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Question 1 [6 marks] CS 5236 – Solutions

Let Σ = {0, 1, 2, 3}. Consider the language H of all nonempty words which have as
many 0 as 1 as 2 as 3. Construct a context-sensitive grammar for this language and
provide the derivation of 01233210. Please also include a short verbal description of
the grammar. Furthermore, show that this language does not satisfy the pumping
lemma for context-free languages, thus that the language cannot be context-free.

For context-sensitive grammars, the following two constraints must be satisfied for
each rule l→ r: The left side l contains at least one nonterminal and the right side is
at least as long as the left side. Note that the language does not contain the empty
word ε and therefore no exception rules to generate this word are needed.

The standard pumping lemma for context-free languages says that there is a constant
k such that any given word in H of length k or more can be split into uvwxy such
that vx 6= ε, |vwx| ≤ k and for all ` ≥ 0 the word uv`wx`y is in H. One has to show
that this pumping lemma fails.

Solution. The language H is generated by the following grammar: Terminals 0, 1, 2, 3,
nonterminals S, T, U, V,W , start symbol S, rules S → STUVW |TUVW and all rules
of the type XY → Y X with X, Y ∈ {T, U, V,W}, that is, the rules TU → UT ,
TV → V T , TW → WT , UT → TU , UV → V U , UW → WU , V T → TV ,
V U → UV , VW → WV , WT → TW , WU → UW , WV → VW ; the rules T → 0,
U → 1, V → 2, W → 3. So the grammar generates an equal number of T, U, V,W
and then allows these nonterminals to swap order arbitrarily. Afterwards the four
nonterminals are converted into digits.

The sample derivation is S ⇒ STUVW ⇒ TUVWTUVW ⇒ TUVWTUWV ⇒
TUVWTWUV ⇒ TUVWWTUV ⇒ TUVWWTV U ⇒ TUVWWV TU ⇒
TUVWWV UT ⇒ 0UVWWV UT ⇒ 01VWWV UT ⇒ 012WWV UT ⇒ 0123WV UT
⇒ 01233V UT ⇒ 012332UT ⇒ 0123321T ⇒ 01233210.

Assume that the language satisfies the standard pumping lemma with constant k.
Then on the word 0k1k2k3k, the two pumps can only cover two of the four digits
and therefore the pumps v, x of the splitting uvwxy will modify at least one and at
most two digits when pumped up or down, thus for ` 6= 1 the number of digits in the
pumped word is no longer equal for all four digit types.
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Question 2 [6 marks] CS 5236 – Solutions

The most easy form of Jaffe’s Pumping Lemma is this: A language I is regular iff
there is a constant k such that for all words x of length at least k there is a splitting
of x into u, v, w such that |vw| ≤ k, v 6= ε and the derivative Iuv`w = Ix for all ` ≥ 0.
Here the derivative Ix is the language of all y with xy ∈ I.

The Theorem of Myhill and Nerode says that a language I is regular iff I has only
finitely many derivatives, that is, there are finitely many words w1, . . . , wk such that
for each word v, Iv = Iu for some u ∈ {w1, . . . , wk}. Both theorems characterise
regular languages for finite alphabets.

(a) Prove that every language satisfying the pumping condition of Jaffe’s Pumping
Lemma also satisfies the criterion for regularity of the Theorem of Myhill and Nerode,
that is, has only finitely many derivatives.

(b) If one would allow an infinite alphabet Σ, then does every language satisfying the
pumping condition of Jaffe’s Pumping Lemma also have only finitely many deriva-
tives? Either prove that this is true or provide a counter example language.

Solution. (a) If x is a word longer than k then there is by Jaffe’s Pumping Lemma
a word uw shorter than x having the same derivative, that is, satisfying Iuw = Ix.
Thus one looks, for each derivative I ′, at the shortest word x with Ix = I ′. This
word x has at most length k − 1, as otherwise one can pump down. Now there are
at most 1 + |Σ| + |Σ|2 + . . . + |Σ|k−1 ≤ k · |Σ|k many different derivatives. Thus the
criterion of the Theorem of Myhill and Nerode is satisfied for all languages satisfying
the pumping condition of Jaffe’s Pumping Lemma.

(b) If the alphabet Σ is infinite then the following language I = ∪a∈Σ {a}∗ satisfies
Jaffe’s Pumping Lemma: If the word x has at least length 3 and two different letters,
then one can select the pump v such that avoids the first occurrences of a, b in the
word and thus Iuw = Ix = Iuv`w = ∅ for all ` ≥ 0. If w ∈ {a}∗ for some single letter
a ∈ Σ and |x| ≥ 3, then one choses u to be all of x but the last letter, v = a and
w = ε and Iuw = Ix = Iuv`w = {a}∗ for all ` ≥ 0. The last item also shows that the
letter a uniquely defines the derivative and thus there are infinitely many derivatives
for I, as Σ is infinite. So the implication proven for finite alphabets in (a) does not
hold for infinite alphabets in (b).
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Question 3 [6 marks] CS 5236 – Solutions

Consider the context-free language J ⊆ {0, 1, 2}+ which contains all nonempty words
in which the number of zeroes is same as the sum of the number of ones and the
number of twos.

So J contains the words 01, 02, 1002 and 1100, but it does not contain the words ε
and 012.

For the derived languages in (a) and (b) below, either construct a context-free gram-
mar or explain why such a grammar does not exist:

(a) J ∩ ({0}+ · {1, 2}+) and

(b) J − ({0, 1, 2}∗ · {11, 2} · {0, 1, 2}∗).

Solution. Both grammars exist, the second one can even to be taken regular; note
that regular grammars are also context-free.

(a) For the first grammar, one just makes sure that the 1, 2 are all at the back and
the 0 at the front. The grammar needs only one nonterminal S and terminals 0, 1, 2:
S → 0S1|0S2|01|02.

(b) For the second grammar, one has the property that there is no 2 and that between
any two 1 there is a 0. So there are three possibilities: First (01)+, second (10)+, third
(10)+ · (01)+. Thus the language is even regular and one can use a regular grammar.
The grammar has two nonterminals S, T and the following rules: S → 10S|01T |10|01,
T → 01T |01.
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Question 4 [6 marks] CS 5236 – Solutions

Consider the following game: Two players play. In a binary string each one can
do either of the following two replacements: Replace a subword 1 by 0 or replace a
subword 10 by 01. The player which makes the last bit 0 wins. Anke starts to move
and the players move alternately.

Which player wins the game starting with the string 11011? Make a choice:

Anke Boris

It can be shown that the same player wins all games which are given by a starting
word from the regular language K = (({1} · {00}∗ · {1})∪ {0})+. Describe a winning
strategy for this player for the words in K.

As an example, consider that the start word is 1100. The possible moves for Anke
are 0100, 1000, 1010. Then, on 1010, the possible moves for Boris are 0010, 1000,
0110, 1001.

Solution. x Boris: Boris wins the game on 11011 and for all words in K.

For general starting words in K, note that they consider of blocks which are either 0
or 102k1. The two ones in the latter blocks are called pair. Now it is described how,
for each move of Anke, Boris reacts to get the game back into K; note that Anke
selects a pair of the form 102k1 and then does one of the following three move-types
with this pair:

• Anke changes one 1 of the pair to 0: Boris does the same with the other 1.

• Anke moves the first 1 of the pair to the back (this requires that the distance
between the two 1s of the pair is at least 2): Boris also moves the first 1 of the
pair again so that the distance is restored to be even.

• Anke moves the second 1 of the pair (this requires that the next block is 0):
Boris moves the first 1 of the pair in order to restore the old distance.

Thus, after each pair of moves by Anke and then by Boris, the word is again in the set
K. Furthermore, note that when one interprets the words as binary numbers, then
every move reduces the value of the corresponding binary number. Thus the game
will have only finitely many moves and as Boris can always answer to Anke’s move,
the last move in the game is by Boris and will result in the all-0 word, as otherwise
Anke could make a move by changing a 1 to 0. So Boris wins the game, if Anke has
to start with a word in K. Note that there are also other situations where Boris can
win, for example on the word 10101. One can show that Boris wins the game iff the
binary value of the start number is a multiple of 3.
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Question 5 [6 marks] CS 5236 – Solutions

Construct a deterministic Büchi automaton recognising the ω-language L = {0}∗ ·
{01, 011}ω of infinite words.

Here the automaton should be deterministic and complete, that is, for each combina-
tion of state and symbol there is exactly one successor. Furthermore an ω-word is in
L iff the automaton goes infinitely often through an accepting state when processing
the ω-word.

Solution. Note that L can also be written as {0}+ · {10, 110}ω. The deterministic
Büchi automaton M for L has states s, t, u, v, w, x. The transitions are as following:
On 0, M goes from s, t to t, from u, v to w and from w, x to x. On 1, M goes from
t, w to u, from u to v and from s, v, x to x. The state s is the starting and rejecting
state, u, v, w are accepting states and t, x are rejecting states.

END OF QUESTION PAPER.
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