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Question 1 [6 marks] CS 5236 – Solutions

Let Σ = {0, 1}. Consider the following nfa: The set Q = {q1, q2, . . . , qn}. qn is the
accepting state and q1 is the starting state. For m < n, the nfa can on input 0 or
input 1 go from qm to qm+1; furthermore, it can on input 1 go from any qm to q1.
Determine how many states a complete dfa needs to recognise the same language as
the given nfa and prove the result.

Solution. Let L be the language recognised by the nfa. Let Q(x) be the states of the
nfa which can be reached on input word x. Note that 0n−m ∈ Lx iff qm ∈ Q(x). Now
it will be shown that every subset of {q1, q2, . . . , qn} can be a possible set Q(x). Thus
a complete dfa will need 2n states to recognise the language L. Assume that Q(x) ⊆
{q1, q2, . . . , qn} and that Q(x) is not empty. Now Q(x0) = {qk+1 : qk ∈ Q(x)∧ k < n}
and Q(x1) = Q(x0) ∪ {q1}. Furthermore, Q(ε) = {q1}, as that is the start state.
Now for any word x of length m < n, the set Q(x) = {qm+1} ∪ {qk : xk = 1} where
x = xmxm−1 . . . x2x1 as a bit-sequence. Furthermore, Q(0n) = ∅. Thus one can see
that every subset P ⊆ {q1, q2, . . . , qn} equals some Q(x) for some binary word x.
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Question 2 [6 marks] CS 5236 – Solutions

In the following, Anke, Boris, Claude and Doris have their versions of the block
pumping lemma. Let L be any language and k be a constant. Let u0, u1, . . . , uk−1, uk

be strings (“blocks”) with u0u1 . . . uk ∈ L.

Anke: If u1, u2, . . . , uk−1 are nonempty then there must be i, j with 1 ≤ i < j ≤ k
and

u0 . . . ui−1 · (ui . . . uj−1)
∗uj . . . uk ⊆ L.

Boris: If u0, u1, u2, . . . , uk−1, uk are nonempty then there must be i, j with 1 ≤ i <
j ≤ k and

u0 . . . ui−1 · (ui . . . uj−1)
∗uj . . . uk ⊆ L.

Claude: There must be i, j with 1 ≤ i < j ≤ k and

u0 . . . ui−1 · (ui . . . uj−1)
∗uj . . . uk ⊆ L.

Doris: There must be i, j with 0 ≤ i ≤ j ≤ k and

u0 . . . ui−1 · (ui . . . uj)
∗uj+1 . . . uk ⊆ L.

In other words, Doris allows to include the first block u0 and last block uk into the
pump and does not require any string to be nonempty.

Anke provides the official definition of block pumpable. For those of Boris, Claude
and Doris, check whether these pumping definitions (a) apply to the same languages
with the same corresponding constant, (b) apply to the same languages but with
different constants or (c) do not apply to the same languages. Give reasons for the
answer.

For example, there are languages which satisfy the context-free pumping lemma
but not the block pumping lemma, hence the context-free pumping lemma applies to
other languages than the block pumping lemma.

Solution. Here the three notions compared with Anke’s notion.
Boris requires all the blocks to be nonempty. This applies to the same languages

but with different constants. For example, the regular language {1} · {0}∗ · {1} needs
for Anke’s version of the block pumping lemma constant k = 4, that is, it needs three
innner blocks out of which the middle one then can be pumped; for Boris’ version,
the constant k = 2 is enough, as the nonemptyness of the border blocks requires that
the 1 is in them, so that the zeroes in the middle can be pumped.

Claude’s version is equivalent to the standard one. If some inner block is empty,
then this block can be pumped, as the only requirement for pumping is that some
neighbouring inner blocks form the pump, but not that this pump is nonempty (oth-
erwise no language would be block pumpable, as all inner blocks could be empty).
Thus the pumping is only required to be real in the case that all inner blocks are
nonempty and then the condition is equivalent to Anke’s. So both conditions can be
translated into each other and apply to the same languages with the same constants.

Some languages of the form L∗ are not block pumpable. For example the language
L = {10n2

: n ∈ N}. Then L∗ contains a word 10m iff m is a square number. Now
taking a large word of the form 10n2

and choosing blocks only in the part with the
zeroes, pumping up would destroy the property that the number of zeroes is a square
and therefore the pumped up words would witness that L∗ is not block pumpable.
However, every language of this type satisfies Doris’ version of the block pumping
lemma, as that allows to pump the whole word, irrespectively of the ways the border
are taken. Thus Doris’ version and Anke’s version do not apply to the same languages.
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Question 3 [6 marks] CS 5236 – Solutions

Provide a context-sensitve grammar for the language L = {10n2
: n ≥ 1}. The

grammar can use all rules of the form l → r which (a) contain at least one non-
terminal on the left side l and (b) satisfy that r is at least as long as l. Explain how
1000000000 is derived.

Solution. The grammar uses these rules: S → 10|10000|1TUVW , V → UW |UVW ,
TW → T0, UW → W0U , 0W → W0, 1T → 1R, R0 → 0R, RU → 0R|00.
Furthermore, the terminals are 0, 1, the nonterminals are R, S, T, U, V,W and the
start symbol is S.

The sample derivation is as follows. At the beginning, S is converted to 1TUVW
and then the V to UW , as only two U and two W are needed: S ⇒ 1TUVW ⇒
1TUUWW .

Now one moves the W to the front over the U where jumping over an U gen-
erates a 0: 1TUUWW ⇒ 1TUW0UW ⇒ 1TW0U0UW ⇒ 1TW0U0W0U ⇒
1TW0UW00U ⇒ 1TW0W0U00U ⇒ 1TWW00U00U .

Now the W will be converted to 0 and the more back W jump over these 0 to
reach T : 1TWW00U00U ⇒ 1T0W00U00U ⇒ 1TW000U00U ⇒ 1T0000U00U .

Now T becomes an R and R moves to the back until reaching an U . 1T0000U00U
⇒ 1R0000U00U ⇒ 10R000U00U ⇒ 100R00U00U ⇒ 1000R0U00U ⇒ 10000RU00U .

When meeting the first U , it will be converted to a 0 with the R preserved,
but when meeting the second and last U , both R and U will be converted to a 0:
10000RU00U ⇒ 100000R00U ⇒ 1000000R0U ⇒ 10000000RU ⇒ 1000000000.

4



Question 4 [6 marks] CS 5236 – Solutions

Consider the following Büchi-game: There are n decimal digits an−1an−2 . . . a2a1a0
defining the natural number d =

∑
k 10k · ak. Furthermore, let m be a natural

number. Anke modifies a0 in move 0 and then Boris modifies a1 in move 1 and so
on so that for even t, Anke modifies ak with k being the remainder of t by n and for
odd t, Boris modifies the corresponding digit. Now Anke wins the game iff there are
infinite many t so that the value of dt after move t is a multiple of m.

Assume that n = 3. For each m ∈ {4, 11, 40, 50, 101, 125} say whether Anke or
Boris or nobody has a winning strategy; either sketch the winning strategy or say
why none of the players has one.

Solution. Anke has winning strategies for 4, 11, 50, 101 and Boris has for winning
strategies for 40, 125.

Winning strategy for Anke, m = 4, n = 3: Whenever it is Anke’s turn to choose
a0 (that is the case when t is a multiple of 6) then she checks the current value of a1.
If that value is even she takes a0 = 0 (as all numbers ending with 00, 20, 40, 60, 80
are multiples of 4), if that value is odd, she takes a0 = 2 (as all numbers ending with
12, 32, 52, 72, 92 are multiples of 4).

Winning strategy for Anke, m = 11, n = 3: Whenever it is Anke’s turn to choose
a0, she chooses 0. Then it is Boris turn to choose a1. Afterwards Anke chooses a2 = a1
resulting in a decimal number of the form bb0 which is a multiple of 11. This happens
every sixth move and so infinitely often, hence Anke wins the game.

Winning strategy for Boris, m = 40, n = 3: When t = 6s + 3 then Boris puts
a0 = 1. Then Anke puts a1 to be an even number (otherwise she would destroy
herself). If that is 2, 6 then Boris puts a2 = 0 as 20, 60 are are not multiples of
40 else Boris puts a2 = 1 as 100, 140, 180 are not multiples of 40. Then Anke puts
a0 = 0. Then Boris puts a1 = 1 and Anke puts a2 to be something. Now comes move
t = 6(s + 1) + 3 and above cycle repeats. Thus during the whole cycle, no multiple
of 40 is created and from t = 3 onwards, dt is not a multiple of 40. Hence Boris wins
the game.

Winning strategy for Anke, m = 50, n = 3: Whenever Anke has to choose a1,
she chooses a1 = 5. Then Boris chooses a2 = b for some b and Anke chooses a0 = 0.
Now the number is b50 and each number of that form is a multiple of 50. Hence this
method gives a winning strategy for Anke. This method really requires that n is odd;
if n is even and m = 50, then Boris has a winning strategy.

Winning strategy for Anke, m = 101, n = 3: When Anke chooses a1, then she
chooses 0. Now Boris chooses for a2 some value b. Afterwards Anke chooses for a0
also the value b so that the result is b0b. This value is b · 101. Note that b = 0 is here
explictly allowed. So Anke has a winning strategy.

Winning strategy for Boris, m = 125, n = 3: Boris just puts the digit 4 whenever
he can choose a digit. Thus after move t = 1, every value dt contains a digit 4.
However, the multiples of 125 below 1000 are 0, 125, 250, 375, 500, 625, 750, 875 and
none of these has the digit 4. Thus Boris wins the game.
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Question 5 [6 marks] CS 5236 – Solutions

Consider the following parity game.

0start 1 4 6

2 3 5 8

7

9

Recall that in a parity game a play is an infinite sequence of alternate moves by
players Anke and Boris, each move is given by the number on the target node. Let b
be the largest number which occurs infinitely often in the play. If b is even then Anke
wins the play else Boris wins the play. Anke makes the first move.

Determine which player has a winning strategy and table up that winning strategy,
note that the winning strategy is memoryless, so one has only to say for each node
where to move.

Solution. Player Anke has a winning strategy for this parity game. Note that Anke
will not move from 6 to 7 and not move from 7 to 9; as 9 can only be reached by
the sequence 6 - 7 - 9, it means that the play never goes there (except when it starts
in 9 and is there exactly once). All moves a - b with a different from 9 by Anke’s
table satisfy that the maximum of a and b is even, thus if one has an infinite play
and splits it in pairs of nodes with first component Anke has to move and second
component, Boris has to move, then all these pairs will have an even maximum and
thus the overall supremum of the play will be even. The table of Anke’s winning
strategy is as follows:

Node: 0 1 2 3 4 5 6 7 8 9

Move: 2 4 1 4 0 8 0 8 4 4
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