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Question 1 [6 marks] CS 5230 – Solutions

Complete the following table. Provide the complexity of the operations with n-bit
numbers (represented correspondingly in the machines). Some items are prefilled,
as they might depend on the machine model or to reduce the number of items to
fill. Each correct entry give 1/2 marks and marks are at the end uprounded to the
next integer. Turing machines for this question are multi-tape machines which can
have several tapes. Please provide the best known upper bound on the corresponding
operations.

Operation Counter Machine Addition Machine Turing Machine
Assignment O(1) O(1)
Addition, subtraction
Divisible by 3
Comparison (<,=, >)
Multiplication O(4n)

Solution.The table is as follows, provided one follows the conventions from the task.
The O(1) for assignments in counter machine is a convention that this operation is
a primitive operation, without this convention, the operation takes O(2n). Turing
machine numbers are stored in binary and n is the number of binary digits, this same
size measure of input size is also used for the other machine models.

Operation Counter Machine Addition Machine Turing Machine
Assignment O(1) O(1) O(n)
Addition and Subtraction O(2n) O(1) O(n)
Comparison (<,=, >) O(2n) O(1) O(n)
Is number divisble by 3 O(2n) O(n) O(n)
Multiplication O(4n) O(n) O(n log n)
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Question 2 [6 marks] CS 5230 – Solutions

Assume that a Turing machine has on the input tape a ternary number (digits 0, 1,
2) without leading 0s. The input starts with a 3 and ends with a 4. What is the
complexity to check whether the number of 0s, 1s and 2s is the same?

CONSTANT SPACE (REGULAR) LOGSPACE NLOGSPACE

Provide a multi-head read-only Turing machine to witness the choice. If you choose
LOGSPACE, the machine should be deterministic, if you choose CONSTANT SPACE
(REGULAR), the machine should have only one head. The machine should go to
ACCEPT if the number of 0s, 1s, 2s are all the same and it should go to REJECT
if some of the numbers differ. Nondeterministic machines should not have on some
input both, runs ending up in ACCEPT and runs ending up in REJECT; runs found
to be wrong can be aborted without going to ACCEPT or REJECT.

Solution. The right choice is LOGSPACE and two heads for the read-only Turing
machine. At the beginning both heads move to the 3 before the word. In a first scan,
the Turing machine checks whether there are exactly one third of the digits a 0. For
this both heads scan the word. The first head checks the digit and each time the first
head goes over a 0, the second head goes three fields forward. When the first head
arrives at the 4 at the end, the Turing mahine checks whether the second head is also
on the 4. If not, it rejects. Now both heads move back to the position of the 3 and
redo the hole process this time counting 1s. Again if the number of 1s is not a third
of that of all digits, the machine again goes to REJECT. A further such scan is done
with respect to the number of 2s. If the third pass fails, then the machine goes to
REJECT else the machine goes to ACCEPT.
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Question 3 [6 marks] CS 5230 – Solutions

Is there a Turing machine computing something in space NLINSPACE that cannot
be computed in deterministic LINSPACE? Please answer as follows below.

YES, NO, Unknown by current knowledge.

Give reasons for your answer and explain the background of the topic.

Solution. This is a famous open problem, it is one of the two LBA problems. Kuroda
investigated in 1964 the concept of LBAs and proved that they can recognise the same
languages as context sensitive grammars can generate. He closed his article with two
LBA problems: First whether they are closed under complement. This problem was
solved by Immerman and Szelepcsényi. Second whether deterministic and nondeter-
minisitic linear space coincide. This problem is open until today, though the Theorem
of Savitch shows that NLINSPACE is contained in deterministic SQUARESPACE,
that is, SPACE(n2).
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Question 4 [6 marks] CS 5230 – Solutions

Write an addition machine program to compute the following function f where x, y
are numbers in {1, 2, 3, . . .}; if x < 1 or y < 1 the output 0 should be given. Let g(x)
be the number of decimal digits to write down x, so g(1) = 1 and g(256) = 3 and
g(9999) = 4. The function f is now defined by the following formula:

f(x, y) =



5 if 0 < x and x < y and g(x) < g(y);
4 if 0 < x and x < y and g(x) = g(y);
3 if 0 < x and x = y;
2 if 0 < y and y < x and g(x) = g(y);
1 if 0 < y and y < x and g(x) > g(y);
0 if x < 1 or y < 1,

Note that it is okay to write 10∗w in place of w+w+w+w+w+w+w+w+w+w
in an addition machine program; however, multiplication should only be with integer
constants.

Solution. The program would be written as an addition machine code as follows,
where a subprogram is used for the function g:

function g(v)

{ variables w,q;

lineg1: w = 1; q = 1;

lineg2: w = w+w+w+w+w+w+w+w+w+w;

if (v < w) { return(q); }

q++; goto lineg2; }

function f(x,y) { var xx, yy, x, y, z;

begin line1: read(x);

line2: read(y);

line3: xx = g(x); yy = g(y);

z = 6; if (x<1) then begin z = 0; goto line4; end;

if (y<1) then begin z = 0; goto line4; end;

if (x=y) then begin z=3; goto line4; end;

if (xx < yy) then begin z = 5; goto line4; end;

if (x < y) then begin z = 4; goto line4; end;

if (yy < xx) then begin z = 1; goto line4; end;

if (y < x) then begin z = 2; goto line4; end;

z = 0; goto line4;

line4: return(z); end.

Furthermore, a C++ code for the function is here:

int g(long long int v)

{ long long int w; int q;

lineg1: w = 1; q = 1;

lineg2: w = 10*w;

if (v < w) { return(q); }

q++; goto lineg2; }
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int main()

{ int xx=0; int yy=0; long long int x; long long int y; int z;

line1: printf("Provide the input x: ");

scanf("%lld", &x);

printf("Input x provided is %lld.\n",x);

line2: printf("Provide the input y: ");

scanf("%lld", &y);

printf("Input y provided is %lld.\n",y);

line3: xx = g(x); yy = g(y);

z = 6; if (x<1) { z = 0; goto line5; }

if (y<1) { z = 0; goto line5; }

if (x==y) { z=3; goto line4; }

if (xx < yy) { z = 5; goto line4; }

if (x < y) { z = 4; goto line4; }

if (yy < xx) { z = 1; goto line4; }

if (y < x) { z = 2; goto line4; }

z = 0; goto line5;

line4: printf("Output z is %d.\n",z); goto line1;

line5: printf("Output z is %d.\n",z); return(z); }
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Question 5 [6 marks] CS 5230 – Solutions

(a) What is the problem kSAT and how is it defined?

(b) What do the Exponential Time Hypothesis (ETH) and the Strong Exponential
Time Hypothesis (SETH) say about lower bounds for solving kSAT instances?

(c) Which is the smallest of the below upper bounds for 3SAT which are consistent
with the current knowledge? So there should be a verified 3SAT algorithm for this
bound but not for the better bounds (though the bound itself does not need to be
optimal). Here n is the number of variables of an input instance.

O(n8) O(n
√
n) O(1.7n) O(2n).

Solution. The class kSAT is the set of all solvable instances which are, for some n,
collections of clauses having up to k literals using the variables x1, . . . , xn. That is,
each literal is of the form y or ¬y for an y ∈ {x1, . . . , xn}. The problem kSAT with
k ≥ 3 is a standard example of a problem which is on one hand NP-complete and on
the other hand allows an algorithm solving the problem in time O(cn) · Poly(n+m)
where c < 2, n is the number of variables and m the number of clauses. Such an
algorithm has not yet been found for the main problem SAT itself.

Now ETH says that, for each k ≥ 3, there are constants ck > 1 and dk such that for
any correct algorithm for kSAT, there are infinitely many kSAT instances in which
each variable appears in at most dk clauses such that the algorithm uses at least time
cnk on these instances.

Furthermore, SETH says that one can choose the above constants such that in addi-
tion the ck converge to 2 for k → ∞.

The best upper bound among the four choices is O(1.7n). The slides of the class have
the upper bound O(1.6181n) and the best known upper bound is O(1.3280n).
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Question 6 [6 marks] CS 5230 – Solutions

Provide a DPLL algorithm for solving 2SAT, list the simplification rules and branch-
ing rules needed. DPLL algorithms are algorithms which have a lot of rules and
always choose the first rule which applies until the problem is decided. Branching
rules are rules where the algorithm fixes some variables and calls itself recursively
using the values for these variables. State whether the algorithm uses branching rules
and if so, why.

Solution. Branching rules are not needed, as the decision problem for 2SAT is in P.
The following algorithm which uses simplificaiton rules only works.

While the algorithm has not terminated, simplify the instance by always selecting the
first of the below rules which applies to the current instance.

1. If the instance contains a clause which is empty then terminate with REJECT.

2. If the instance does not contain any clause then terminate with ACCEPT.

3. If there is a literal x occurring in a single literal clause then remove all clauses
containing the literal x and remove the literal ¬x from all further clauses where
it occurs.

4. If there is a literal x occurring in some clause while ¬x does not occur in any
clause then remove all the clauses which contain x.

5. If there is a clause containing, for some variable x, both the literals x and ¬x
then remove that clause.

6. Find a variable x such that there are clauses of the form x∨y and ¬x∨z. Then
put for each such pair x ∨ v abd ¬x ∨ w of clauses the new clause v ∨ w into
the instance and afterwards remove all clauses containing x or ¬x. This step
is called resolution by x. Note that putting a clause includes no change if the
clause is already in the instance, so instances should be duplication free.

Note that there are at most O(n2) clauses in the instance at the start and during
any time inside the algorithm. Furthermore, every check whether the corresponding
item applies is done in polynomial time for the given instance and each item which
applies either leads to termination or removes one variable from the instance. Thus
the overall runtime is n times the runtime of the slowest item.
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Question 7 [6 marks] CS 5230 – Solutions

Karatsuba provided an algorithmic method to multiply two n-bit numbers in O(n3/2).
Subsequent work improved this bound further with the final bound being O(n log n)
on a multi-tape Turing machine.

(a) Use this last bound to show that the Fibonacci number Fn can be computed from
n in time O(n log n) where n is given as a binary number. For this use the following
formulas: F2m = F 2

m+1 − F 2
m−1, F2m+1 = F 2

m+1 + F 2
m, F2m+2 = F 2

m+2 − F 2
m, F0 = 0,

F1 = 1, F2 = 1.

(b) Compare this with the complexity used up by the standard algorithm doing the
following:

F0 = 0, F1 = 1,
for m = 2, . . . , n do begin Fm = Fm−1 + Fm−2 end.

Here additions are linear in the size of the numbers added; the size of Fm is Θ(m)
bits.

Solution. (a) Let n = a1a2 . . . ak as a k bit binary number. The algorithm goes
iteratively from 1 to k. As a1 = 1 (leading digit), one starts with F1 = 1, F2 = 1. Now
one computes for m = a1a2 . . . ah from Fm, Fm+1 the values F2m+ah+1

, F2m+ah+1+1 from
Fm, Fm+1 as follows: Fm−1 = Fm+1 − Fm, F2m = F 2

m+1 − F 2
m−1, F2m+1 = F 2

m+1 + F 2
m,

F2m+2 = F2m+1 + F2m. Then one chooses the two values Fm′ , Fm′+1 from these three
by letting m′ = 2m + ah+1. Once this is done, one replaces m by m′ and h by h + 1
and continues until n and Fn are reached.

Note that one has on each of the levels 3 multiplications and O(1) subtractions and
additions, all together in O(m logm) time. Furthermore, m becomes doubled in each
round, thus measured in the final n, the time complexity is bounded by c · n log n +
c/2 · n log n+ c/4 · n log n+ . . . ≤ 2c · n log n for some constant c, thus the algorithm
runs in time O(n log n).

(b) The standard algorithm makes n/2 additions of numbers of size Ω(n) — the upper
half of the updates Fm = Fm−2+Fm−1 — and thus the algorithm needs at least Ω(n2)
steps. On the other hand, this bound is also an upper bound, so that the algorithm
runs in Θ(n2). Using the fast algorithm with multiplications is definitely better.

9



Question 8 [6 marks] CS 5230 – Solutions

Recall that an integer expression is formed by starting with finite sets (given as explicit
lists of binary numbers) and then forming either the union or the sum of two integer
expressions to get a further one. Recall that the sum of two sets A,B of integers
A + B equals to the set {a + b : a ∈ A ∧ b ∈ B}. The following questions aim at
properties of this sum operation.

(a) Is there a set of 8 elements which is the sum of two sets of four elements each? If
so, provide an example, if not, explain why this is not the case.

(b) Is there a set of 4 elements which is the sum of two sets of three elements each?
If so, provide an example, if not, explain why this is not the case.

Solution. (a) The answer for the first question is YES. The integer expression
{0, 1, 2, 3}+ {0, 2, 3, 4} describes the set {0, 1, 2, 3, 4, 5, 6, 7} which has 8 elements.

(b) The answer for the second question is NO. If {x, y, z} is a three element set added
to {u, v, w}, then it has the elements x + u, x + v, y + v, y + w, z + w. Assuming
that the sets are ordered by x < y < z and u < v < w, the order of the elements
x + u, x + v, y + v, y + w, z + w is also strictly ascending, as from each sum to the
next one, one of the two summands is replaced by a strictly larger one. Thus there
are at least 5 elements and 4 is not possible.
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Question 9 [6 marks] CS 5230 – Solutions

(a) For the following problems, one is NP-complete, one is ΣP
3 -complete (complete

for third level of the polynomial hierarchy) and one is PSPACE-complete. The three
problems are these:

1. For inputs being an integer expression L and a binary number x, is x ∈ L?

2. For inputs being an integer expression L and a binary number y, is there an
integer x such that x+ 1, x+ 2, . . . , x+ y ∈ L?

3. For a Reversi game position on an n× n board and a number c, can the player
to move play such that this player has at the end, independently of what the
opponent moves, at least c pieces more than the opponent?

Assuming that the Polynomial Hierarchy does not collapse to one of the first four
levels, that is, has at least five distinct levels, say which problem is complete for
which class.

(b) As all three problems are NP-hard, prove for any of these NP-hardness; one proof
is enough.

Note that Reversi is a board game in which two players alternately put a new piece
and turn all pieces between their new piece and some other own piece on a straight
line (vertically, horizontally or diagonally). When no player can go on to move (as
the board is full or no one can move in a way that a piece is turned) then the game
finishes and the player with the most pieces wins; equal number of pieces is a draw.
The game is also known under the name Othello. Usual sizes is 6*6 and 8*8 boards,
but for complexity theory, one has to consider all possible board sizes.

Solution. (a) The first problem is NP-complete, the second is complete for ΣP
3 and

the third problem is PSPACE-complete.

(b) For the first problem, note that a special case of the problem is that given n
numbers x1, . . . , xn and a target y whether y ∈ {0, x1}+ {0, x2}+ . . .+ {0, xn}. This
is equivalent to saying that the SUBSETSUM problem with target y is satisfied, that
is, y is the sum of a the members of some subset of {x1, x2, . . . , xn}. As SUBSETSUM
is NP-complete, this problem is also NP-hard.
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Question 10 [6 marks] CS 5230 – Solutions

(a) Explain what the elementary sets are.

(b) Is there a universal set E ⊆ Σ∗ × Σ∗ of all elementary subsets of Σ∗ which is
elementary itself? Here E is a universal set of all elementary subsets of Σ∗ if for
all F ⊆ Σ∗, F is elementary if and only if there is an x satisfying for all y that
F (y) = E(x, y).

(c) Is every set which can be decided by an algorithm using arbitrary computation
time and space also elementary?

YES, NO, Unknown by current knowledge.

Explain your answer.

Solution. (a) Elementary sets are all sets which can be computed in time O(fk(n))
for some fixed k where f1(n) = 2n and fk+1(n) = 2fk(n) for all k and all inputs x with
length n.

(b) By a hierarchy result in computational complexity, there is for every k a set Ek

which can be computed in time O(fk+1(n)) but not in time O(fk(n)). If there would
be a universal set, then this set would be computable with some bound O(fk(n)),
however the set Ek would then not be among the sets listed in this array. Thus no
universal set of all elementary sets is elemantary. However, there are non-elementary
universal sets of all elementary sets.

(c) All complexity classes have a decidable universal set and the complement of the
diagonal of the universal set is then a decidable set which is not in the class. This is
also true for the complexity class of all elementary sets.

END OF QUESTION PAPER.
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