
NATIONAL UNIVERSITY OF SINGAPORE

CS 5236 – Advanced Automata Theory

(Semester 1: AY 2020/2021)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

1. Please write your Student Number. Do not write your name.

2. This assessment paper consists of TEN (10) questions and comprises TWEN-
TYONE (21) printed pages.

3. Students are required to answer ALL questions in the space provided or hand-
written one page each question.

4. This is an OPEN BOOK assessment.

5. During the exam, you are not permitted to communicate with other people over
the internet or to post anything in forums or social networks.

6. Every question is worth SIX (6) marks. The maximum possible marks are 60.

7. Either handwrite and scan or type into pdf-file. The uploaded file should
be student-number followed by module code and “Finalexam”. For example
A01234567Z-CS5236-Finalexam.pdf.

STUDENT NO:

Question 1 [6 marks] CS 5236 – Solutions

Construct a context-free grammar for the language L of all words w ∈ {0, 1}∗ such
that, if the length of the word is n, the following holds: (a) n ≥ 4, (b) w contains
a subword of length n − 2 which is a palindrome, (c) n is odd. Furthermore, the
grammar should not have any rule of the form A → ε, so each left side is one single
non-terminal and each right side is a string of symbols of length at least one.

For example, 00111 is a member of L and the palindrome subword is 111; 011110 is
not in L as the length is even; 010 is not in L as 010 is too short; 0101010 is a member
of L and possible palindrome subwords of length n− 2 are 01010 and 10101.

Furthermore, after making the grammar, supply sample derivations for the above
words 00111 and 010101010 in L.

Solution. The non-terminals are S, T, U , the terminals are 0, 1 and the start sym-
bol is S. The rules are the following: S → TTU |TUT |UTT , T → 0 | 1, U →
0U0 | 1U1 | 0T0 | 1T1.

The derivation of 00111 is S ⇒ TTU ⇒ TT1T1⇒ 0T1T1⇒ 001T1⇒ 00111.

The derivation of 0101010 is S ⇒ TUT ⇒ 0UT ⇒ 0U0 ⇒ 01U10 ⇒ 010T010 ⇒
0101010.

2

Question 2 [6 marks] CS 5236 – Solutions

Consider a grammar for a language L ⊆ {0, 1, 2}∗ with start symbol S and the
following rules:

S → SXY Z |XY Z, XY → Y X,XZ → ZX, Y Z → ZY, Y X → XY,ZX →
XZ,ZY → Y Z,X → 0, Y → 1, Z → 2.

Determine the complexity of the language L in terms of the Chomsky hierarchy:

(a) context-senstive but not context-free,

(b) context-free but not regular,

(c) regular.

If the answer is (a) or (b), use pumping lemmas to show that it does not go better;
if the answer is (b) or (c), provide the corresponding grammars to show that the
language goes onto this level.

Solution. The grammar generates the same amount of X, Y, Z and allows to reorder
them arbitrarily; afterwards X becomes 0, Y becomes 1 and Z becomes 2. Thus the
language is that of all words with the same amount of 0, 1 and 2, where the empty
word is not in the language. The grammar is clearly context-sensitive. Furthermore it
is well-known that this language is not context-free. The required proof can be done
with the pumping lemma for context-free languages. Let k be the pumping constant
and consider the word 0k1k2k. This word can now, by assumption on the lemma, be
split into vwxyz so that |wxy| ≤ k and xy 6= ε and ∀h [vwhxyhz ∈ L]. Now wxy
can only contain at most two of the three symbols 0, 1, 2. Thus the word vwwxyyz
has one or two of the symbols 0, 1, 2 in their quantity strictly increased, as wy 6= ε,
but the quantity of the third symbol did not increase, so vwwxyyz /∈ L. Thus the
language L does not satisfy the context-free pumping lemma and does therefore not
have a context-free grammar.

3

Question 3 [6 marks] CS 5236 – Solutions

Let Σ = {0, 1, 2, 3} and construct a dfa which accepts whenever at least three digits
occur in the input and which rejects whenever at most one digit occurs in the input.
It does not matter what happens if exactly two digits occur in the input and it does
not matter how often the digits occur (whether once or several times). Use at most
four states and prove that it cannot be done with two states.

Solution. First that it does not go in two states. Note that the start state cannot be
accepting, as the empty word has to be rejected. Furthermore, any state reacheable
from the start state in one step has to be rejecting, as otherwise a word consisting of
a single digit could be accepted. As there must be at least one accepting state, there
must be at least three states.

The following four-state dfa solves the given task; it has the states start, odd, even
and end. The transitions are as in this table.

State Type On 0 and 2 On 1 and 3
start reject even odd
even reject even end
odd reject end odd
end accept end end

Words which contain no digits are rejects, which contain only one type of digits have
either all digits odd or all digits even and the automaton will be in one of the states
odd and even after processing the full word. On words which contain at least three
types of digits, the dfa will see both even and odd digits and therefore first go to one
of odd, even and later go on to end. So these words will be accepted. In summary
the dfa accepts a word iff it contains both, odd and even digits.

4

Question 4 [6 marks] CS 5236 – Solutions

Consider the following survival game: The game is played on the field {0, 1, 2, . . . , r−2,
r − 1} and the players move alternately, but do differet types of moves which are
modulo r: Anke can add 1 or 2 or 3 to the current position, Boris can multiply with
one of 2, 3, 5, 7. Determine for r = 4, 6, 7, 9, 17, 30 which player has a winning strategy
and give a short outline of this winning strategy. Whenever the game reaches 0 then
Boris wins; whenever the game runs forever without ever reaching 0 then Anke wins.
The start position is 2 in all games and Anke is first to move.

Solution. For r = 4, Anke has a winning strategy, she moves in each move to an
odd number. Boris can then either multiply with 3, 5, 7 and stay on an odd number
or multiply with 2 which returns to the start position. Note that from every number
one can reach an odd number by adding one of 1, 2, 3.

For r = 6, Boris has a winning strategy. After Anke’s move, if the game is on 2, 4 he
multiplies with 3 and reaches 0 (modulo 6); if the game is on 3 Boris multiplies with
2 and again reaches 0; if the game is in 5 Boris multiplies with 5 and reaches 1; if
the game is in 1 Boris multiplies with 7 ad stays on 1. Now the game is either in 0
(Boris has already won) or 1. From 1, Anke can only move to 2, 3, 4 which all have a
winning counter move of Boris. Hence Boris wins.

For r = 7, Boris has a trivial win by multiplying with 7 what gives 0, independently
of the current situation. The same would apply for r = 2, 3, 5 which are not part of
the question.

For r = 9, Anke has a winning strategy is very similar to that of 4. Anke always
moves to a number which is not a multiple of 3 and then either Boris multiplies with
3 ending up in 3 or 6 or multiplies with one of the other primes which preserves that
the number is not a multiple of 3. Thus Anke can avoid the game going to 0 all the
time and wins.

For r = 17, Anke has a winning strategy. Boris cannot win by own moves, as all
moves go from nonzero positions to nonzero positions. As Anke can from the current
position p always to move to one of p+ 1, p+ 2, p+ 3 (modulo r), at least two of these
positions are nonzero and so she can avoid that the game becomes 0.

For r = 30, Anke wins. 30 is the product of three distinct prime factors (2, 3, 5).
When before Anke’s move the game is in nonzero position p, then she can select
among p + 1, p + 2 (modulo 30) that position which has at most one of the three
primes 2, 3, 5 dividing it; this position always exist as none of these primes divides
two neighbouring numbers. Thus Anke moves always to a position where at most one
of the primes 2, 3, 5 divides this position and so Boris cannot make the number to 0
as that requires that all three primes divide the number and the primefactor selected
by Boris can increase the number of prime factors among 2, 3, 5 only by one.

5

Question 5 [6 marks] CS 5236 – Solutions

Construct a deterministic Büchi automaton recognising the ω-language of all words
α ∈ {0, 1, 2}ω with infinitely many subwords of the form 012 and no subword of the
form 02. The Büchi automaton should be complete (never get stuck) and have at
most six states.

Solution. The Büchi automaton has the states s, t, u, v, w and the following transi-
tion table:

State Type at 0 at 1 at 2
s start, rej u s s
t rej t t t
u rej u v t
v rej u s w
w acc u s s

6

Question 6 [6 marks] CS 5236 – Solutions

Assume that (Q,Σ, δ, s, F) is a nondeterministic Büchi automaton for some ω-language
L ⊆ Σω and that for every q ∈ Q and a ∈ Σ there is an r ∈ Q with (q, a, r) ∈ δ. Now
consider the following Büchi game on the graph Q∪ (Q×Σ) where Q is considered to
be disjoint from Q×Σ. Furthermore let E = {(q, (q, a)) : q ∈ Q∧a ∈ Σ}∪{((q, a), r) :
(q, a, r) ∈ δ}. The accepting states of the game are nodes in F . Now Anke wins a
play iff the play goes infinitely often through a state in F . Furthemore, in contrast
to the usual setting, Boris starts to move from the start state s, not Anke, so that
Boris always moves from nodes q to (q, a) and Anke from nodes (q, a) to nodes r.

Assume that Σ is one of {0}, {0, 1}, {0, 1, 2}. Decide in dependence on the alphabet
Σ and the ω-languages L ⊆ Σω, which of the following options applies:

(a) Anke has a winning strategy for the game based on any given Büchi automaton
for L;

(b) Boris has a winning strategy for the game based on any given Büchi automaton
for L;

(c) It depends on the actual Büchi automaton for L whether Anke or whether Boris
has a winning strategy.

Solution. Note that Boris always moves from a state q of the Büchi automaton to
(q, a) where a is the next symbol of the word to be processed and that Anke always
moves from (q, a) to a state r with (q, a, r) ∈ δ; by assumption such a state r always
exisits.

If L is a proper subset of Σω then there is an ω-word α which cannot be accepted
and Boris has a winning strategy by feeding this word, that is, by going to (q, αk) for
the k-th symbol αk in α when it is Boris’ k-th time to move. Thus the game cannot
go through an accepting state infinitely often, as that play of the game can then be
translated into an accepting run of the original automaton on α which does not exist.

If L = {0}ω and Σ = {0} then Boris’ moves have no effect (as he always has to
choose to go from some q to (q, 0)) and Anke can move such that the play defines an
accepting run on the ω-word.

If Σ = {0, 1} or Σ = {0, 1, 2} and L = Σω then it depends on the automaton whether
Anke or whether Boris has a winning strategy; the two cases are similar, so assume
that Σ = {0, 1, 2}.

If the Büchi automaton consists only of one state (which has to be accepting) then
Anke trivially wins, as the game goes through this state infinitely often.

Now assume that Büchi automaton consists of four states s, x, y, z with the following
transition table:

7

State Type On 0 On 1 On 2
s start, reject s, x s, y s, y
x reject z x x
y reject y z z
z accept z z z

If 0 occurs twice then the Büchi automaton can go on the first occurrence from s to
x and on the second occurrence from x to z and stay in the corresponding states in
all other cases; if symbols from 1, 2 occur twice then the Büchi automaton can go
on the first occurrence from s to y and on the second occurrence from y to z. The
automaton waits in s until the opportunity comes to follow a symbol which appears
again. Thus Σω is the ω-language recognised by this Büchi automaton is Σω.

However, Boris wins the corresponding game. If the game is in s, he goes to (s, 0)
and Anke can choose between returning to s and going to x. If the game is in x,
Boris goes to (x, 1) so that Anke needs to return to x. Thus the game will always go
through s or x and never through y or z. So no accepting state is visited ever and
Boris wins the Büchi game.

The difference between nondeterministic acceptance by the automaton and winning of
the game is due to the following: The automaton decides its nondeterministic moves
based on the full ω-word, thus this ω-word has to be fixed in advance. The game
however has that the player Boris who puts the digits of the word can react to the
state in which Anke is, thus the game alternates between Anke to move and Boris
to fix the next symbol. This is exploited to make the automaton remain eventually
forever in either s or x.

8

Question 7 [6 marks] CS 5236 – Solutions

Determine a minimal dfa and the syntactic monoid of the language L = {0, 1, 2}∗ ·
{00, 11, 22} · {0, 1, 2}∗ with the alphabet being {0, 1, 2}.

Solution. The dfa has five states: s, q0, q1, q2, t. From s and qb on input a with a 6= b,
the automaton goes to qa. From qa, t on input a, the automaton goes to t. The start
state is s and the state t is accepting.

The syntactic monoid has eleven functions. fε, f0, f1, f2, f00, f01, f02, f10, f12, f20, f21.
fε is the identity function. fa with a ∈ {0, 1, 2} maps s, qb with b 6= a to qa and qa, t
to t. If a 6= b and there is no double character in awb then fawb = fab and maps a, t
to t and all other states to qb. If awa does not contain a double character then fawa

is equal to fa and maps a, t to t and all other states to qa. If awb contains a double
character then fawb = f00 and maps all states to t; in particular, f00 = f11 = f22.

9

Question 8 [6 marks] CS 5236 – Solutions

Assume that an automatic structure (A,<) is given where A is the set of natural
numbers and < is the usual order on the natural numbers. Let S be the set of sums
0 + 1 + . . .+ n with n ∈ N, so S = {0, 1, 3, 6, 10, 15, . . .}. Furthermore, < is the usual
order on N. Now state the following:

(a) Is the successor-function f from x to x+ 1 automatic in (A,<)?

Always Yes, Always No, Depends on the representation (A,<).

(b) Is the set S automatic in (A,<)?

Always Yes, Always No, Depends on the representation (A,<).

Prove the answer for both questions; if it is the third choice, provide two automatic
representations, one where f respectively S is automatic and one where f respectively
S is not automatic.

Solution. The successor-function is always automatic, as one can first-order define
it from the order:

f(x) = y ⇔ x < y ∧ ∀z [x < z ⇒ y = z ∨ y < z]

Thus by the Theorem of Khoussainov and Nerode, the successor-function f is auto-
matic.

For the set S, it depends on the automatic structure A. One can select A =
{conv(x, y) : x, y ∈ N ∧ y ≤ x}. Now one orders this set A lexicographically:
(x, y) < (x′, y′) iff either x = x′ and y < y′ or x < x′. The set S is now the set
of all pairs conv(x, 0) and one sees that it is the sum set: Between conv(x, 0) and
conv(x+ 1, 0) are exactly x non-elements conv(x, 1), conv(x, 2), . . . , conv(x, x).

One can also select A = {0}∗ and equip this with the length-comparing order.
All regular subsets of A are eventually periodic and that would mean, they satisfy
∃c, c′∀x ≥ c′ [S(x + c) = S(x)], a formula not satisfied by the sum-set S. Hence in
this automatic model, the set S is not regular.

10

Question 9 [6 marks] CS 5236 – Solutions

A Mealy machine is a finite automaton where each transition from one state to
another contains an (input,output)-pair to be processed; the final output is the con-
catenation of all the output words written while reading the corresponding input
words. For all runs on the same input which read the input completely and end up
in an accepting state, the same output must be produced.

Which of the following partial functions can be computed by a Mealy machine on a
binary alphabet {0, 1} with parameters n,m > 0:

(a) 0n1m 7→ 02n+312m+3;

(b) 0n1m 7→ (01)n+m;

(c) 0n1m 7→ 0n1n.

If the function can be computed by a Mealy machine then provide this Mealy
machine else give reasons why it does not exist. Note that on inputs not of the
form 0+1+, the Mealy machine should not have any accepting run; that is, it should
not happen that the machine reads the full input and ends up in an accepting state.

Solution. For (a), there are three states s, t, u. The Mealy automaton goes with
(0, 00000) from s to t, on t it goes with (0, 00) to itself and with (1, 11111) to u. On
u it goes with (1, 11) to itself. s is the start state and u is the only accepting state.

For (b), there are again three states s, t, u with s being the start state and u being
the only accepting state. Only the transitions change. From s one can go on (0, 01)
to t and from t with (0, 01) to t and (1, 01) to u and on u with (1, 01) to u itself.
There are no other transitions.

For (c), there is no automaton. The reason is that the output language is context-free
and not regular while a transducer maps every regular language to a regular language.
Thus a transducer cannnot exist in this case.

11

Question 10 [6 marks] CS 5236 – Solutions

Let H = {0, 1, 2}+ and let |z| denote the length of the string z. Define the automatic
family {Lx : x ∈ H} in the three cases (1), (2), (3) by the corresponding formula:

(1) Lx = {y ∈ H : |y| 6= |x| − 1};

(2) Lx = {y ∈ H : y 6= x};

(3) Lx = {y ∈ H : y ≥ll x}.

Consider learning from positive data (text). Determine for each of (1), (2), (3)
whether the family (a) has an automatic learner with hypothesis-sized memory,
(b) has a learner but no automatic learner with hypothesis-sized memory, (c) is not
learnable at all. Give reasons for the decisions, each option occurs exactly once.

Solution. For case (1), option (c) applies. The sets L0, L1, L2 are all equal to H
while all sets Lx with |x| > 1 are proper subsets of H. Furthermore, if F0 would be
a tell-tale set for L0, then there is an x much longer than all strings in F0 and thus
F0 ⊆ Lx ⊂ L0, a contradiction to the choice of the set F0. Hence Angluin’s tell-tale
condition is not satisfied and therefore the class is not learnable from positive data.

For case (2), option (b) applies. Every finite subset F of H is contained in all Lx with
x /∈ F , whenever the learner converges on learning some Lx to a hypothesis, all the
data seen so far is in many possible hypotheses and the learner needs to archive this
data in order to be able to remember it when the need for a mind change comes up. As
these are infinitely many data items of which more and more have to be memorised,
the learner cannot obey any mind change bound depending on its current hypothesis,
as such a bound allows only a finite amount of bits stored in the memory. On the
other hand, the simple learner conjecturing Lx for the length-lexicographic least x not
yet observed in the text is a learner, though not an automatic one. For that reason, in
case (b) there is a learner, but none which obeys a hypothesis-sized memory bound.

For case (3), option (a) applies. There is an automatic learner, as the learner just
has to track the length-lexicographically least string observed so far. This learner
has an hypothesis-sized mind change bound, as the current hypothesis Lx needs the
memory x as of the least element seen so far to be archived; as long as the learner has
not yet seen any element, it conjectures some default set and has the pause symbol
as memory. For automaticity, one extends the order such that every string is below
the pause symbol, initialises the memory with the pause symbol and always takes the
minimum of the current datum and the memory content when updating the memory.
The hypothesis can be computed from the memory with an automatic function and
also the update function is also automatic, as the order is.

END OF PAPER

12

