∈ Σ∗; that is, I = Σ∗ in this case.

Exercise 11.9. Assume that a class {Ld : d ∈ I} is given with Ld 6= Ld′ whenever
d, d′ ∈ I are different. Assume that an automatic learner uses this class as a hypothesis
space for learning satisfying any of the constraints given in Description 11.5. Let
{He : e ∈ J} be any other automatic family containing {Ld : d ∈ I} as a subclass.
Show that there is an automatic learner satisfying the same type of memory constraints
conjecturing indices taken from J in place of I.

Theorem 11.10: Jain, Luo and Stephan [47]. Let I = Σ∗, Lε = Σ+ and
Ld = {w ∈ Σ∗ : w <ll d} for d ∈ Σ+. The class {Ld : d ∈ I} can be learnt using a
word-sized memory but not using an hypothesis-sized memory.

Proof. First assume by way of contradiction that a learner could learn the class
using some chosen hypothesis space with hypothesis-sized memory. Let T (n) be the
n-th string of Σ+. When learning from this text, the learner satisfies em = em+1 for
some n and all m ≥ n; furthermore, Hem = Σ+ for these m ≥ n. Therefore, from n
onwards, all values of the memory are finite strings of length up to |en| + k for some
constant k. There are only finitely many such strings and therefore there must be
m, k ≥ n with memm = memk. If one now would change the text to T (h) = ε for all
h ≥ m or h ≥ k, respectively, the learner would converge to the same hypothesis on
both of these texts, although it would be a text for either the first m+ 1 or the first
k+1 strings in Σ∗. Thus the learner fails to learn at least one of these finite sets and
cannot learn the class.

Second consider a word-sized learner. This learner memorises the convolution of
the length-lexicographically least and greatest words seen so far. There are three
cases:

• In the case that no word has been seen so far, the learner outputs ? in order to
abstain from a conjecture;

• In the case that these words are ε and v, the learner conjectures LSuccll(v) = {w :
ε ≤ll w ≤ll v};

• In the case that the words u and v memorised are different from ε, the learner
conjectures Lε = Σ+.

The memory of the learner is either a special symbol for denoting that no word (except
#) has been seen so far or the convolution of two words observed whose length is
bounded by the length of the longest word seen so far. Hence the memory bound of
the learner is satisfied.
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Theorem 11.11. Assume that Σ = {0, 1} and I = {0, 1}∗ ∪ {2, 3} ∪ {conv(v, w) :
v, w ∈ {0, 1}∗ ∧ v <ll w} where the convolution is defined such that this unions are
disjoint. Furthermore, let L2 = ∅, L3 = Σ∗, Lv = {v} for v ∈ Σ∗ and Lconv(v,w) =
{v, w} for v, w ∈ Σ∗ with v <ll w. The class {Ld : d ∈ I} can neither be learnt with
constant memory nor with target-sized memory. It can, however, be learnt using an
original-hypothesis-sized memory.

Proof. Assume that some learner with constant-sized memory learns this class. There
is a constant k so large that (1) |en| ≤ |xn|+k on datum xn and at memory memn ∈ C
and (2) |max(He)| ≤ |e|+k whenever He is finite. As C has only finitely many values,
this constant k must exist. Now assume that v is any member of Σ∗ and w ∈ Σ∗ is
such that |w| > |v|+2k+1. Then, whenever the hypothesis em+1 is computed from em
and either v or #, the set Hem+1 is neither {w} nor {v, w}. Hence, when the learner
sees w as the first datum, it must conjecture {w} as all subsequent data might by #
and {w} cannot be conjectured again. Furthermore, if the learner subsequently sees
only v, then it cannot conjecture {v, w}. Hence, either the learner does not learn {w}
from the text w,#,#, . . . or the learner does not learn {v, w} from the text w, v, v, . . .;
thus the learner does not learn the given class.

As Σ∗ is in the class to be learnt and every data observed is consistent with the
possibility that Σ∗ is the language observed, every target-sized learner has at every
moment to keep the index shorter than the index of Σ∗ plus some constant, hence this
learner has actually to use constant-sized memory what is impossible by the previous
paragraph.

So it remains to show that one can learn the class by hypothesis-sized memory.
This is done by showing that the class has actually an iterative learner using I as hy-
pothesis space. Hence every hypothesis is from the original space and so the learner’s
memory is original-hypothesis-sized. Initially, the learner conjectures 2 until it sees a
datum v 6= #. Then it changes to conjecturing Hv until it sees a datum w /∈ {#, v}.
Then the learner updates to Hconv(minll{v,w},maxll{v,w}). The learner keeps this hypothe-
sis until it sees a datum outside {#, v, w}; in that case it makes a last mind change
to H3 = Σ∗. It is easy to see that the learner is iterative and needs only the current
hypothesis as memory; furthermore, the learner is also easily seen to be correct.

Theorem 11.12. If a learner learns a class with target-sized memory then the
learner’s memory is also word-sized on texts for languages in the class.

Proof. Let a learner with target-sized memory be given and k be the correspond-
ing constant. Whenever the learner learns has seen examples x0, x1, . . . , xn when
|memn+1| ≤ |d| + k for all languages Ld which contain the data observed so far. Let
xm be the longest datum seen so far. Let e be the length-lexicographically first in-
dex with {x0, x1, . . . , xn} ⊆ Le ∪ {#}. If e is shorter than some of the data then
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|memn+1| ≤ |xm|+ k. Otherwise let e′ be the prefix of e of length |xm|.
Consider the dfa which recognises the set {conv(d, x) : x ∈ Ld}. Let C be the set

of those states which the automata takes on any u ∈ Le with |u| ≤ |e′| after having
processed conv(e′, u); it is clear that the automaton will accept conv(e, u) iff it is in
a state in C after processing conv(e′, u). Hence one can define an automatic function
fC such that fC(d

′) is the length-lexicographically least index d ∈ I such that

∀u ∈ Σ∗ with |u| ≤ |d′|
[u ∈ Ld ⇔ the dfa has after processing conv(d′, u) a state in the set C]

Now fC(d
′) ≤ |d′|+ kC for some constant kC and all d′ where fC(d

′) is defined. Let k′

be the maximum of all kC′ where C ′ ranges over sets of states of the dfa. Furthermore,
as fC(e

′) is defined and equal to e, one gets that |e| ≤ |fC(e′)| ≤ |e′|+ k′ = |xm|+ k′

and |memn+1| ≤ |e| + k ≤ |xm| + k + k′. The constant k + k′ is independent of the
language to be learnt and the text selected to present the data; hence the learner has
word-sized memory on all texts belonging to languages in the class.

Remark 11.13. The result can be strengthed by saying whenever a class is learnable
with target-size memory then it is also learnable with word-size memory. Here the
strengthening is that the learner keeps the memory bound also on texts which are for
languages outside the class to be learnt.

For this, given an original learner having the word-size memory bound only on
languages in the class (with a constant k), one can make a new learner which either
has as memory conv(memn, xm) where memn is the memory of the original learner
and xm is the longest word seen so far or it has a special value ?. The initial memory
is conv(mem0,#) and on word xn it is updated from conv(memn, xm) according to
that case which applies:

1. conv(memn+1, xm) if |xn| < |xm| and |memn+1| ≤ |xm|+ k;

2. conv(memn+1, xn) if |xn| ≥ |xm| and |memn+1| ≤ |xn|+ k;

3. ? if |memn+1| > max{|xm|, |xn|}+ k.

Here memn+1 is the memory computed from memn and xn according to the original
learner. The hypothesis en+1 of the original learner is taken over in the case that the
new memory is not ? and the hypothesis is ? in the case that the new memory is also
?. Note that the special case of the memory and hypothesis being ? only occurs if the
original learner violates the word-size memory constraint and that only occurs in the
case that the text x0, x1, x2, . . . is not for a language in the class to be learnt.

Exercise 11.14. Assume that {Ld : d ∈ I} is the class to be learnt and that every
language in the class is finite and that for every language in the class there is exactly
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one index in I. Show that if there is a learner using word-sized memory for this class,
then the memory of the same learner is also target-sized. For this, show that there is
a constant k such that all d ∈ I and x ∈ Ld satisfy |x| ≤ |d|+ k and then deduce the
full result.

Exercise 11.15. Show that there is an automatic family {Ld : d ∈ I} such that I
contains for each Ld exactly one index and the Ld are exactly the finite subsets of
{0}∗ with even cardinality. Show that the class {Ld : d ∈ I} has an iterative learner
using the given hypothesis space. Is the same possible when the class consists of all
subsets of {0}∗ with 0 or 3 or 4 elements? Note that an iterative learner which just
conjectured an d ∈ I must abstain from updating the hypothesis on any datum x ∈ Ld.

Exercise 11.16. Is the family of all finite subsets of {0}∗ · {1}∗ an automatic family?
If so, then provide the corresponding index set and coding else explain why it cannot
be automatic.

Exercise 11.17. Is the family of an infinite regular set L and all subsets of up to
5 elements an automatic family? If so, then provide the corresponding index set and
coding else explain why it cannot be automatic.

Exercise 11.18. Is the family of all sets of decimal numbers which contain, for some
n > 0, exactly two digits each n times and all other digits 0 times, an automatic
family? If so, then provide the corresponding index set and coding else explain why it
cannot be automatic.

Exercise 11.19. Consider an automatic family {Le : e ∈ I} such that for each two
distinct d, e ∈ I either Ld ⊂ Le or Le ⊂ Ld holds. Furthermore, assume that for
each e there is a unique xe such that xe ∈ Le but xe /∈ Ld for any d with Ld ⊂ Le.
Prove that the mapping e 7→ xe is automatic and provide an automatic learner for the
family.

Exercise 11.20. Given {Ld : d ∈ I} and {Le : e ∈ J} both satisfying the conditions
of Exercise 11.19, construct an automatic learner for the automatic family of all
Kconv(d,e) with d ∈ I, e ∈ J and Kconv(d,e) = {0x : x ∈ Ld} ∪ {1y : y ∈ He}.

Exercise 11.21. Consider the classes

{Le : e ∈ {0}∗ with Le = {x ∈ {0}∗ : |e| ≤ |x|};
{He : e ∈ {0}∗ with He = {x ∈ {0}∗ : |e| 6= |x|};
{Ke : e ∈ {0}∗ with Ke = {x ∈ {0}∗ : |e| ≥ |x|}.
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Which of these classes can be learnt with target-sized memory by an automatic learner?
Provide the corresponding automatic learners or write why they do not exist.

Exercise 11.22. Which of the classes in Exercise 11.21 can be learnt with hypothesis-
sized memory? Provide the corresponding automatic learners or write why they do not
exist.

Exercise 11.23. Which of the classes in Exercise 11.21 can be learnt with word-sized
memory? Provide the corresponding automatic learners or write why they do not exist.

Exercise 11.24. Provide an infinite class learnable with constant memory size but not
without any memory. Note that learners do not need to output the correct hypothesis
all the time, but can also intermediately output ?, provided that there is a time where
they output a correct hypothesis and that they do not output any other hypothesis
(except ?) afterwards.
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12 Open Problems in Automata Theory

This chapter gives an overview of open problems in automata theory. First some
problems left open from research here in Singapore are given, afterwards more difficult,
generally open questions are presented.

First: Open Problems from Work in Singapore. There are various open ques-
tions related to the memory-usage of automatic learners. These questions have not
been solved in the past four years of research on automatic learning. The learners
below are always understood to be automatic.

Open Problem 12.1.

1. Does every automatic family which has an automatic learner also have a learner
with word-sized memory?

2. Does every automatic family which has a learner with hypothesis-sized memory
also have a learner with word-sized memory?

3. Does every automatic family which has a learner with hypothesis-sized memory
also have an iterative learner?

In recursion-theory and complexity theory, one often looks at reducibilities which com-
pare sets with functions, for example one has relations like

A ≤m B ⇔ ∃f ∀x [A(x) = B(f(x))]

where the possible f are taken from a specific class. One could for example do the
same with automatic functions. These notions can be refined, for example one can
additionally ask that f has to be one-one. Then there are quite trivial examples of
incomparable sets: When one fixes the alphabet {0, 1} then {0}∗ and 0∗1 · {0, 1}∗ are
incomparable, as either an exponential set has to be one-one mapped into a linear-
sized one or the exponential complement of a set has to be one-one mapped into the
linear-sized complement of another set. Both cannot be done, as the image of an
exponentially growing set under an automatic function is again exponentially growing.
For this, recall that a set A is linear-sized iff there is a linear function f such that
A has at most f(n) elements shorter than n; similarly, one can define when A is
polynomial-sized and exponential-sized. Wai Yean Tan [85] worked with a slightly
modified version where he ignores the alphabet and defines the notions just restricted
to the sets to be compared.
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Definition 12.2. Let A ≤au B denote that there is an automatic function f such
that

∀x, y ∈ A [f(x) 6= f(y) ∧ f(x) ∈ B].

Similarly one writes A ≤tr B for the corresponding definition where f is any function
computed by a finite transducer.

Wai Yean Tan [85] investigated both notions. For his findings, one needs the following
notions: A set A has size Θ(nk) iff there a constant c such that up to length n there
are at least nk/c− c and at most nk · c+ c elements in A. A regular set is polynomial-
sized in the case that it has size Θ(nk) for some k; a regular set is exponential-sized
in the case that there is a constant c such that A has at least 2n/c − c elements up to
length n for each n. Note that every regular set is either finite or polynomial-sized or
exponential-sized.

Theorem 12.3. Let A,B be regular sets.

1. The sets A,B are comparable for tr-reducibility: A ≤tr B or B ≤tr A. Further-
more, A ≤tr B if one of the following conditions holds:

• A,B are both finite and |A| ≤ |B|;
• A is finite and B infinite;

• A has size Θ(nk) and B has size Θ(nh) with k ≤ h;

• B is exponential-sized.

2. If A is polynomial-sized or finite then A ≤au B or B ≤au A. If A is of size
Θ(nk), B is of size Θ(nh) and k < h then A ≤au B and B 6≤au A.

Exercise 12.4. Make an automatic one-one function which maps the domain A =
0∗(1∗ ∪ 2∗) to a subset of B = (0000)∗(1111)∗(2222)∗, that is, show that A ≤au B.

The question on whether exponential-sized regular sets are always comparable with
respect to au-reducibility was left open and is still unresolved.

Open Problem 12.5: Tan [85]. Are there regular sets A,B such that A 6≤au B and
B 6≤au A?

This open problem can be solved in the case that one considers context-free languages
in place of regular languages. Then A = {x · 2 · y : x, y ∈ {0, 1}∗ and |x| = |y|} and
B = {0}∗. There is no automatic function mapping A to B in a one-one way, as A is
exponential-sized and B is linear-sized. There is no automatic function mapping B to
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A in a one-one way, as the range of this function would be an infinite regular set and
all words in the language would have exactly one 2 in the middle which contradicts
the regular pumping lemma. Hence these sets A and B are incomparable with respect
to au-reducibility.

One might also look at reducibilities which are not automatic but still sufficiently
easy. One of them is the self-concatenation mapping x to xx. There are two open
questions related to this reduction.

Open Problem 12.6: Zhang [92].

1. Given a regular language A, is there a regular language B such that, for all x,
A(x) = B(xx)?

2. Given a context-free language A, is there a context-free language B such that,
for all x, A(x) = B(xx)?

The converse direction is well-known, see, for example, Zhang [92]: If B is regular
then the set A = {x : xx ∈ B} is also regular. However, the set B = {0n1n2m0m1k2k :
n,m, k ∈ N} is context-free while the corresponding A given as

A = {x : xx ∈ B} = {0n1n2n : n ∈ N}

is not context-free; A is a standard example of a properly context-sensitive set.
Follow-up work by Fung [31] deals with the xm-reducibility. Here one maps x to

x · xmi where the function x 7→ xmi maps an x to its mirror-image, so (01122123)mi =
32122110. Now one can show that for every regular set A there is a regular set B
such that A(x) = B(x · xmi). The set B is chosen as {u : there are an odd number of
pairs (y, z) with u = yz and y ∈ A and z ∈ Ami}.

An ordered group (G,+, <, 0) satisfies besides the group axioms also the order axioms,
namely that x < y ∧ y < z implies x < z and that always exactly one of the three
options x < y, y < x and x = y. Furthermore, the group operation + has to be
compatible with the ordering <, that is, if x < y then x+ z < y+ z and z+x < z+ y
for all x, y, z. Jain, Khoussainov, Stephan, Teng and Zou [46] showed that a fully
automatic ordered group is always commutative. Furthermore, they investigated the
following problem which was first posed by Khoussainov.

Open Problem 12.7: Khoussainov [46]. Is there a fully automatic group (G,+)
isomorphic to the integers such that A = {x ∈ G : x is mapped to a positive number
by the isomorphism} is not regular?

Jain, Khoussainov, Stephan, Teng and Zou [46] showed that the corresponding ques-
tion can be answered positively if one takes G to be isomorphic to the rationals with
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denominators being powers of 6: G = {n/6m : n ∈ Z ∧ m ∈ N}. In this case one
can represent the fractional parts as a sum of a binary represented part n′/2m

′
and

ternary represented part n′′/3m
′′
and one can do addition on such a representation

but one cannot compare the numbers with a finite automaton.

Second: Famous Open Problems. For a given dfa, a synchronising word w
such that for all states q, the resulting state δ(q, w) is the same. Not every dfa has
a synchronising word, for example the dfa which computes the remainder by 3 of a
sequence of digits cannot have such a state. Černý investigated under which conditions
a dfa has a synchronising word and if so, what the length of the shortest synchronising
word is. He got the following main result.

Theorem 12.8: Černý [16]. For each n there is a complete dfa with n states which
has a synchronising word of length (n− 1)2 and no shorter ones.

Example 12.9. The following automaton gives a dfa for which synchronising words
exist and have at least the length 4; note that it is not needed to designate any states
as starting or accepting, as this does not matter for the question investigated.

q r

s

0

1

1

0

0,1

Now the word 0110 is a synchronising word which sends all states to r. For ease
of notation, let δ(Q,w) = {δ(p, w) : p ∈ Q} for any set Q of states. Note that
δ({q, r, s}, 1) = {q, r, s}, hence the shortest synchronising word has to start with 0.
Now δ({q, r, s}, 0) = {r, s}. Note that δ({r, s}, 0) = {r, s}, hence the next symbol has
to be a 1 in order to achieve something and the synchronising word starts with 01 and
δ({q, r, s}, 01) = {q, r}. As δ({q, r}, 1) = {q, s} and δ({q, r}, 0) = {r, s}, there is no
synchronising word of length 3. However, δ({q, r, s}, 0110) = δ({q, s}, 0) = {r} and
0110 is a shortest synchronising word.

The next example is a complete dfa with n = 4 and alphabet {0, 1, 2} for which a
synchronising word exist and each such word has at least length 9.
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q r

s t

0

0

0

1

1

2 2

1,2 0,1

2

The synchronising word for this automaton is 012020120. Again it starts with a
0 and the next symbol has to be a 1 as all others leave the set of reached states
the same. The next symbol must be a 2, as a 1 or 0 would undo the modification
brought by 01, that is, δ({q, r, s, t}, 010) = δ({q, r, s, t}, 011) = δ({q, r, s, t}, 0). After
012 one can again apply 0 in order to reduce the number of alive states to two:
δ({q, r, s, t}, 0120) = {q, t}. Now the next two symbols are 20 in order to move one
alive state away from q and one gets δ({q, t}, 20) = {r, t}. Now δ({r, t}, 12) = {s, t}
which is the only set of two alive states which can be mapped into one alive state.
This is done by applying 0, so that in summary δ({q, r, s, t}, 012020120) = {q}.

Upper bounds on the length of the shortest synchronising word are also known, how-
ever most likely they are not optimal and there is still a considerable gap between the
quadratic lower and cubic upper bound.

Theorem 12.10: Frankl [30]; Klyachko, Rystsov and Spivak [55]; Pin [71].
Assume a complete dfa has n states and has a synchronising word. Then it has a
synchronising word not longer than (n3 − n)/6.

In the following, a weaker form of this theorem is proven with an easier to prove
cubic upper bound; this bound is weaker by a factor 3 plus a term of order O(n).
Let Q be the set of states. If one has two states q, r and a word w longer than
n(n + 1)/2 + 1 such that δ({q, r}, w) consists of a single state, then there must be
a splitting of w into xyz with y 6= ε such that either δ({q, r}, x) = δ({q, r}, xy) or
δ({q, r}, x) consists of a single state, as there are only n(n + 1)/2 many different
pairs of states. In both cases, δ({q, r}, xz) would also consist of a single state, so
that w can be replaced by a shorter word. Therefore one can find, inductively, words
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w1, w2, . . . , wn−1 such that δ(Q,w1w2 . . . wm) has at most n −m states and each wm

has at most length n(n+1)/2+ 1. Then the overall length of the synchronising word
is at most n(n2 − 1)/2 + n − 1 = (n3 + n − 2)/2. For some small n it is known that
Černý’s Conjecture is true.

Example 12.11. If n = 3 and the automaton has a synchronising word, then there
is a synchronising word of length up to 4.

Proof. Let q, r, s be the states of the complete dfa. One can choose the first symbol
of a synchronising word such that at least two states get synchronised. That is,
δ({q, r, s}, v) ⊆ {q, r} for a single-letter word v, where q, r, s are some suitable naming
of the three states of the dfa. Now there are only three sets of two states, hence each
set of two states reachable from {q, r} can be reached in up to two symbols. Therefore,
a shortest synchronising word w for {q, r} must have the property that no set of states
is repeated and therefore w has at most the length 3, that is, after the third symbol
the corresponding set of alive states has only one element. Thus δ({q, r, s}, vw) has
one element and |vw| ≤ 4.

One can also show the conjecture for other small values of n; however, the full con-
jecture is still open.

Open Problem 12.12: Černý’s Conjecture [16]. Černý conjectured that if a
complete dfa with n states has synchronising words, then the shortest such word has
at most length (n− 1)2.

Exercise 12.13. Prove Černý’s conjecture for n = 4; that is, prove that given a com-
plete dfa with four states which has a synchronising word, the shortest synchronising
word for this dfa has at most the length 9.

Another basic question in automata theory is that of the star height. If one permits
only the basic operations of forming regular expressions, namely union, concatenation
and Kleene star, one can introduce levels of star usage. Namely one does the following:

• Let S0 contain all finite languages, note that S0 is closed under union and
concatenation;

• For each n, let Sn+1 contain all languages which can be formed by taking unions
and concatenations of languages of the form L or L∗ with L ∈ Sn.

The star-height of a regular language L is the minimal n such that L ∈ Sn. Here are
some examples.

• The language L0 = {0, 11, 222, 3333} is finite and has star-height 0;
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• The language L1 = {00, 11}∗ has star-height 1;

• The language L2 = ({00, 11}∗ · {22, 33} · {00, 11}∗ · {22, 33})∗ has star-height 2.

Eggan [24] investigated the star-height and provided a method to compute it from
the possible nfas which recognise a regular language. It is known that there are
infinitely many different levels of star-height a regular language can take. There is
a generalisation, called the generalised star-height. A language is called star-free if
it can be build from finite languages and Σ∗ using union, intersection, set difference
and concatenation. These languages are also called those of generalised star-height 0.
The languages of generalised star-height n+1 are formed by all expressions obtained
by starting with languages of star-height n and their Kleene star languages and then
again combining them using union, intersection, set-difference and concatenation.
Here examples for the first two levels:

• The language {0, 1}∗ has generalised star-height 0, as

{0, 1}∗ = Σ∗ −
⋃

a∈Σ−{0,1}
Σ∗aΣ∗;

• L2 from above has generalised star-height 1, as

L2 = {00, 11, 22, 33}∗ ∩ {0, 1}∗ · ({22, 33} · {0, 1}∗ · {22, 33} · {0, 1}∗)∗

and so L2 is the intersection of two languages of generalised star-height 1;

• L3 = {w : w does not have a substring of the form v} for a fixed v is of
generalised star-height 0 as L3 = Σ∗ − Σ∗ · v · Σ∗;

• L4 = {w : w has an even number of 0} is of generalised star-height 1.

It is unknown whether every regular language falls into one of these two levels.

Open Problem 12.14. Are there any regular languages of generalised star-height 2?
Is there a maximal n such that regular languages of generalised star-height n exist? If
so, what is this n?

Exercise 12.15. Determine the generalised star-height of the following languages
over the alphabet {0, 1, 2} – it is zero or one:

1. {00, 11, 22}∗ · {000, 111, 222}∗;
2. {0, 1}∗ · 2 · {0, 1}∗ · 2 · {0, 1}∗;
3. ({0, 1}∗ · 2 · {0, 1}∗ · 2 · {0, 1}∗)∗;
4. ({0, 1}∗ · 2 · {0, 1}∗)∗;
5. ({0, 1}+ · 22)∗;
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6. ({0, 1}∗ · 22)∗;
7. (((00)+ · 11)+ · 22)+.

In automatic groups one selects a subset G of words over the generators to represent
all group elements. However, one mostly ignores the words not in G. A central
question is how difficult the word problem is, that is, how difficult is it to determine
whether a word over the generators (including the inverses) represents a word w ∈ G.
That is, if Σ denotes the generators then the word problem is the set {(v, w) : v ∈
Σ∗, w ∈ G, v = w as group elements}. One can show that the word problem can be
solved in polynomial time (PTIME) by the algorithm which starts with the memory u
being initialised as the neutral word ε and then reads out one symbol a after another
from v and updates u to the member of G representing u · a; these updates are all
automatic and one has to just invoke the corresponding automatic function |v| times.
There is a complexity class LOGSPACE in which one permits the algorithm to use
a work space of size logarithmic in the length of the input and to access the input
with pointers pointing on some positions and permitting to read the symbol where
they point to. These pointers can move forward or backward in the input, but not
be moved beyond the beginning and end of the input. Now the algorithm can run
arbitrary long but has to keep the memory constraint and at the end comes up with
the answer ACCEPT or REJECT. Although there is no time constraint, one can show
that the algorithm either needs polynomial time or runs forever, hence LOGSPACE is
a subclass of PTIME. An open problem is whether the word problem of an automatic
group can be solved in this subclass.

Open Problem 12.16. Is the word problem of each automatic group solvable in
LOGSPACE?

Note that a negative answer to this problem would prove that LOGSPACE 6= PTIME
what might even be a more difficult open problem. On the other hand, a positive
answer, that is, a LOGSPACE algorithm might be difficult to find, as people looked
for it in vane for more than 30 years. So this could be a quite hard open problem.

Widely investigated questions in automata theory is the complexity of membership
for the various levels of the Chomsky hierarchy. While for the level of regular language,
the usage of dfa provides the optimal answer, the best algorithms are not yet known
for the context-free and context-sensitive languages.

Open Problem 12.17. What is the best time complexity to decide the membership
of a context-free language?

Open Problem 12.18. Can the membership in a given context-sensitive language
be decided in deterministic linear space?
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Both questions are algorithmically important. Cocke, Younger and Kasami provided
an algorithm which run in O(n3) to decide the membership of context-free languages.
Better algorithms were obtained using fast matrix multiplication and today bounds
around O(n2.38) are known. Concerning the context-sensitive membership problem, it
is known to be possible in O(n2) space and nondeterministically in linear space; so the
main question is whether this trade-off cen be reduced. These two problems are also
quite hard, as any progress which involves the handling of fundamental complexity
classes.

One topic much investigated in theoretical computer science is whether the iso-
morphism problem of certain structures are decidable and this had also been asked for
automatic structures. For many possible structures, negative answers were found as
the structures were too general. For example, Kuske, Liu and Lohrey [57] showed that
it is undecidable whether two automatic equivalence relations are isomorphic. On the
other hand, it is decidable whether a linear ordered set is isomorphic to the ratio-
nals: By the Theorem of Khoussainov and Nerode, one can decide whether sentences
formulated using the ordering in first order logic are true and therefore one checks
whether the following conditions are true: (a) There is no least element; (b) There
is no greatest element; (c) Between any two elements there is some other element. If
these are true, the corresponding linear order is dense and without end-points and
therefore isomorphic to the ordering of the rationals, as automatic linear orders have
always an at most countable domain. There are still some isomorphism problems for
which it is not known whether they can be decided.

Open Problem 12.19. Are there algorithms which decide the following questions,
provided that the assumptions are met?

1. Assume that (A, SuccA, PA) and (B, SuccB, PB) are automatic structures such
that (A, SuccA) and (B, SuccB) are isomorphic to the natural numbers with
successor and that PA and PB are regular predicates (subsets) on A and B. Is
(A, SuccA, PA) isomorphic to (B, SuccB, PB)?

2. Assume that (A,+) and (B,+) are commutative fully automatic groups. Is
(A,+) isomorphic to (B,+)?

An important open problem for parity games is the time complexity for finding the
winner of a parity game, when both players play optimally; initially the algorithms
took exponential time [63, 93]. Subsequently Petersson and Vorobyov [70] devised
a subexponential randomised algorithm and Jurdziński, Paterson and Zwick [51] a
deterministic algorithm of similar complexity; here the subexponential complexity
was approximately nO(

√
n). Furthermore, McNaughton [63] showed that the winner
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of a parity game can be determined in time O(nm), where n is the number of nodes
and m the maximum value aka colour aka priority of the nodes. The following result
provides an improved subexponential bound which is also in quasipolynomial time.
For the below, it is assumed that in every node, a move can be made, so that the
parity game never gets stuck. Furthermore, log(h) = min{k ∈ {1, 2, 3, . . .} : 2k ≥ h},
so that the logarithm is always a non-zero natural number, what permits to use the
logarithm in multiplicative expressions without getting 0 as well as indices in arrays.

Theorem 12.20: Calude, Jain, Khoussainov, Li, Stephan [11]. One can
decide in alternating polylogarithmic space which player has a winning strategy in a
given parity game. When the game has n nodes and the values of the nodes are a
subset of {1, 2, . . . ,m} then the algorithm can do this in O(log(n) · log(m)) alternating
space.

Proof. The idea of the proof is that the players move around a marker in the game as
before; however, together with the move they update two winning statistics, one for
Anke and one for Boris, such that whenever one player follows a memoryless winning
strategy for the parity game then this winning statistic will mature (indicating a win
for the player) while the winning statistic of the opponent will not mature (and thus
not indicate a win for the opponent). It is known that every parity game has for one
player a memoryless winning strategy, that is, the strategy tells the player for each
node where to move next, independent of the history. The winning statistic of Anke
has the following goal: to track whether the game goes through a cycle whose largest
node is a node of Anke. Note that if Anke follows a memoryless winning strategy
then the game will eventually go through a cycle and the largest node of any cycle
the game goes through is always a node of Anke’s parity; it will never be a node of
Boris’ parity, as then Anke’s strategy would not be a memoryless winning strategy
and Boris could repeat that cycle as often as he wants and thus obtain that a node
of his parity is the limit superior of the play.

The naive method to do the tracking would be to archive the last 2n + 1 nodes
visited, however, this takes O(n·log(n)) space and would be too much for the intended
result. Thus one constructs a winning statistic which still leads to an Anke win in
the case that Anke plays a memoryless winning strategy, however, it will take longer
time until it verifies that there was a loop with an Anke-node as largest member, as
the winning statistic only memorises partial information due to space restrictions.

Nodes with even value are called Anke-nodes and nodes with an odd value are
called Boris-nodes. For convenience, the following convention is made: when com-
paring nodes with “<” and “≤”, the corresponding comparison relates to the values
of the nodes; when comparing them with “=” or “ 6=”, the corresponding comparison
refers to the nodes themselves and different nodes with the same value are different
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with respect for this comparison. Furthermore, the value 0 is reserved for entries in
winning statistics which are void and 0 < b for all nodes b.

In Anke’s winning statistics, an i-sequence is a sequence of nodes a1, a2, . . . , a2i
which had been observed within the course of the game such that, for each k ∈
{1, 2, . . . , 2i − 1}, the value max≤{b : b = ak ∨ b = ak+1 ∨ b was observed between ak
and ak+1} has Anke’s parity. For each i-sequence, the winning statistic does not store
the sequence itself but it only stores the maximum value bi of a node which either
occurs as the last member of the sequence or occurs after the sequence.

The following invariants are kept throughout the game and are formulated for
Anke’s winning statistic, those for Boris’ winning statistic are defined with the names
of Anke and Boris interchanged:

• Only bi with 0 ≤ i ≤ log(n)+ 3 are considered and each such bi is either zero or
a value of an Anke-node or a value of a Boris-node;

• An entry bi refers to an i-sequence which occurred in the play so far iff bi > 0;

• If bi, bj are both non-zero and i < j then bi ≤ bj;

• If bi, bj are both non-zero and i < j then they refer to an i-sequence and an
j-sequence, respectively, and, in the play of the game, the i-sequence starts only
after the value bj was observed at or after the end of the j-sequence.

Both players’ winning statistics are initialised with bi = 0 for all i when the game
starts. In each cycle, when the player whose turn is to move has chosen to move into
the node with value b, the winning statistics of Anke and then of Boris are updated
as follows, here the algorithm for Anke is given and it is followed by an algorithm for
Boris with the names of the players interchanged everywhere.

• If b is either an Anke-node or b > b0 then one selects the largest i such that

(a) either bi is not an Anke-node but all bj with j < i are Anke nodes and
(i > 0 ⇒ max{b0, b} is an Anke-node)

(b) or 0 < bi < b

and one updates bi = b and bj = 0 for all j < i;

• If this update produces a non-zero bi for any i with 2i > 2n then the game
terminates with Anke being declared winner.

The winning statistic of Boris is maintained and updated by the same algorithm, with
the roles of Anke and Boris being interchanged in the algorithm. When both winning
statistics are updated without a termination then the game goes into the next round
by letting the corresponding player choose a move.

When updating Anke’s winning statistic and the update can be done by case (a)
then one can form a new i-sequence by putting the j-sequences for j = i − 1, i −
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2, . . . , 1, 0 together and appending the one-node sequence b which then has the length
2i = 2i−1 + 2i−2 + . . . + 21 + 20 + 1; in the case that i = 0 this condition just says
that one forms a 0-sequence of length 20 just consisting of the node b. Note that in
the case i > 0 the value max{b0, b} is an Anke-node and therefore the highest node
between the last member a of the F0-sequence and b has the value max{bh, b} and is an
Anke-node. Furthermore, for every j < i− 1, for the last node a of the j+1-sequence
and the first node a′ of the j-sequence in the new i-sequence, the highest value of a
node in the play between these two nodes a, a′ is bj+1 which, by choice, has Anke’s
parity. Thus the overall combined sequence is an i-sequence replacing the previous
sequences and b is the last node of this sequence and thus, currently, also the largest
node after the end of the sequence. All j-sequences with j < i are merged into the
new i-sequence and thus their entries are set back to bj = 0.

When updating Anke’s winning statistic and the update can be done by case (b)
then one only replaces the largest value at or after the end of the i-sequence (which
exists by bi > 0) by the new value b > bi and one discards all j-sequences with j < i
what is indicated by setting bj = 0 for all j < i.

The same rules apply to the updates of Boris’ winning statistics with the roles of
Anke and Boris interchanged everywhere.

Note when updating Anke’s winning statistic with a move to an Anke-node b, then
one can always make an update of type (a) with i being the least number where bi is
not an Anke-node (which exists as the game would have terminated before otherwise).
Similarly for updating Boris winning statistics.

If a player wins then the play contains a loop with its maximum node being
a node of the player: Without loss of generality assume this winning player to be
Anke. The game is won by an i-sequence being observed in Anke’s winning statistics
with 2i > 2n; thus some node occurs at least three times in the i-sequence and there
are h, ℓ ∈ {1, 2, . . . , 2i} with h < ℓ such that the same player moves at ah and aℓ
and furthermore ah = aℓ with respect to the nodes a1, a2, . . . , aFi

of the observed i-
sequence. The maximum value b′ between ah and aℓ in the play is occurring between
some ak and ak+1 (inclusively) for a k with h ≤ k < ℓ. Now, by definition of an i-
sequence, b′ has Anke’s parity. Thus a loop has been observed for which the maximum
node is an Anke node.

A player playing a memoryless winning strategy for parity games does not
lose: If a player plays a memoryless winning strategy then the opponent cannot go
into a loop where the maximum node is of the opponent’s parity, as otherwise the
opponent could cycle in that loop forever and then win the parity game, contradicting
to the player playing a memoryless winning strategy. Thus, when a player follows a
memoryless winning strategy, the whole play does not contain any loop where the
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opponent has the maximum node and so the opponent is during the whole play never
declared to be the winner by the winning statistics.

A player playing a memoryless winning strategy for parity games will even-
tually win: For brevity assume that the player is Anke, the case of Boris is symmetric.
The values bi analysed below refer to Anke’s winning statistic.

Assume that an infinite play of the game has the limit superior c which, by as-
sumption, is an Anke-node. For each time t let

card(c, t) =
∑

k: bk(t) is an Anke-node and bk(t) ≥ c

2k

where the bk(t) refer to the value of bk at the end of step t. Now it is shown that
whenever at times t, t′ with t < t′ a move to c was made with c being an Anke-node
and no move strictly between t, t′ was to any node c′ ≥ c then card(c, t) < card(c, t′).
To see this, let i be the largest index where there is a step t′′ with t < t′′ ≤ t′ such
that bi becomes updated in step t′′. Now one considers several cases:

• Case bi(t
′′) = 0: This case does only occur if also bi+1 gets updated and contra-

dicts the choice of i, so it does not need to be considered.

• Case bi(t) ≥ c and bi(t) is an Anke node: In this case, the only way to update
this node at t′′ is to do an update of type (a) and then also the entry bi+1(t

′′)
would be changed in contradiction of the choice of i, so this case also does not
need to be considered.

• Case bi(t) is a Boris node and bi(t) ≥ c: Then an update is possible only by case
(a). If bi(t

′′) < c then, at step t′, another update will occur and enforce by (b)
that bi(t

′) = c. The value card(c, t) is largest when all bj(t) with j < i are Anke-
nodes at step t and even in this worst case it holds that card(c, t′)− card(c, t) ≥
2i −∑

j:j<i 2
j ≥ 1.

• Case 0 < bi(t) < c: Then latest at stage t′, as an update of type (b) at i is
possible, it will be enforced that bi(t

′) = c while bj(t) < c for all j ≤ i and
therefore card(c, t′) ≥ card(c, t) + 2i ≥ card(c, t) + 1.

• Case bi(t) = 0: Then at stage t′′ an update of type (a) will make bi(t
′′) > 0

and, in the case that bi(t
′′) < c, a further update of type (b) will at stage

t′ enforce that bi(t
′) = c. Again, the value card(c, t) is largest when all bj(t)

with j < i are Anke-nodes at step t and even in this worst case it holds that
card(c, t′)− card(c, t) ≥ 2i −∑

j:j<i 2
j ≥ 1.

Thus, once all moves involving nodes larger than c have been done in the play, there
will still be infinitely many moves to nodes of value c and for each two subsequent
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such moves at t, t′ it will hold that card(c, t) + 1 ≤ card(c, t′). As a consequence,
the number card(c, t) for these nodes will, for sufficiently large t where a move to c
is made, rely on some i with bi(t) ≥ c and 2i > 2n and latest then the termination
condition of Anke will terminate the game with a win for Anke.

Thus, an alternating Turing machine can simulate both players and it will accept the
computation whenever Anke has a winning strategy for the game taking the winning
statistics into account. Thus the alternating Turing machine with space usage of
O(log(n) · log(m)) can decide whether the game, from some given starting point,
will end up in Anke winning or in Boris winning, provided that the winner plays a
memoryless winning strategy for the corresponding parity game (which always exists
when the player can win the parity game).

Chandra, Kozen and Stockmeyer [15] showed that everything what can be computed
by an alternating Turing machine in polylogarithmic space can also be computed
deterministically in quasipolynomial time. More precisely, their more precise bounds
give that the running time of a deterministic Turing machine for the above mentioned
problem is O(nc log(m)) for some constant c.

Theorem 12.21: Calude, Jain, Khoussainov, Li, Stephan [11]. Assume that
a parity game has n nodes which take values from {1, 2, . . . ,m}, note that one can
always choose m ≤ n + 1. Now one can decide in time O(nc log(m)) which player has
a winning strategy in the parity game.

In some special cases with respect to the choice ofm in dependence of n, one can obtain
a polynomial time bound. McNaughton [63] showed that for every constant m, one
can solve a parity game with n nodes having values from {1, 2, . . . ,m} in time O(nm);
Schewe [79, 81] and others brought down the bound, but it remained dependent on
m. The next result shows that for fixed m and large n one can determine the winner
of the parity game in O(n5.04); the bound is, however, more general: If m ≤ h · log(n)
then one can determine the winner of a parity game in O(h4 · n3.45+log(h+2)). This
implies that one can solve the parity games in O((16n)3.45+log(⌈m/ log(n)⌉+2)). Calude,
Jain, Khoussainov, Li and Stephan [11] give a slightly better bound for h = 1.

Theorem 12.22. If m ≤ h · log(n) and h ∈ N then one can solve the parity game
with n nodes which have values from {1, 2, . . . ,m} in time O(h4 · n3.45+log(h+2)).

Proof. Note that Theorem 12.20 actually showed that the following conditions are
equivalent:

• Anke can win the parity game;
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• Anke can play the parity game such that her winning statistic matures while
Boris’ winning statistic does not mature.

Thus one can simplify this and play a survival game with the following property:
Anke wins the game iff the parity game runs forever without Boris achieving a win
according to his winning statistics. If Boris follows a memoryless winning strategy
for the parity game then Anke loses, if Anke follows a memoryless winning strategy
for the parity game then she wins. Thus it is sufficient to track only Boris’ winning
statistics for the game. Thus Anke has a winning strategy for the parity game iff she
has a winning strategy for the following survival game:

• The set Q of nodes of the survival game consists of nodes of the form (a, p, b̃)
where a is a node of the parity game, the player p ∈ {Anke,Boris} is that player
whose turn is to move next and b̃ represents the winning statistic of Boris;

• Anke can move from (a,Anke, b̃) to (a′,Boris, b̃′) iff she can move from a to a′

in the parity game and this move causes the winning statistic of Boris to be
updated from b̃ to b̃′;

• Boris can move from (a,Boris, b̃) to (a′,Anke, b̃′) iff he can move from a to a′

in the parity game and this move causes the winning statistic of Boris to be
updated from b̃ to b̃′;

• The starting node is (s,Anke, 0̃) where 0̃ is the vector of all bi being 0 and s is
the starting node of the parity game.

To estimate the number of members of Q, first one codes Boris’ winning condition
b0, b1, . . . , b⌈log(n)⌉+2 by a new sequence b̂0, b̂1, . . . , b̂⌈log(n)⌉+2 as follows: b̂0 = b0 and, for

all i < ⌈log(n)⌉+2, if bi+1 = 0 then b̂i+1 = b̂i+1 else b̂i+1 = b̂i+2+min{bi+1−bj : j ≤ i}.
Note that the latter just says that bi+2 = b̂i+2+(bi− bj) for the most recent j where

bj 6= 0. Now b̂⌈log(n)⌉+2 ≤ 2 · (⌈log(n)⌉ + 2) + h · b⌈log(n)⌉+2 ≤ (h + 2) · (⌈log(n)⌉ + 3)
what gives O(nh+2). Thus the number of possible values of the winning statistics can
all be coded with (h+2) · (⌈log(n)⌉+3) bits. However, one can get a better value by
observing that only ⌈log(n)⌉+3 of these bits are 1. The number of all ways to choose
⌈log(n)⌉ + 3 out of (h + 2) · (⌈log(n)⌉ + 3) numbers can, by the Wikipedia page on
binomial coefficients and the inequality using the entropy in there, be bounded by

2(log(n)+4)·(h+2)·((1/(h+2))·log(h+2)+((h+1)/(h+2))·log((h+2)/(h+1)))

= 2(log(n)+4)·(log(h+2)+log(1+1/(h+1))·(h+1))

= (16n)log(h+2)+(log(1+1/(h+1))·(h+1))

≤ (16n)1.45+log(h+2) ≤ c · h4 · n1.45+log(h+2)

for some constant c, so the whole expression is in O(h4 · n1.45+log(h+2)). In these
equations, it is used that log(1 + 1/(h + 1)) · (h + 1) ≤ log(2.718282) ≤ 1.45, for all
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h ∈ N, where 2.71828 is an upper bound of Euler’s number. Furthermore, one has
to multiply this by one n and by 2 in order to store the current player and current
position, so in total Q has size O(h4 · n2.45+log(h+2)) and the remaining part of the
proof will show that the runtime is bounded by O(h4 · n3.45+log(h+2)).

The survival game can be decided in O(|Q| · n): The algorithm would be the
following: First one computes for each node q ∈ Q the list of the up to n successors
and also generates a linked list of predecessors such that the collection of all these
lists together has the length |Q| ·n. These inverted lists can also be generated in time
O(|Q| · n). Furthermore, one can determine a list of Q′ ⊆ Q of nodes where Boris
winning statistic has matured (that is, Boris has won); determining these nodes is
also in time O(|Q|).

Note that a node is a winning node for Boris if either Anke moves from this node
and all successor nodes are winning nodes for Boris or Boris moves from this node
and some successor is a winning node for Boris. This idea will lead to the algorithm
below.

For this, a tracking number kq is introduced which is maintained such that the
winning nodes for Boris will eventually all have kq = 0 and that kq indicates how
many further times one has to approach the node until it can be declared a winning
node for Boris. The numbers kq are initialised by the following rule:

• On nodes q ∈ Q′ the number kq is 1;

• On nodes q = (a,Anke, b̃) /∈ Q′, the number kq is initialised as the number of
nodes q′ such that Anke can move from q to q′;

• On nodes q = (a,Boris, b̃) /∈ Q′, the number kq is initialised as 1;

These numbers can be computed from the length of the list of predecessors of q for
each q ∈ Q. Now one calls the following recursive procedure initially for all q ∈ Q′

and each call updates the number kq. The recursive call does the following:

• If kq = 0 then return without any further action else update kq = kq − 1;

• If after this update still kq > 0 then return without further action;

• Otherwise, that is when kq originally was 1 when entering the call then call
recursively all predecessors q′ of q with the same algorithm.

After the termination of all these recursive calls, one looks at kq for the start node q
of the survival game. If kq > 0 then Anke wins else Boris wins.

Note that in this algorithm, for each node q ∈ Q the predecessors are only called
at most once, namely when kq goes down from 1 to 0 and that is the time where
it is determined that the node is a winning node for Boris. Thus there are at most
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O(|Q| · n) many recursive calls and the overall complexity is O(|Q| · n).
For the verification, the main invariant is that kq originally says for how many

of the successors of q one must check that they are winning nodes for Boris until
one can conclude that the node q is also a winning node of Boris. In the case that
the winning statistics of Boris have matured in the node q, the value kq is taken to
be 1 so that the node is processed once with all the recursive calls in the recursive
algorithm. For nodes where it is Boris’ turn to move, there needs also be only one
outgoing move which produces a win of Boris. Thus one initialises kq as 1 and as soon
as this outgoing node is found, kq goes to 0 what means that the node is declared a
winning node for Boris. In the case that the node q is a node where Anke moves then
one has to enforce that Anke has no choice but to go to a winning node for Boris.
Thus kq is initialised as the number of moves which Anke can move in this node and
each time when one of these successor nodes is declared a winning node for Boris, kq
goes down by one. Note that once the recursive algorithm is completed for all nodes,
exactly the nodes with kq = 0 are the winning nodes of Boris in this survival game.

For the special case of h = 1, the more direct bound O(nh+4) is slightly better than the
derived bound of O(n3.45+log(3)); however, in the general case of larger h, the bound
O(n3.45+log(h+2)) is better.

When considering h = 1, this special case shows that, for each constant m, the
parity game with n nodes having values from {1, 2, . . . ,m} can be solved in time
O(n5) + g(m) for some function g. Such problems are called “Fixed Parameter
Tractable”, as for each fixed parameter m the corresponding algorithm runs in poly-
nomial time and this polynomial is the same for all m, except for the additive constant
g(m) depending on m. Downey and Fellows [22] provide an introduction to the field
of parameterised complexity.

Exercise 12.23. Show that one can decide, for all sufficiently large m,n, the parity
games with n nodes and values from {1, 2, . . . ,m} in time O(nlog(m)+20); for this use
a direct coding of the winning conditions with ⌈log(n) + 3⌉ · ⌈log(m) + 1⌉ bits rather
than the above methods with the binomial coefficients. Furthermore, show that the
memoryless winning-strategy of the winner can then be computed with the same time
bound (the constant 20 is generous enough).

Open Problem 12.24. Is there a polynomial time algorithm (in the number n of
nodes of the parity game) to decide which player would win the parity game?

Exercise 12.25. Let A = {0}∗ · {1}∗, B = {00}∗ · {11}∗ · {22}∗; C = {00, 11, 22}∗;
D = {0, 1}∗ − {1}∗. How are the above sets A,B,C,D ordered by ≤au? Provide the
reductions where they exist.
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Exercise 12.26. For the sets A,B,C,D from Exercise 12.25, how are they ordered
by ≤tr?

Exercise 12.27. For the sets A,B,C from Exercise 12.25, determine regular sets
A′, B′, C ′ such that for all x, x ∈ A ⇔ xx ∈ A′ and x ∈ B ⇔ xx ∈ B′ and
x ∈ C ⇔ xx ∈ C ′.

Exercise 12.28. Provide a regular set E such that there is a regular E ′ satisfying
∀x [x ∈ E ⇔ xx ∈ E ′] but this E ′ is neither E nor E · E.

Exercise 12.29. Let F = ({0}∗ · {1} · {0}∗ · {1})∗. Determine for F the minimal
complete dfa and either determine its smallest synchronising word or show that it does
not exist.

Exercise 12.30. Let G = ({0}+ · {1} · {0}+ · {1})∗. Determine for G the minimal
complete dfa and either determine its smallest synchronising word or show that it does
not exist.

Exercise 12.31. Let H = ({0}+ · {1} · {0}+ · {1})∗ ∪ ({0, 1}∗ · {11} · {0, 1}∗ · {00}) ∪
({1} · {0, 1}∗ · {00}). Determine for H the minimal complete dfa and either determine
its smallest synchronising word or show that it does not exist.
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Selftest 12.32. Construct a learning algorithm for the class of all regular languages
which uses only equivalence queries such that the number of queries is linear in the
sum consisting of the number of states of a dfa for the target and the number of symbols
in the longest counter example seen.

Selftest 12.33. Let I = {0, 1}∗ and for all e ∈ I, Le = {x ∈ {0, 1}∗ : x <lex e}. Is
this automatic family learnable from positive data?

If the answer above is “yes” then describe how the learner works; if the answer
above is “no” then explain why a learner does not exist.

Selftest 12.34. Assume that an automatic representation of the ordinals strictly
below ωn is given for some positive natural number n; here not only the order but
also the ordinal addition is fully automatic. Now consider the class of all sets Lα,β =
{γ < ωn : α ≤ γ < β}, where α and β are ordinals chosen such that the set Lα,β

is closed under ordinal addition, that is, when γ, γ′ ∈ Lα,β so is γ + γ′. If this class
is learnable then provide an automatic an automatic learner (using some automatic
family representing the class as hypothesis space) else explain why the class is not
learnable.

Selftest 12.35. Assume that a dfa has states and alphabet {0, 1, . . . , 9} and the
successor of state a on symbol b is defined as follows: If a < b then the successor is
b− a− 1 else the successor is a− b.

Determine whether this dfa has a synchronising word, that is, a word which maps
all states to the same state. If so then write-down a synchronising word which is as
short as possible else explain why there is no synchronising word.
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Solution for Selftest 12.32. The idea is to “cheat” by forcing the teacher to
output long counterexamples. So one takes a list of all deterministic finite automata
dfa0, dfa1, . . . and computes for each dfan and automaton dfa′n such that

• dfa′n has at least n states and there is no dfa with less states for the same
language;

• the language recognised by dfa′n differs from the language recognised by dfan by
exactly one word of at least length n.

This can be achieved by searching for the firstm ≥ n such that the minimal automaton
for the language obtained by taking the symmetric difference of {0m} and the language
recognised by dfan needs at least n states. The automata dfa′n can be computed from
dfan in polynomial time. Now the algorithm does the following:

1. Let n = 0;

2. Compute dfan and dfa′n;

3. Ask if dfa′n is correct;

4. If answer is “yes” then conjecture dfa′n and terminate;

5. Ask if dfan is correct;

6. If answer is “yes” then conjecture dfan and terminate;

7. Let n = n+ 1 and go to step 2.

Note that in this algorithm, if the language to be learnt turns out to be the one
generated by dfa′n then the number of states of the dfa is at least n and only 2n − 1
queries had been made until learning success; if the language to be learnt turns out
to be the one generated by dfan then dfa′n had been asked before, differing from the
language of dfan by exactly one word which has length n or more and at only 2n
queries had been made, again the complexity bound is kept.

Solution for Selftest 12.33. The answer is “no”. Assume by way of contradiction,
that there is a learner M . Then L1 = {ε}∪0 ·{0, 1}∗. By Angluin’s tell-tale condition,
there is a finite subset F of L1 such that there should be no set Lu with F ⊆ Lu ⊂ L1.
Given such an F , let n be the length of the longest word in F and consider L01n . All
members of L1 up to length n satisfy that they are lexicographically strictly before
01n and thus F ⊆ L01n ⊂ L1. Thus, F cannot be a tell-tale set for L1 and the class
cannot be learnable by Angluin’s tell-tale criterion.

Solution for Selftest 12.34. If γ ∈ Lα,β then also γ + γ, γ + γ + γ and so on are in
Lα,β, furthermore, if ωk ≤ γ < ωk+1 then all numbers between γ and ωk+1 (excluding
ωk+1 itself) must be in Lα,β; in the case that γ = 0, ωm(γ) = 1. Thus β is of the form
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ωm for some m with 0 ≤ m ≤ n. So the learning algorithm does the following:
For each datum γ the learner computes m(γ) to be the first ω-power strictly above

γ, that is, γ < ωm(γ) ≤ ωm for all m with γ < ωm. The learner conjectures ∅ until
some datum γ 6= # is observed. Then the learner let α = γ and β = ωm(γ). At every
further datum γ, α is replaced by min{α, γ} and β is replaced by max{β, ωm(γ)}.

This learner is automatic, as one can choose an automatic structure representing
all ordinals up to ωn together with their order; there are only finitely many ordinals
of the form ωm with 0 ≤ m ≤ n, these can be archived and one can just define ωm(γ)

to be the least strict upper bound of γ from this finite list. Furthermore, the learner
converges to a final hypothesis Lα,β, as the minimum α of the language is seen after
finite time and as the strict upper bound β, by being from a finite list, can only be
updated a finite number of times to a larger number.

Solution for Selftest 12.35. The dfa has a synchronising word of length 4.
For getting a lower bound on the length, one can see that at most two states are

mapped to the same state by a symbol b. So the first symbol maps the given 10
states to at least 5 different states, the next symbol maps these 5 states to at least
3 different states, the third symbol maps these 3 states to at least 2 states and the
fourth symbol then might, perhaps, map the two states to one state. So the length of
each synchronising word is at least 4.

Now consider the word 5321. The symbol 5 maps the states {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
to {0, 1, 2, 3, 4}, the symbol 3 maps {0, 1, 2, 3, 4} to {0, 1, 2}, the symbol 2 maps
{0, 1, 2} to {0, 1} and the symbol 1 maps {0, 1} to {0}. Hence 5321 is a shortest
synchronising word.
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[9] J. Richard Büchi. On a decision method in restricted second order arithmetic.
Proceedings of the International Congress on Logic, Methodology and Philosophy
of Science, Stanford University Press, Stanford, California, 1960.
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[14] Christopher Chak, Rūsinņš Freivalds, Frank Stephan and Henrietta Tan. On
block pumpable languages. Theoretical Computer Science, 609:272–285, 2016.

[15] Ashok K. Chandra, Dexter C. Kozen and Larry J. Stockmeyer. Alternation.
Journal of the ACM, 28(1):114–133, 1981.
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