Methods and Theory of Automata and Languages

Frank Stephan
February 18, 2021

Automata Theory is the science of the treatment of languages (sets of words over
a finite alphabet) from an algorithmic and theoretical viewpoint; there are also con-
nections to the corresponding subsets of natural numbers. Automata, grammars and
expressions have been found as the basic and natural concepts to deal with these no-
tions and besides their base domain, they have also been applied to investigate certain
types of mathematical structures like groups and semigroups. These lecture notes are
the combined notes on which the lecture notes for CS4232 Theory of Computation and
(CS5236 Advanced Automata Theory are based. These nodes include general methods
from automata theory and also various applications like automatic structures and the
theory of games on finite graphs.

Frank Stephan: Rooms S17#07-04 and COM2#03-11
Departments of Mathematics and Computer Science

National University of Singapore

10 Lower Kent Ridge Road, Singapore 119076

Republic of Singapore

Telephone 65162759 and 65164246

Email fstephan@comp.nus.edu.sg

Homepage http://www.comp.nus.edu.sg/ fstephan/index.html

For further reading, the author refers to the textbooks Automata Theory and its
Applications by Bakhadyr Khoussainov and Anil Nerode [51] and Introduction to
Automata Theory, Languages, and Computation by Hopcroft, Motwani and Ullman
[40]. Epstein, Cannon, Holt, Levy, Paterson and Thurston [27] give background on
the group-theoretic parts of this lecture.

The author would like to thank Volker Diekert, Henning Fernau, Vladimir Gusev,
Sanjay Jain, Bakhadyr Khoussainov, Dietrich Kuske, Alexander Lauser, Elaine Fang
Li, Wolfgang Merkle and Pavel Semukhin for correspondence and discussions.

Contents

1 Sets and Regular Expressions

2 Finite Automata

3 Combining Languages

4 Homomorphisms

5 Normalforms and Algorithms

6 Deterministic Membership Testing

7 Non-Deterministic Membership Testing
8 Games on Finite Graphs

9 Games Played for an Infinite Time

10 Automata on Infinite Sequences

11 Automatic Functions and Relations

12 Groups, Monoids and Automata Theory
13 Automatic Structures in General

14 Transducers and Rational Relations

15 Models of Computation

16 Recursively Enumerable Sets

17 Undecidable Problems

18 Undecidability and Formal Languages
19 Regular Languages and Learning Theory

20 Open Problems in Automata Theory

26

52

70

80

92

102

118

132

144

162

172

182

191

205

218

224

236

254

266

1 Sets and Regular Expressions

In theoretical computer science, one considers several main ways to describe a language
L; here a language is usually a set of strings w over an alphabet . The alphabet X is
usually finite. For example, {e,01,10,0011,0101,0110, 1001, 1010,1100,000111, ...}
is the language of all strings over {0, 1} which contain as many 0 as 1. Furthermore,
let vw or v-w denote the concatenation of the strings v and w by putting the symbols
of the second string behind those of the first string: 001 - 01 = 00101. Sets of strings
are quite important, here some ways to define sets.

Definition 1.1. (a) A finite list in set brackets denotes the set of the corresponding
elements, for example {001,0011,00111} is the set of all strings which have two 0s
followed by one to three 1s.

(b) For any set L, let L* be the set of all strings obtained by concatenating finitely
many strings from L: L* = {uy -ug ... - up:n € NAuj,ug,...,u, € L}.

(c) For any two sets L and H, let L U H denote the union of L and H, that is,
the set of all strings which are in L or in H.

(d) For any two sets L and H, let LN H denote the intersection of L and H, that
is, the set of all strings which are in L and in H.

(e) For any two sets L and H, let L - H denote the set {v-w:v € LAw € H},
that is, the set of concatenations of members of L and H.

(f) For any two sets L and H, let L — H denote the set difference of L and H,
thatis, L— H={u:ue LAu¢ H}.

Remarks 1.2. For finite sets, the following additional conventions are important:
The symbol @) is a special symbol which denotes the empty set — it could also be
written as { }. The symbol € denotes the empty string and {e} is the set containing
the empty string.

In general, sets of strings considered in this lecture are usually sets of strings over
a fixed alphabet . ¥* is then the set of all strings over the alphabet 3.

Besides this, one can also consider L* for sets L which are not an alphabet but
already a set of strings themselves: For example, {0,01,011,0111}* is the set of all
strings which are either empty or start with 0 and have never more than three consec-
utive 1s. The empty set () and the set {¢} are the only sets where the corresponding
starred set is finite: (* = {e}* = {€}. The operation L — L* is called the “Kleene
star operation” named after Stephen Cole Kleene who introduced this notion.

An example for a union is {0,11} U {01,11} = {0,01, 11} and for an intersection
is {0,11} N {01,11} = {11}. Note that LN H = L — (L — H) for all sets L and H.

Formal languages are languages L for which there is a mechanism to check mem-
bership in L or to generate all members of L. The various ways to describe a language

3

L are given by the following types of mechanisms:

e By a mechanism which checks whether a given word w belongs to L. Such a
mechanism is called an automaton or a machine.

e By a mechanism which generates all the words w belonging to L. This mecha-
nism is step-wise and consists of rules which can be applied to derive the word
in question. Such a mechanism is called a grammar.

e By a function which translates words to words such that L is the image of
another (simpler) language H under this function. There are various types of
functions f to be considered and some of the mechanisms to compute f are
called transducers.

e An expression which describes in a short-hand the language considered like, for
example, {01, 10, 11}*. Important are here in particular the regular expressions.

Regular languages are those languages which can be defined using regular expres-
sions. Later, various characterisations will be given for these languages. Regular
expressions are a quite convenient method to describe sets.

Definition 1.3. A regular expression denotes either a finite set (by listing its ele-
ments), the empty set by using the symbol O or is formed from other reqular expressions
by the operations given in Definition 1.1 (which are Kleene star, concatenation, union,
intersection and set difference).

Convention. For regular expressions, one usually fixes a finite alphabet X first. Then
all the finite sets listed are sets of finite strings over . Furthermore, one does not
use complement or intersection, as these operations can be defined using the other
operations. Furthermore, for a single word w, one writes a* in place of {a}* and abc*
in place of {ab} - {c}*. For a single variable w, w* denotes (w)*, even if w has several
symbols. LT denotes the set of all non-empty concatenations over members of L; so
L™ contains ¢ iff L contains € and L™ contains a non-empty string w iff w € L*. Note
that L™ = L - L*. Sometimes, in regular expressions, L + H is written in place of
L U H. This stems from the time where typesetting was mainly done only using the
symbols on the keyboard and then the addition-symbol was a convenient replacement
for the union.

Example 1.4. The regular language {00, 11}* consists of all strings of even length
where each symbol in an even position (position 0, 2, ...) is repeated in the next odd
position. So the language contains 0011 and 110011001111 but not 0110.

The regular language {0,1}* - 001 - {0,1,2}* is the set of all strings where after
some 0Os and 1s the substring 001 occurs, followed by an arbitrary number of Os and

4

1s and 2s.

The regular set {00,01,10,11}* N {000, 001,010,010, 100, 101, 110,111}* consists
of all binary strings whose length is a multiple of 6.

The regular set {0} U{1,2,3,4,5,6,7,8,9}-{0,1,2,3,4,5,6,7,8,9}* consists of all

decimal representations of natural numbers without leading Os.

Exercise 1.5. List all members of the following sets:

(a) {071} ’ {07172};

(b) {0,00,000} N {00,000, 0000};

(c) {1,11} - {e,0,00,000};

(d) {0,00} - {z,0,00,000};

(e) {0,1,2}-{1,2,3Yn{1,2,3} - {0,1,2};

(£) {00,11} - {000,111} N {000, 111} - {00, 11};
(g) {0,1,2} U{2,3,4} U{1,2,3};

(h) {000, 111}* N {0,1} - {0, 1} - {0,1}.

Exercise 1.6. Assume A has 3 and B has 2 elements. How many elements do the
following sets have at least and at most; it depends on the actual choice which of the

bounds is realised: AUB, ANB, A-B, A— B, A*N B*.

Exercise 1.7. Let A, B be finite sets and |A| be the number of elements of A. Is the
following formula correct:

|JAUB|+|ANB| = |A| + |B|?
Prove the answer.

Exercise 1.8. Make a regular expression for 0*1*0*1* N (11)*(00)*(11)*(00)* which
does not use intersections or set difference.

Theorem 1.9: Lyndon and Schiitzenberger [55]. If two words v,w satisfy
vw = wv then there is a word u such that v,w € u*. If a language L contains
only words v, w with vw = wv then L C u* for some u.

Proof. If v = ¢ or w = ¢ then u = vw satisfies the condition. So assume that v, w
both have a positive length and are different. This implies that one of them, say w,
is strictly longer than the other one. Let k be the greatest common divisor of the
lengths |v| and |w|; then there are ¢, j such that v = wjuy...u; and w = wus ... u;
for some words uy, us, . .., u; of length k. It follows from vw = wov that v/w' = w'?.

Now [v/| = |w’| = ijk and therefore v/ = w'. The numbers 7,; have the greatest
common divisor 1, as otherwise & would not be the greatest common divisor of |v|
and |w|. Thus the equation v/ = w’ implies that for each h € {1,...,j} there is some
position where uy, is in one word and u; in the other word so that all u; are equal to
Uuq.

This fact follows from the Chinese Remainder Theorem: For every possible com-
bination (¢’, j") of numbers in {1,2,...,i} x {1,2,..., 7} there is a position A’ - k such
that A’ by 7 has remainder i — 1 and h’ by j has remainder j* — 1, that is, the parts
of the upper and lower words at positions &' - k,..., (K + 1) -k — 1 are uy and uj,
respectively. It follows that v,w € uj. Here an example for the last step of the proof
with ¢« = 3 and j = 4:

Uy Uz Uz Uy U2 U3 Up U U3 U U2 U3,
Ui Uz U3 Ug U1 U2 U3 Ug U1 U U Uy.

The upper and the lower word are the same and one sees that each u; in the upper
word is matched with a different u; in the lower word and that all u; in the lower
word are matched at one position with uy,.

For the second statement, consider any language L such that all words v,w € L
satisfy vw = wv. Let v € L be any non-empty word and u be the shortest prefix of v
with v € u*. Now let w be any other word in L. As vw = wv there is a word @ with
v,w € u*. Now u, u satisfy that their length divides the length of v and |u| < |a| by
choice of u. If u = @ then w € u*. If u # @ then one considers the prefix 4 of u, @
whose length is the greatest common divisor of |u|, |i|. Now again one can prove that
u, @ are both in @* and by the choice of u, & = u: The words ul® and @/l are the
same and the prefix 4 of u is matched with all positions in @ starting from a multiple
of |a| so that u € 4*; similarly @ € @*. Thus w € u*. It follows that L is a subset of
u*. The case that L does not contain a non-empty word is similar: then L is either
empty or {¢} and in both cases the subset of the set u* for any given u. |

Theorem 1.10: Structural Induction. Assume that P is a property of languages
such that the following statements hold:

e Fuvery finite set of words satisfies P;
e If L. H satisfy P so do LUH, L-H and L*.

Then every reqular set satisfies P.

Proof. Recall that words include the empty word € and that finite sets can also be
empty, that is, not contain any element.
The proof uses that every regular set can be represented by a regular expression

which combines some listings of finite sets (including the empty set) by applying the
operations of union, concatenation and Kleene star. These expressions can be written
down as words over an alphabet containing the base alphabet of the corresponding
regular language and the special symbols comma, opening and closing set bracket,
normal brackets for giving priority, empty-set-symbol, union-symbol, concatenation-
symbol and symbol for Kleene star. Without loss of generality, the normal brackets
are used in quite redundant form such that every regular expression o is either a
listing of a finite set or of one of the forms (7 U p), (7 - p), 7* for some other regular
expressions 7, p. In the following, for a regular expression o, let L(o) be the regular
language described by the expression o.

Assume by way of contradiction that some regular set does not satisfy P. Now
there is a smallest number n such that for some regular expression ¢ of length n, the
set L(o) does not satisfy P. Now one considers the following possibility of what type
of expression o can be:

e If o is the string () then L(o) is the empty set and thus L(o) satisfies P;

e If o lists a finite set then again L(o) satisfies P by assumption;

e If o is (TUp) for some regular expressions then 7, p are shorter than n and there-
fore L(1), L(p) satisfy P and L(o) = L(7)U L(p) also satisfies P by assumption
of the theorem:;

e If ois (7:p) for some regular expressions then 7, p are shorter than n and there-
fore L(7), L(p) satisfy P and L(o) = L(7) - L(p) also satisfies P by assumption
of the theorem;

o If o is 7* for some regular expression 7 then 7 is shorter than n and therefore
L(7) satisfies P and L(o) = L(7)* also satisfies P by assumption of the theorem.

Thus in all cases, the set L(o) is satisfying P and therefore it cannot happen that a
regular language does not satisfy P. Thus structural induction is a valid method to
prove that regular languages have certain properties. |

Remark 1.11. As finite sets can be written as the union of singleton sets and as every
singleton set consisting of a word ajas . .. a, can be written as {a,} - {as} - ... - {a,},
one can weaken the assumptions above as follows:

e The empty set and every set consisting of one word which is up to one letter
long satisfies P;
o If L, H satisfy Psodo LUH, L- H and L*.

If these assumptions are satisfied then all regular sets satisfy the property P.

Definition 1.12. A reqular language L has polynomial growth iff there is a constant
k such that at most n* words in L are strictly shorter than n; a reqular language L

7

has exponential growth iff there are constants h,k such that, for all n, there are at
least 2™ words shorter than n -k + h in L.

Theorem 1.13. FEvery reqular language has either polynomial or exponential growth.

Proof. The proof is done by structural induction over all regular sets formed by reg-
ular expressions using finite sets, union, concatenation and Kleene star. The property
P for this structural induction is that a set has either polynomial growth or exponen-
tial growth and now the various steps of structural induction are shown.

First every finite set has polynomial growth; if the set has k members then there
are at most n* words in the set which are properly shorter than k. Note that the def-
inition of “polynomial growth” says actually “at most polynomial growth” and thus
the finite sets are included in this notion.

Now it will be shown that whenever L, H have either polynomial or exponential
growth sodo LUH, L - H and L*.

Assume now that L, H have polynomial growth with bound functions n’ and n?,
respectively, with 7,7 > 1. Now L U H and L - H have both growth bounded by
n'*J. For the union, one needs only to consider n > 2, as for n = 1 there is at
most the one word ¢ strictly shorter than n in L U H and n'™/ = 1. For n > 2,
niti > 2.pmax{iil > pit pi and therefore the bound is satisfied for the union. For the
concatenation, every element of L - H is of the form v - w where v is an element of L
strictly shorter than n and w is an element of H strictly shorter than n; thus there are
at most as many elements of L - H which are strictly shorter than n as there are pairs
of (v,w) with v € L,w € H,|v| < n,|w| < n; hence there are at most n' - n/ = n'*J
many such elements.

The following facts are easy to see: If one of L, H has exponential growth then
so has L U H; If one of L, H has exponential growth and the other one is not empty
then L - H has exponential growth. If L or H is empty then L - H is empty and has
polynomial growth.

Now consider a language of the form L*. If L contains words v,w € L with
vw # wo then {vw,wv}* C L* and as |[vw| = |wwv|, this means that there are 2" words
of length [vw|-n in L for all n > 0; thus it follows that L has at least 2" words of
length shorter than [vw|-n + [vw| + 1 for all n and L has exponential growth.

If L does not contain any words v, w with vw # wv, then by the Theorem 1.9 of
Lyndon and Schiitzenberger, the set L is a subset of some set of the form u* and thus
L* is also a subset of u*. Thus L* has for each length at most one word and L* has
polynomial growth.

This completes the structural induction to show that all regular sets have either
polynomial or exponential growth. |

Examples 1.14. The following languages have polynomial growth:

(a) {001001001}* - {001001001001}*;

(b) ({001001001}* - {001001001001}*)*;

(c) {001001,001001001}* - {0000, 00000, 000000}*;
(d) 0-{00,01,10}*;

(e) {0,1,00,01, 10, 11,000, 001,010,011}

The following languages have exponential growth:

(f) {001,0001}*;
(g) {000,111} N {0000, 1111}* N {00000, 11111}*.

As a quiz, check out the following related questions:

(a) Does L N H have exponential growth whenever L, H do?

(b) Does {0101,010101}* have exponential growth?

(c) Does {000,001,011,111}* - {0000, 1111} have exponential growth?

(d) Does the set {w : w € {0,1}* and there are at most log(Jw|) many 1s in w} have
polynomial growth?

(e) Does the set {w : w € {0,1}* and there are at most log(|w|) many 1s in w} have
exponential growth?

(f) Is there a maximal k& such that every set of polynomial growth has at most n*
members shorter than n for every n?

Proposition 1.15. The following equality rules apply to any sets:

() LUL=L,LNL=L, (L*)*=L* (L*")" = L*;

(b) (LUH)*=(L*-H*)* and ife € LN H then (LUH)* = (L - H)*;

(c) (Lu{e})" =L, 0" = {e} and {e}" = {e};

(d) L* =L-L*=L*-L and L* = L* U {e};

(e) (LUH) - K=(L-K)U(H -K)and K-(LUH)=(K-L)U(K-H);

) LUHNK=(LNK)UHNK) and (LNH)UK =(LUK)N(HUK);
(g) LUH)—-K=(L-K)U(H-K)and (LNH)-—K=(L-—K)n(H-K).

Proof. (a) L U L consists of all words which appear in at least one of the copies of
L, thus it equals in L. Similarly, LN L = L. (L*)* consists of all words u of the form
wWs . .. w, wWhere wy, wy,...,w, € L* and each w, is of the form v, 1Vm2... Umn,,
with vy,1,Um2, ..., Umn,, € L. Note that these concatenations can take € in the case
that n = 0 or n,,, = 0, respectively. The word u is the concatenation of concatenations
of words in L which can be summarised as one concatenation of words in L. Thus

u € L*. For the other way round, note that L* C (L*)* by definition. If ¢ € L
then Lt = L* and (L)t = (L*)* else LT = L* — {e} and (L")t = (L* — {e})T =
(L' — {e}) — {} = (L) — {e} = L* — {e} = L*.

(b) L* - H* contains L and H as subsets, as one can take in the concatenation
the first or second component from L, H and the other one as e. Thus (LU H)* C
(L* - H*)*. On the other hand, one can argue similarly as in the proof of (a) that
(L*- H*)* C (LU H)*. In the case that ¢ € L N H, it also holds that LUH C L - H
and thus (LU H)* = (L - H)*.

(c) It follows from the definitions that L* C (L U {e})* C (L*)*. As (a) showed
that L* = (L*)*, it follows that all three sets in the chain of inequalities are the same
and L* = (LU{e})*. 0* contains by definition ¢ as the empty concatenation of words
from () but no other word. The third equality {e}* = {e} follows from the first two.

(d) The equalities L™ = L- L* = L*- L and L* = LT U {¢} follow directly from
the definition of L™t as the set of non-empty concatenations of members of L and the
definition of L* as the set of possibly empty concatenations of members of L.

(e) A word w is in the set (L U H) - K iff there are words v, w with u = vw such
that w € K andv € LUH. If v € L then vw € L- K else vw € H - K. It then
follows that w € (L - K) U (H - K). The reverse direction is similar. The equation
K- (LUH)=(K-L)U(K - H) is be proven by almost identical lines of proof.

(f) Aword wisin (LUH)NK iff (wisin L or wisin H) and w is in K iff (u is in
Landuisin K)or (uinin H and wisin K) iff u € (LNK)U(HNK). Thus the first
law of distributivity follows from the distributivity of “and” and “or” in the logical
setting. The second law of distributivity given as (LN H)UK = (LUK)N(H UK)
is proven similarly.

(g) The equation (LUH)—K = (L—K)U(H—K) isequal to (LUH)N(X*—K) =
(LN(X* = K))U(HN(X*— K)) and can be mapped back to (f) by using ¥* — K in
place of K where ¥ is the base alphabet of the languages considered. Furthermore, a
word u is in (LN H) — K iff wis in both L and H but not in K iff v is in both L — K
and H — K ifuisin (L— K)N(H - K). 1

Proposition 1.16. The following inequality rules apply to any sets and the mentioned
inclusions / inequalities are proper for the examples provided:

(a) L-L can be different from L: {0} - {0} = {00},
(b) (LNH)*CL*NH*;
Properness: L = {00}, H = {000}, (LN H)* = {e}, L* N H* = {000000}*;
(c) If{e}U(L-H)=H then L* C H;
Properness: L ={e}, H={0}*;
(d) IfLU(L-H)=H then L* C H;
Properness: L = {e}, H = {0}*;

10

(e) (LNH)-KC(L-K)N(H-K);

Properness: ({0} N{00})-{0,00} =0 C {000} = ({0} -{0,00}) N ({00} -{0,00});
(f) K- (LNH)C(K-L)yNn(K-H);

Properness: {0,00} - ({0} N{00}) =0 C {000} = ({0,00} - {0}) N ({0,00} - {00}).

Proof. Item (a) and the witnesses for the properness of the inclusions in items (b)-
(f).

For the inclusion in (b), assume that v = wywy ... w, is in (LN H)* with wy, ws,

w, € (LNH); v=cin the case that n = 0. Now wy, ws, ..., w, € L and therefore
v € L*; wy,wq,...,w, € H and therefore v € H*; thus v € L* N H*.

For items (c) and (d), define inductively L° = {¢} and L"™! = L"- L; equivalently
one could say L™ = L - L". Tt follows from the definition that L* = (J,., L" and
Lt = Ups: L Initem (c), ¢ € H and thus L® C H. Inductively, if L" C H then
[=L-L" C L-H C H; thus U,., L" C H, that is, L* C H. Tn item (d), L C H
by definition. Now, inductively, if L™ C H then L"*' = L.L" C L-H C H. Now
L+ = Un>1 L g H.

The proofs of items (e) and (f) are similar, so just the proof of (e) is given here.
Assume that v € (LN H) - K. Now u = vw for some v € LN H and w € K. It
follows that v € L and v € H, thus vw € L - K and vw € H - K. Thus v = vw €
(L-K)N(H-K). I

The proofs of (c¢) and (d) actually show also the following: If {e} U(L- H) C H then
L* C H;if LU(L-H) C H then Lt C H. Furthermore, H = L* and H = L™ satisfies
{e}U(L-H)=H LU(L-H) = H, respectively. Thus one has the following corollary.

Corollary 1.17. For any set L, the following statements characterise L* and L*:

(a) L* is the smallest set H such that {¢} U (L-H) = H;
(b) L* is the smallest set H such that {e} U (L-H)C H;
(c) LT is the smallest set H such that LU (L-H) = H;
(d) L7 is the smallest set H such that LU (L-H) C H.

Exercise 1.18. Which three of the following sets are not equal to any of the other
sets:

(a) {01,10,11}*;

(b) (({0,1}-{0,1}) —{00})";
(c) ({01,10}-{01,10,11} U{01,10,11} - {01, 10})*;
(d) ({01,10,11} - {01,10,11})* U {01,10,11} - ({01, 10,11} - {01,10,11})*;

11

(e) {0,1}* —{0,1} - {00, 11}*;
(F) ({01} U{10})" U {11})";
(2) ({e} U ({0}-{0, 1} n{1}-{0,1}7))".

Ezplain the answer.

Exercise 1.19. Make a reqular expression which contains all those decimal natural
numbers which start with 3 or 8 and have an even number of digits and end with 5 or 7.

Make a further reqular expression which contains all odd ternary numbers with-
out leading 0s; here a ternary number is a number using the digits 0,1,2 with 10
being three, 11 being four and 1212 being fifty. The set described should contain
the ternary numbers 1,10,12,21,100, 102,111,120, 122,201, . .. which are the numbers
1,3,5,7,9,11,13,15,17,19, ... in decimal.

Exercise 1.20. Let S be the smallest class of languages such that

e cvery language of the form u* for a non-empty word w is in S;
e the union of two languages in S is again in S;
e the concatenation of two languages in S is again in S.

Prove by structural induction the following properties of S':

(a) FEvery language in S is infinite;
(b) FEvery language in S has polynomial growth.

Lay out all inductive steps explicitly without only citing results in this lecture.

Exercise 1.21. Let L satisfy the following statement: For all u,v,w € L, either
uv = vu or uw = wu or vw = wv. Which of the following statements are true for all
such L:

(a) All x,y € L satisfy xy = yx;
(b) All sufficiently long x,y € L satisfy vy = yx;
(c) The language L has polynomial growth.

Give an answer to these questions and prove them.

Exercise 1.22. Let L consist of all words which contain each of the letters 0,1,2,3
exactly once. Make a reqular expression generating L which has at most length 100 for
L. For the length of the expression, each digit, each comma, each concatenation symbol
and each bracket and each set bracket counts exactly as one symbol. Concatenation
binds more than union. Kleene star and plus should not be used, as L is finite.

12

Exercise 1.23. Make a regular expression for the set {w € {0}* : |w| < 9} which has
at most 26 characters using explicit lists of finite sets and concatenation and union.
In the expression, the concatenation symbol, the union symbol, each set bracket, each
comma, each symbol 0 and each symbol ¢, all count all as one character.

In the following, let V' be the set of vowels, W be the set of consonants, S be the set
of punctuation marks and 7" be the set of spacings (blancs and new lines and so on).
Note that all three exercises have slightly different definitions of words, though they
always are strings of some vowels and perhaps some consonants. There is no need to
distinguish upper and lower case letters.

Exercise 1.24. Make a reqular expression (using above sets) of all words which con-
tain at least two vowels and before, after and between vowels is exactly one consonant.
&, ”

Examples of such words are “woman”, “regular”, “lower” but not “upper”, “man
))))
“runner”, “mouse” and “mice”.

Exercise 1.25. Make a reqular expression of all sentences where each sentence con-
sists of words containing one vowel and arbitrarily many consonants and between two
words are spacings and after the last word is a punctuation mark. Example: “can dogs
and cats run fast?”

Exercise 1.26. Make a reqular expressions generating texts of sentences separted by
spacings where sentences are as above with the only difference that words can have
one or two vowels and up to four consonants. Example: “can dogs and cats run very
fast? yes, they can. sheep can run, too.”

The set of binary numbers (without leading zeroes) can be described by the regular
expression {0} U ({1} -{0,1}*). Alternatively, one could describe these numbers also
in a recursive way as the following example shows.

Example 1.27. If one wants to write down a binary number, one has the following
recursive rules:

e A binary number can just be the string “0”;

e A binary number can be a string “1” followed by some digits;

e Some digits can either be “0” followed by some digits or “1” followed by some
digits or just the empty string.

So the binary number 101 consists of a 1 followed by some digits. These some digits
consists of a 0 followed by some digits; now these some digits can again be described
as a 1 followed by some digits; the remaining some digits are now void, so one can
describe them by the empty string and the process is completed. Formally, one can

13

use S to describe binary numbers and 1" to describe some digits and put the rules
into this form:

e 5 —0;
o S —1T;
e T 5T0,T—T1,T— e

Now the process of making 101 is obtained by applying the rules iteratively: S — 1T
to S giving 17; now T' — 0T to the T in 17T giving 107; now T — 17 to the T in 107
giving 1017; now T" — € to the T" in 1017 giving 101. Such a process is described by
a grammar.

Grammars have been formalised by linguists as well as by mathematicians. They
trace in mathematics back to Thue [82] and in linguistics, Chomsky [16] was one of the
founders. Thue mainly considered a set of strings over a finite alphabet ¥ with rules
of the form | — r such that every string of the form xly can be transformed into zry
by applying that rule. A Thue-system is given by a finite alphabet ¥ and a finite set
of rules where for each rule [— r also the rule r — [exists; a semi-Thue-system does
not need to permit for each rule also the inverted rule. Grammars are in principle
semi-Thue-systems, but they have made the process of generating the words more
formal. The main idea is that one has additional symbols, so called non-terminal
symbols, which might occur in the process of generating a word but which are not
permitted to be in the final word. In the introductory example, S (binary numbers)
and T (some digits) are the non-terminal symbols and 0,1 are the terminal digits.
The formal definition is the following.

Definition 1.28. A grammar (N,X, P,S) consists of two disjoint finite sets of sym-
bols N and %, a set of rules P and a starting symbol S € N.

Each rule is of the form | — r where | 1s a string containing at least one symbol
from N.

v can be derived from w in one step iff there are x,y and a rule | — r such that
v =uxly and w = xrw. v can be derived from w in arbitrary steps iff there are n > 0
and ug, Uy, . .., U, € (NUX)* such that ug = v, u, = w and w41 can be derived from
Uy, 10 one step for each m < n.

Now (N,X, P, S) generates the set L = {w € ¥*: w can be derived from S}.

Convention. One writes v = w for saying that w can be derived from v in one step
and v =* w for saying that w can be derived from v (in an arbitrary number of steps).

Example 1.29. Let N = {S,T}, ¥ = {0,1}, P contain the rules S — 071,T —
07, T —T1, T — 0,T — 1 and S be the start symbol.
Then S =* 001 and S =* 011: S = 071 = 001 and S = 07'1 = 011 by applying

14

the rule S — 07’1 first and then either 7" — 0 or 7" — 1. Furthermore, S =* 0011
by S = 071 = 0711 = 0011, that is, by applying the rules S — 071, T'— T'1 and
T — 0. § %4000 and S #* 111 as the first rule must be S — 071 and any word
generated will preserve the 0 at the beginning and the 1 at the end.

This grammar generates the language of all strings which have at least 3 symbols
and which consist of Os followed by 1s where there must be at least one 0 and one 1.

Example 1.30. Let ({S},{0,1}, P,S) be a grammar where P consists of the four
rules S — SS[051]|150]e.

Then S =* 0011 by applying the rule S — 051 twice and then applying S — €.
Furthermore, S =* 010011 which can be seen as follows: S = SS = 0515 = 015 =
01051 = 0100511 = 010011.

This grammar generates the language of all strings in {0,1}* which contain as
many 0Os as 1s.

Example 1.31. Let ({S5,7},{0,1,2}, P,S) be a grammar where P consists of the
rules S — 07'|17|27|0|1]2 and T" — 05]15]2S.

Then S =* wiff w € {0,1,2}* and the length of w is odd; T' =* w iff w € {0, 1,2}*
and the length of w is even but not 0.

This grammar generates the language of all strings over {0, 1,2} which have an
odd length.

Exercise 1.32. Make a grammar which generates all strings with four 1s followed by
one 2 and arbitrary many 0s in between. That is, the grammar should correspond to
the reqular expression 0*10*10*10*10*20*.

The Chomsky Hierarchy. Noam Chomsky [16] studied the various types of gram-
mars and introduced the hierarchy named after him; other pioneers of the theory of
formal languages include Marcel-Paul Schiitzenberger. The Chomsky hierarchy has
four main levels; these levels were later refined by introducing and investigating other
classes of grammars and formal languages defined by them.

Definition 1.33. Let (N,3, P,S) be a grammar. The grammar belongs to the first
of the following levels of the Chomsky hierarchy which applies:

(CH3) The grammar is called reqular (or right-linear) if every rule (member of P)
is of the form A — wB or A — w where A, B are non-terminals and w € X*.
A language is reqular iff it is generated by a reqular grammar.

(CH2) The grammar is called context-free iff every rule is of the form A — w with
A€ N and w € (NUZX)*. A language is context-free iff it is generated by a
context-free grammar.

15

(CH1) The grammar is called context-sensitive iff every rule is of the form vAw —
wow with A € N and u,v,w € (N UX)* and v # €; furthermore, in the case
that the start symbol S does not appear on any right side of a rule, the rule
S — € can be added so that the empty word can be generated. A language is
called context-sensitive iff it s generated by a context-sensitive grammar.

(CHO) There is the most general case where the grammar does not satisfy any of
the three restrictions above. A language is called recursively enumerable iff it is
generated by some grammar.

The next theorem permits easier methods to prove that a language is context-sensitive
by constructing the corresponding grammars.

Theorem 1.34. A language L not containing € is context-sensitive iff it can be
generated by a grammar (N, X, P, S) satisfying that every rule | — r satisfies |I| < |r|.

A language L containing € is context-sensitive iff it can be generated by a grammar
(N, X, P,S) satisfying that S — € is a rule and that any further rule | — r satisfies
| <|r|Are(NUX—{S})".

Example 1.35. The grammar ({S,7,U},{0,1,2}, P,.S) with P consisting of the
rules S — 07'12|012|e, T' — 0T'1U|01U, Ul — 1U, U2 — 22 generates the language
of all strings 0"1"2" where n is a natural number (including 0).

For example, S = 0712 = 0071U12 = 007'11U2 = 0071122 = 0001U1122 =
00011U122 = 000111022 = 000111222.

One can also see that the numbers of the Os, 1s and 2s generated are always the
same: the rules S — 0712 and S — 012 and S — ¢ produce the same quantity of
these symbols; the rules T' — 071U and T — 01U produce one 0, one 1 and one U
which can only be converted into a 2 using the rule U2 — 22 but cannot be converted
into anything else; it must first move over all 1s using the rule U1 — 1U in order
to meet a 2 which permits to apply U2 — 22. Furthermore, one can see that the
resulting string has always the Os first, followed by 1s and the 2s last. Hence every
string generated is of the form 0"1"2".

Note that the notion of regular language is the same whether it is defined by a regular
grammar or by a regular expression.

Theorem 1.36. A language L is generated by a regular expression iff it is generated
by a regular grammar.

Proof. One shows by induction that every language generated by a regular expression
is also generated by a regular grammar. A finite language {wy,ws, ..., w,} is gener-
ated by the grammar with the rules S — w|ws]| . .. |w,. For the inductive sets, assume

16

now that L and H are regular sets (given by regular expressions) which are generated
by the grammars (N, X, Py, S1) and (N, 3, Py, S5), where the sets of non-terminals
are disjoint: N7 N Ny = (). Now one can make a grammar (N; U No U{S,T}, %, P,S)
where P depends on the respective case of LU H, L - H and L*. The set P of rules
(with A, B being non-terminals and w being a word of terminals) is defined as follows
in the respective case:

Union LU H: P contains all rules from P, U P, plus S — 51]55;

Concatenation L - H: P contains the rules S — Sy, T" — Sy plus all rules of the
form A — wB which are in P; U P, plus all rules of the form A — w7 with
A — w in P; plus all rules of the form A — w in P»;

Kleene Star L*: P contains the rules S — S; and S — ¢ and each rule A — wB
which is in P; and each rule A — wS for which A — w is in P;.

It is easy to see that in the case of the union, a word w can be generated iff one uses
the rule S — S; and S; =* w or one uses the rule S — S, and S, =* w. Thus
S=*wifwe Lorwe H.

In the case of a concatenation, a word u can be generated iff there are v, w such
that S =* 5 =* vT' = v5; =* vw and v = vw. This is the case iff L contains v and
H contains w: S7; =* vT iff one can, by same rules with only the last one changed to
have the final T" omitted derive that v € L for the corresponding grammar; 7" =* w
iff one can derive in the grammar for H that w € L. Here T" was introduced for being
able to give this formula; one cannot use S; directly as the grammar for H might
permit that Sy =* ¢Sy for some non-empty word .

The ingredient for the verification of the grammar for Kleene star is that S — u.S
without using the rule S — S; iff S — u can be derived in the original grammar
for L; now one sees that S —* uS for non-empty words in the new grammar is only
possible iff u = uqus . .. u, for some n and words uq, uo, ..., u, € L; furthermore, the
empty word can be generated.

For the converse direction, assume that a regular grammar with rules Ry, Ro, ..., R,
is given. One makes a sequence of regular expressions E¢ p,, and E¢,, where C, D
are any non-terminals and which will satisfy the following conditions:

e o pm generates the language of words v for which there is a derivation C' =*
vD using only the rules Ry, Ro, ..., Ry;

e L, generates the language of all words v for which there is a derivation C' =* v
using only the rules Ry, Rs, ..., Ry,.

17

One initialises all Ecg = 0 and if C' = D then E¢ p = {¢} else E¢p = 0. If E¢,, and
Ec pm are defined for m < n, then one defines the expressions E¢ 41 and Ec pm41
in dependence of what R, is.

If R,,;1 is of the form A — w for a non-terminal A and a terminal word w then
one defines the updated sets as follows for all C', D:

® Ecpmt1 = Ecpm, as one cannot derive anything ending with D with help of
R,,+1 what can not already be derived without help of R, 1;

® Ecmi1 = Ecm U (Ecam - {w}), as one can either only use old rules what is
captured by E¢,, or go from C to A using the old rules and then terminating
the derivation with the rule A — w.

In both cases, the new expression is used by employing unions and concatenations
and thus is in both cases again a regular expression.

If R, 1 is of the form A — wB for non-terminals A, B and a terminal word w
then one defines the updated sets as follows for all C, D:

® Ecpmi1 = FEopmUEcam-w-(Epam-w)*- Egpm, as one can either directly
go from C' to D using the old rules or go to A employing the rule and producing
a w and then ending up in B with a possible repetition by going be to A and
employing again the rule making a w finitely often and then go from B to D;

® Ecmi1 = Econ U Ecam-w- (Egam-w)" - Eg,,, as one can either directly
generate a terminal word using the old rules or go to A employing the rule and
producing a w and then ending up in B with a possible repetition by going be
to A and employing again the rule making a w finitely often and then employ
more rules to finalise the making of the word.

Again, the new regular expressions put together the old ones using union, concate-
nation and Kleene star only. Thus one obtains also on level m + 1 a set of regular
expressions.

After one has done this by induction for all the rules in the grammar, the resulting
expression Eg, where S is the start symbol generates the same language as the given
grammar did. This completes the second part of the proof. |

For small examples, one can write down the languages in a more direct manner, though
it is still systematic.

Example 1.37. Let L be the language ({0,1}*-2-{0,1}*-2) U {0,2}* U {1, 2}*.
A regular grammar generating this language is ({5, 7, U, V,W},{0, 1,2}, P, S) with
the rules S — T|\V|W, T — 0T|1T|2U, U — OU|1U|2, V. — 0V |2V]e and W —

18

IW|[2W e.
Using the terminology of Example 1.39, Ly = {0,1}* -2, Ly = {0,1}* -2 Ly =
(0,1} -2-{0,1}* -2, Ly = {0,2}*, Ly = {1,2}* and L = Lg = Ly U Ly U Lyy..

Exercise 1.38. Let L be the language ({00,11,22}-{33}*)*. Make a reqular grammar
generating the language.

Example 1.39. Let ({S,7},{0,1,2,3}, P,.S) be a given regular grammar.

For A, B € {S, T}, let L4 g be the finite set of all words w € {0, 1,2, 3}* such that
the rule A — wB exists in P and let L4 be the finite set of all words w € {0, 1,2,3}*
such that the rule A — w exists in P. Now the grammar generates the language

(Lss)* - (Lsr - (Lrg)* - Lrs-(Lss)*)" - (LsULsy - (Lrr)* - Lr).

For example, if P contains the rules S — 0S[17'|2 and 7" — 07'|15|3 then the language
generated is

0* - (10710%)* - (2U 10*3)

which consists of all words from {0, 1}* - {2,3} such that either the number of 1s is
even and the word ends with 2 or the number of 1s is odd and the word ends with 3.

Exercise 1.40. Let ({S,7,U},{0,1,2,3,4}, P,S) be a grammar where the set P
contains the rules S — 0S|1T12, T — 0T|1U|3 and U — 0U|1S|4. Make a regular

expression describing this language.

The Pumping Lemmas are methods to show that certain languages are not regular
or not context-free. These criteria are only sufficient to show that a language is
more complicated than assumed, they are not necessary. The following version is the
standard version of the pumping lemma.

Theorem 1.41: Pumping Lemma. (a) Let L C 3* be an infinite regular language.
Then there is a constant k such that for every u € L of length at least k there is a
representation x -y - z = u such that |vy| < k, y # ¢ and xy*z C L.

(b) Let L C X* be an infinite context-free language. Then there is a constant k
such that for every u € L of length at least k there is a representation vwxryz = u
such that lwry| < k, w #eVy # e and vw'zy’z € L for all £ € N.

Proof. Part (a): One considers for this proof only regular expressions might up
by finite sets and unions, concatenations and Kleene star of other expressions. For
regular expressions o, let L(o) be the language described by o. Now assume that o is
a shortest regular expression such that for L(o) fails to satisfy the Pumping Lemma.

19

One of the following cases must apply to o:

First, L(o) is a finite set given by an explicit list in . Let k be a constant longer
than every word in L(o). Then the Pumping Lemma would be satisfied as it only
requests any condition on words in L which are longer than k£ — there are no such
words.

Second, o is (7 U p) for further regular expressions 7, p. As 7, p are shorter than
o, L(7) satisfies the Pumping Lemma with constant k¥’ and L(p) with constant £”; let
k = max{k’,k"}. Consider any word w € L(c) which is longer than k. If w € L(7)
then |w| > k' and w = xyz for some x,y, z with y # € and |zy| < k" and zy*z C L(7).
It follows that |zy| < k and xzy*z C L(o). Similarly, if w € L(p) then |w| > k” and
w = xyz for some x,y, z with y # € and |zy| < k" and zy*z C L(p). It again follows
that |zy| < k and xy*z C L(o). Thus the Pumping Lemma also holds in this case
with the constant k& = max{k’, k"}.

Third, o is (7 - p) for further regular expressions 7, p. As 7, p are shorter than o,
L(7) satisfies the Pumping Lemma with constant k¥’ and L(p) with constant k”; let
k =k + k". Consider any word u € L(o) which is longer than k. Now u = vw with
v € L(t) and w € L(p). If |v| > K then v = zyz with y # ¢ and |zy| < k' and
xy*z C L(7). It follows that |zy| < k and xy*(zw) C L(0), so the Pumping Lemma
is satisfied with constant k in the case |v| > k. If |v| < k' then w = zyz with y # ¢
and |zy| < k" and xy*z C L(p). It follows that |(vx)y| < k and (vx)y*z C L(o), so
the Pumping Lemma is satisfied with constant k in the case |v| < k" as well.

Fourth, o is 7* for further regular expression 7. Then 7 is shorter than ¢ and
L(7) satisfies the Pumping Lemma with some constant k. Now it is shown that
L(o) satisfies the Pumping Lemma with the same constant k. Assume that v €
L(o) and |v] > k. Then v = wywy...w, for some n > 1 and non-empty words

Wy, Wy, ..., Wy € L(7). If wy| < k thenlet 2 =¢, y =w; and z = wy - ... - w,. Now
xy*z = wjwy ... w, C L(1)* = L(o). If |w;| > k then there are z,y, z with w; = zyz,
lzy| < k, y # ¢ and xy*z C L(7). It follows that zy*(z - ws - ... w,) C L(o). Again

the Pumping Lemma is satisfied.

It follows from this case distinction that the Pumping Lemma is satisfied in all
cases and therefore the regular expression ¢ cannot be exist as assumed. Thus all
regular languages satisfy the Pumping Lemma.

Part (b) is omitted; see the lecture notes on Theory of Computation. 1

In Section 2 below a more powerful version of the pumping lemma for regular sets
will be shown. The following weaker corollary might also be sufficient in some cases
to show that a language is not regular.

Corollary 1.42. Assume that L is an infinite regular language. Then there is a

20

constant k such that for each word w € L with |w| > k, one can represent w as
xyz =w with y # ¢ and xy*z C L.

Exercise 1.43. Let pi,p2,p3,... be the list of prime numbers in ascending order.
Show that L ={0" :n >0 andn # p1-pa - ... py for all m} satisfies Corollary 1.42
but does not satisfy Theorem 1.41 (a).

Exercise 1.44. Assume that (N,X, P, S) is a reqular grammar and h is a constant
such that N has less than h elements and for all rules of the form A — wB or A — w
with A, B € N and w € ¥* it holds that |w| < h. Show that Theorem 1.41 (a) holds

with the constant k being h?.

Exercise 1.45. Prove a weaker version of Theorem 1.41 (b) without requesting that
the lwxy| < k. The idea to be used is that there is a constant k such that for every
word w € L which is longer than k, one can be split into vwzyz such that there is a
non-terminal A with S =* vAz =* vwAyz =" vwryz. Then A =* wAy is equivalent
to vAz =* vwAyz and use this fact to derive the pumping lemma.

Example 1.46. The set L = {0? : p is a prime number} of all 0-strings of prime
length is not context-free.

To see this, assume the contrary and assume that k is the constant from the
pumping condition in Theorem 1.41 (b). Let p be a prime number larger than k.
Then 0P can be written in the form vwzyz with ¢ = |wy| > 0. Then every string of
the form vw’zy’z is in L; these strings are of the form 077~ Now choose ¢ = p+1
and consider 0PT9P. The number p+¢q-p = p-(¢+1) is not a prime number; however
0PT2? is in L by the pumping condition in Theorem 1.41 (b). This contradiction
proves that L cannot be context-free.

Example 1.47. The language L of all words which have as many 0 as 1 satisfies
the pumping condition in Corollary 1.42 but not the pumping condition in Theo-
rem 1.41 (a).

For seeing the first, note that whenever w has as many 0 as 1 then every element
of w* has the same property. Indeed, L = L* and Corollary 1.42 is satisfied by every
language which is of the form H* for some H.

For seeing the second, assume the contrary and assume that n is the constant used
in Theorem 1.41 (a). Now consider the word 0"1". By assumption there is a repre-
sentation xyz = 0"1" with |zy| < n and y # . As a consequence, ryyz = 0"™1" for
some m > 0 and zyyz ¢ L. Hence the statement in Theorem 1.41 (a) is not satisfied.

Theorem 1.48. Let L C {0}*. The following conditions are equivalent for L:

21

(a) L is regular;

(b) L is context-free;

(c) L satisfies the Theorem 1.41 (a) for reqular languages;

(d) L satisfies the Theorem 1.41 (b) for context-free languages.

Proof. Clearly (a) implies (b),(c) and (b),(c) both imply (d). Now it will be shown
that (d) implies (a).

Assume that k is the pumping constant for the context-free Pumping Lemma.
Then, for every word u € L, one can split 0" into vwzyz such that |wzy| < k and at
least one of w, y is not empty and vwzy"z € L for all h.

Now when h — 1 = (- k!/|wy| for some integer ¢, the word vw"xy"z is equal to
0" - 0" As all these vw"zy"z are in L, it follows that 0" - (0¥)* C L. For each
remainder m € {0,1,... k! — 1}, let

Ny =min{i : 3j[i > k and i = m + jk! and 0" € L]}

and let n,, = oo when there is no such i, that is, min) = oo.

Now L is the union of finitely many regular sets: First the set LN{e,0,00,...,0%}
which is finite and thus regular; Second, all those sets 0™ - (0¥')* where m < k! and
Ny, < 0o. There are at most k! many of these sets of the second type and each is
given by a regular expression. Thus L is the union of finitely many regular sets and
therefore regular itself. |

Exercise 1.49. Consider the following languages:

o [={0"1"2" : n € N};
o H=1{0"1":n*<m < 2n?};
o K ={0"1"2":n-m=k}.
Show that these languages are not context-free using Theorem 1.41 (b).
Exercise 1.50. Construct a context-sensitive grammar for {10"1 : n is a power of

three}. Here the powers of three are 1,3,9,27,... and include the zeroth power of
three.

Exercise 1.51. Construct a context-sensitive grammar for {10"1 : n is at least four
and not a prime}.

Exercise 1.52. Construct a contezt-free grammar for the language {uvw € {0,1}*:
lu| = |v| = |w| and v # w.

22

Exercise 1.53. Let F'(L) = {v : 3w € L[v is obtained by reordering the symbols in
w|}. Reorderings include the void reordering where all digits remain at their position.
So F({0,00,01}) = {0,00,01,10}. Determine the possible levels in Chomsky hierarchy
which F(L) can have when L is reqular. For each possible level, exhibit a reqular
language L such that F(L) is exactly on that level.

Exercise 1.54. Let F(L) as in Ezercise 1.58 and consider the following weaker
version of Theorem 1.41 (b): There is a constant ¢ such that all words in u € F(L)
with |u| > ¢ can be represented asuw = v-w-x-y-z withw-y # € and vw"xy"z € F(L)
for all n € N. Provide a reqular language L such that F(L) satisfies this weaker
version of the pumping lemma but neither Theorem 1.41 (b) nor Corollary 1.42.

Exercise 1.55. Let L = {0"1™2* :n#mVn #kVm #k}. As L is context-free, it
satisfies all pumping lemmas satisfied by context-free languages. Show that L satisfies
also Corollary 1.42 with the additional constraint that both the constant and the length
of the pump is 1, that is the following holds: (x) There is a constant k such that every
word w € L of length at least k + 1 can be split into xyz = w with |y| = 1 such that
xy*z C L. Show that F(L) also satisfies (x). Furthermore, is it true that whenever
a language H satisfies (x) so does F(H)? Here F(L) and F(H) are defined as in
Ezercise 1.535.

Exercise 1.56. For given L, let G(L) = {vw : wv € L and v,w € ¥*} and note that
L C G(L), as it can be that v or w is € in the above formula for G(L). Provide all
levels of the Chomsky hierarchy for which there is an L exactly on this level such that
G(L) is regular; note that when the membership problem of a language L cannot be
solved by an algorithm in exponential time then L is not context-sensitive.

Exercise 1.57. Let L = {w € {0,1,2,3}* : if a < b then b occurs more frequently
than a}. What is the exact level of L in the Chomsky hierarchy? Use grammars and
pumping lemmas to prove the result.

Exercise 1.58. Let L be given by the grammar ({S},{0,1},{S — 015|01,50 —
05,51 — 15,08 — 50,18 — S1},S). Determine the level of L in the Chomsky
hierarchy, it is one of reqular, contexrt-free and context-sensitive, as it is given by
a context-sensitive grammar. Determine all words up to length 6 in L and explain
verbally when a word belongs to L.

Exercise 1.59. Construct context-free grammars for the sets L = {0"1m2F : n <
mVm <k}, H={0"1"2""™ :n,m € N} and K = {w € {0,1,2}* : w has a subword
of the form 20™1"2 for some n >0 or w =€}.

Which of the versions of the Pumping Lemma (Theorems 1.41 (a) and 1.41 (b)
and Corollary 1.42) are satisfied by L, H and K, respectively.

23

Exercise 1.60. Let L = {0"1'273% : (h # i and j # k) or (h # k and i # j)} be
given. Construct a context-free grammar for L and determine which of versions of the
Pumping Lemma (Theorems 1.41 (a) and 1.41 (b) and Corollary 1.42) are satisfied
by L.

Exercise 1.61. Consider the grammar ({S},{0,1,2,3},{S — 005]51|52|3},S) and
construct for the language L generated by the grammar the following: a reqular gram-
mar for L and a reqular expression for L.

In the following exercises, let fr(n) be the number of words w € L with |w| < n. So
if L ={0}* then fr(n) =n and if L = {0,1}* then fr(n) =2" — 1.

Exercise 1.62. Is there a context-free language L with fr(n) = |v/n], where |\/n] is
the largest integer bounded by \/n? Fither prove that there is no such set or construct
a set with the corresponding context-free grammar.

Exercise 1.63. Is there a reqular set L with fr(n) = n(n+ 1)/22 Either prove that
there is no such set or construct a set with the corresponding regular grammar or
reqular expression.

Exercise 1.64. s there a context-sensitive set L with fr(n) = n", where 0° =
0¢ FEither prove that there is no such set or construct a set with the corresponding
grammar.

Exercise 1.65. Is there a regular set L with fr(n) = (3"—1)/2+|n/2]? Either prove
that there is mo such set or construct a set with the corresponding reqular grammar or
reqular expression.

Exercise 1.66. Is there a reqular set L with fr(n) = |n/3] + [n/2]? FEither prove
that there is no such set or construct a set with the corresponding reqular grammar or
reqular expression.

For the following exercises, call y a pump of zyz € Liff |y| > 1 and {«}-{y}*-{z} C L.
For infinite languages L the optimal pump length k as witnessed by h is the smallest
number k for which there is a h such that all w € L with |w| > h have a pump of
length up to k.

Exercise 1.67. Determine the optimal pump length k and the witness length h for the
language {000, 111,222}* N {0000, 1111, 2222}* N {00000, 11111, 22222}* and explain
the solution.

24

Exercise 1.68. Determine the optimal pump length k and the witness length h for
the language of all words where the length modulo 10 is in {1,3,7,9} and explain the
solution.

Exercise 1.69. Determine the optimal pump length k and the witness length h for
the language of all words where the length modulo 10 is in {0,2,4,5,6,8} and explain
the solution.

Exercise 1.70. Determine the optimal pump length k and the witness length h for the
language {001100110011} - {222}* U {0011} - {2222}* U {001100110011001100110011}
and explain the solution.

Exercise 1.71. Determine the optimal pump length k and the witness length h for
the language of all decimal numbers without leading zeroes which are multiples of 512
and explain the solution.

In the following exercises, the task is the following: Given a set H which is interpreted
as a set of decimal numbers, find an infinite set L C H having the property stated in
the exercise. Furthermore, if possible L should be regular and a regular expression or
grammar should witness this; if L cannot be taken to be regular, but can be taken
to be context-free then a context-free grammar should witness that L is context-free
and one should use the pumping lemma to show that L cannot be taken regular; if
L is context-sensitive then a grammar should witness this and one should use the
context-free pumping lemma to prove that no infinite context-free L can solve the
task.

Exercise 1.72. Find infinite L C H for H = {10"20™1 :n >m > 1 and n + m is
even} such that all members of L are square numbers.

Exercise 1.73. Find infinite L C H for H = {10”30m30k1 :2n > m+k and 3
divides n +m + k} such that all members of L are third powers (cubes).

Exercise 1.74. Find infinite L C H for H = {1}-{0}*-{3}-{0}"-{3}-{0}*-{1}-{0}"

such that all members of L are third powers (cubes).

25

2 Finite Automata

An automaton is in general a mechanism which checks whether a word is in a given
language. An automaton has a number of states which memorise some information.
Here an example.

Example 2.1: Divisibility by 3. Let aga;...a, be a decimal number. One can
check whether aga; . .. a, is a multiple of 3 by the following algorithm using a memory
s € {0,1,2} and processing in step m the digit a,,. The memory s is updated
accordingly.

Case s=0 : If a,, € {0,3,6,9} then update s = 0;
if a,, € {1,4,7} then update s = 1;
if a,, € {2,5,8} then update s = 2.

Case s=1 : If a,, € {0,3,6,9} then update s = 1;
if a,, € {1,4,7} then update s = 2;
if a,, € {2,5,8} then update s = 0.

Case s=2 : If a,, € {0,3,6,9} then update s = 2;
if a,, € {1,4,7} then update s = 0;
if a,, € {2,5,8} then update s = 1.

The number agay . ..a, is divisible by 3 iff s = 0 after processing a,. For example,
123456 is divisible by 3 as the value of s from the start up to processing the corre-
sponding digits is 0,1,0,0, 1,0, 0, respectively. The number 256 is not divisible by 3
and the value of sis 0,2,1,1 after processing the corresponding digits.

Quiz 2.2. Which of the following numbers are divisible by 3: 1, 20, 304, 2913, 49121,
391213, 2342342, 123454321 ¢

Description 2.3: Deterministic Finite Automaton. The idea of this algorithm
is to update a memory which takes only finitely many values in each step according
to the digit read. At the end, it only depends on the memory whether the number
which has been processed is a multiple of 3 or not. This is a quite general algorithmic
method and it has been formalised in the notion of a finite automaton; for this, the
possible values of the memory are called states. The starting state is the initial value
of the memory. Furthermore, after processing the word it depends on the memory
whether the word is in L or not; those values of the memory which say aga; ...a, € L
are called “accepting states” and the others are called “rejecting states”.

One can display the automata as a graph. The nodes of the graph are the states

26

(possible values of the memory). The accepting states are marked with a double bor-
der, the rejecting states with a normal border. The indicator “start” or an incoming
arrow mark the initial state. Arrows are labelled with those symbols on which a tran-
sition from one state to anothers takes place. Here the graphical representation of the
automaton checking whether a number is divisible by 3.

0,3,6,9 1,4,7 0,3,6,9

start H@ 258

1,4,7

0,3,6,9

Mathematically, one can also describe a finite automaton (Q, >, 9, s, F') as follows: @
is the set of states, ¥ is the alphabet used, § is the transition function mapping pairs
from @) x X to X, s is the starting state and F' is the set of accepting states.

The transition-function § : @) x ¥ — (@ defines a unique extension with domain
Q x X* as follows: §(q,e) = ¢ for all ¢ € @ and, inductively, d(q, wa) = 6(d(q, w), a)
forall g € Q, w e ¥* and a € X.

For any string w € ¥*, if §(s,w) € F then the automaton accepts w else the
automaton rejects w.

Example 2.4. One can also describe an automaton by a table mainly maps down
0 and furthermore says which states are accepting or rejecting. The first state listed
is usually the starting state. Here a table for an automaton which checks whether a
number is a multiple of 7:

27

q | type | 6(q,a)fora=0|1|2|3[4|5[6|7|8]|9
0| acc 011213 [4]5]6]0|1]|2
1 rej 31415/6(0[1]2]3[4|5
2 rej 6101|2345]6[|0]|1
3 rej 2134151601]2|3]4
4| rej 5/6(0[1]2|3[4(5][6]0
5| rej 112/3/4]5(6l0/1]2]3
6 rej 41516(0[1({2|3|4|5]|6

This automaton checks whether a number is a multiple of 7.

On input 343 the automaton goes on symbol 3 from state 0 to state 3, then on
symbol 4 from state 3 to state 2 and then on symbol 3 from state 6 to state 0. The
state 0 is accepting and hence 343 is a multiple of 7 (in fact 343 = 7% 7% 7).

On input 999 the state goes first from state 0 to state 2, then from state 2 to state
1, then from state 1 to state 5. The state 5 is rejecting and therefore 999 is not a
multiple of 7 (in fact 999 = 7 % 142 + 5).

Example 2.5. One can also describe a finite automaton as an update function which
maps finite states plus symbols to finite states by some algorithm written in a more
compact form. In general the algorithm has variables taking its values from finitely
many possibilities and it can read symbols until the input is exhausted. It does not
have arrays or variables which go beyond its finite range. It has explicit commands to
accept or reject the input. When it does “accept” or “reject” the program terminates.

function div257
begin var a in {0,1,2,...,256%};
var b in {0,1,2,3,4,5,6,7,8,9};
if exhausted(input) then reject;
read(b,input); a = b;
if b == 0 then
begin if exhausted(input) then accept else reject end;
while not exhausted(input) do
begin read(b,input); a = (a*10+b) mod 257 end;
if a == 0 then accept else reject end.

This automaton checks whether a number on the input is a multiple of 257; further-
more, it does not accept any input having leading 0s. Here some sample runs of the
algorithm.

On input ¢ the algorithm rejects after the first test whether the input is exhausted.
On input 00 the algorithm would read b one time and then do the line after the test
whether b is 0; as the input is not yet exhausted, the algorithm rejects. On input 0

28

the algorithm goes the same way until but finally accepts the input as the input is
exhausted after the symbol b has been read for the first time. On input 51657, the
algorithm initialises a as 5 after having read b for the first time. Then it reaches the
while-loop and, while reading b = 1, b = 6, b = 5, b = 7 it updates a to 51, 2, 25,
0, respectively. It accepts as the final value of a is 0. Note that the input 51657 is
201 % 257 and therefore the algorithm is correct in this case.

Such algorithms permit to write automata with a large number of states in a more
compact way then making a state diagram or a state table with hundreds of states.

Note that the number of states of the program is actually larger than 257, as not
only the value of a but also the position in the program contributes to the state of
the automaton represented by the program. The check “exhausted(input)” is there
to check whether there are more symbols on the input to be processed or not; so
the first check whether the input is exhausted is there to reject in the case that
the input is the empty string. It is assumed that the input is always a string from
{0,1,2,3,4,5,6,7,8,9}*.

Exercise 2.6. Such an algorithm might be written in a form nearer to a finite automa-
ton if one gives the set of states explicitly, names the starting state and the accepting
states and then only places an algorithm or mathematical description in order to de-
scribe § (in place of a table). Implement the above function div257 using the state
space Q@ = {s,2,7,q0,q1,---,q256} where s is the starting state and z,qy are the ac-
cepting states; all other states are rejecting. Write down how the transition-function
d is defined as a function from @ x {0,1,2,3,4,5,6,7,8,9} — Q. Give a compact
definition and not a graph or table.

Quiz 2.7. Let ({s,t},{0,1,2},6,s,{t}) be a finite automaton with 6(s,a) =t and
d(t,a) = s for all a € {0,1,2}. Determine the language of strings recognised by this
automaton.

0,1,2

start — @

0,1,2

Theorem 2.8: Characterising Regular Sets. If a language L s recognised by a
deterministic finite automaton then L is reqular.

Proof. Let an automaton (@, X, 9, s, F') be given. Now one builds the regular gram-
mar (Q, X, P, s) with the following rules:

29

e the rule ¢ — ar isin P iff §(q,a) = 7;
e theruleq > eisin Piff g€ F.

So the non-terminals of the grammar are the states of the automaton and also the
roles of every ¢ € @ is in both constructs similar: For all ¢, € @, it holds that
q =" wriff §(q,w) =r.

To see this, one proves it by induction. First consider w = . Now ¢ =* wr iff
q = r iff (¢, w) = r. Then consider w = wva for some symbol a and assume that
the statement is already proven for the shorter word v. Now ¢ =* wr iff there is a
non-terminal ¢ with ¢ =* vt = var iff there is a non-terminal ¢ with §(¢,v) =t and
t = ar iff there is a non-terminal ¢ with §(¢,v) =t and 6(¢,a) = r iff 6(q,w) = r.

The only way to produce a word w in the new grammar is to generate the word
wq for some ¢ € F' and then to apply the rule ¢ — . Thus, the automaton accepts
w iff §(s,w) € F iff there is a ¢ € F with s =* ¢ A ¢ = ¢ iff s =* w. Hence w is
accepted by the automaton iff w is generated by the corresponding grammar. [

The converse of this theorem will be shown later in Theorem 2.58.

There is a stronger version of the pumping lemma which directly comes out of the
characterisation of regular languages by automata; it is called the “Block Pumping
Lemma”, as it says that when a word in a regular language is split into sufficiently
many blocks then one can pump one non-empty sequence of these blocks.

Theorem 2.9: Block Pumping Lemma. [f L is a regular set then there is a
constant k such that for all strings ug,uy, ..., u, with uguy ... ux € L and uy, ..., up_1
being nonempty there are i, with 0 <1 < j <k and

UoUyp « o« Uj—1) * \UsWjt1 - - - Uj—1) - (UjUjq1 ... Ug) = Lot
() ()" ()< L

So if one splits a word in L into k + 1 parts then one can select some parts in the
middle of the word which can be pumped.

Proof. Given a regular set L, let (Q,%,0,s, F') be the finite automaton recognis-
ing this language. Let k = |Q| + 1 and consider any strings wug,u1, ..., u; with
Uty . .. u € L. There are ¢ and j with 0 < i < j < k such that §(s, uouq ... u;—1) =
d(s, uguy ... uj—1); this is due to the fact that there are |Q|+ 1 many values for i, j and
so two of the states have to be equal. Let ¢ = 0(s, uguy ... wu;—1). By assumption, ¢ =
6(q, uittiy1 ... uj—1) and so it follows that ¢ = (s, uouy . .. w1 (Uittisy - . . wj—1)") for
every h. Furthermore, (g, uju;yq ... ux) € F and hence uguy . .. w;—y (Wittiyy ... uj—q)"
Ujjsr - .- ux € L for all h. |

Example 2.10. Let L be the language of all strings over {0, 1,2} which contains
an even number of 0s. Then the pumping-condition of Theorem 2.9 is satisfied with
parameter n = 3: Given ugujusus € L, there are three cases:

30

e u; contains an even number of 0s. Then removing u; from the word or inserting
it arbitrarily often does not make the number of Os in the word odd; hence
uo(uq) ugus C L.

e uy contains an even number of 0s. Then ugu;(uz)*ug C L.

e u; and wuy contain both an odd number of 0s. Then uju, contains an even
number of Os and wug(ujug)*us C L.

Hence the pumping condition is satisfied for L.

Let H be the language of all words which contain a different number of Os and
1s. Let k be any constant. Now let ug = 0,u1 = 0,...,up_1 = 0,u;, = 1¥T% If the
pumping condition would be satisfied for H then there are ¢,7 with 0 < i < 7 < k

and
O’L(O]—z)*Ok—j 1k:+k:! g H.

So fix this 7, 7 and take h = % + 1 (which is a natural number). Now one sees that
0°0U—DhQk—d1k+k! — Qk+k! k+R & [T hence the pumping condition is not satisfied.

Theorem 2.11: Ehrenfeucht, Parikh and Rozenberg [24]. A language L is
reqular if and only if both L and its complement satisfy the block pumping lemma.

Proof. The proof is based on showing the even more restrictive block cancellation
property. That is, it is shown that L is regular iff there is a constant k > 3 such that
the following condition holds for k:

(Ex): for all words wg,us, ..., uy, there are 4,5 € {0,1,...,k — 1} with
i<jand L(ug...ux) = L(ug...u; Wity ... ug).

This says in particular, if one cuts a word into k + 1 blocks with the zeroth and the
last block possibly empty then one can find an interval of some blocks not containing
the zeroth and the last such that deleting the interval from the word does not change
membership in L, so if x is a member of L so is the shorter word and if x is a member
of the complement of L so again is the shorter word.

On one hand, it will be shown that every regular set satisfies (Ej) for some k and
on the other hand that whenever a set satisfies (Ej) for some k then it is regular.
Furthermore, for each k and for each fixed alphabet, there are only finitely many sets
satisfying (Ek).

That regular sets satisfy (Ejx) comes directly out of analysing the states of a dfa
recognising the corresponding regular language with k states and by choosing ¢, 7 such
that there is the same state after reading g ... w; and after reading uo . . . u;.

For the other direction, one has to choose a constant ¢ > k such that every two-
colouring of pairs (i,7) from {0,1,...,c} has a homogeneous set of size k + 1; this

31

constant exists by the finite version of Ramsey’s Theorem of Pairs [69].

Ramsey’s Theorem of pairs says the following: For each k there is a ¢ such that if
one assigns to each pair (i,j) with i < j and 4,j € {0,1,...,c— 1} one of the colours
white or red then there is a subset {hg, hy,...,hi} of {0,1,..., ¢} such that all pairs
(2,7), (7, 5") with ¢ < j and ' < j" and 4,7,7, 5" € {ho,h1,...,hx_1} have the same
colour. Such a subset is called homogeneous.

Ramsey’s Theorem of Pairs has been a very useful tool in proving combinatorial
properties in many branches of mathematics including the block pumping lemma.

Now let Hy, Hy be two sets which satisfy (Ej) and assume they are identical on
all strings of length up to c¢. Now assume by way of contradiction that H, # H,.

Let x be the length-lexicographically first string on which Hy(z) # Hs(x) and let
ug be e, up be the h-th symbol of x for h =1,...,¢c— 1 and u, is the remaining part
of the word z. Furthermore, for i,j € {0,1,..., ¢} with ¢ < j, make a two-colouring
col such that the following holds: If Hj(uouy...u; - ujqUujte ... u.) = Hy(x) then
col(i,) = white else col(i, j) = red.

By Ramsey’s Theorem of Pairs there are hg, hy, ..., hy on which col is homogeneous
and one can consider the splitting of = into k£ + 1 blocks ug ... uUny, Ungt1 - - - Unys - - -
Upy,_,+1 - - - Ue. These splittings again satisfy the property (Ej) for Hy. As there must
be i,j € {ho,h1,... hp_1} with i < j and Hy(uous ... up, - Un;41Un;42 - - - Ue) = Hi(z),
the homogeneous colour is white.

Furthermore, there must, by (E}y) for Hy, exist i, j € {ho, h1,...,hxg_1} with i’ <
Jand Ha(uqus ... wp - wjriUjgs ... uy) = Hay(x). Due to homogenicity, it also holds
that Hy(ujus . .. wy-wjp1Ujys . .. ue) = Hi(x). Onone hand, this gives Hy(ujug . .. uy-
Ujri1Ujrga . . Ue) 7 Ho(uiug .. uy - Ujri1Ujiio . .. uer), on the other hand the choice of
x gives that Hy, Hy coincide on this string as it is shorter than x. This contradiction
leads to the conclusion that H; and H, coincide on all strings whenever both satisfy
(Ex) and Hy(y) = Hay(y) for all strings up to length ¢. So, whenever two sets satisfy
(Ex) and when they coincide on strings up to length ¢ then they are equal.

Note that when L satisfies (Ej), so do also all derivatives L, = {y : 2y € L}:
If g, uq, ..., U, are k 4+ 1 strings then one considers xtg, Uy, . .., uy for L and selects
indices 4,7 € {0,1,...,k — 1} with ¢ < j such that L(ztot, ...ux) = L(ztg...q; -
Ujy1 ... Ug). It follows that L, (Gt ... 70g) = Ly(to - .. ;- Ujtq ... U) and hence also
L, satisfies (E).

Each derivative L, is determined by the values L,(y) for the y with |y| < ¢. So
there are at most 21+4+@*+-+4° ;any derivatives where d is the number of symbols in
the alphabet; in particular there are only finitely many derivatives. The language L
is regular by the Theorem of Myhill and Nerode (Theorem 2.19). |

However, there are non-regular languages L which satisfy the block pumping lemma.
Morse as well as Thue [82] constructed an infinite binary sequence in which there

32

is no non-empty subword of the form www. This sequence witnesses that there are
cubefree strings of arbitrary length and this fact is used to construct nonregular set
L satisfying the block pumping lemma.

Theorem 2.12: Sequence of Morse and Thue [82]. Let ag = 0 and, for all n,
Ao, = ay and as,11 = 1 — a,. Then the infinite binary sequence aga; ... does not
contain a subword of the form www.

Proof. In the following, call a word a “cube” if it is not empty and of the form www
for some string w.

Assume by way of contradiction that the sequence of Morse and Thue contains a
cube as a subword and let www be the first such subword of the sequence. Let k be
the length of w and wyws ... wy be the symbols in w (in this order).

In the case that w has even length, then consider the first position 2n + m
with m € {0,1} of www in the sequence. If m = 0 then a, = aopim,tni1 =
A2n+24m - - - Unt3k/2 = Qantsk €lse ay = 1—aonymi1, Gny1 = 1 —Q2nt20mr1s -+ - Gnysig2
= 1 — agny3k+1- In both cases, an@ny1 ... apqse/2 is of the form vvv where v has the
length k/2 and occurs before www. As www was chosen to be the first cube occurring
in the sequence, this case does not apply and k£ must be odd.

For the case of an odd k and for each h € {1,2,... k — 1}, either the first or the
second occurrence of w satisfies that wy, is at a position of the form 2n and wy,, at a
position of the form 2n+1 so that, by the construction of the sequence, w1 = 1—wy,.
Furthermore, by the same principle applied to the position where one copy of w ends
and the next starts, one has that w; = 1 — w,. However, as w has odd length, one
also has w; = wy; for example if w has length 5 then w is either 01010 or 10101. This
gives a contradiction and therefore this case does also not occur. Hence the sequence
of Morse and Thue has no subword which is a cube. |

Theorem 2.13 [13|. There is a block pumpable language which is not regular.

Proof. Let L contain all words which either contain a cube or whose length is not a
power of 10, so nonmembers of L have one of the lengths 1,10, 100, 1000, ... and no
other length. Now one shows that L has the block pumping constant 5. Assume that
w € L and w is split into blocks ug, w1, us, us, us, us and assume that uy, us, ug, uy are
all non-empty, as if one of them is empty one can pump that empty block. Now it
is shown that one can select one of the possible pumps uq, ujus, us, usuy such that
when omitting or repeating an arbitrary time the selected pump in w, the so modified
word is again in L. In other words, one of the following languages is a subset of L:
wo(uq) uguzugus, ug(ugug)* usugus, ugtgus(uz) ugus and ugug us(usy)*us.

First consider the case that |ujus| < |uguy|. In this case, |uouugugusuzusus| <

33

lugusugus| - 3 and only one of the words ugusugus, ugususzugus, ug(uy)*usuzugus and
uo(u1u2)2u3u4u5 has a length which is a power of 10. Hence one can select the pump
to be either u; or ujus such that when the pump is omitted or doubled the resulting
word does not have a length which is a power of 10 and is therefore in L. Furthermore,
for both possible pumps and h > 3, the words ug(uy) usususus and ug(uius) " ususus
do both contain a cube and are in L. Thus, one can choose the pump such that all
pumped words are in L.

Second in the case that |uguy| < |ujus|, one can do the same proof as before, only
with the possible pumps being us and usu4, one of them works.

To see that L is not regular, note that for each power of 10 there is a word in the
complement of I which consists of the corresponding first symbols of the sequence of
Morse and Thue. Note that the complement of L is now infinite but cannot satisfy
any pumping lemma as it contains only cubefree words. Thus the complement of L
and, hence, also L itself cannot be regular. 1

Quiz 2.14. Which of the following languages over ¥ = {0, 1,2, 3} satisfy the pumping-
condition from Theorem 2.9:

(a) {00,111, 22222}* N {11,222,00000}* N {22,000, 11111}*,

(b) {0%192% : i + j = k + 5555},

(c) {0°192% : i+ j + k = 5555},

(d) {w : w contains more 1 than 0} 7

Exercise 2.15. Find the optimal constants for the Block Pumping Lemma for the
following languages:

(a) {w € {0,1,2,3,4,5,6,7,8,9}* : at least one nonzero digit a occurs in w at least
three times};

(b) {we€{0,1,2,3,4,5,6,7,8,9}* : |w| = 255};

(c) {we{0,1,2,3,4,5,6,7,8,9}* : the length |w| is not a multiple of 6};

Here the constant for a language L 1is the least n such that for all words ug, uy, ..., u,
the implication

UpUrUy ... Uy, € L=31,j[0<i<j<nandug... ui—1(w...uj_1)"uj...u, CLJ
holds.

Exercise 2.16. Find the optimal constants for the Block Pumping Lemma for the
following languages:

(a) {w€{0,1,2,3,4,5,6,7,8,9}* : w is a multiple of 25},

(b) {we{0,1,2,3,4,5,6,7,8,9}* : w is not a multiple of 3};

(c) {we{0,1,2,3,4,5,6,7,8,9}* : w is a multiple of 400}.

34

Exercise 2.17. Find a regular language L so that the constant of the Block Pumping
Lemma for L is 4 and for the complement of L is 4196.

Exercise 2.18. Give an example L of a language which satisfies Theorem 1.41 (a)
(where for every w € L of length at least k there is a splitting xyz = w with |zy| < k,
ly| > 0 and xy*z C L) but does not satisfy Theorem 2.9 (the Block Pumping Lemma,).

Theorem 2.19: Myhill and Nerode’s Minimal DFA [63]. Given a language L,
let L, ={y € X* : xy € L} be the derivative of L to x. The language L is reqular iff
the number of different derivatives L, s finite; furthermore, for languages with exactly
n derivatives, one can construct a complete dfa having n and there is no complete dfa
with less than n states which recognises L.

Proof. Let (Q,%,0,s,F) be a deterministic finite automaton recognising L. If
d(s,z) = d(s,y) then for all z € ¥* it holds that z € L, iff 6(0(s,z),2) € F iff
3(0(s,y),z) € F iff z € L,. Hence the number of different sets of the form L, is a
lower bound for the size of the states of the dfa.

Furthermore, one can directly build the dfa by letting @ = {L, : © € ¥*} and
define for L, € Q and a € ¥ that §(L,, a) is the set L,,. The starting-state is the set
Loand F={L,:x € X*Ne € L,}.

In practice, one would of course pick representatives for each state, so there is a
finite subset @ of X* with € € () and for each set L, there is exactly one x €) with
L, = L,. Then 6(x,a) is that unique y with L, = L,,.

For the verification, note that there are only finitely many different derivatives, so
the set () is finite. Furthermore, each state can be reached: For x € (), one can reach
the state x by feeding the word z into the automaton. Assume now that L, = L,.
Then Ly, ={z:xaz € L} ={z:az€ L,} ={z:az € L,} ={z:yaz € L} = L,
thus the transition function ¢ is indeed independent of whether x or y is chosen to
represent L, and will select the unique member z of Q with L, = L, = Ly,. In
addition, the rule for making exactly the states x with ¢ € L, be accepting is correct:
The reason is that, for x € @), the automaton is in state z after reading x and x has
to be accepted by the automaton iff z € L iff e € L,. |

In the case that some derivative is (), one can get an automaton which has one less state
if one decides not to represent (J; the resulting dfa would then be incomplete, that is,
there would be nodes ¢ and symbols a with §(g, a) being undefined; if the automaton
ends up in this situation, it would just reject the input without further analysis. An
incomplete dfa is a variant of a dfa which is still very near to a complete dfa but has
already gone a tiny step in direction of an nfa (as defined in Description 2.48 below).

Remark 2.20. Although the above theorem is published by Anil Nerode [63], it
is general known as the Theorem of Myhill and Nerode and both scientists, John

35

Myhill and Anil Nerode, are today acknowledged for this discovery. The notion of a
derivative was fully investigated by Brzozowski when working on regular expressions
[3].

Example 2.21. If L = 0*1*2* then Ly = 0*1*2*, Lg; = 1*2*, Lgio = 2* and Lgi9; = 0.
Every further L, is equivalent to one of these four: If z € 0* then L, = L; if x € 0*17
then L, = 1*2* as a 0 following a 1 makes the word to be outside L; if x € 0*1*2"
then L, € 2*. If x ¢ 0*1*2* then also all extensions of x are outside L and L, = ().
The automaton obtained by the construction of Myhill and Nerode is the following.

0 1
1
start H@ \Lm
2 0

0,1
2 C@ G@j 0,1,2

As Lyio1 = 0, one could also omit this node and would get an incomplete dfa with
all states being accepting. Then a word is accepted as long as one can go on in the
automaton on its symbols.

Example 2.22. Consider the language {0"1" : n € N}. Then Lo = {0™1™*" :m €
N} is unique for each n € N. Hence, if this language would be recognised by a dfa,
then the dfa would need infinitely many states, what is impossible.

Lemma 2.23: Jaffe’s Matching Pumping Lemma [42]. A language L C ¥* is
regular iff there is a constant k such that for all x € ¥* and y € ¥* there are u,v,w
with y = wvw and v # ¢ such that, for all h € N, L, ,hy = Lay.

Proof. Assume that L satisfies Jaffe’s Matching Pumping Lemma with constant k.
For every word z with |z| > k there is a splitting of z into zy with |y| = k. Now
there is a shorter word xuw with Ly, = Lg,; thus one can find, by repeatingly using
this argument, that every derivative L, is equal to some derivative L., with |z/| < k.
Hence there are only 1+ || + ... + |S[*~! many different derivatives and therefore

36

the language is regular by the Theorem of Myhill and Nerode.

The converse direction follows by considering a dfa recognising L and letting k& be
larger than the number of states in the dfa. Then when the dfa processes a word xyz
and |y| = k, then there is a splitting of y into wvw with v # e such that the dfa is in
the same state when processing zu and zuv. It follows that the dfa is, for every h,
in the same state when processing zuv” and therefore it accepts zuvwz iff it accepts
xyz. Thus Lyyyhy = Lgy for all h. 1

Exercise 2.24. Assume that the alphabet ¥ has 5000 elements. Define a language
L C ¥* such that Jaffe’s Matching Pumping Lemma is satisfied with constant k = 3
while every deterministic finite automaton recognising L has more than 5000 states.
Prove the answer.

Exercise 2.25. Find a language which needs for Jaffe’s Matching Pumping Lemma
at least constant k = 100 and can be recognised by a deterministic finite automaton
with 100 states. Prove the answer.

Consider the following weaker version of Jaffe’s Pumping Lemma which follows from
it.

Corollary 2.26. Regular languages L and also some others satisfy the following
condition:

There is a constant k such that for all v € ¥* and y € XF with vy € L there are
u,v,w with y = wow and v # € such that, for all h € N, Ly = Lyy.
That is, in Corollary 2.26, one postulates the property of Jaffe’s Pumping Lemma
only for members of L. Then it loses its strength and is no longer matching.

Exercise 2.27. Show that the language L = {e} U{0"1™2*3 :n=m or k =0} is a
context-free language which satisfies Corollary 2.26 but is not reqular. Furthermore,
show directly that this language does not satisfy Jaffe’s Pumping Lemma itself; this is
expected, as only reqular languages satisfy it.

Exercise 2.28. Is the following statement true: If L satisfies Corollary 2.26 and H
is reqular then L - H satisfies Corollary 2.267

Exercise 2.29. Call a language prefir-free if whenever vw € L and w # € then
v & L. Does every prefiz-free language L for which L™ satisfies Theorem 1.41 (a)
also satisfy Corollary 2.269 Here o™ is the mirror image of x, so 01122™ = 22110
and L™ = {x™ : x € L}. Prove the answer.

37

Exercise 2.30. Let X = {0,1,2}. Call a word v square-containing iff it has a
non-empty subword of the form ww with w € Xt and let L be the language of all
square-containing words; call a word v palindrome-containing iff it has a non-empty
subword of the form ww™ or waw™ witha € ¥ and w € X and let H be the language
of all palindrome-containing words.

Are the languages L and H reqular? If so, provide a dfa. Which of the pumping
lemmas (except for the block pumping lemma) do they satisfy?

The overall goal of Myhill and Nerode was also to provide an algorithm to compute
for a given complete dfa a minimal complete dfa recognising the same language.

Algorithm 2.31: Myhill’s and Nerodes Algorithm to Minimise Determinis-
tic Finite Automata [63].
Given: Complete dfa (Q, 3,0, s, F).

Computing Set R of Reachable States:
Let R = {s};
While there is ¢ € R and a € ¥ with 6(¢,a) ¢ R, let R = RU{d(q,a)}.

Identifying When States Are Distinct:

Make a relation v C R x R which contains all pairs of states (¢,p) such that the
automaton behaves differently when starting from p or from g;

Initialise v as the set of all (p,q) € R x R such that exactly one of p, ¢ is accepting;
While there are (p,q) € Rx R and a € ¥ such that (p,q) ¢ v and (6(p,a),d(q,a)) € v,

put (p,q), (g, p) into 7.

Building Minimal Automaton:

Let ' = {¢q € R such that all p € R with p < ¢ (according to some default ordering
of Q) satisfy (p,q) € v};

Let s’ be the unique state in @)’ such that (s, s) ¢ ~;

For p € Q" and a € ¥, let §(p, a) be the unique ¢ € Q' such that (q,0(p,a)) ¢ ~;

Let F' = Q' N F;

Now (@', %,¢', s, F') is the minimal automaton to be constructed.

Verification. First one should verify that R contains exactly the reachable states.
Clearly s is reachable by feeding e into the automaton. By induction, when (g, a)
is added to the set R then ¢ is reachable, by some word z; it follows that d(q,a) is
reachable by the word xa. Furthermore, the adding of nodes is repeated until the set
R is closed, that is, for all ¢ € R and a € ¥ the state §(q,a) is also in R. Thus one
cannot reach from any state inside the final R a state outside the final R and therefore

38

the final R consists exactly of the reachable states.

Second one verifies that the final version of v contains exactly the pairs (p,q) €
R x R such that when starting from p or ¢, the behaviour of the automaton is dif-
ferent. When (p,q) are put into 7 at the initialisation then §(p,¢e),d(q,¢) differ in
the sense that one ends up in a rejecting and one ends up in an accepting state, that
is, € witnesses that p, q are states of different behaviour. Now one verifies that this
invariance is kept for the inductive step: When (§(p,a),d(g,a)) € v and (p,q) are
going to be added into v then there is by induction hypothesis a y such that exactly
one of 6(d(p,a),y),d(d(q,a),y) is an accepting state, these two states are equal to
d(p,ay),d0(q,ay) and therefore ay witnesses that p, ¢ are states of different behaviour.

The next part of the verification is to show that v indeed captures all these of
states in R of different behaviour. So assume that y = ajas...a, witnesses that
when starting at p the automaton accepts y and when starting with ¢ then the au-
tomaton rejects y. Thus (0(p,vy),d(q,y)) € 7. Now one shows by induction for
m=n—1,n—2,...,0that (0(p,aias...ay),0(q,a1as...ay)) goes eventually into ~:
by induction hypothesis (0(p, a1as . . . apnami1),0(q, a1as . . . pamy1)) is at some point
of time going into 7 and therefore the pair (0(p, ajas .. .ay),0(q, a1as . . . a,,)) satisfies
that, when applying the symbol a,,.1 to the two states, the resulting pair is in 7,
hence (§(p,aras...an),d(q, a1ay. .. a,)) will eventually qualify in the search condi-
tion and therefore at some time point go into ~. It follows that this also holds for all
m down to 0 by the induction and that (p, q), (¢, p) go into . Thus all pairs of states
of distinct behaviour in R x R go eventually into 7.

Now let < be the linear order on the states of < which is used by the algorithm.
If for a state p there is a state ¢ < p with (p,q) ¢ - then the state ¢ has the same
behaviour as p and is redundant; therefore one picks for)" all those states for which
there is no smaller state of the same behaviour. Note that (p,p) never goes into for
any p € R and therefore for each p there is a smallest ¢ such that (p,q) ¢ ~ and for
each p there is a ¢ € R’ with the same behaviour. In particular s’ exists. Further-
more, one can show by induction for all words that d(s,w) is an accepting state iff
d'(s',w) is one. A more general result will be shown: The behaviour of d(s,w) and
d'(s',w) are not different, that is, (6(s, w),d'(s',w)) ¢ . Clearly (d(s,e),d'(s',¢)) & 7.
Now, for the inductive step, assume that (d(s,w),d’'(s’,w)) ¢ v and a € 3. Now
(0(0(s,w),a),d8(8'(s',w),a)) ¢ ~, that is, have the same behaviour. Furthermore, by
the definition of &, (§(&'(s,w),a),d'(8'(s,w),a)) ¢ =, that is, also have the same
behaviour. Now (§(d(s,w),a),d (d'(s',w),a)) ¢ ~, as 6(d(s,w),a) has the same be-
haviour as §(0'(s',w),a) and §(8'(s',w), a) has the same behaviour as §'(0'(s', w), a).
So the new minimal automaton has the same behaviour as the original automaton. [

Exercise 2.32. Let the following deterministic finite automaton be given:

39

Make an equivalent minimal complete dfa using the algorithm of Myhill and Nerode.

Exercise 2.33. Assume that the alphabet is 3 = {0,1,2,3,4,5,6,7,8,9} and the set
of states is {(a,b,c) : a,b,c € X}. Furthermore assume the transition function § is
given by 6((a,b,c),d) = (b,c,d) for all a,b,c,d € 3, the starting state is (0,0,0) and
that the set of final states is {(1,1,0),(3,1,0),(5,1,0),(7,1,0),(9,1,0)}.

This dfa has 1000 states. Find a smaller dfa for this set and try to get the dfa as
small as possible.

Exercise 2.34. Assume that the alphabet is ¥ = {0,1,2,3,4,5,6,7,8,9} and the set
of states is {(a,b,c) : a,b,c € X}. Furthermore assume the transition function ¢ is
given by 6((a,b,c),d) = (b,c,d) for all a,b,c,d € 3, the starting state is (0,0,0) and
that the set of final states is {(1,2,5),(3,7,5),(6,2,5),(8,7,5)}.

This dfa has 1000 states. Find a smaller dfa for this set and try to get the dfa as
small as possible.

Exercise 2.35. Consider the following context-free grammar:

({S,T,U},{0,1,2,3}, P, S) with P =
{S = TTT|TTU|TUU|UUU, T — 0T|T1|01, U — 2U|U3|23}.

The language L generated by the grammar is reqular. Provide a dfa with the minimal
number of states recognising L.

Exercise 2.36. Consider the following context-free grammar:

({s,T,U},{0,1,2,3,4,5}, P, S) with P =
{S — TS|SU|T23U, T — 0T|T1|01, U — 4U|U5|45}.

The language L generated by the grammar is reqular. Provide a dfa with the minimal
number of states recognising L, the dfa does not need to be complete.

40

Exercise 2.37. Provide a reqular expression for the language from Ezxercise 2.35.
Exercise 2.38. Provide a reqular expression for the language from Fxercise 2.36.

For the following exercises, the task is to use any of the styles above for deterministic
automata (graphs, tables as in Example 2.4 and programs as in Example 2.5). Note
that for the programs, each variable can only hold one of finitely many predefined
values, please specify the range. Furthermore, the programs read the symbols one by
one and only remember what is stored at the variables about them (plus the current
position in the program). There are commands to read the next symbol and to test
whether the input is exhausted.

Exercise 2.39. Provide a dfa (either as table or program or graph) of the set of all
decimal numbers where between between two occurences of a digit d are at least three
other digits.

Exercise 2.40. Provide a dfa (either as table or program or graph) of the set of all
decimal numbers which are not multiples of a one-digit prime number.

Exercise 2.41. Provide a dfa (either as table or program or graph) of the set of all
decimal numbers with at least five decimal digits which are divisible by 8.

Exercise 2.42. Provide a dfa (either as table or program or graph) of the set of all
decimal numbers which have in their decimal representation twenty consecutive odd
digits.

Exercise 2.43. Provide a dfa (either as table or program or graph) of the set of all
octal numbers (digits 0,1,2,3,4,5,6,7) without leading zeroes which are not multiples
of 7.

Exercise 2.44. Consider the automaton ({0,1,2,3},{0,1,2,3},4,0,{1,3}) with §
given in this table.

q type | 0(q,a) fora=0|1[21|3
0 | start, rej 0123
1 acc 1111213
2 rej 21223
3 acc 313133

Make a regular expression for the language L recognised by the dfa.

Exercise 2.45. Let L as in Ezercise 2.44 and make a reqular expression for the
language of words of odd lengths in L.

41

Exercise 2.46. Let L as in Ezercise 2.44 and make a reqular expression for the
language of words of length at least 5 in L.

There are quite simple tasks where an automaton to check this might become much
larger than it is adequate for the case. For example, to check whether a string contains
a symbol twice, one would guess which symbol is twice and then just verify that it
occurs twice; however, a deterministic finite automaton cannot do it and the following
example provides a precise justification. Therefore, this chapter will look into mecha-
nisms to formalise this intuitive approach which is to look at a word like 0120547869
where one, by just looking at it, might intuitively see that the 0 is double and then
verify it with a closer look. Such type of intuition is not possible to a deterministic
finite automaton; however, non-determinism permits to model intuitive decisions as
long as their is a way to make sure that the intuitive insight is correct (like scanning
the word for the twice occurring letter).

Example 2.47. Assume that ¥ has n elements. Consider the set L of all strings
which contain at least one symbol at least twice.

There are at least 2" + 1 sets of the form L,: If x € L then L, = X* else € ¢ L,.
Furthermore, for x ¢ L, ¥ N L, = {a € ¥ : a occurs in z}. As there are 2" subsets of
>, one directly gets that there are 2" states of this type.

On the other hand, one can also see that 2" + 1 is an upper bound. If the dfa has
not seen any symbol twice so far then it just has to remember which symbols it has
seen else the automaton needs just one additional state to go when it has seen some
symbol twice. Representing the first states by the corresponding subsets of > and the
second state by the special symbol #, the dfa would has the following parameters:
Q = Pow(X) U {#}, X is the alphabet, () is the starting state and # is the unique
final state. Furthermore, 0 is is given by three cases: if A C ¥ and a € ¥ — A then
d(A,a) =AU{a},if ACY and a € A then 6(A,a) = #, §(#.,a) = #.

Description 2.48: Non-Deterministic Finite Automaton. A non-deterministic
automaton can guess information and, in the case that it guessed right, verify that a
word is accepting.

A non-deterministic automaton (Q, 3,9, s, F') differs from the deterministic au-
tomaton in the way that 0 is a multi-valued function, that is, for each ¢ €) and
a € ¥ the value §(q,a) is a set of states.

Now one defines the acceptance-condition using the notion of a run: One says a
string qoq; - .. ¢, € Q™! is a run of the automaton on input a; ...a, iff ¢y = s and
Gmi1 € 0(Gm,am1) for all m € {1,... n}; note that the run has one symbol more
than the string processed. The non-deterministic automaton accepts a word w iff
there is a run on the input w whose last state is accepting.

Note that for accepting a word, there needs only to be at least one accepting run;

42

other rejecting runs might also exist. For rejecting a word, all runs which exist must
be rejecting, this includes the case that there is no run at all (neither an accepting
nor a rejecting).

Example 2.49. Consider the following non-deterministic automaton which accepts
all words which have at least four letters and at most four 1’s.

0 0 0 0 0
6 8)<H%
start —{ S 0

On input 00111, accepting runs are ssopqr and soopqr; on input 11111 there is no
accepting run, as the automaton has to advance sopqr and then, on the last input
1, gets stuck as it cannot move. The input 000 has no accepting run, as the run sopgq
does not reach the final accepting state r and all other runs end up in one of the states
s, 0, p without even reaching q. Thus 00111 is accepted and 11111, 000 are rejected by
this nfa.

Example 2.50: Large DFA and small NFA. For the dfa with 2" + 1 states
from Example 2.47, one can make an nfa with n + 2 states (here for n = 4 and
¥ =4{0,1,2,3}). Thus an nfa can be exponentially smaller than a corresponding dfa.

0,1,2,3 0,1,2,3

12,3 0,2,3 0,1,3 0,1,2

In general, () contains () and {a} for all a € ¥ and #; 6(0,a) = {0, {a}}; 6({a},d) is
{a} in the case a # b and is # in the case a = b; §(#,a) = #; () is the starting state;
is the only accepting state.

So the nfa has n+ 2 and the dfa has 2" 4 1 states (which cannot be made better).

43

So the actual size of the dfa is more than a quarter of the theoretical upper bound
2"+2 which will be given by the construction found by Biichi [9, 10] as well as Rabin
and Scott [68]. Their general construction which permits to show that every nfa with
n states is equivalent to a dfa with 2™ states, that is, the nfa and the dfa constructed
recognise the same language.

Theorem 2.51: Determinisation of NFAs [9, 10, 68]|. For each nfa (Q,%,6,s, F)
with n = |Q| states, there is an equivalent dfa whose 2™ states are the subsets Q' of Q,
whose starting state is {s}, whose update-function 0’ is given by §'(Q’,a) ={¢" € Q :
¢ € Q' [¢" € 0(¢',a)]} and whose set of accepting states is F' = {Q' C Q: Q'NF #

0}

Proof. It is clear that the automaton defined in the statement of the theorem is a
dfa: For each set () C @ and each a € X, the function ¢’ selects a unique successor
Q" = 0'(Q,a). Note that @) can be the empty set and that, by the definition of ¢,
§'(0,a) = 0.

Assume now that the nfa accepts a word w = aqas...a,, of m letters. Then
there is an accepting run (qo, q1,- - -, @m) on this word with ¢o = s and ¢, € F. Let
Qo = {s} be the starting state of the dfa and, inductively, Qrr1 = ¢'(Q, ags1) for
k=0,1,...,m—1. One can verify by induction that ¢, € Q for all k € {0,1,...,m}:
This is true for ¢o = s by definition of ()y; for the inductive step, if ¢ € @Qr and
k < m, then g1 € 6(qx,ary1) and therefore griq € Qri1 = 8 (Qg,axps+1). Thus
@ N F contains the element ¢, and therefore @), is an accepting state in the dfa.

For the converse direction on a given word w = aas...a,,, assume that the run
(Qo, @1, - ..,Qm) of the dfa on this word is accepting. Thus there is ¢, € @, N F'.

Now one can, inductively for K = m — 1,m — 2,...,2,1,0 choose a ¢ such that
Qk+1 € 0(Q, agr1) by the definition of ¢’. It follows that gy € Qo and therefore gy = s.
Thus the so defined sequence (qo, q1,--.,¢n) is an accepting run of the nfa on the

word w and the nfa accepts the word w as well.

This shows that the dfa is equivalent to the nfa, that is, it accepts and it rejects
the same words. Furthermore, as an n-element set has 2" subsets, the dfa has 2"
states. 1

Note that this construction produces, in many cases, too many states. Thus one would
consider only those states (subsets of)) which are reached from others previously
constructed; in some cases this can save a lot of work. Furthermore, once the dfa is
constructed, one can run the algorithm of Myhill and Nerode to make a minimal dfa
out of the constructed one.

Example 2.52. Consider the nfa ({s,q},{0,1},9, s, {q}) with §(s,0) = {s, ¢}, §(s,1)

44

= {s} and d(q,a) = 0 for all a € {0,1}.

Then the corresponding dfa has the four states 0, {s}, {q}, {s, ¢} where {q},{s, ¢}
are the final states and {s} is the initial state. The transition function ¢’ of the dfa is
given as

8 (0,a) =0 for a € {0,1},

0'({s},0) = {s,q}, 0'({s}, 1) = {s},

8 ({q},a) =0 for a € {0,1},
0'({s,q},0) = {s,q}, &'({s, 4}, 1) = {s}.

This automaton can be further optimised: The states) and {q} are never reached,
hence they can be omitted from the dfa.

The next exercise shows that the exponential blow-up between the nfa and the dfa is
also there when the alphabet is fixed to ¥ = {0, 1}.

Exercise 2.53. Consider the language {0,1}*-0-{0,1}""1:
(a) Show that a dfa recognising it needs at least 2" states;
(b) Make an nfa recognising it with at most n + 1 states;
(c) Made a dfa recognising it with exactly 2" states.

Exercise 2.54. Find a characterisation when a regular language L is recognised by
an nfa only having accepting states. Examples of such languages are {0,1}*, 0*1*2*
and {1,01,001}* - 0*. The language {00, 11}* is not a language of this type.

Example 2.55. One can generalise the nfa to a machine (Q, %, 6, I, F') where a set [
of starting states replaces the single starting state s. Now such a machine accepts a
string w = ajas ... a; € L iff there is a sequence qoq; . .. ¢; of states such that

Qo €INGEFAY] <ilg1 €0(q, a);

if such a sequence does not exist then the machine rejects the input w. The following
machine with three states recognises the set 0*1* U 2*3*, the nodes are labelled with
the regular expressions denoting the language of the words through which one can
reach the corresponding node.

1 3
start —» start —»
0 1 2 3

45

The corresponding nfa would need 5 states, as one needs a common start state which
the nfa leaves as soon as it reads a symbol.

—— @ @

Exercise 2.56. Let ¥ = {0,1,...,n — 1} and L = {w € X* : some a € ¥ does not
occur in w}. Show that there is a machine like in Example 2.55 with |Q| = n which
recognises L and that every complete dfa recognising L needs 2™ states.

The exact trade-off between the numbers of states of an nfa and of a complete dfa was
determined by Meyer and Fischer [61]. Their construction does not need the above
multiple start states.

Exercise 2.57. Given an nfa ({qo,q1,---,qn-1},{0,1},9,q0,{q0}) with 6(gm,1) =
{@(m+1)modn}> 6(q0,0) =0 and 6(¢m,0) = {qo, gm} for m € {1,2,...,n —1}. Deter-
mine the number of states of an equivalent complete and minimal dfa and explain how
this number is derived.

Theorem 2.58. Fvery language generated by a reqular grammar is also recognised
by an nfa.

Proof. If a grammar has a rule of the form A — w with w being non-empty, one
can add a non-terminal B and replace the rule A — w by A — wB and B — «¢.
Furthermore, if the grammar has a rule A — ajas...a,B with n > 1 then one can
introduce n— 1 new non-terminals C4, Cs, ..., C,_1 and replace the rule by A — a,C1,
Cy — axCy, ..., Ch_q1 — a,B. Thus if L is regular, there is a grammar (N, %, P,.S)
generating L such that all rules in P are either of the form A — B or the form
A — aB or of the form A — € where A, B € N and a € ¥. So let such a grammar be
given.

Now an nfa recognising L is given as (N, %, 4, S, F') where N and S are as in the
grammar and for A € N,a € ¥, one defines

d(A,a) = {B€ N:A="aB in the grammar};
F = {BeN:B="¢)

46

If now w = aqas...a, is a word in L then there is a derivation of the word aqas...a,
of the form

S =* CL1A1 =* CblagAQ =% .= "aqay ... Ap—1 An—l =*aiay... an_lanAn
=" ai1as...a,.

In particular, S =* a1 Ay, A,y =% apmi1Apyg forallm € {1,2,... n—1} and A, =* .
It follows that A, is an accepting state and (S, Ay, Ay, ..., A,) an accepting run of
the nfa on the word aqas ... a,.

If now the nfa has an accepting run (S, Ay, Ay, ..., A,) on a word w = aqyaz ... ay,
then S =* a1 Ay and, for allm € {1,2,... ,n—1}, A, =* a1 Amer and A, = . Tt
follows that w € L as witnessed by the derivation S =* a;A; =" aja34, =" ... =*
a1ay . ..0n 1 A1 =* a1as...a,_10,4,, =* aias...a,. Thus the nfa constructed
recognises the language L. |

Example 2.59. The language L = 0123* has a grammar with terminal alphabet > =
{0,1,2,3}, non-terminal alphabet {S, T}, start symbol S and rules S — 012|0127,
T — 3713

One first updates the grammar such that all rules are of the form A — aB or
A — efor A B € N and a € Y. One possible updated grammar has the non-
terminals N = {S,5",5", 5" T, T'}, the start symbol S and the rules S — 05,
S — 18", 8" —258")2T, S" — ¢, T — 3T|31", T" — «.

Now the non-deterministic finite automaton is given as (N, 3,4, .S,{S"”,T'}) where
6(S,0) = {5}, 6(5,1) = {S5"}, 6(5",2) ={S", 1"}, 6(T,3) ={T, 7'} and 6(A,a) =0
in all other cases.

Examples for accepting runs: For 012, an accepting run is S (0)S" (1) 5" (2) 5"
and for 012333, an accepting run is S (0).S" (1) S” (2)T (3) T (3) T (3)T".

Exercise 2.60. Let the reqular grammar ({S,T},{0,1,2}, P, S) with the rules P being
S — 017|205, T — 01|20S|12T. Construct a non-deterministic finite automaton
recognising the language generated by this grammar.

Exercise 2.61. Consider the regular grammar ({S},{0,1,2,3,4,5,6,7,8,9}, P,.S)
where the rules in P are all rules of the form S — aaaaaS for some digit a and
the rule S — € and let L be the language generated by this grammar. What s the
minimum number of states of a non-deterministic finite automaton recognising this
language L? What is the trade-off of the nfa compared to the minimal dfa for the
same language L? Prove the answers.

Theorem 1.36 showed that a language L is generated by a regular expression iff it has
a regular grammar; Theorem 2.8 showed that if L is recognised by a dfa then it L is

47

also generated by a regular expression; Theorem 2.51 showed that if L is recognised
by an nfa then L is recognised by a dfa; Theorem 2.58 showed if L is generated by
a regular grammar then L is recognised by an nfa. Thus these four concepts are all
equivalent.

Corollary 2.62. A language L is reqular iff it satisfies any of the following equivalent
conditions:

(a) L is generated by a regular expression;

(b) L is generated by a regqular grammar;

(c) L is recognised by a deterministic finite automaton;

(d) L is recognised by a non-deterministic finite automaton;

(e) L and its complement satisfy both the block pumping lemma

(f) L satisfies Jaffe’s pumping lemma;

(g) L has only finitely many derivatives (Theorem of Myhill and Nerode).

It was shown above that deterministic automata can be exponentially larger than
non-deterministic automata in the sense that a non-deterministic automaton with n
states can only be translated into a deterministic complete automaton with 2" states,
provided that one permits multiple start states. One might therefore ask, how do
the other notions relate to the size of states of automata. For the sizes of regular
expressions, they depend heavily on the question of which operation one permits.
Gelade and Neven [33] showed that not permitting intersection and complement in
regular expressions can cause a double exponential increase in the size of the expression
(measured in number of symbols to write down the expression).

Example 2.63. The language L = J,,_,,({0,1}™-{1}-{0,1}*-{10™}) can be written
down in O(n?) symbols as a regular expression but the corresponding dfa has at least
2" states: if x = apay . ..a,—1 then 10™ € L, iff z10™ € L iff apa; ...a,—110™ € L iff
ay, = 1. Thus for z = apa; ...a,—1 and y = byb; ...b,_1, it holds that L, = L, iff
Vm < n[10™ € L, < 10™ € L,| iff Vm < n[a,, = b,,] iff z = y. Thus the language L
has at least 2" derivatives and therefore a dfa for L needs at least 2" states.

One can separate regular expressions with intersections even from nfas over the unary
alphabet {0} as the following theorem shows; for this theorem, let pi, po,...,p, be
the first n prime numbers.

Theorem 2.64. The language L, = {0} N {02}t n...N {0} has a regular
expression which can be written down with approzimately O(n?log(n)) symbols if one
can use intersection. However, every nfa recognising L, has at least 2" states and

48

every reqular expression for L, only using union, concatenation and Kleene star needs
at least 2" symbols.

Proof. It is known that p, < 2-n-log(n) for almost all n. Each set 0P can be written
down as a regular expression consisting of two set brackets and p,, zeroes in between,
if one uses Kleene star and not Kleene plus, one uses about 2p,, +6 symbols (two times
0P and four set brackets and one star and one concatenation symbol, where Kleene
star and plus bind stronger than concatenation, union and intersection). The n terms
are then put into brackets and connected with intersection symbols what gives a total
of up to 2n - p, + 3n symbols. So the overall number of symbols is O(n?log(n)) in
dependence of the parameter n.

The shortest word in the language must be a word of the form 0* where each of
the prime numbers py, po, ..., p, divides k; as all of them are distinct primes, their
product is at least 2" and the product divides k, thus k£ > 2". In an nfa, the length
of the shortest accepted word is as long as the shortest path to an accepting state; in
this path, each state is visited at most once and therefore the length of the shortest
word is smaller than the number of states. It follows that an nfa recognising L must
have at least 2" states.

If a regular expression generating at least one word and only consisting of listed
finite sets connected with union, concatenation, Kleene plus and Kleene star, then one
can prove that the shortest word generated by o is at most as long as the length of the
expression. By way of contradiction, assume that o be the length-lexicographically
first regular expression such that o generates some words, but all of these are longer
than 0. Let sw(o) denote the shortest word generated by o (if it exists) and if there
are several, sw(o) is the lexicographically first of those.

e If o is a list of words of a finite set, no word listed can be longer than o, thus
|[sw(o)] < |o].

If o = (7 Up) then at least one of 7,p is non-empty, say 7. As |7| < |o|,
[sw(7)| < |7]. Now [sw(o)| < [sw(r)| < [r] < o].

If 0 = (7 p) then |7, |p| < |o] and |sw(o)| = |sw(T)| + |sw(p)]|, as the shortest
words generated by 7 and p concatenated give the shortest word generated by
o. It follows that |sw(T)| < |7], [sw(p)| < |p| and |sw(o)| = |sw(T)| + |sw(p)| <

7|+ ol < lol.
o If 0 = 7" then € = sw(o) and clearly |sw(o)| < |o|.
e If 0 = 71 then sw(o) = sw(7) and |7| < |o|, thus |sw(o)| = |[sw(7)| < |7| < |o].

Thus in all five cases the shortest word generated by ¢ is at most as long as o.
It follows that any regular expression generating L and consisting only of finite sets,
union, concatenation, Kleene star and Kleene plus must be at least 2" symbols long. |

49

Exercise 2.65. Assume that a reqular expression uses lists of finite sets, Kleene star,
union and concatenation and assume that this expression generates at least two words.
Prove that the second-shortest word of the language generated by o is at most as long
as 0. Either prove it by structural induction or by an assumption of contradiction as
in the proof before; both methods are nearly equivalent.

Exercise 2.66. [s Exercise 2.65 also true if one permits Kleene plus in addition to
Kleene star in the regqular expressions? Fither provide a counter ezample or adjust the
proof. In the case that it is not true for the bound |o|, is it true for the bound 2|c|?
Again prove that bound or provide a further counter example.

Example 2.67: Ehrenfeucht and Zeiger’s Exponential Gap [26]. Assume that
the alphabet ¥ consists of all pairs of numbers in {1,2,...,n} x {1,2,...,n}. Then a
complete dfa with n+1 states accepts all sequences of the form (1, aq), (a1, az), (az, as),
ooy (@m_1, ap,) for any numbers aq, as, . . ., a,,, where the automaton has the following
transition-function: If it is in state a on input (a, b) then it goes to state b else it goes
to state 0. The starting state is 1; the set {1,2,...,n} is the set of accepting states
and once it reaches the state 0, the automaton never leaves this state. Ehrenfeucht
and Zeiger showed that any regular expression for this language needs at least 271
symbols.

If one would permit intersection, this gap would not be there for this example, as
one could write

({(a,b) - (b,c) :a,b,c e {1,2,...;n}}*- (eU{(a,b) :a,b € {1,2,...,n}}))
N ({(a,b):a,be {1,2,...,n}}-{(a,b)-(b,c) : a,b,c € {1,2,... ,n}}*-(eU
{(a,b) :a,be{1,2,...,n}}))

to obtain the desired expression whose size is polynomial in n.
Exercise 2.68. Assume that an nfa of k states recognises a language L. Show that
the language does then satisfy the Block Pumping Lemma (Theorem 2.9) with con-

stant k+ 1, that is, given any words ug, Uy, . .., Uk, Ugr1 Such that their concatenation
UpUy - . . UpUpi1 @S in L then there are1,j with 0 <1< j <k+1 and

*
UoUT - - - ui,l(uiuiﬂ c. Ujfl) Uil - - Uk+1 - L.
Exercise 2.69. Given numbers n,m with n > m > 2, provide an example of a reqular

language where the Block pumping constant is exactly m and where every nfa needs
at least n states.

In the following five exercises, one should try to find small nfas; however, full marks
are also awarded if the nfa is small but not the smallest possible.

50

Exercise 2.70. Consider the language H = {vawa : v,w € ¥*,a € X}. Let n be the
size of the alphabet ¥ and assume n > 2. Determine the size of the smallest dfa of H
in dependence of n and give a good upper bound for the size of the nfa. Explain the
results and construct the automata for ¥ = {0, 1}.

Exercise 2.71. Consider the language I = {ua : u € (¥ — {a})*,a € X}. Let n be
the size of the alphabet ¥ and assume n > 2. Determine the size of the smallest dfa
of I in dependence of n and give a good upper bound for the size of the nfa. Explain
the results and construct the automata for ¥ = {0,1}.

Exercise 2.72. Consider the language J = {abuc : a,b € ¥, u € ¥* ¢ € {a,b}}.
Let n be the size of the alphabet ¥ and assume n > 2. Determine the size of the
smallest dfa of J in dependence of n and give a good upper bound for the size of the
nfa. Ezplain the results and construct the automata for ¥ = {0,1}.

Exercise 2.73. Consider the language K = {avbwc : a,b € ¥, v,w € ¥*, ¢ ¢ {a,b}}.
Let n be the size of the alphabet ¥ and assume n > 2. Determine the size of the
smallest dfa of K in dependence of n and give a good upper bound for the size of the
nfa. Explain the results and construct the automata for ¥ = {0,1}.

Exercise 2.74. Consider the language L = {w : Ja,b € ¥ [w € {a,b}*]}. Let n be
the size of the alphabet ¥ and assume n > 2. Determine the size of the smallest dfa
of L in dependence of n and give a good upper bound for the size of the nfa. Explain
the results and construct the automata for ¥ = {0,1,2}.

Exercise 2.75. Show that an nfa for the language {0000000}* U {00000000}* needs
only 16 states while the constant for Jaffe’s pumping lemma is 56.

Exercise 2.76. Generalise the idea of Ezxercise 2.75 to show that there is a family
L,, of languages such that an nfa for L, can be constructed with O(n®) states while
Jaffe’s pumping lemma needs a constant of at least 2". Provide the family of the L,
and explain why it satisfies the corresponding bounds.

Exercise 2.77. Determine the constant of Jaffe’s pumping lemma and the sizes of

minimal nfa and dfa for ({00} - {00000}) U ({00}* N {000}*).

o1

3 Combining Languages

One can form new languages from old ones by combining them with basic set-theore-
tical operations. In most cases, the complexity in terms of the level of the Chomsky
hierarchy does not change.

Theorem 3.1: Basic Closure Properties. Assume that L, H are languages which
are on the level CHk of the Chomsky hierarchy. Then the following languages are also
on the level CHk: LUH, L - H and L*.

Description 3.2: Transforming Regular Expressions into Automata. First
it is shown how to form dfas which recognise the intersection, union or difference of
given sets. So let (Q1,3, 01,1, F1) and (Qs, 3, da, S2, F3) be dfas which recognise L;
and Ls, respectively.

Let (Ql X Qg, E, (51 X (52, (Sl, 82), F) with (51 X 52)(((]1, QQ), a) = ((51((]1, CI,), (52((]2, Cl))
be a product automaton of the two given automata; here one can choose F' such that
it recognises the union or intersection or difference of the respective languages:

e Union: F'= F; X Q2 UQq X Fy;

e Intersection: F = F} X Fy = F} X Q2N Q1 X Fy;

e Difference: F'= F} x (Q2 — F);

e Symmetric Difference: F'= F} x (Qy — F3) U (Q1 — F}) X Fy.

For example, let the first automaton recognise the language of words in {0, 1,2} with
an even number of 1s and the second automaton with an even number of 2s. Both
automata have the accepting and starting state s and a rejection state t; they change
between s and ¢ whenever they see 1 or 2, respectively. The product automaton is
now given as follows:

52

The automaton given here recognises the union. For the other operations like Kleene
star and concatenation, one needs to form an nfa recognising the corresponding lan-
guage first and can then use Biichi’s construction to transform the nfa into a dfa; as
every dfa is an nfa, one can directly start with an nfa.

So assume (Q, 3,0, s, F) is an nfa recognising L. Now L* is recognised by (Q U
{§'},%,¢,5,{s'}) where &' = U{(s',a,p) : (s,a,p) € 0} U{(p,a,s): (p,a,q) € for
some q € F}U{(¢,a,s") : a € L}. The last part of the union is to add all one-symbol
words from L. This automaton has a new starting state s’ which is accepting, as
¢ € L*. The other states in () are kept so that the automaton can go through the
states in () in order to simulate the original automaton on some word w until it is
going to process the last symbol when it then returns to s; so it can process sequences
of words in () each time going through s’. After the last word w,, of wyw, ... w, € L*,
the automaton can either return to ' in order to accept the word. Here an example.

0

start —

The next operation with nfas is the Concatenation. Here assume that (Q1, %, d1, s1, F1)
and (Q2, X, 02, s2, F») are nfas recognising Ly and Ly with Q1 N Q2 = () and assume
e & Ly. Now (Q1 U Q9,%,0,s1, Fy) recognises Ly - Ly where (p,a,q) € § whenever
(p,a,q) € 61 Udy or p € Fy A (S2,a,q) € ds.
Note that if Ly contains € then one can consider the union of Ly and Ly - (Lo —{¢e}).
An example is the following: L; - Ly with L; = {00,11}* and L, = 2*110%.

53

start —

2
:

Last but not least, one has to see how to build an automaton recognising a finite set, as
the above only deal with the question how to get a new automaton recognising unions,
differences, intersections, concatenations and Kleene star of given regular languages
represented by their automata. For finite sets, one can simply consider all possible
derivatives (which are easy to compute from a list of strings in the language) and then
connect the corresponding states accordingly. This would indeed give the smallest dfa
recognising the corresponding set.

Alternatively, one can make an automaton recognising the set {w} and then form
product automata for the unions in order to recognise sets of several strings. Here
a dfa recognising {ajas...a,} for such a string of n symbols would have the states
40,41, - - - »@n plus r and go from ¢, to ¢, 11 on input a,,+; and in all other cases would
go to state r. Only the state ¢, is accepting.

Exercise 3.3. The above gives upper bounds on the size of the dfa for a union, in-
tersection, difference and symmetric difference as n® states, provided that the original
two dfas have at most n states. Give the corresponding bounds for nfas: If L and H
are recognised by nfas having at most n states each, how many states does one need
at most for an nfa recognising (a) the union L U H, (b) the intersection LN H, (c)
the difference L — H and (d) the symmetric difference (L — H)U (H — L)? Give the
bounds in terms of “linear”, “quadratic” and “exponential”. Explain the bounds.

Exercise 3.4. Let ¥ = {0,1,2,3,4,5,6,7,8,9}. Construct a (not necessarily com-
plete) dfa recognising the language (X - {aa : a € £}*) N {aaaaa : a € £}*. It is not
needed to qive a full table for the dfa, but a general schema and an explanation how
it works.

o4

Exercise 3.5. Make an nfa for the intersection of the following languages: {0,1,2}*-
{001} -{0,1,2}*-{001} - {0, 1,2}*; {001,0001,2}*; {0,1,2}* - {00120001} - {0, 1,2}*.

Exercise 3.6. Make an nfa for the union Ly U Ly U Ly with L, = {0,1,2}* - {aa} -
{0,1,2}* - {aa} - {0,1,2}* fora € {0,1,2}.

Exercise 3.7. Consider two context-free grammars with terminals 3, disjoint non-
terminals N1 and Ns, start symbols S; € N1 and Sy € Ny and rule sets Py and Py
which generate L and H, respectively. Ezplain how to form from these a new context-
free grammar for (a) LUH, (b) L-H and (c) L*.

Write down the context-free grammars for {0"1?" : n € N} and {0"13" : n € N}
and form the grammars for the union, concatenation and star explicitly.

Example 3.8. The language L = {0"1"2" : n € N} is the intersection of the context-
free languages {0}* - {1"2" : n € N} and {0"1" : n € N} - {2}*. By Exercise 1.49 this
language is not context-free.

Hence L is the intersection of two context-free languages which is not context-
free. However, the complement of L is context-free. The following grammar generates
{0*1™2" : k < n}: the non-terminals are S, T with S being the start symbol, the
terminals are 0, 1,2 and the rules are S — 052|52|72, T — 17T'|e. Now the comple-
ment of L is the union of eight context-free languages. Six languages of this type:
{0F1m2" « k< m}, {0F1™2" : k > m}, {0F1™2" : k < n}, {0F1m2" : k > n},
{0F1m2" : m < n} and {0F1™2" : m > n}; furthermore, the two regular languages
{0,1,2}*-{10,20,21}-{0,1,2}* and {e}. So the so-constructed language is context-free
while its complement L itself is not.

Although the intersection of two context-free languages might not be context-free,
one can still show a weaker version of this result. This weaker version can be useful
for various proofs.

Theorem 3.9. Assume that L is a context-free language and H is a reqular language.
Then the intersection L N H is also a context-free language.

Proof. Assume that (N,X, P,S) is the context-free grammar generating L and
(@Q,%,6,s, F) is the finite automaton accepting H. Furthermore, assume that every
production in P is either of the form A — BC or of the form A — w for A, B,C € N
and w € ¥*.

Now make a new grammar (Q x N x QU {S}, %, R, S) generating L N H with the
following rules:

e S—(s,5,q) forall g€ F;

95

e (p,A q) = (p,B,7)(r,C,q) for all p,q,r € @ and all rules of the form A — BC
in P;
e (p,A q) = wforall p,qg € Q and all rules A — w in P with d(p,w) = gq.

For each A € N, let Ly = {w € ¥* : A =* w}. For each p,q € Q, let H,, = {w €
¥*: §(p,w) = q}. Now one shows that (p, A, q) generates w in the new grammar iff
weE LyN Hpﬂ.

First one shows by induction over every derivation-length that a symbol (p, A, q)
can only generate a word w iff 6(p,w) = ¢ and w € Ly. If the derivation-length
is 1 then there is a production (p, A,q) — w in the grammar. It follows from the
definition that §(p,w) = g and A — w is a rule in P, thus w € L,. If the derivation-
length is larger than 1, then one uses the induction hypothesis that the statement is
already shown for all shorter derivations and now looks at the first rule applied in
the derivation. It is of the form (p, A,q) — (¢, B,7)(r,C, q) for some B,C € N and
r € . Furthermore, there is a splitting of w into uv such that (g, B,r) generates
u and (r,C,q) generates v. By induction hypothesis and the construction of the
grammar, u € Lg, v € Lg, d(p,u) = r, 6(r,v) = ¢ and A — BC is a rule in P.
It follows that A = BC =* wv in the grammar for L and w € L,4. Furthermore,
d(p,uv) = §(r,v) = ¢, hence w € H,,. This completes the proof of this part.

Second one shows that the converse holds, now by induction over the length of
derivations in the grammar for L. Assume that w € Ly and w € H,,. If the
derivation has length 1 then A — w is a rule the grammar for L. As d(p,w) = ¢, it
follows that (p, A,q) — w is a rule in the new grammar. If the derivation has length
n > 1 and the proof has already been done for all derivations shorter than n, then
the first rule applied to show that w € L4 must be a rule of the form A — BC.
There are u € Lg and v € Lo with w = wv. Let r = §(p,u). It follows from the
definition of ¢ that ¢ = §(r,v). Hence, by induction hypothesis, (p, B, r) generates u
and (r,C,q) generates v. Furthermore, the rule (p, A,q) — (p, B,r)(r,C,q) is in the
new grammar, hence (p, A, q) generates w = uv.

Now one has for each p,qg € Q, A € N and w € ¥* that (p, A, q) generates w iff
w € LaN Hp, Furthermore, in the new grammar, S generates a string w iff there is
a q € F with (s,S,q) generating w iff w € Lg and §(s,w) € F iff w € Lg and there
isaqge F withwe Hy, iff we LN H. This completes the proof. 1

Exercise 3.10. Recall that the language L of all words which contain as many 0s as 1s
is context-free; a grammar for it is ({S},{0,1},{S — S5||051|150},.S). Construct
a context-free grammar for L N (0017)*.

Exercise 3.11. Let again L be the language of all words which contain as many 0s
as 1s. Construct a context-free grammar for L N 0*1*0*1*.

56

Theorem 3.12. The concatenation of two context-sensitive languages is context-
sensitive.

Proof. Let L; and Ly be context-sensitive languages not containing € and consider
context-sensitive grammars (N1, %, P, S1) and (No, X, Py, Ss) generating L; and Lo,
respectively, where N3 N Ny = () and where each rule [— r satisfies |I| < |r| and
[€ N for the respective e € {1,2}. Let S ¢ N; U N, UX. Now the automaton

(N1UN2U{S},2,P1UP2U{S—>5152},5)

generates Ly - Ly: If v € Ly and w € Ly then S = 5155 =* vS3 =* vw. Furthermore,
the first rule has to be S = 515, and from then onwards, each rule has on the left
side either [€ Ny so that it applies to the part generated from S; or it has in the
left side [€ NJ so that [is in the part of the word generated from S5. Hence every
intermediate word z in the derivation is of the form zy = 2z with S; =* x and S5 =* .

In the case that one wants to form (L; U{e})- Ly, one has to add the rule S — S,
for Ly - (LyU{e}), one has to add the rule S — S; and for (L; U{e}) - (L2 U{e}), one
has to add the rules S — 51|52/ to the grammar. 1

As an example consider the following context-sensitive grammars generating two sets
Ly and L not containing the empty string €, the second grammar could also be
replaced by a context-free grammar but is here only chosen to be context-sensitive:

o ({S1,11,U1,V1},{0,1,2,3,4}, P, S1) with Py containing the rules S; — TiU;
Visy | TihWA, Uy, — UyTy, Thvi — Vi, Uy — ThO,, UV — WUy,
v, — 1y, Vi, — U\Vy, Ty — 0, Vi — 1, U; — 2 generating all words with
the same nonzero number of Os, 1s and 2s;

o ({SQ,TQ, U2}7 {0, 1, 2, 3,4}7P27 SQ) with B containing the rules SQ — UQTQSQ |
UsT;, UTy — ToUy, ToUy — UsTs, Uy — 3, Ty — 4 generating all words with
the same nonzero number of 3s and 4s.

The grammar ({5, Sy, Ty, Uy, Vi, S2, T, Us},{0,1,2, 3,4}, P, S) with P containing S —
518, S1 = TWULViS |/ IOy, ThUy — Uy, oV — ViTh, Uy — WUy, UiV —
‘/1U1, ‘/1T1 — Tl‘/ly ‘/IUI — Ul‘/l, T — O, Vvl — 1, U1 — 2, SQ — UQTQSQ‘UQTQ,
UsTy — ThoUs, ToUy — UsTy, Uy — 3, Ty — 4 generates all words with consisting of n
0s, 1s and 2s in any order followed by m 3s and 4s in any order with n,m > 0. For
example, 01120234434334 is a word in this language. The grammar is context-sensitive
in the sense that |I| < |r| for all rules [— r in P.

Theorem 3.13. If L is context-sensitive so is L*.

Proof. Assume that (Ny, X, Py, S1) and (Na, X, P, Ss) are two context-sensitive gram-
mars for L with Ny N Ny = () and all rules | — r satisfying |I| < |r| and [€ N{ or

o7

| € N;°, respectively. Let S, S” be symbols not in N; U No U X.

The new grammar is of the form (N; UN,U{S, S}, ¥, P, S) where P contains the
rules S — S’|e and S" — 515955 | 5152 | Sp plus all rules in P, U Ps.

The overall idea is the following: if wq,ws, ..., ws, are non-empty words in L,
then one generates wyws ... wsy, by first generating the string (S;5;)" using the rule
S — 5, n—1 times the rule S’ — 51555 and one time the rule 8" — S515;. After-
words one derives inductively S; to wy, then the next S, to ws, then the next S; to ws,
..., until one has achieved that all S; and Sy are transformed into the corresponding
Wy,

The alternations between S; and S, are there to prevent that one can non-terminals
generated for a word wy, and for the next word w1 mix in order to derive something
what should not be derived. So only words in L* can be derived. |

Exercise 3.14. Recall that the language L = {0"1"2" : n € N} is context-sensitive.
Construct a context-sensitive grammar for L*.

Theorem 3.15. The intersection of two context-sensitive languages is context-sensi-
tive.

Proof Sketch. Let (Ng, X, Py, S) be grammars for L; and L,. Now make a new
non-terminal set N = (N7 UX U {#}) x (No U X U {#}) with start symbol (g) and
following types of rules:

(a) Rules to generate and manage space;

(b) Rules to generate a word v in the upper row;

(c) Rules to generate a word w in the lower row;

(d) Rules to convert a string from N into v provided that the upper components and
lower components of the string are both v.

(2): (3) = (3) (ﬁ% for producing space; (3) (%) = (3) (&) and (&) () = (4)(¢) for
space management.

(b) and (c): For each rule in P, for example, for AB — CDE € P;, and all symbols
F.G,H,...in Ny, one has the corresponding rule (?) (g) (fl) — (g) (g) (5) So rules
in P are simulated in the upper half and rules in P, are simulated in the lower half

and they use up # if the left side is shorter than the right one.
(d): Each rule (%) — a for a € ¥ is there to convert a matching pair (¢) from ¥ x ¥
(a nonterminal) to a (a terminal).

The idea of the derivation of a word w is then to first use rules of type (a) to produce

a string of the form (g) (ﬁ)m'_1 and afterwards to use the rules of type (b) to derive

58

the word w in the upper row and the rules of type (c¢) to derive the word w in the
lower row; these rules are used in combination with rules for moving # to the front
in the upper or lower half. If both derivations have produced terminal words in the
upper and lower half (terminals in the original grammar, not with respect to the new
intersection grammar) and if these words match, then one can use the rules of type
(d) which are (Z) — a for terminals a to indeed derive w. However, if the derivations
of the words in the upper row and lower row do not match, then the rules of type (d)
cannot derive any terminal word, as there are symbols of the type (Z) for different
terminals a,b in the original grammar. Thus only words in the intersection can be
derived this way. If € is in the derivation, some special rule can be added to derive
¢ directly from a new start state which can only be mapped to either ¢ or (g) by a
derivation rule. |

Example 3.16. Let Eq,; be the language of all non-empty words w over ¥ such that
w contains as many a as b where a,b € X. Let ¥ = {0,1,2} and L = Eqp; N Eqa.
The language L 1is context-sensitive.

Proof. First one makes a grammar for Eq,; where ¢ stands for any symbol in
Y —{a,b}. The grammar has the form

({S},%,{S — SS|aSblbSalab|balc}, S)

and one now makes a new grammar for the intersection as follows: The idea is to pro-
duce two-componented characters where the upper component belongs to a derivation
of Eqp; and the lower belongs to a derivation of Eqps. Furthermore, there will in
both components be a space symbol, #, which can be produced on the right side of
the start symbol in the beginning and later be moved from the right to the left. Rules
which apply only to the upper or lower component do not change the length, they just
eat up some spaces if needed. Then the derivation is done on the upper and lower part
independently. In the case that the outcome is on the upper and the lower component
the same, the whole word is then transformed into the corresponding symbols from
3.

The non-terminals of the new grammar are all of the form (2) where A, B €
{S,#,0,1,2}. In general, each non-terminal represents a pair of a symbols which
can occur in the upper and lower derivation; pairs are by definition different from
terminals in ¥ = {0, 1,2}. The start symbol is (g) The following rules are there:

1. The rule (g) — (g) (i) This rule permits to produce space right of the start

symbol which is later used independently in the upper or lower component.

For each symbols A, B,C in {S,#,0,1,2} one introduces the rules (g) (ﬁ) —

(ﬁ) (é) and (é) (i) — (i) (g) which enable to bring, independently of each

other, the spaces in the upper and lower component from the right to the left.

59

2. The rules of Eqp; will be implemented in the upper component. If a rule of the
form [— r has that ||+ k = |r| then one replaces it by I#* — r. Furthermore,
the rules have now to reflect the lower component as well, so there are entries
which remain unchanged but have to be mentioned. Therefore one adds for each
choice of A, B,C € {S,#,0, 1,2} the following rules into the set of rules of the
grammar:

(DG = QG QG @~ G E G E)
(D@ = WG GG, Q) =)

3. The rules of Fqq 2 are implemented in the lower component and one takes again
for all A, B,C € {S,#,0,1,2} the following rules into the grammar:

(5 = (G OEE) = QEE) T EE)E):
(5)E) = ©OC) TG, () = O

4. To finalise, one has the rule (Z) — a for each a € ¥, that is, the rules (8) — 0,

(}) — 1, (;) — 2 in order to transform non-terminals consisting of matching
placeholders into the corresponding terminals. Non-matching placeholders and
spaces cannot be finalised, if they remain in the word, the derivation cannot

terminate.

To sum up, a word w € ¥* can only be derived iff w is derived independently in the
upper and the lower component of the string of non-terminals according to the rules
of Eqo1 and Fqpo. The resulting string of pairs of matching entries from X is then
transformed into the word w.

The following derivation of the word 011022 illustrates the way the word is gen-
erated: in the first step, enough space is produced; in the second step, the upper
component is derived; in the third step, the lower component is derived; in the fourth
step, the terminals are generated from the placeholders.

L) =G0 =@ =OHGOE=@OHEOEE =

60

4 0() ()G G) = 010) ()G 6) = 011[) () () = 0110G) () =

01102(3) = 011022.

In this derivation, each step is shown except that several moves of characters in
components over spaces are put together to one move. |

Exercise 3.17. Consider the language L = {00} -{0,1,2,3}*U{1,2,3}-{0,1,2,3}*U
{0,1,2,3}*-{02,03, 13, 10, 20, 30, 21, 31,32} - {0,1,2,3}* U {e} U {01"2"3" : n € N}.
Which of the pumping conditions from Theorems 1.41 (a) and 1.41 (b), Corollary 1.42
and Theorem 2.9 does the language satisfy? Determine its exact position in the Chom-
sky hierarchy.

Exercise 3.18. Let ™ be the mirror image of z, so (01001)™ = 10010. Further-
more, let L™ = {x™ : z € L}. Show the following two statements:
(a) If an nfa with n states recognises L then there is also an nfa with up to n + 1

states recognising L™
(b) Find the smallest nfas which recognise L = 0*(1* U 2*) as well as L™.

Description 3.19: Palindromes. The members of the language {z € ¥* : z = 2™}
are called palindromes. A palindrome is a word or phrase which looks the same from
both directions.

An example is the German name “OTTO”; furthermore, when ignoring spaces
and punctuation marks, a famous palindrome is the phrase “A man, a plan, a canal:
Panama.” This palindrome was from Leigh Mercer (1893-1977), a British hobby-
writer, who created lots of palindromes, Eckler [22] lists at the end of his article 100
of them.

The grammar with the rules S — aSalaalale with a ranging over all members of
Y. generates all palindromes; so for ¥ = {0, 1,2} the rules of the grammar would be
S —050[151]252[00|11]22|0|1]|2]e.

The set of palindromes is not regular. This can easily be seen by the pumping
lemma, as otherwise L N0*10* = {0"10™ : n € N} would have to be regular. However,
this is not the case, as there is a constant & such that one can pump the word 0¥10*
by omitting some of the first k& characters; the resulting word 0"10* with h < k is not
in L as it is not a palindrome. Hence L does not satisfy the pumping lemma when
the word has to be pumped among the first k& characters.

Exercise 3.20. Let w € {0,1,2,3,4,5,6,7,8,9}* be a palindrome of even length and
n be its decimal value. Prove that n is a multiple of 11. Note that it is essential that
the length is even, as for odd length there are counter examples (like 111 and 202).

61

Exercise 3.21. Given a context-free grammar for a language L, is there also one
for LN L™ 2 If so, explain how to construct the grammar; if not, provide a counter
example where L is context-free but L N L™ is not.

Exercise 3.22. Is the following statement true or false? Prove the answer: Given a
language L, the language L N L™ equals to {w € L : w is a palindrome}.

Exercise 3.23. Let L = {w € {0,1,2}* : w = w™} and consider H = L N
{012,210,00,11,22}*N ({0, 1}*-{1,2}*-{0,1}*). This is the intersection of a context-
free and reqular language and thus context-free. Construct a context-free grammar for

H.

Definition 3.24. Let PUMPy,,, PUMPy and PUMPy be the classes of languages
which can be pumped somewhere as formalised in Corollary 1.42, pumped at the start
as formalised in Theorem 1.41 (a) and pumped according to a splitting in blocks as
described in the Block Pumping Lemma (Theorem 2.9), respectively.

The proof of Theorem 1.41 (a) showed that when L and H are in PUMPy; then so
are LUH, L-H, L* and L*.

Proposition 3.25. The classes PUMPy,, and PUMPg are closed under union, con-
catenation, Kleene star and Kleene plus.

The next example establishes that these two classes are not closed under intersection,
even not under intersection with regular languages.

Example 3.26. Consider L = {0"1%2™3" : h = 0 or k = m = n} and consider
H = {00} - {1}*-{2}* - {3}*. The language L is in PUMPy, and PUMP,; and so is
the language H as the latter is regular; however, the intersection LN H = {0?1"2"3" :
n > 0} does not satisfy any pumping lemma. Furthermore, L™ is not in PUMP,;.

Proposition 3.27. If L is in PUMP,,, so is L™ ; if L is in PUMPy so is L™.

Exercise 3.28. Show that PUMPy; is closed under union and concatenation. Fur-
thermore, show that the language L = {v3w4 : v,w € {0,1,2}* and if v,w are both
square-free then |v| # |w| or v =w} is in PUMPy, while L™ and L* are not.

Theorem 3.29: Chak, Freivalds, Stephan and Tan [13]. If L, H are in PUMPy,
sois LN H.

Proof. The proof uses Ramsey’s Theorem of Pairs. Recall that when one splits a word
x into blocks g, u1, . . ., u, then the borders between the blocks are called breakpoints;

62

furthermore, uy, ..., u,_1 should not be empty (otherwise one could pump the empty
block).

Ramsey’s Theorem of pairs says now that for every number ¢ there is a number
¢ > ¢ such that given a word x with a set I of ¢ breakpoints, if one colours each
pair (i,7) of breakpoints (pairs have always i strictly before j) in one of the colours
“white” and “red”, then one can select a subset J C I of ¢ breakpoints and a colour
q € {white,red} such that each pair of the breakpoints in J has the colour q.

Now the idea is the following: Let ¢ be a common upper bound of the two block
pumping constants for L and H, this ¢ is then also a valid block pumping constant.
Then choose ¢ according to Ramsey’s Theorem of Pairs and consider a word x € LNH
split into ¢ + 1 parts by a set I of ¢ breakpoints. Now for each pair of breakpoints
1,7 € I splitting x into u, v, w, let the colour “white” denote that u - v*-w C L and
“red” that this is not the case. By Ramsey’s Theorem of Pairs there is a subset J C [
of ¢ breakpoints which split x and a colour ¢ such that each pair of breakpoints in .J
has colour ¢q. As J consists of ¢ breakpoints, there must be a pair (4, j) of breakpoints
in J splitting z into u-v-w with v-v*-w C L, thus the colour ¢ is white and therefore
every pair of breakpoints in J has this property.

Now, as ¢ is also the block pumping constant for H, there is a pair (i,j) of
breakpoints in J which splits the word into w,v,w such that u -v*-w C H. As
seen before, u - v* - w C L and thus v -v*-w C LN H. Thus L N H is satisfies the
Block Pumping Lemma with constant ¢ and L N H is in PUMPy,;. |

A linear grammar is a grammar where every rule is either of the form A — w or
of the form A — vBw; here A, B are nonterminals and u, v, w are terminal words.
Languages generated by linear grammars are called linear languages. An example for
a linear language is the language of all palindromes; this example shows also that such
languages do not need to be regular.

Exercise 3.30. Show that the intersection of a linear language and a reqular language
15 linear.

A linear grammar is called balanced iff for every rule of the form A — vBw it holds
that |v| = |w| and a language is called balanced linear iff it is generated by a balanced
linear grammar.

Exercise 3.31. Is the intersection of two balanced linear languages again balanced
linear? Prove the answer.

Exercise 3.32. Provide an example of a language which is linear but not balanced
linear. Prove the answer.

63

In the following, one considers regular expressions consisting of the symbol L of the
language of palindromes over {0, 1,2} and the mentioned operations. What is the
most difficult level in the hierarchy “regular, linear, context-free, context-sensitive”
such expressions can generate. It can be used that the language {10°10710%1 : i # j,
i # k,j # k} is not context-free.

Exercise 3.33. Determine the maximum possible complexity of the languages given
by expressions containing L and U and finite sets.

Exercise 3.34. Determine the mazimum possible complexity of the languages given
by expressions containing L and U and - and Kleene star and finite sets.

Exercise 3.35. Determine the maximum possible complezity of the languages given
by expressions containing L and U and - and N and Kleene star and finite sets.

Exercise 3.36. Determine the mazimum possible complexity of the languages given
by expressions containing L and - and set difference and Kleene star and finite sets.

64

Selftest 3.37. Consider the language L of all words of the form uwvvw with u,v,w €
{0,1,2}* and 0 < |v| < 1000000. Is this language (a) regular or (b) context-free and
not reqular or (c) context-sensitive and not context-free? Choose the right option and
explain the answer.

Selftest 3.38. Consider the language L from Selftest 3.37. Does this language satisfy
the traditional pumping lemma (Theorem 1.41 (a)) for reqular languages? If so, what
is the optimal constant?

Selftest 3.39. Construct a deterministic finite automaton which checks whether a
decimal number is neither divisible by 3 nor by 5. This automaton does not need to
exclude numbers with leading zeroes. Make the automaton as small as possible.

Selftest 3.40. Construct by structural induction a function F' which translates reqular
expressions for subsets of {0,1,2,...,9}* into reqular expressions for subsets of {0}*
such that the language of F (o) contains the word 0™ iff the language of o contains
some word of length n.

Selftest 3.41. Assume that an non-deterministic finite automaton has 1000 states
and accepts some word. How long is, in the worst case, the shortest word accepted by
the automaton?

Selftest 3.42. What is the best block pumping constant for the language L of all
words which contain at least three zeroes and at most three ones?

Selftest 3.43. Construct a context-free grammar which recognises all the words w €
{00,01,10, 11}* which are not of the form vv for any v € {0,1}*.

Selftest 3.44. Construct a constext-sensitive grammar which accepts a word iff it
has the same amount of 0, 1 and 2.

Selftest 3.45. Create a context-sensitive grammar for all words of the form (2w)*3
where k > 2 and w is a binary string.

Selftest 3.46. Create a context-sensitive grammar for all words of the form 30°172%3
with 1,5,k > 1 and i-j =k (as a product of natural numbers).

65

Solution for Selftest 3.37. The right answer is (a). One can write the language as
an extremely long regular expression of the form {0, 1,2}*-vyvy-{0,1,2}*U{0, 1,2}*-
viv1-{0,1,2}*U...U{0, 1,2} v,0,-{0, 1, 2}*. Here vy, vy, ..., v, is a list of all ternary
strings from length 1 to 999999 and there are (3'°090% — 3)/2 of them. Although this
expression can be optimised a bit, there is no really small one for the language which
one can write down explicitly.

Solution for Selftest 3.38. For the language L from Selftest 3.37, the optimal
constant for the traditional pumping lemma is 3:

If a word contains 3 symbols and is in L then it is of the form abb or aab; in the
first case a*bb and in the second case aab* are subsets of the language. So now assume
that a word in the language L is given and it has at least four symbols.

(a) The word is of the form abbw or aabw for any w € {0, 1,2}* and a,b € {0, 1, 2}.
This case matches back to the three-letter case and a*bbw or aab*w are then languages
resulting by pumping within the first three symbols which prove that the language
satisfies the pumping lemma with this constant.

(b) The word is of the form auvvw for some u,v,w € {0,1,2}* with 0 < |v| <
1000000. In this case, a*uvvw is a subset of the language and the pumping constant
is met.

(c¢) The word is of the form abaw for some w € {0,1,2}*. Then ab*aw C L, as
when one omits the b then it starts with aa and when one repeats the b it has the
subword bb. So also in this case the pumping constant is met.

(d) The word is of the form abcbw, then abc*bw C L and the pumping is in the
third symbol and the pumping constant is met.

(e) The word is of the form abcaw for some w € {0, 1,2}* then a(bc)*aw C L. If
one omits the pump bc then the resulting start starts with aa and if one repeats the
pump then the resulting word has the subword bcbe.

One can easily verify that this case distinction is exhaustive (with a, b, ¢ ranging
over {0,1,2}). Thus in each case where the word is in L, one can find a pumping
which involves only positions within its first three symbols.

Solution for Selftest 3.39. The automaton has five states named sg, s1, s2, q1, g2-
The start state is so and the set of accepting states is {q1,¢2}. The goal is that after
processing a number w with remainder a by 3, if this number is a multiple of 3 or
of 5 then the automaton is in the state s, else it is in the state ¢,. Let ¢ denote
the remainder of (a + b) at division by 3, where b is the decimal digit on the input.
Now one can define the transition function ¢ as follows: If b € {0,5} or ¢ = 0 then
d(Sa,0) = 0(qa,b) = sc else 6(S4,b) = d(qa, b) = q.. Here the entry for d(q,,b) has to
be ignored if a = 0.

The explanation behind this automaton is that the last digit reveals whether the

66

number is a multiple of five and that the running sum modulo three reveals whether
the number is a multiple of 3. Thus there are two sets of states, sq, s1, so which store
the remainder by 3 in the case that the number is a multiple of five and qq, q1, g2 which
store the remainder by 3 in the case that the number is not a multiple of five. By
assumption only the states ¢;, ¢o are accepting. Above rules state how to update the
states. As s, qo are both rejecting and as they have in both cases the same successors,
one can fusionate these two states and represent them by sy only, thus only five states
are needed. Note that s; and ¢; differ as one is accepting and one is rejecting, similarly
so and ¢o. Furthermore, given a € {0, 1,2}, the digit b = 3 — a transfers from s, g
into a rejecting state iff ¢ = a, hence the states sg, s1, s are all different and similarly
q1, Q2. So one cannot get a smaller finite automaton for this task.

Solution for Selftest 3.40. In the following definition it is permitted that elements
of sets are listed multiply in a set encoded into a regular expression. So one defines
F as follows:

) = U
F({wy,...,wp}) = {oMl olw=l ~ glwnl},
) (F(o) U F(T));
) = (F(o)-F(7));
(F(o))".

Here bracketing conventions from the left side are preserved. One could also define
everything without a structural induction by saying that in a given regular expression,
one replaces every occurrence of a digit (that is, 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9) by 0.

Solution for Selftest 3.41. First one considers the non-deterministic finite automa-
ton with states {sg, $1, ..., Sgo9} such that the automaton goes, on any symbol, from
Se 10 Scx1 in the case that e < 999 and from sgg9 to s¢. Furthermore, sgg9 is the only
accepting state. This nfa is actually a dfa and it is easy to see that all accepted words
have the length & - 1000 + 999, so the shortest accepted word has length 999.

Second assume that an nfa with 1000 states is given and that x is a shortest ac-
cepted word. There is a shortest run on this nfa for x. If there are two different
prefixes u, uv of x such that the nfa at this run is in the same state and if x = uovw
then the nfa also accepts the word uw, hence would not be the shortest word. Thus,
all the states of the nfa including the first one before starting the word and the last
one after completely processing the word are different; thus the number of symbols in
x is at least one below the number of states of the nfa and therefore |z| < 999.

Solution for Selftest 3.42. First one shows that the constant must be larger than
7. So assume it would be 7 and consider the word 000111 which is in the language.

67

One can now choose ug = ¢, u; =0, us =0, u3 =0, ugy =1, us =1, ug =1, uy = ¢
and 000111 = wguiususugusuguy. The next is to show that there are no 7,7 with
0 <i<j <T7suchthat ug...ui—1(u;...uj—1)*u;...u7 is a subset of the language. If
;... u;j—1 contains at least one 1 then o...u;—1(u;...uj_1)%u;...u; would not be in
the language as it contains too many ones. If u;...u;_; contains at least one 0 then
0 Ui (u; .. .uj_l)ouj ... u7 would not be in the language as it contains not enough
zeroes. Thus the block pumping constant cannot be 7.

Second one shows that the constant can be chosen to be 8. Given any word
UpUiUguzUsusugurug of the language, only three of the blocks u; can contain a 1.
Furthermore, the blocks wuy, us, us, ug, us, g, 7 must be non-empty, as otherwise one
could pump the empty block. So at least four of these blocks contain a 0. Thus one
can pump any single block which does not contain a one, as there remain three further
blocks containing at least one 0 and the number of ones is not changed; it follows that
the block pumping constant is 8.

Solution for Selftest 3.43. This is a famous language. The grammar is made such
that there are two different symbols a, b such that between these are as many symbols
as either before a or behind b; as there are only two symbols, one can choose a = 0
and b = 1. The grammar is the following: ({S,7,U},{0,1}, P,S) with P containing
the rules S — TU|UT, U — 0UO0|0U1|1U0[|1U1]0 and T" — 07°0|07T'1|170|17T'1|1. Now
U produces 0 and T produces 1 and before terminalising, these symbols produce the
same number of symbols before and after them. So for each word generated there
are n,m € N such that the word is in {0,1}" - {0} - {0,1}**™ - {1} - {0,1}" or in
{0, 1} - {1} - {0,1}"*™ . {0} - {0,1}™; in both cases, the symbols at positions n and
(n4+m+ 1) + n are different where the word itself has length 2(n +m + 1), thus the
word cannot be of the form vv. If a word w = wv with |u| = |v| = k and u, v differ at
position n then one lets m = k — n — 1 and shows that the grammar can generate uv
with parameters n, m as given.

Solution for Selftest 3.44. The grammar contains the non-terminals S, 7" and the
rules S — €,017 and T — T012|2 and, for all a,b € {0, 1,2}, the rules Ta — aT,
Ta — aT, Tab — bTa, bT'a — Tab. The start-symbol is S and the terminal alphabet
is {0,1,2}.

Solution for Selftest 3.45. ¥ = {0,1,2,3}, N = {S,T,U,V,W} and the start
symbols is S. The rules are S — 723, T — T2|U, U — UV|UW|2, VO — 0V,
V=1V, V2 —-02V,V3—= 03, W0 —0W, W1 - 1W,6 W2 — 12W, W3 — 13.
The idea is to create first an U followed by a sequence of 2 and then a 3. The U
can send off a V or a W to the right and eventually becomes the first 2. The V' moves
to the right over 0 and 1; whenever it crosses a 2, it creates a 0 before the 2, when it

68

reaches the 3 at the end, it becomes a 0 before the 3. The W moves to the right over
0 and 1; whenever it crosses a 2, it creates a 1 before the 2, when it reaches the 3 at
the end, it becomes a 1 before the 3.

Solution for Selftest 3.46. > = {0,1,2,3}, N = {S,T,U,V,W} and the start
symbols is S. The rules are S — TU3, T — TU|V1, V — V1|3, 1U — U1W,
0U —00,3U — 30, W1 —- 1W, WU —- UW, W2 = 2W, W3 — 23.

The idea is to create a word 31/U%3 with the first rules, here i, 7 > 1. Now the U
can only move to the front until they reach a 3 or a 0, each time they hop over a 1, a
W is created. When they reach a 0 or 3, they become a 0. The W move to the back
until they reach the back 3 and then they become a 2.

69

4 Homomorphisms

A homomorphism is a mapping which replaces each character by a word. In general,
they can be defined as follows.

Definition 4.1: Homomorphism. A homomorphism is a mapping h from words
to words satisfying h(xy) = h(x) - h(y) for all words z,y.

Proposition 4.2. When defined on words over an alphabet X, the values h(a) for
the a € ¥ define the image h(w) of every word w.

Proof. As h(e) = h(e-¢e) = h(e) - h(e), the word h(e) must also be the empty word
e. Now one can define inductively, for words of length n = 0, 1,2, ... the value of h:
For words of length 0, h(w) = . When h is defined for words of length n, then every
word w € X" is of the form va for v € X" and a € %, so h(w) = h(v-a) = h(v)-h(a)
which reduces the value of h(w) to known values. 1

Exercise 4.3. How many homomorphism exist with h such that h(012) = 44444,
h(102) = 444444, h(00) = 44444 and h(3) = 42 Here two homomorphism are the
same iff they have the same values for h(0),h(1),h(2), h(3). Prove the answer: List
the homomorphism to be counted and explain why there are not more.

Exercise 4.4. How many homomorphisms h exist with h(012) = 44444, h(102) =
44444, h(0011) = 444444 and h(3) = 447 Prove the answer: List the homomorphism
to be counted and explain why there are not more.

Theorem 4.5. The homomorphic image of reqular and context-free languages are
reqular and context-free, respectively.

Proof. Let a regular / context-free grammar (N, X, P, S) for a language L be given
and let I' be the alphabet of all symbols which appear in some word of the form
h(a) with a € ¥. One extends the homomorphism A to all members of N by defining
h(A) = A for all of them and one defines h(P) as the set of all rules h(l) — h(r) where
[— r is a rule in P; note that h(l) = [in this case. Now (N,I',h(P),S) is a new
context-free grammar which generates h(L); furthermore, if (N, %, P, S) is regular so
is (N, T, h(P),S).

First it is easy to verify that if all rules of P have only one non-terminal on the
left side, so do those of h(P); if all rules of P are regular, that is, either of the form
A — w or of the form A — wB for non-terminals A, B and w € ¥* then the image of
the rule under A is of the form A — h(w) or A — h(w)B for a word h(w) € I'*. Thus
the transformation preserves the grammar to be regular or context-free, respectively.

Second one shows that if S =* v in the original grammar then S =* h(v) in the

70

new grammar. The idea is to say that there are a number n and words vy = S, vy, ... v,
in (N UZX)* such that vy = v; = ... = v, = v. Now one defines w,, = h(v,,) for
all m and proves that S = wy = w; = ... = w, = h(v) in the new grammar. So
let m € {0,1,...,n — 1} and assume that it is verified that S =* w,, in the new
grammar. As v, = vp,11 in the old grammar, there are z,y € (X U N)* and a rule
[— r with v,, = zly and v, 41 = xry. It follows that w,, = h(z) - h(l) - h(y) and
Wiyt = h(z)-h(r)-h(y). Thus the rule h(l) — h(r) of the new grammar is applicable
and w,, = Wy,11, that is, S =* w41 in the new grammar. Thus w,, = h(v) is in the
language generated by the new grammar.

Third one considers w € h(L). There are n and wq, wy, . . ., w, such that S = wy,
w = w, and w,, = Wy,11 in the new grammar for all m € {0,1,...,n — 1}. Now one
defines inductively vy, vy, ..., v, as follows: vy = S and so wy = h(vy). Given now v,,

with h(vy,) = Wy, the word w,,, wy, 11 can be split into Zh(1)g and Zh(r)y, respectively,
for some rule h(l) — h(r) in A(P). As h maps non-terminals to themselves, one can
split vy, into x - [-y such that h(x) = Z and h(y) = . Now one defines v,,.1 as x-r-y
and has that w,,11 = h(v,41) and v, = v,y by applying the rule [— r from P
in the old grammar. It follows that at the end the so constructed sequence satisfies
vg = v = ... = v, and h(v,) = w,. As w, contains only terminals, v, cannot
contain any nonterminals and v,, € L, thus w, € h(L).

Thus the items Second and Third give together that h(L) is generated by the
grammar (N,I',h(P),S) and the item First gave that this grammar is regular or
context-free, respectively, as the given original grammar. [

Example 4.6. One can apply the homomorphisms also directly to regular expressions
using the rules h(LUH) = h(L)UR(H), h(L-H) = h(L)-h(H) and h(L*) = (h(L))*.
Thus one can move a homomorphism into the inner parts (which are the finite sets
used in the regular expression) and then apply the homomorphism there.

So for the language ({0, 1}*U{0,2}*) - {33}* and the homomorphism which maps
each symbol a to aa, one obtains the language ({00, 11}* U {00, 22}*) - {3333}*.

Exercise 4.7. Consider the following statements for reqular languages L:

(a) n(0) = 0;

(b) If L is finite so is h(L);

(c) If L has polynomial growth so has h(L);
(d) If L has exponential growth so has h(L).

Which of these statements are true and which are false? Prove the answers. The
rules from Example 4.6 can be used as well as the following facts: H* has polynomial
growth iff H* C {u}* for some word u; if H, K have polynomial growth so do H U K
and H - K.

71

Exercise 4.8. Construct a context-sensitive language L and a homomorphism h such
that L has polynomial growth and h(L) has exponential growth.

If one constructs regular expressions from automata or grammars, one uses a lot
of Kleene stars, even nested into each other. However, if one permits the usage of
homomorphism and intersections in the expression, one can reduce the usage of stars
to the overall number of two. That intersections can save stars, can be seen by this
example:

00" U11*U22*U33* = ({0,1,2,3}-{00,11,22,33}*-{,0,1,2,3})
N ({00,11,22,33}* - {¢,0,1,2,3}).

The next result shows that adding in homomorphisms, the result can be used to
represent arbitrary complex regular expressions using only two Kleene star sets and
one homomorphism.

Theorem 4.9. Let L be a regular language. Then there are two reqular expressions
o, T each containing only one Kleene star and some finite sets and concatenations and
there is one homomorphism h such that L is the language given by the expression
h(cNT).

Proof. Assume that a nfa (Q,T,0, s, F') recognises the language L C I'*. Now one
makes a new alphabet ¥ containing all triples (g, a,r) such that a € T" and ¢,r € @ for
which the nfa can go from ¢ to r on symbol a. Let A contain all pairs (g, a,r)(r, b, 0)
from X x ¥ where the outgoing state of the first transition-triple is the incoming state
of the second transition-triple. The regular expressions are now

{(g,a,7) € ¥: g=sandr e F} U ({(¢,a,7) € X :q=s}-A"-{(¢g,a,7)(r,b,0),
(.0,)EAUE o€ F});

={(¢,a,7) € 3X: gq=sand r € F} U {(¢g,a,7)(r,b,0) € A: ¢g=sand o € F} U
({(q,a,r)(r,b,0) € A: ¢ =s} - A* - {(q,a,7)(r,b,0),(r,b,0) € AUX: 0 € F}).

Furthermore, the homomorphism A from 3 to I' maps (¢, a,r) to a for all (q,a,r) € 3.
When allowing h and N for regular expressions, one can describe L as follows: If L
does not contain ¢ then L is h(c N7) else L is h((oc U{e}) N (T U{e})).

The reason is that ¢ and 7 both recognise runs of the nfa on words where the
middle parts of the symbols in ¥ represent the symbols read in I by the nfa and the
other two parts are the states. However, the expression ¢ checks the consistency of
the states (outgoing state of the last operation is ingoing state of the next one) only
after reading an even number of symbols while 7 checks the consistency after reading

72

an odd number of symbols. In the intersection of the languages of ¢ and 7 are then
only those runs which are everywhere correct on the word. The homomorphism A
translates the runs back into the words. |

Example 4.10: Illustrating Theorem 4.9. Let L be the language of all words
which contain some but not all decimal digits. An nfa which recognises L has the
states {s,qo,q1,--.,qo} and transitions (s,a,q,) and (g, a,q,) for all distinct a,b €
{0,1,...,9}. Going to state g, means that the digit b never occurs and if it would
occur, the run would get stuck. All states are accepting.

The words 0123 and 228822 are in L and 0123456789 is not in L. For the word 0123,
the run (s,0,q4) (¢4, 1, q4) (g4, 2, q4) (¢4, 3, q4) is accepting and in both the languages
generated by o and by 7. The invalid run (s, 0, q4) (94, 1, ¢4) (90, 2, o) (qo, 3, qo) would
be generated by 7 but not by o, as o checks that the transitions (q4, 1, q4) (g0, 2, qo)
match.

As the language contains the empty word, it would be generated by h((oc U {e})N

(rU{e})-

Homomorphisms allow to map certain symbols to €; this permits to make the output of
a grammar shorter. As context-sensitive languages are produced by grammars which
generate words getting longer or staying the same in each step of the derivation, there
is a bit a doubt what happens when output symbols of a certain type get erased
in the process of making them. Indeed, one can use this method in order to show
that any language L generated by some grammar is the homomorphic image of a
context-sensitive language; thus the context-sensitive languages are not closed under
homomorphisms.

Theorem 4.11. Every recursively enumerable language, that is, every language gen-
erated by some grammar, is a homomorphic image of a context-sensitive language.

Proof. Assume that the alphabet is {1,2,...,k} and that 0 is a digit not occurring
in any word of L. Furthermore, assume that (N,{1,2,...,k}, P,S) is a grammar
generating the language L; without loss of generality, all rules | — r satisfy that
[€ NT; this can easily be achieved by introducing a new non-terminal A for each
terminal a, replacing a in all rules by A and then adding the rule A — a.

Now one constructs a new grammar (N, {0,1,2,... k}, P’.S) as follows: For each
rule [l — rin P, if |I| < |r| then P’ contains the rule [— r unchanged else P’ contains
the rule [— r!l. Furthermore, P’ contains for every A € N the rule 04 — A0 which
permits to move every 0 towards the end along non-terminals. There are no other
rules in P’ and the grammar is context-sensitive. Let H be the language generated
by this new grammar.

Now define h(0) = ¢ and h(a) = a for every other a € NU{1,2,... k}. It will be

73

shown that L = h(H).

First one considers the case that v € L and looks for a w € H with h(w) = v.
There is a derivation vg = vy = ... = v, of v with vg = S and v,, = v. Without
loss of generality, all rules of the form A — a for a non-terminal A and terminal a are
applied after all other rules are done. Now it will be shown by induction that there are
numbers ¢y = 0, ¢1,. .., ¢, such that all w,, = v,,0" satisfy wy =* w, =* ... =" w,.
Note that wg = 5, as fo = 0. Assume that w,, is defined. There is a rule [— r. If
r is a terminal then [is one non-terminal and furthermore the rule [— r also exists
in P’ thus one applies the same rule to the same position in w,, and let £, 1 = £,
and has that w,, = w;,4+1. If r is not a non-terminal then for the rule [— r in P
there might be some rule [— r0* in P’ and v,, = zly = v, 1127y in the old grammar
and w,, = zly0™ = 2r0*y0= =* rry0~+m = rry0»+ = w,,,,, where one has
to make the definition ¢,,,1 = k + £,, and where the step zr0*y0™ =* xry0~+om is
possible as no other terminals than 0 are generated so far. this rule is applied before
generating any other non-terminal than 0 and therefore one has v,,0 = v,,,,. Thus
Wy =* Wypyq in the grammar for H. It follows that w, € H and h(w,) = v.

Now assume that v = h(w) and wy = w; = ... = w, is a derivation of w in the
grammar for H. Let v, = h(w,,) for all m. Note that h(vg) = S. For each m < n, if
Wy,y1 1S obtained from w,, by exchanging the position of a non-terminal and 0 then
h(wp11) = h(wy,) and v, =* v,y,41. Otherwise w,, = xly and w,, 1 = xr0*y for some
x,y and rule | — 70" in P’ (where 0" = ¢ is possible). Now v, = h(w,,) = h(x)-1-h(y)
and vy,41 = h(wpe1) = h(zx)-r-h(y), thus v, = v,,41 in the grammar for L. It follows
that vy =* vy =* ... =" v, and v, = h(w) € L.

The last two parts give that L = h(H) and the construction of the grammar
ensured that H is a context-sensitive language. Thus L is the homomorphic image of
a context-sensitive language. |

Proposition 4.12. If a grammar (N,%, P,S) generates a language L and h is a
homomorphism from ¥* to ¥* and S",T',U" ¢ N then the grammar given as (N U
{8, 17,U'},%, P',S") with P = PU{S" — T'SU",T'U" — e}U{T"a — h(a)T" : a € ¥}
generates h(L).

Proof Idea. If a1, as,...,a, € ¥ then T'ajay ... a, =* h(a;)h(as)...h(a,). Thus if
S = w in the original grammar then S’ = T"SU’ =* T"wU' =* h(w)T'U’ = h(w) in
the new grammar and one can also show that this is the only way which permits to
derive terminal words in the new grammar. [

Exercise 4.13. Let h(0) = 1, h(1) = 22, h(2) = 333. What are h(L) for the following
languages L:

(@) {0,1,2}*;

74

() {00,11,22}* N {000, 111, 222}*;
() ({00,11}* U {00, 22} U {11,22}*) - {011222};
() {w €{0,1}*: w has more 1s than it has Os}.

Exercise 4.14. Let h(0) = 3, h(1) = 4, h(2) = 334433. What are h(L) for the
following languages L:

(a) {0,1,2}%;

(b) {00,11,22}* N {000, 111,222}*;

(¢) ({00,11}* U {00,22}* U {11,22}*) - {011222};
(d) {w €{0,1}*: w has more 1s than it has Os}.

The next series of exercises deal with homomorphisms between number systems.
In general, it is for example known that the homomorphism h given by h(0) =
0000, (1) = 0001, A(2) = 0010,...,A(F) = 1111 translate numbers from the hexadec-
imal system into binary numbers preserving their value. However, one conventions
are not preserved: there might be leading zeroes introduced and the image of 1F' is
00011111 rather than the correct 11111. The following translations do not preserve
the value, as this is only possible when translating numbers from a base system p"
to the base system p for some number p. However, they try to preserve some prop-
erties. The exercises investigate to which extent various properties can be preserved
simultaneously.

Exercise 4.15. Let a homomorphism h : {0,1,2,3,4,5,6,7,8,9}* — {0,1,2,3}* be
given by the equations h(0) = 0, h(1) = h(4) = h(7) = 1, h(2) = h(5) = h(8) = 2,
h(3) = h(6) = h(9) = 3. Interpret the images of h as quaternary numbers (numbers
of base four, so 12321 represents 1 times two hundred fifty six plus 2 times sixty four
plus 3 times sixteen plus 2 times four plus 1). Prove the following:

e Fvery quaternary number is the image of a decimal number without leading
zeroes;

o A decimal number w has leading zeroes iff the quaternary number h(w) has
leading zeroes;

o A decimal number w is a multiple of three iff the quaternary number is a multiple
of three.

Exercise 4.16. Consider any homomorphism h :{0,1,2,3,4,5,6,7,8,9}* — {0,1}*
such that

75

o h(w) has leading zeroes iff w has;
e 1(0)=0;

e all binary numbers (without leading zeroes) are in the range of h.
Answer the following questions:

(a) Can h be chosen such that the above conditions are true and, furthermore, the
decimal number w is a multiple of two iff the binary number h(w) is a multiple
of two?

(b) Can h be chosen such that the above conditions are true and, furthermore, the
decimal number w is a multiple of three iff the binary number h(w) is a multiple
of three?

(c) Can h be chosen such that the above conditions are true and, furthermore, the
decimal number w is a multiple of five iff the binary number h(w) is a multiple

of five?

If h can be chosen as desired then list this h else prove that such a homomorphism h
cannot exist.

Exercise 4.17. Construct a homomorphism h : {0,1,2,3,4,5,6,7,8,9}* — {0,1}*
such that for every w the number h(w) has never leading zeroes and the remainder
of the decimal number w when divided by nine is the same as the remainder of the
binary number h(w) when divided by nine.

Another way to represent is the Fibonacci number system. Here one let ay = 1,
a; =1, ag = 2 and, for all n, a,,2 = a, + a,.1. Now one can write every number as
the sum of non-neighbouring Fibonacci numbers: That is for each non-zero number
n there is a unique string b,,b,, 1 ...by € (107)" such that

n = Z bk-ak

k=0,1,....m

and the next exercise is about this numbering. This system was used by Floyd and
Knuth [28] to carry out operations on register machines (which can as unit operations
add, subtract and compare natural numbers) in linear time.

Exercise 4.18. Construct a homomorphism h : {0,1,2,3,4,5,6,7,8,9} — {0,1}*
such that h(0) = 0 and the image of all decimal numbers (without leading zeroes)
is the reqular set {0} U (107)". Furthermore, show that all h satisfying the above
condition also satisfy the following statement: For every p > 1 there is a decimal
number w (without leading zeroes) such that (w is a multiple of p iff h(w) is not a

76

multiple of p). In other word, the property of being a multiple of p is not preserved by
h for any p > 1.

Description 4.19: Inverse Homomorphism. Assume that h : ¥* = [™ is a
homomorphism and L C I'* is some language. Then K = {u € ¥* : h(u) € H}
is called the inverse image of L with respect to the homomorphism hA. This inverse
image K is also denoted as h~'(L). The following rules are valid for h=!:

() L)Nnh Y (H)=h"YLNH);

() WY (L)Uh Y (H)=h"Y(LUH);

(c) Y (L)-h*(H)Ch L -H);

(@ h™'(L)* € h™'(L*).

One can see (a) as follows: If h(u) € L and h(u) € H then h(u) € L N H, thus
weh Y (L)Nh ' (H) implies wu € A" Y (LN H). Ifue h™'(LN H) then h(u) € LN H
and u € Y (L)Nh™ ' (H).

For (b), if h(u) € L or h(u) € H then h(u) € LU H, thus v € h=}(L) U h=(H)
implies u € Y (LU H). Ifu € h™*(L U H) then h(u) € LU H and u € h™*(L) or
weh ' (H),soueh ' (L)Uh ' (H).

For (c), note that if w € h™*(L) - h~'(H) then there are v,w with u = vw and
veh (L) and w € h™'(H). Thus h(u) = h(v) - h(w) € L- H and v € h™(L - H).
However, if ¥ = {0} and h(0) = 00 then h=({0}) = 0 while h~*({0} - {0}) = {0}
which differs from @) - (). Therefore the inclusion can be proper.

For (d), if vy, v, ...,v, € K™Y (L*) then vivy ... v, € h™1(L*) as well; thus A1 (L*)
is a set of the form H* which contains h~!(L). However, the inclusion can be proper:

Using the h of (¢), h='({0}) =0, (h"*({0}))* = {e} and A1 ({0}*) = {0}".

Theorem 4.20. If L is on the level k of the Chomsky hierarchy and h is a homo-
morphism then h='(L) is also on the level k of the Chomsky hierarchy.

Proof for the regular case. Assume that L C I'* is recognised by a dfa (Q, T,
7,8, F) and that h : ¥* — I'* is a homomorphism. Now one constructs a new dfa
(@Q,%,6,s, F) with d(q,a) = v(q,h(a)) for all ¢ € @Q and a € ¥. One can show by
an induction that when the input word is w then the new dfa is in the state d(s, w)
and that this state is equal to the state (s, h(w)) and therefore the new automaton
accepts w iff the old automaton accepts h(w). It follows that w is accepted by the
new dfa iff h(w) is accepted by the old automaton iff h(w) € L iff w € h~'(L). Thus
h~1! is regular, as witnessed by the new automaton. |

Exercise 4.21. Let h: {0,1,2,3}* — {0,1,2,3}* be given by h(0) = 00, h(1) = 012,
h(2) =123 and h(3) =1 and let L contain all words containing exactly five 0s and at
least one 2. Construct a complete dfa recognising h™(L).

77

Description 4.22: Generalised Homomorphism. A generalised homomorphism
is a mapping h from regular subsets of X* to regular subsets of I'* for some alphabets
¥, T is a generalised homomorphism iff it preserves (), union, concatenation and Kleene
star. That is, h must satisfy for all regular subsets H, L of ¥* the following conditions:

o () = 0;

e W(LUH) = h(L) U h(H):
e h(L-H)=h(L) -h(H);
e (L") = (h(L))"

Note that 0* = {¢} and therefore h({c}) = h(0*) = (h(0))* = 0* = {e}. Furthermore,
for words v, w, h({vw}) = h({v}) - h({w}) which implies that one knows h({u}) for
all words u whenever one knows h({a}) for all symbols a in the alphabet.

Examples 4.23. First, the mapping L — L N {e} is a generalised homomorphism.
Second, if one maps the empty set to () and every regular nonempty subset of »*
to {e}, this is also a generalised homomorphism and would work for every target
alphabet I". Third, the identity mapping L + L is a generalised homomorphism from
regular subsets of ¥* to regular subsets of »*.

Exercise 4.24. Show that whenever h : ¥* — I'" is a homomorphism then the
mapping L — {h(u) : uw € L} is a generalised homomorphism which maps reqular
subsets of 3* to regqular subsets of T'*.

Exercise 4.25. Let h be any given generalised homomorphism. Show by structural
induction that h(L) = U, h(u) for all reqular languages L. Furthermore, show
that every mapping h satisfying h({e}) = {e}, ML) = U, h({u}) and ML - H) =
h(L)-h(H) for all reqular subsets L, H of ¥* is a generalised homomorophism. Is the
same true if one weakens the condition h({e}) = {e} toe € h({e})?

Exercise 4.26. Construct a mapping which satisfies h(0) = 0, h({e}) = {e}, h(L U
H)=h(L)Uh(H) and h(L-H) = h(L)-h(H) for all reqular languages L, H but which
does not satisy h(L) = J,c, h({u}) for some infinite reqular set L.

Exercise 4.27. Assume that h is a generalised homomorphism and k(L) = h(L)-h(L).
Is k a generalised homomorphism? Prove the answer.

Exercise 4.28. Assume that h is a generalised homomorphism and

()= J =M,

u€h(L)

78

where Y0 = {e}. Is { a generalised homomorphism? Prove the answer.

Exercise 4.29. Let X = {0,1,2} and h be the generalised homomorphism given
by h({0}) = {1,2}, h({1}) = {0,2} and h({2}) = {0,1}. Which of the following
statements are true for this h and all reqular subsets L, H of ¥*:

(a) If L # H then h(L) # h(H);

(b) If L C H then h(L) C h(H);

() If L is finite then h(L) is finite;

(d) If L is infinite then h(L) is infinite and has exponential growth.

Prove the answers. The formula h(L) = |J,c, h({u}) from Ezercise 4.25 can be used
without proof for this exercise.

Note that one can the following property of the image of regular sets L with respect
to a generalised homomorphism h also take as a definition for h(L) in the case that
L is not regular:

hL)= |J hla)-ha)- ... hia,)

aj...an€L

where the empty concatenation gives e, so that ¢ is in A(L) whenever ¢ € L. Now one
uses the definition in order to construct the image of h for the following three sets:

(a) I={00,01,02,10,11,12,20,21,22}*:
() J = {00,11,22}* - {000, 111, 222}
(¢) K = {07172 :n > 2}.

If h maps 0 to {0}* and 1,2 to {e} then h(I) = {0}*, h(J) = {e} U {0} - {0}T and
h(K) = {0}*.

Exercise 4.30. Determine h(I), h(J) and h(K) for I,J, K as above where h is
given by h(0) = {3,4}F, h(1) = {3,5}" and h(2) = {4,5}". If possible, provide the

languages as reqular expressions.

Exercise 4.31. Determine h(I), h(J) and h(K) for I, J, K as above where h is given
by h(0) = {¢g,3,33}, h(1) = {e,4,44} and h(2) = {e,5,55}. If possible, provide the

languages as reqular expressions.

Exercise 4.32. Determine h(I), h(J) and h(K) for I, J, K as above where h is given
by h(a) = {aaa,aaaa}t™ for all letters a € {0,1,2}. If possible, provide the languages
as reqular expressions.

79

5 Normalforms and Algorithms

For context-free languages, there are various normal forms which can be used in order
to make algorithms or carry out certain proofs. These two normal forms are the
following ones.

Definition 5.1: Normalforms. Consider a context-free grammar (N, %, P,S) with
the following basic properties: if S =* € then S — € occurs in P and no rule has any
occurrence of S on the right side; there is no rule A — € for any A # S;

The grammar is in Chomsky Normal Form in the case that every rule (except
perhaps S — ¢) is either of the form A — a or of the form A — BC' for some
A, B,C € N and terminal a € X.

The grammar is in Greibach Normal Form in the case that every rule (except
perhaps S — €) has a right hand side from SN*.

Algorithm 5.2: Chomsky Normal Form. There is an algorithm which transforms
any given context-free grammar (Ny, X, Py, S) into a new grammar (Ny, X, Py, S")
in Chomsky Normal Form. Assume that the grammar produces at least one word
(otherwise the algorithm will end up with a grammar with an empty set of non-
terminals).

1. Dealing with e: Let Ny = Ny U {5’} for a new non-terminal S’; Initialise P, =
While there are A, B € Ny and v,w € (N; UX)* with A - vBw,B — ¢ in P,
and A — vw not in P; Do Begin P, = P, U{A — vw} End;

Remove all rules A — ¢ for all A € Ny from P, that is, for all A # 5’;
Keep Ny, P; fixed from now on and continue with grammar (Ny, >, Py, S");

2. Dealing with single terminal letters: Let Ny = N; and P, = Py;
While there are a letter a € ¥ and a rule A — w in P, with w # a and a
occurring in w
Do Begin Choose a new non-terminal B ¢ Ny;
Replace in all rules in P, all occurrences of a by B;
update Ny = No U {B} and add rule B — a to P, End,
Continue with grammar (N, X, Py, S");

3. Breaking long ride hand sides: Let N3 = Ny and P3 = P»;
While there is a rule of the form A — Bw in Ps with A, B € N3 and w € N3- N,
Do Begin Choose a new non-terminal C' ¢ N3 and let N3 = N3 U {C};
Add the rules A - BC,C' — w into P3 and remove the rule A — Bw End;
Continue with grammar (N3, 3, P, S");

80

4. Removing rules A — B: Make a table of all (A, B), (A, a) such that A, B € N3,
a € ¥ and, in the grammar (N3, X, P3,5"), A =* B and A =" a, respectively;
Let Ny = N3 and P, contain the following rules:
S" — ¢ in the case that this rule is in Px;
A — a in the case that (A, a) is in the table;
A — BC in the case that there is D — E'F in P; with (A, D), (E, B), (F,C) in
the table;
The grammar (Ny, X, Py, S') is in Chomsky Normalform.

Example 5.3. Consider the grammar ({S},{0,1},{S — 050]151]|00|11},.S) mak-
ing all palindromes of even length; this language generates all non-terminals of even
length. A grammar in Chomsky Normal Form for this language needs much more
non-terminals. The set of non-terminals is {S, T, U, V, W}, the alphabet is {0, 1}, the
start symbols is S and the rules are S — TV|UW, T — VS|0, U - WS|1, V — 0,
W — 1. The derivation S = 050 = 01510 = 010010 in the old grammar is equiv-
alent to S = TV = VSV = 0S5V = 050 = 0UWO0 = OWSW0 = 0WS10 =
01510 = 017V10 = 010V10 = 010010 in the new grammar.

Exercise 5.4. Bring the grammar ({S,T},{0,1},{S — TTTT, T — 0T'1|¢}, S) into
Chomsky Normal Form.

Exercise 5.5. Bring the grammar ({S,T},{0,1},{S — ST|T,T — 0T'1|01},5) into
Chomsky Normal Form.

Exercise 5.6. Bring the grammar ({S},{0,1},{S — 05511550,0110},S) into
Chomsky Normal Form.

Algorithm 5.7: Removal of Useless Non-Terminals. When given a gram-
mar (Ny, X, Py, S) in Chomsky Normal Form, one can construct a new grammar
(N2, X, P5, S) which does not have useless non-terminals, that is, every non-terminal
can be derived into a word of terminals and every non-terminal can occur in some
derivation.

1. Removing non-terminating non-terminals: Let N; contain all A € N, for
which there is a rule A — a or a rule A — ¢ in F;
While there is a rule A — BC in Py with A € Ny — N; and B,C € N; Do Begin
N1 = N1 U {A} End,
Let P, be all rules A — w in Fy such that A € Ny and w € Ny - Ny UX U {e};
If S ¢ N; then terminate with empty grammar else continue with grammar
(N1, %, P, S).

81

2. Selecting all reachable non-terminals: Let Ny = {S};
While there is a rule A — BC'in P, with A € Ny and {B,C} € N
Do Begin Ny = N, U{B,C} End;
Let P, contain all rules A — w in P; with A € Ny and w € Ny - No UX U {e};
The grammar (No, X, P», S) does not contain any useless non-terminal.

Quiz 5.8. Consider the grammar with terminal symbol 0 and non-terminal symbols
Q,R,S, T, UV, W, XY, Z and rules S — TU|UV, T — UT|TV|TW, R — VW|QQ|0,
Q—0,U—=VWWX, V- WX|XY|0,IW = XY|YZ|0 and start symbol S. Deter-

mane the set of reachable and terminating non-terminals.

Exercise 5.9. Consider the grammar

({So, Sl, cey Sg}, {0}, {SO — S[)So, Sl — 5253, SQ — S4S§|O, 53 — 86597
S4 — SgSQ, 55 — S()SE,, SG — SQSg, S7 — S4Sl|0, Sg — 5654’0; Sg —
SsS7}, S1)-

Determine the set of reachable and terminating non-terminals and explain the steps
on the way to this set. What is the shortest word generated by this grammar?

Exercise 5.10. Consider the grammar

({80,51,...,59}, {O}, {S() — SlSl, Sl — SQSQ, 52 — 5383, Sg —
5050|544, Sa — 8585, S5 — 8656|9353, S¢ — 5757/|0, S7 — SsSs|57.57,
Sg — 5756‘5856, Sg — S7Sg’0}, Sl>

Determine the set of reachable and terminating non-terminals and explain the steps
on the way to this set. What is the shortest word generated by this grammar?

Algorithm 5.11: Emptyness Check. The above algorithms can also be used
to check whether a context-free grammar produces any word. The algorithm works
indeed for any context-free grammar by using Algorithm 5.2 to make the grammar
into Chomsky Normal Form and then Algorithm 5.7 to remove the useless symbols.
A direct check would be the following for a context-free grammar (N, X, P, S):

Initialisation: Let N’ = ();

Loop: While there are A € N — N' and a rule A — w with w € (N U X)*
Do Begin N' = N'U {A} End;

Decision: If S ¢ N’ then the language of the grammar is empty else the language of
the grammar contains some word.

82

Algorithm 5.12: Finiteness Check. One can also check whether a language
in Chomsky Normal Form generates an infinite set. This algorithm is an extended
version of the previous Algorithm 5.11: In the first loop, one determines the set N’ of
non-terminals which can be converted into a word (exactly as before), in the second
loop one determines for all members A € N’ the set N”(A) of non-terminals which
can be obtained from A in a derivation which needs more than one step and which
only uses rules where all members on the right side are in N’. If such a non-terminal
A satisfies A € N”(A) then one can derive infinitely many words from A; the same
applies if there is B € N”(A) with B € N”(B). Thus the algorithm looks as follows:

Initialisation 1: Let N’ = 0;

Loop 1: While there are A € N — N" and a rule A — w with w € (N’ U X)*
Do Begin N' = N'U{A} End;

Initialisation 2: For all A € N, let N"(A) = 0;

Loop 2: While there are A, B,C, D € N' and arule B — CD with B € N"(A)U{A}
and (C' ¢ N"(A) or D ¢ N"(A))
Do Begin N”(A) = N"(A) U{C, D} End;

Decision: If there is A € N”(S) U {S} with A € N”(A) then the language of the
grammar is infinite else it is finite.

Exercise 5.13. The checks whether a grammar in Chomsky Normal Form generates
the empty set or a finite set can be implemented to run in polynomial time. However,
for non-empty grammars, these checks do not output an element witnessing that the
language is non-empty. If one adds the requirement to list such an element completely
(that is, all its symbols), what is the worst time complexity of this algorithm: polyno-
mial in n, exponential in n, double exponential in n? Give reasons for the answer.
Here n is the number of non-terminals in the grammar, note that the number of rules
is then also limited by O(n?).

Exercise 5.14. Consider the grammar ({S,T,U,V,W},{0,1,2}, P, S) with P con-
sisting of the rules S — TT, T — UU, U —- VW|WV, V —- 0, W — 1. How
many words does the grammar generate: (a) None, (b) One, (¢) Two, (d) Three, (e)
Finitely many and at least four, (f) Infinitely many?

Exercise 5.15. Consider the grammar ({S,T,U,V,W} {0,1,2}, P, S) with P con-
sisting of the rules S — ST, T — TU, U - UV, V — VW, W — 0. How many
words does the grammar generate: (a) None, (b) One, (¢) Two, (d) Three, (e) Finitely
many and at least four, (f) Infinitely many?

83

Exercise 5.16. Consider the grammar ({S,T,U,V,W},{0,1,2}, P, S) with P con-
sisting of the rules S — UT|TU|2, T —- VV, U - WW,V — 0, W — 1. How
many words does the grammar generate: (a) None, (b) One, (¢) Two, (d) Three, (e)
Finitely many and at least four, (f) Infinitely many?

Exercise 5.17. Consider the grammar ({S,T,U,V, W} {0,1,2}, P, S) with P con-
sisting of the rules S — SS|ITT|\UU, T - VV, U - WW,V =0, W - WW. How
many words does the grammar generate: (a) None, (b) One, (¢) Two, (d) Three, (e)
Finitely many and at least four, (f) Infinitely many?

Description 5.18: Derivation Tree. A derivation tree is a representation of a
derivation of a word w by a context-free grammar such that each node in a tree is
labeled with a non-terminal A and the successors of the node in the tree are those
symbols, each in an extra node, which are obtained by applying the rule in the deriva-
tion to the symbol A. The leaves contain the letters of the word w and the root of
the tree contains the start symbol S. For example, consider the grammar

({8, T,U},{0,1},{S — SS|TU|UT,U — 0|US|SU, T — 1|TS|ST}. S).

Now the derivation tree for the derivation S = TU = TSU = TUTU = 1UTU =
10TU = 101U = 1010 can be the following:

-
@8]
()

However, this tree is not unique, as it is not clear whether in the derivation step
TU = TSU the rule T'— TS was applied to T or U — SU was applied to U. Thus
derivation trees can be used to make it clear how the derivation was obtained. On
the other hand, derivation trees are silent about the order in which derivations are
applied to nodes which are not above or below each other; this order is, however, also

84

not relevant for the result obtained. For example, once the derived word has reached
the length 4, it is irrelevant for the word obtained in which order one converts the
non-terminals into terminals.

Exercise 5.19. For the grammar from Description 5.18, how many derivation trees
are there to derive 0110017

Exercise 5.20. For the grammar from Description 5.18, how many derivation trees
are there to derive 0001117

Exercise 5.21. Consider the grammar
({S,T},{0,1,2},{S — TT,T — 0T1|2},5).

Draw the derivation tree for the derivation of 00211021 in this grammar and prove
that for this grammar, every word in the language generated has a unique derivation
tree. Note that derivation trees are defined for all context-free grammars and not only
for those in Chomsky Normal Form.

The concept of the Chomsky Normal Form and of a Derivation Tree permit to prove
the version of the traditional pumping lemma for context-free languages; this result
was stated before, but the proof was delayed to this point.

Theorem 1.41 (b). Let L C ¥* be an infinite context-free language generated
by a grammar (N,3, P,S) in Chomsky Normal Form with A non-terminals. Then
the constant k& = 2"*! satisfies that for every u € L of length at least k there is a
representation vwryz = u such that |way| < k, (w # € or y # ¢) and vw'zy’z € L
for all ¢/ € N.

Proof. Assume that u € L and |u| > k. Let R be a derivation tree for the derivation
of u from S. If there is no branch of the tree R in which a non-terminal appears twice
then each branch consists of at most h branching nodes and the number of leaves of
the tree is at most 2" < k. Thus |u| > k would be impossible. Note that the leaves
in the tree have terminals in their nodes and the inner nodes have non-terminals in
their node. For inner nodes r, let A(r) denote the non-terminal in their node.

Thus there must be nodes r € R for which the symbol A(r) equals to A(r') for
some descendant 7. By taking r with this property to be as distant from the root
as possible, one has that there are no descendant ' of r and r” of ' such that
A(r')y = A(r"). Thus, each descendant r’ of r has at most 2" leaves descending from
r" and r has at most k = 2"*! descendants. Now, if one terminalises the derivations
except for what comes from A(r) and the descendant A(r’) with A(r") = A(r), one

85

can split the word u into v, w, x, y, z such that S =* vA(r)z =* vwA(r")yz =* vwryz
and one has also that A(r) =* wA(r")y = wA(r)y and A(r') =* x.

These observations permit to conclude that S =* vw’zy’z for all £ € N. As
A(r) = wzxy and the branches have below r at most ~ non-terminals on the branch,
each such branch has at most h + 1 branching nodes starting from r and the word
part in u generated below r satisfies |wzy| < 2"+ = k. Furthermore, only one of the
two children of r can generate the part which is derived from A(r’), thus at least one
of w,y must be non-empty. Thus the length constraints of the pumping lemma are
satisfied as required. 1

Example of a Derivation Tree for Proof. The following derivation tree shows an
example on how r and " are chosen. The choice is not always unique.

Tatr/S\U
AN |

T at r’ S

/ N\

1 T at r’ U

1 0

The grammar is the one from Description 5.18 and the tree is for deriving the word
1100. Both symbols S and T are repeated after their first appearance in the tree;
however, T" occurs later than S and so the node r is the node where T appears for the
first time in the derivation tree. Now both descendants of » which have the symbol
T in the node can be chosen as r’ (as indicated). If one chooses the first, one obtains
that all words of the form 1(10)‘0 are in the language generated by the grammar; as
one would have that S =* T0 =* T(10)‘0 =* 1(10)‘0. If one choose the second,
one obtains that all words of the form 1°10°0 are in the language generated by the
grammar, as one would have that S =* T0 =* 1700 = 110°0. In both cases, £ can
be any natural number.

Ogden’s Lemma is not imposing a length-constraint but instead permitting to mark
symbols. Then the word will be split such that some but not too many of the marked
symbols go into the pumped part. This allows to influence where the pump is.

86

Theorem 5.22: Ogden’s Pumping Lemma [65]. Let L C X* be an infinite
contezt-free language generated by a grammar (N, %, P, S) in Chomsky Normal Form
with h non-terminals. Then the constant k = 2" satisfies that for every u € L with
at least k marked symbols, there is a representation vwxyz = u such that wxry contains
at most k marked symbols, wy contains at least 1 marked symbol and vw'zy’z € L

for all ¢ € N.

Proof. Assume that u € L and |u| > k. Let R be a derivation tree for the derivation
of u from S and assume that at least k& symbols in v are marked. Call a node r
in the tree a marked branching node iff marked symbols can be reached below both
immediate successors of the node. If there is no branch of the tree R in which a
non-terminal appears twice on marked branching positions then each branch contains
at most h marked branching nodes and the number of leaves with marked symbols of
the tree is at most 2" < k. Thus v > k could not have k marked symbols.

Thus there must be marked branching nodes r € R for which the symbol A(r)
equals to A(r") for some descendant r’ which is also a marked branching node. By
taking r with this property to be as distant from the root as possible, one has that
there are no marked branching descendant r’ of and no marked branching descendant
" of v’ such that A(r") = A(r”). Thus, each marked branching descendant " of r has
at most 2" marked leaves descending from 7’ and 7 has at most k = 2"*! descendants
which are marked leaves. Now, if one terminalises the derivations except for what
comes from A(r) and the descendant A(r’) with A(r’") = A(r), one can split the word
u into v, w, x,y, z such that S =* vA(r)z =* vwA(r')yz =* vwryz and one has also
that A(r) =* wA(r")y = wA(r)y and A(r’) =* =.

These observations permit to conclude that S =* vw‘zy‘z for all £ € N. As
A(r) = waxy and the branches have below r at most h non-terminals on marked
branching nodes, each such branch has at most 2+ 1 marked branching nodes starting
from r and the word part wxy in u generated below r satisfies that it contains at most
21 — Lk many marked leaves. Furthermore, only one of the two children of can
generate the part which is derived from A(r’), thus at least one of w,y must contain
some marked symbols. Thus the length constraints of Ogden’s Pumping Lemma are
satisfied as required. 1

Example 5.23. Let L be the language of all words w € 17(0T17)" where no two
runs of zeroes have the same length. So 100010011 € L and 11011011001 ¢ L. Now
L satisfies the traditional pumping lemma for context-free languages but not Ogden’s
Pumping Lemma.

Proof. First one shows that L satisfies Corollary 1.42 with pumps of the length of
one symbol; this then implies that also Theorem 1.41 (b) is satisfied, as there only the

87

length of the pumps with the part in between is important but not their position in
the full word. Let w € L and |u| > 3. If 11 occurs in u then one can pump the first 1
which neighbours to another 1, as pumping this 1 does not influence the number and
lengths of the runs of zeroes in the word u. If 11 does not occur in v and there is only
one run of zeroes, so u € 10%1, then one pumps the first of these zeroes; note that
11 € L and thus if u = 1011 then 10*0"1 C L. If there are several runs and 11 does
not occur in u then one pumps the border between the longest run of zeroes and some
neighbouring run of zeroes; if this border is omitted then the run of zeroes becomes
longer and is different from all others in length; if this border is repeated, the number
and lengths of the runs of zeroes is not modified. For example, if ©v = 1001010001
then 100101*0001 C L, as in the case that the pump is omitted the resulting word
100100001 is in L as well, as the longest run of zeroes is fusionated with another run
of zeroes.
In order to see that L does not satisfy Ogden’s Lemma, one considers the word

w=1010%10%1...10*110%*1

and one marks the k zeroes in the subword 10¥1 of u. Now consider any splitting
vwxyz of u.

If wis in {0,1}* — {0}* — {1}* then ww contains a subword of the form 10"1 and
rw*xy*z contains this subword at least twice. Thus w cannot be chosen from this set;
similarly for y.

If w,y are both in {1}* then none of the marked letters is pumped and therefore
this is also impossible.

If we {0}" and y € {1}* then the word vwwxyyz has one border increased in
depth and also the subword 10*1 replaced by 10¥*"1 where k < k + h < 2k. Thus
10*+h1 occurs twice as a subword of vwwzyyz and therefore vwwaryyz ¢ L; similarly
one can see that if w € {1}* and y € {0} this also causes vwwzyyz ¢ L.

The remaining case is that both w,y € {0}*. Now one of them is, due to choice, a
subword of 10¥1 of length h, the other one is a subword of 10¥'1 of length A’ for some
h,h' K. If k' = k then vwwxyyz contains the word 10" *+*1 twice (where h+h < k
by w,y being disjoint subwords of 10%1); if k" # k then the only way to avoid that
vwwzyyz contains 10571 twice is to assume that &' = k + h and the occurrence of
1051 in u gets pumped as well — however, then 1071 occurs in vwwzyyz twice,
ask+1<k+h<2kand k+h+1<Kk+1 <Ak

So it follows by case distinction that L does not satisfy Ogden’s Lemma. Thus L
cannot be a context-free language. |

Theorem 5.24: Square-Containing Words (Ehrenfeucht and Rozenberg [25],
Ross and Winklmann [71]). The language L of the square-containing ternary
words is not context-free.

88

Proposition 5.25. The language L of the square-containing ternary words satisfies
Ogden’s Lemma.

Proof. This can be shown for the constant 7. Let u be any word in L and assume
that at least 7 letters are marked.
Consider those splittings vwxyz = u where the following conditions are met:

e v ends with the same letter @ with which z starts;
e w contains at least one marked letter;
e 1,y are €.

Among all possible such splittings, choose one where w is as short as possible.

First one has to show that such a splitting exists. Let ¢ be a marked letter such
that there are at least three marked letters before and at least three marked letters
after c. If there is any letter a which occurs both before and after ¢, then one could
choose v as the letters up to some occurrence of a before ¢, z as the letters at and
beyond some occurrence of a after ¢ and w to be all the letters in between. If no
such a exists then there is one letter which only occurs before ¢ and two letters which
only occurs after ¢ or vice versa, say the first. Hence one letter a occurs three times
marked before ¢ and then one can split with v up to the first marked occurrence of
a, w between the first and third marked occurrence of a and z at and after the third
marked occurrence of a. Thus there is such a splitting and now one takes it such that
w is as short as possible.

If w would contain three marked letters of the same type b then in the above the
word v ending with the first of these b, the word Z starting from the third of these b
and the word w of the letters in between with Z,y being € would also appear in the
list and therefore w would not be as short as possible.

Thus for each of 0,1,2, there are only two marked letters of this type inside w
and w contains at most six marked letters. Now vz = vxz € L as it contains aa as a
subword. Furthermore vw‘zy‘z € L for £ > 1, as w is not empty. vwzyz = u € L by
choice of u. Thus the language L satisfies Ogden’s Pumping Lemma with constant
7.1

A direct example not using cited results can also be constructed as follows.

Example 5.26. Consider the language L of all words w € {0,1}* such that either

w € {0} U{1}* or the difference n between the number of 0 and number of 1 in w is
a cube, that is, in {...,—64,—27,—-8,—1,0,1,8,27,64,...}. The language L satisfies
Ogden’s Pumping Lemma but is not context-free.

Proof. The language LN ({1} - {0}*) equals to {10"**! : n € N}. If L is context-free
so must be this intersection; however, it is easy to see that this intersection violates

89

Theorem 1.41 (b).

For the verification of Ogden’s Pumping Lemma with constant 2, consider a word
u € L which contains both, zeroes and ones, and consider the case that at least one
letter is marked. Split the word u into vwxyz such that w,y consist of two different
letters (one is 0 and one is 1) and at least of one of these two letters is marked and no
letter in x is marked. If letters of both types of marked, one takes that pair of marked
different letters which are as near to each other as possible; if only zeroes are marked,
one picks a 1 and takes for the other letter the nearest 0 which is marked; if only ones
are marked, one picks a 0 anywhere in the word and choses for the other letter the
nearest 1 which is marked. Then the part x between w and y picked does not contain
any marked letter, as otherwise the condition to choose the “nearest marked letter”
would be violated. Furthermore, v is the part before w and z is the part after y in
the word u.

Now every word of the form vw’zy‘z has the same difference between the occur-
rences of 0 and 1 as the original word w; thus all vw’zy’z are in L and so Ogden’s
Pumping Lemma is satisfied. |

Exercise 5.27. Prove that the language
L={d"-w:ae€{0,1,2},w € {0,1,2}*, w is square-free and h € N}

satisfies Theorem 1.41 (b) but does not satisfy Ogden’s Pumping Lemma. The fact
that there are infinitely many square-free words can be used without proof; recall that a
word w 18 square-free iff it does not have a subword of the form vv for any non-empty
word v.

Exercise 5.28. Use the Block Pumping Lemma to prove the following variant of
Ogden’s Lemma for reqular languages: If a language L satisfies the Block Pumping
Lemma with constant k + 1 then one can, for each word u of length at least k with
having at least k marked symbols, find a splitting of the word into parts x,y,z such
that uw = xyz and xy*z C L and y contains at least 1 and at most k marked symbols.

Example 5.29. Let L be the language generated by the grammar
({S},{0,1},{S — 0S0[151|00|11|0|1}, S),

that is, L is the language of all binary non-empty palindromes. For a grammar
in Greibach Normal Form for L, one needs two additional non-terminals 7', U and
updates the rules as follows:

S — 0ST|LSU|0T|1U|0|1, T — 0,U — 1.

90

Let H be the language generated by the grammar
({S},{0,1},{S — SS]051|150|10|01},.5),

that is, H is the language of all non-empty binary words with same number of 0
and 1. For a grammar in Greibach Normal Form for H, one needs two additional
non-terminals 7', U and updates the rules as follows:

S — 0SU|OU\1ST|1T, T — 0]0S,U — 1]18.
In all grammars above, the alphabet is {0, 1} and the start symbol is S.

Exercise 5.30. Let L be the first language from FExample 5.29. Find a grammar in
Greibach Normal Form for L N 0*1*0*1*.

Exercise 5.31. Let H be the second language from Example 5.29. Find a grammar
in Greibach Normal Form for H N 0*1*0*1*.

Exercise 5.32. Prove the following rules of the derivative with x € ¥* and a € X

() (LUH), =L, UH, and (LN H), =L, N H,;
(b) Ifee L then (L-H),=L,-HUH, else (L-H),=L,-H;
(¢) (L*)g = Ly - L*.

The following theorem characterises the context-free languages by stating that all
derivatives have to be formed from a finite set of languages using concatenation and
union; furthermore, all the derivatives of these finitely many languages satisfy the
same condition.

Theorem 5.33. A language L is context-free iff there is a finite list of languages
Hy,Hs,...,H, with L = Hy such that for every word x and every H,,, (Hp), is a
finite union of finite products of some Hy.

Exercise 5.34. Prove this theorem using the rules of Ezxercise 5.32 and the existence
of grammars in Greibach Normal Form for context-free languages.

91

6 Deterministic Membership Testing

For regular languages, a finite automaton can with one scan of the word decide whether
the word is in the language or not. A lot of research had been dedicated to develop
mechanisms for deciding membership of context-free and context-sensitive languages.
For context-free languages, the algorithms use polynomial time, for context-sensitive
languages, they can do in polynomial space and it is conjectured that it is in some
cases impossible to get polynomial time. The conjecture is equivalent to the conjecture
that the complexity classes P and PSPACE (polynomial time and polynomial space,
respectively) are different. This difference is implied by the conjecture that P is
different from NP; the latter is believed by 83% of the people in complexity theory
who participated in a recent poll by Bill Gasarch [32].

Cocke [18], Kasami [49] and Younger [85] developed independently of each other
an algorithm which solves the membership of a word in a given context-free grammar
in time O(n?). For this algorithm, the grammar is fixed and its size is considered to
be constant; if one factors the size of the grammar in, then the algorithm is O(n®-m)
where m is the size of the grammar (number of rules).

Algorithm 6.1: Cocke, Kasami and Younger’s Parser [18, 49, 85]. Let a
context-free grammar (N, X, P, S) be given in Chomsky Normal Form and let w be a
non-empty input word. Let 1,2,...,n denote the positions of the symbols in w, so
W = aias . ..a,. Now one defines variables E; ; with ¢ < j, each of them taking a set
of non-terminals, as follows:

1. Initialisation: For all &,

Epr={Ae€ N:A— aqa;is arule}.

2. Loop: Go through all pairs (7, j) such that they are processed in increasing order
of the difference j — i and let

Ei,j = {A :Jdrule A — BC 3k [7, <k< j and B € E@k and C € Ek+1,j]}'

3. Decision: w is generated by the grammar ifft S € £} ,,.

To see that the run-time is O(n® - m), note that the initialisation takes time O(n -m)
and that in the loop, one has to fill O(n?) entries in the right order. Here each entry
is a vector of up to m bits to represent which of the non-terminals are represented;
initially they are 0. Then for each rule A — BC and each k with ¢ < k < 7, one
checks whether the entry for B in the vector for E; ;, and the entry for C' in the vector
for Ejyq; are 1; if so, one adjusts the entry for A in the vector of E;; to 1. This

92

loop runs over O(n - m) entries with n being a bound on the number of values k can
take and m being the number of rules, thus each of the variables E; ; is filled in time
O(n - m) and the overall time complexity of the loop is O(n? - m). The decision is
O(1). Thus the overall time complexity is O(n® - m).

Example 6.2. Consider the grammar ({S,7,U},{0,1},{S — SS|TU|UT,U —
0|US|SU, T — 1|T'S|ST?}, S) and the word 0011. Now one can compute the entries
of the E; ; as follows:

E174 = {S}
Ei3={U} Eyy ={T}
E1,2 - @ E2,3 = {S} E3,4 = @
Ei.={U} Ey,p={U} Ess={T} E4,={T}
0 0 1 1

As S € Ey 4, the word 0011 is in the language. Now consider the word 0111.

E1,4 = @
E1,3 = {T} E2,4 = @
E1,2 = {S} E2,3 = @ E374 = @
El,l - {U} EQ’Q == {T} E373 = {T} E4’4 - {T}
0 1 1 1

As S ¢ Ey 4, the word 0111 is not in the language.

Quiz 6.3. Let the grammar be the same as in the previous example. Make the table
for the word 1001.

Exercise 6.4. Consider the grammar ({S,T,U,V,W},{0,1,2}, P, S) with P consist-
ing of the rules S — TT, T — UU|\VVIWW, U — VW|WV|VVIWW, V — 0,
W — 1. Make the entries of the Algorithm of Cocke, Kasami and Younger for the
words 0011, 1100 and 0101.

Exercise 6.5. Consider the grammar ({S,T,U,V,W},{0,1,2}, P, S) with P consist-
ing of the rules S — ST|0|]1, T — TU|1, U - UV|0, V — VW|1, W — 0. Make the
entries of the Algorithm of Cocke, Kasami and Younger for the word 001101.

Description 6.6: Linear Grammars. A linear grammar is a grammar where each
derivation has in each step at most one non-terminal. Thus every rule is either of
the form A — v or A — vBw for non-terminals A, B and words wu,v,w over the
terminal alphabet. For parsing purposes, it might be sufficient to make the algorithm
for dealing with non-empty words and so one assumes that ¢ is not in the language.

93

As in the case of the Chomsky Normal Form, one can put every linear language in a
normal form where all rules are either of the form A — cor A — ¢B or A — Bc for
non-terminals A, B and terminals c¢. This permits to adjust the algorithm of Cocke,
Kasami and Younger to the case of linear grammars where it runs in time O(n? - m),
where n is the length of the input word and m is the number of rules.

Algorithm 6.7: Parsing of Linear Grammars. Let a linear grammar (N, X, P, S)
be given in the normal form from Description 6.6 and let w be a non-empty input
word. Let 1,2,...,n denote the positions of the symbols in w, so w = ajas...a,.
Now one defines variables F; ; with ¢ < j, each of them taking a set of non-terminals,
as follows:

1. Initialisation: For all &,

Eyp={Ae€ N:A—qis arule}.

2. Loop: Go through all pairs (7, j) such that they are processed in increasing order
of the difference j — 7 and let

E;,;j={A: Jrule A— Bc [B€E,;;andc=aj] or
drule A—c¢B [c=a; and B € E; 1]}

3. Decision: w is generated by the grammar iff S € F ,,.

To see that the run-time is O(n? - m), note that the initialisation takes time O(n - m)
and that in the loop, one has to fill O(n?) entries in the right order. Here each entry
is a vector of up to m bits to represent which of the non-terminals are represented;
initially the bits are 0. Then for each rule, if the rule is A — Bc one checks whether
B € E; ;1 and ¢ = a; and if the rule is A — c¢B one checks whether B € E,;; and
¢ = a;. If the check is positive, one adjusts the entry for A in the vector of E;; to
1. This loop runs over O(m) entries with m being the number of rules, thus each of
the variables E; ; is filled in time O(m) and the overall time complexity of the loop is
O(n*-m). The decision is O(1). Thus the overall time complexity is O(n?* - m).

Example 6.8. Consider the grammar
({S,T,U},{0,1},{S — 0|]1|0T|1U, T — S0|0,U — S1|1},.S)

which is a linear grammar generating all non-empty binary palindromes. Then one
gets the following table for processing the word 0110:

94

E1’4 — {S}

E1’3 = (Z) E2,4 = {T}
ELQ - {U} E273 - {S, U} E374 - {T}
El,l - {Sv T} E2,2 - {Sa U} E3,3 = {S’ U} E4,4 - {S’ T}
0 1 1 0

As S € E 4, the word is accepted. Indeed, 0110 is a palindrome. For processing the
word 1110, one gets the following table:

E,,={T}
E1,3 — {S, U} E274 — {T}
ELQ - {S, U} E273 - {S, U} E3’4 - {T}
Ei,={S,U} Ey, o ={S, U} Es;5={S, U} Eyq={5.T}
1 1 1 0

As S ¢ Ej 4, the word is rejected. It is easy to see that 1110 is not a palindrome and
that the algorithm is also correct in this case.

Exercise 6.9. For the grammar from FExample 6.8, construct the table for the algo-
rithm on the word 0110110.

Exercise 6.10. Consider the following linear grammar:
({S,T,U},{0,1},{S — 0T"|T0|0U|U0,T — 07°00|1,U — 00UO|1},5).

Convert the grammar into the normal form from Description 6.6 and construct then
the table of the algorithm for the word 00100.

Exercise 6.11. Which two of the following languages are linear? Provide linear
grammoars for these two languages:

o L={0"1"m2* :n+k=m};
o H={0"1"2*:n+m=k};
o K ={0"1"2":n#m orm#k}.

Algorithm 6.12: Kleene Star of Linear Grammar. Let L be a linear grammar.
Then there is an O(n?) algorithm which can check whether a word w of length n is
in L*. Let w = ajas...a, be the input word and n be its length.

First Part: Compute for each i, 7 with 1 <7 < j < n the set E; ; of all non-terminals
which generate a;a;41 ... a;.

Initialise Loop for Kleene Star: Let Fy = 1.

95

Loop for Kleene Star: For m =1,2,...,n Do
Begin If there is a k < m with S € Ejyq,, and Fj, =1
Then let F,, = 1 Else let F,,, = 0 End.

Decision: w € L* iff F,, = 1.

The first part is in O(n?) as the language is linear, see Algorithm 6.7. The Loop for
Kleene Star can be implemented as a double loop on the variables m and k£ and runs
in O(n?). The decision is afterwards reached by just checking one variable. Thus the
overall complexity is O(n?). For correctness, one just has to prove by induction that
F, =1iff a;...a, is in L*. Note that F, = 1 as the empty word is in L* and the
inductive equation is that

ap...am € "< 3k <mlay...ar € L* and agyq ... ay, € L]
which is implemented in the search; note that k£ can be 0 in the case that a; ...a,, € L.

Exercise 6.13. Construct a quadratic time algorithm which checks whether a word
wis in H- K- L where H, K, L are linear languages. The subalgorithms to make the
entries which of the subwords of u are in H, K, L can be taken over from Algorithm 6.7.

Exercise 6.14. Construct a quadratic time algorithm which checks whether a word u
isin (LN H)*- K where H, K, L are linear languages. The subalgorithms to make the
entries which of the subwords of u are in H, K, L can be taken over from Algorithm 6.7.

In the following exercise, one uses as the base case of regular expressions not finite lists
of words but arbitrary context-free languages. An example is to take two context-free
languages L1, Ly and then to consider expressions like

((Ly N Ly)* - Ly~ Ly- (Ly N Ly)*)*

and then the question is on how difficult the membership test for such a language
is. The main task of the exercise is to show that each such language has an O(n?)
parsing algorithm.

Exercise 6.15. Let the base case of expressions in this exercise be context-free lan-
guages and combine those by concatenation, union, intersection, set-difference, Kleene
Star and Kleene Plus. Consider reqular expression with context-free languages as
primitive parts in the language which are combined by the given connectives. Now
describe by structural induction on how to construct an O(n3) decision procedure for
languages of this type.

The key idea is that whenever one combines one or two languages with concate-
nation, intersection, union, set difference, Kleene Plus or Kleene star, one can from

96

algorithms which provide for any given subword a; . ..a; of the input word a, ...ay, a
value F; ;, E;; € {0,1} denoting whether the subword is in or not in the language L
or L, respectively, create an algorithm which does the same for LN L, LUL, L — L,
L-L, L* and L*. Show that the corresponding computations of the new entries are
always in O(n?).

Description 6.16: Counting Derivation Trees. One can modify the algorithm
of Cocke, Kasami and Younger to count derivation trees. The idea is to replace one
entry which says which non-terminals generate a subword by an entry which says how
many trees generated from each non-terminal the corresponding subword. Here the
trees have the corresponding non-terminal as a root and the symbols of the subwords
in the leave and each node with its immediate successors corresponds to a rule in the
grammar.

More precisely, given a grammar (N, X, P,S) in Chomsky Normal Form and a
word w = ajas . ..ay, then define for all positions (7,j) with 1 < i < j < n and all
A € N the following notions: F;; denotes the set of all nonterminals which generate
the subword a; . ..a; and D; ; 4 denote the number of derivation trees which can, with
root A, derive a word a; ... a;; for A € N — E; ;, the corresponding number D; ; 4 is 0.

The following recursion-formula defines an algorithm to compute the values of the
notions D; j 41 For each A € N and ¢, if there is arule A — ¢ in P then D;; 4 =1
else D;; 4 = 0. Furthermore, For each A € N and each 4,7 with 1 <7 < j < n, the

recrusion formula
D;ja= E E Dikp-Dip1jo
(B,C): A»BC € P k: i<k<j

holds and it does the following: It sums up for all rules A — BC' and for all k£ with
i < k < j the product D, p - Dit1jc which is the product of the the number of
trees having root B and generating a; ...a; and the number of trees having root C'
and generating ag41...a;. Thus one uses already these numbers of trees which have
been counted before and the fact that every tree with root A which generates a word
of at least length 2 can be uniquely decomposed into the rule which maps A to the
two successor non-terminals B, C' in the left and right successor node of the tree and
the subtrees with generate the corresponding words from B and C', respectively; note
that the number of leaves of these subtrees determine the value of k.

Once that one has computed these values, one can determine the overall number
of derivation trees by just taking the number D, ,, .

Exercise 6.17. Let P contain the rules V- — VVIWW|0 and W — VW|WV|1 and
consider the grammar ({V,W},{0,1}, P,W). How many derivation trees has the word
00111007

97

Exercise 6.18. Let P contain the rules V. — VV|WWI0 and W — VW |WV|1 and
consider the grammar ({V,W},{0,1}, P, W). How many derivation trees has the word
0000111¢

Exercise 6.19. Let P contain the rules U — VU|UV|2, V. — VV|IWWI|0 and
W — VW|WVIL and consider the grammar ({U,V,W},{0,1,2}, P,U). How many
derivation trees has the word 0211117

Exercise 6.20. Let P contain the rules U — VU|UV|2, V. — VVIWWI0 and
W — VW|WVI1 and consider the grammar ({U,V,W},{0,1,2}, P,U). How many
derivation trees has the word 0100127

For context-sensitive languages, only a quadratic-space algorithm is known due to a
construction by Savitch [74]. Note that when there are at most k™ different words of
non-terminals and terminals up to length n then the length of the shortest derivation
is also at most k™. Furthermore, one can easily check whether in a derivation v = w
can be done in one step by a given grammar.

Algorithm 6.21. Let a context-sensitive grammar (N, >, P,S) for a language L be
given and let £ = |N| + |X| + 1. For some input n > 0 and w € X", the following
algorithm checks in space O(n?) whether w can be derived from S; note that each call
of the subroutine needs to archive the local variables u, v, t on the stack and this uses
O(n) space as the words u,v have up to length n with respect to the finite alphabet
N UX and t is a number below £™ which can be written down with O(n) digits.

Recursive Call: Function Check(u,v,t)
Begin If u = v or u = v Then Return(1);
Ift <1andu# v and u7# v Then Return(0);
Let t' = Floor(%*%); Let 1/ = 0;
For all v’ € (N U X)* with |u| < |u/| < |v| Do
Begin If Check(u,u',t") =1 and Check(u',v,t") = 1 Then ' =1 End;
Return(r’) End,;

Decision: If Check(S,w, k") =1 Then w € L Else w ¢ L.

For the verification, let &’ be a number with 2¥ > k. Then one can see, by easy
induction, that Check is first called with 2¥"™ or less and then at each iteration of the
call, the value of ¢ is half of the value of ¢ so that the number of iterated calls is at
most &’ -n. Thus the overall space to archive the stacks used is at most (k'-n)-4-k"-n
where £’ - n is the number of nested calls, 4 is the number of variables to be archived
(u,v,u/,t") and k' - n is the space needed (in bits) to archive these numbers. Some

98

minor space might also be needed for local processing within the loop.

For the verification of the correctness of C'heck(u,v,t), note that when v is derived
from wu, all intermediate words are at least as long as v and at most as long as v, thus
the intermediate word «' in the middle is, if v can derived from u within ¢ steps,
within the search space. As one can process the search-space in length-lexicographic
order, it is enough to memorise v’ plus v’ plus ¢’ plus the outcome of the first call
Check(u,u’,t") when doing the second call Check(u',v,t"). So the local space of an
instance of Check can indeed be estimated with O(n). Furthermore, when t > 1,
there must be an intermediate u’ which is reached in the middle of the derivation
from u to v, and one can estimate the time ¢’ from u to u’ as well as from v’ to u in
both cases with Floor(X5*).

The runtime of the algorithm is O(k**"). One can easily see that one instance
of Check(u,v,t) without counting the subroutines runs in time O(k"), furthermore,
each Check(u,v,t) calls 2- k™ times a subroutine with parameter ¢/2. The number of
nesting of the calls is log(k™) = log(k) - n which gives O((2 - k")'°¢*)) which can be
bounded by O((2k)"°e®)"*) " Furthermore, as every call itself is O(k") in runtime, so
the overall runtime is O((2k)™°&#)7+ which can be simplified to an upper bound of
O(C”Q) for any constant ¢ > (2k)'°¢*). Up to today no subexponential algorithms are
known for this problem.

Example 6.22. There is a context-sensitive grammar where for each length n there
is a word of n symbols which cannot be derived in less than 2" steps. This bound is
only to be true for the grammar constructed, other grammars for the same language
can have better bounds.

The grammar ({S,U,V,W},{0,1}, P,S) simulates binary counting and has the
following rules in P:

S = 0S|U, U — V|0, 0V - 1U, V — 1, 1V — WU, 1W — WO,
oW — 10.

The binary counter starts with generating n — 1 digits 0 and then deriving from S to
U. U stands for the last digit 0, V' stands for last digit 1, W stands for a digit 0 still
having a carry bit to pass on. Deriving a binary number k£ needs at least k steps. So
deriving 1™ representing 2" — 1 in binary requires 2" — 1 counting steps where every
fourth counting step requires a follow-up with some carry, so that one can even show
that for 1™ more than 2" derivation steps are needed.

Exercise 6.23. Give a proof that there are k™ or less words of length up to n over
the alphabet XU N with k — 1 symbols.

Exercise 6.24. Modify Savitch’s Algorithm such that it computes the length of the

99

shortest derivation of a word w in the context-sensitive grammar, provided that such
deriwation exists. If it does not exist, the algorithm should return the special value oo.

Exercise 6.25. Consider the following algorithm:

Recursive Call: Function Check(u,w,t)
Begin If uw = w or u = w Then Return(1);
If t <1and u# v and u % w Then Return(0);
Let 7" = 0; For all v € (N U X)* with u = v and |v| < |w| Do
Begin If Check(v,w,t — 1) =1 Then " = 1 End;
Return(r’) End;

Decision: If Check(S,w, k") =1 Then w € L Else w ¢ L.

Analyse the time and space complexity of this algorithm. Note that there is a poly-
nomial time algorithm which returns to given w,w the list of all v with uw = v and
o] < fwl.

Definition 6.26: Growing CTS by Dahlhaus and Warmuth [19]. A grammar
(N,X, P, S) is growing iff |l| < |r| for all rules | — r in the grammar.

So growing grammars are context-sensitive by the corresponding characterisation,
thus they are also called “growing context-sensitive grammars”. It is clear that their
membership problem is in polynomial space. An important result is that this problem
is also in polynomial time.

Theorem 6.27: Growing CTS Membership is in P (Dahlhaus and Warmuth
[19]). Given a growing context-sensitive grammar there is a polynomial time algo-
rithm which decides membership of the language generated by this growing grammar.

In this result, polynomial time means here only with respect to the words in the
language, the dependence on the size of the grammar is not polynomial time. So if
one asks the uniform decision problem for an input consisting of a pair of a grammar
and a word, no polynomial time algorithm is known for this problem. As the problem
is NP-complete, the algorithm is unlikely to exist.

Example 6.28. Consider the grammar
{s,T,U},{0,1},{S — 011|711, T — TOU|00U, U0 — OUU,U1 — 111}, 5)

which is growing. This grammar has derivations like S = T'11 = 00U11 = 001111
and S = T11 = T0U11 = 00U0U11 = 00U01111 = 000UU 1111 = 000U111111 =
00011111111. The language of the grammar is

{0"1*" :n > 0} = {011,001111,0%1%,0*1'¢,0°1%%. . .}

100

and not context-free. The latter can be seen as infinite languages satisfying the
pumping lemma can only have constant gaps, that is, there is a maximum constant
¢ such that for some ¢ there are no words of length ¢, ¢+ 1,...,¢t + ¢ in the language.
However, the gaps of this language are growing, each sequence n + 2" + 1,n + 2" +
2,...,n+ 2" is a gap.

Exercise 6.29. Show that every context-free language is the union of a language

generated by a growing grammar and a language containing only words up to length
1.

Exercise 6.30. Modify the proof of Theorem /.11 to prove that every recursively
enumerable language, that is, every language generated by some grammar is the ho-
momorphic image of a language generated by a growing context-sensitive grammar.

Exercise 6.31. Construct a growing grammar for the language {12"0**1%" : n. > 0}
which is the “palindromisation” of the language from Example 6.28.

101

7 Non-Deterministic Membership Testing

For finite automata, non-deterministic automata and deterministic automata do not
vary in speed to process data, only in the amount of states needed for a given regular
language. For membership testing of context-free languages, there is, up to current
knowledge, a significant difference in speed. Non-deterministic algorithms, so called
pushdown automata, can operate with speed O(n) on the words while deterministic
algorithms like the one of Cocke, Kasami and Younger need O(n?) or, with some
improvements by exploiting fast matrix multiplication algorithms, about O(n?3728639),

Description 7.1: Push Down Automaton. The basic idea for the linear time
algorithm to check non-deterministically membership in a context-free language is
that, for a grammar in Chomsky Normal Form, a word of length n can be derived
in 2n — 1 steps, n — 1 applications of rules which convert one non-terminal into two,
n applications of rules which convert a non-terminal into a terminal. A second idea
used is to go through the derivation tree and to do the left-most rule which can be
applied. Here an example with the usual grammar

({S,T,U},{0,1},{S — SS|TU|UT,U — 0|US|SU, T — 1|TS|ST}, S).

and the derivation tree for the derivation S =* 1010:

_——
@8]
()]

Now the left-most derivation according to this tree is S = TU = TSU = 15U =
1WUWTU = 107U = 101U = 1010. Note that in each step the left-most non-terminal
is replaced by something else using the corresponding rule. The idea of the algorithm
is now to split the data of the derivation into two parts:

e The sequence of the so far generated or compared terminals;

102

e The sequence of the current non-terminals in the memory.

The sequence of non-terminals behave like a stack: The first one is always processed
and then the new non-terminals, if any, are pushed to the front of the stack. The
terminals are, whenever generated, compared with the target word; alternatively, one
can therefore also read the terminals symbol by symbol from the source and whenever
one processes a rule of the form A — a one compares this a with the current terminal:
if they agree then one goes on with the derivation else one discards the work done so
far. Such a concept is called a pushdown automaton — where non-terminal symbols
are pushed down into the stack of the non-terminals or pulled out when the current
non-terminal has just been converted into a terminal. The pushdown automaton
would therefore operate as follows:

Start: The symbol S is on the stack.

Loop: While there are symbols on the stack Do Begin

Step 1: Pull a symbol A from the top of the stack;

Step 2: Select non-deterministically a rule A — w from the set of rules;

Step 3a: If the rule is A — BC' Then push BC onto the stack so that B becomes
the topmost symbol and continue the next iteration of the loop;

Step 3b: If the rule is A — a Then Read the next symbol b from the input;
If there is no next symbol b on the input or if b # a then abort the computation
else continue the next iteration of the loop End End;

Decision: If all symbols from the input have been read and the computation has not
yet been aborted Then accept Else reject.

For a more formal treatment, one also allows states in the push down automaton.

Definition 7.2: Pushdown Automaton. A pushdown automaton consists of a
tuple (@, %, N,0d,s,S, F) where @ is a set of states with s being the start state and F
being the set of final states, X is the alphabet used by the target language, 0 is the
transition function and N is the set of stack symbols with the start symbol S being
on the stack.

In each cycle, the push down automaton currently in state p pulls the top element
A from the stack and selects a rule from d(p, A, v) which consists of a pair (p, w) where
v € ¥* and w € N*; if v agrees with the next input symbols to be processed (this is
void if v =) then the automaton advances on the input by these symbols and pushes

103

w onto the stack and takes the new state q.

There are two ways to define when a pushdown automaton accepts: Acceptance
by state means that the pushdown automaton accepts iff there is a run starting with S
on the stack that goes through the cycles until the automaton has processed all input
and is in an accepting state. Acceptance by empty stack means that the pushdown
automaton accepts iff there is a run starting with S on the stack that goes through
the cycles until the automaton has processed all input and is in an accepting state
and the stack is empty. Note that the automaton gets stuck if it has not yet read all
inputs but there is no symbol left on the stack; such a run is considered as rejecting
and cannot count as an accepting run.

A common convention is that the word v of the input to be parsed in a cycle
always consists of either one symbol or zero symbols.

Example 7.3. The pushdown automaton from the beginning of this chapter has the
following description:

Q = {s} and F' = {s};

[]

e X ={0,1};

e N ={S,T,U} with start symbol S;
[]

5(3757 S) = {(5> SS)’ (37 TU)7 (S’ UT)},
(5.2,) = {(5.TS), (5, ST}

i(s,e,U) ={(s,US), (s,SU)};

6(‘9707 U) = {<S75)};

5(87 17T) = {(575)};

d(s,v, A) = 0 for all other choices of (v, A).

Here a sample processing of the word 001110:

input processed | start | — 0 |- - 0 1 |- 1]- 1
new stack S ur|\T|SsST|\uTrT \|\Tr|\T\|\TS|S|TU |U]|«

One can generalise this idea to an algorithm which works for any context-free language
given by a grammar in Chomsky Normal Form.

Algorithm 7.4. Let (N, X, P, S) be a grammar in Chomsky Normal Form generating
a language L. Then one can construct a pushdown automaton recognising the same
language L as follows:

o Q= {s}and F = {s};
e > and N are taken over from the grammar; furthermore, S is again the start
symbol;

104

e For every non-terminal A € N, one defines that
d(s,e,A) ={(s,BC): A— BCisin P} U{(s,e): S = eisin P and A = S},
fora e X, if A — aisin P then d(s,a, A) = {(s,e)} else (s, a, A) = 0.

This algorithm was applied in Example 7.3.

Verification. One shows by induction over the derivation length that the automaton
can have the stack w after processing input v iff v € ¥*, w € N* and § =* vw.
Here the derivation length is the number of steps of the pushdown automaton or the
number of steps in the derivation.

It is clear that S can derive only S in zero steps and that the pushdown automaton,
similarly, has S in the stack and no input processed after zero steps. Furthermore,
one can see that ¢ is derived in the grammar in exactly one step iff S — ¢ is in P iff
the pushdown automaton has d(s,e,.S) = {(s,¢)} iff the pushdown automaton can go
in one step into the situation where no input has been processed so far and w = ¢.

Now consider that the equivalence holds for k£ steps, it has to be shown that it
also holds for k£ 4 1 steps.

Now assume that the pushdown automaton has processed v in k+ 1 steps and has
the stack w and assume that vw # ¢, as that case has already been covered. Let v
and @ be the processed input in the first k& steps and @ be the stack after k steps on
the way to v and w. There are two cases:

First, w = Aw and 9a = v. Then (s,a, A) = {(s,¢)} and the rule A — a is in P.
Furthermore, S =* vAw in k steps. Now one can apply the rule A — a and obtains
that S =* vaw = vw in k + 1 steps.

Second, w = BCw and the pushdown automaton had processed v already at step
k and had the stack Aw. Then the pushdown automaton satisfies (s, BC') € §(s, e, A)
and A — BC'is a rule. Furthermore, S =* vAw® in k steps in the grammar and now
applying A — BC' gives S =* vBCw in k + 1 steps, the righthand side is equal to
vw.

Furthermore, for the other way round, assume that S = vw in k + 1 steps in a
left-most derivation. Again assume that vw # €.

First, if the last rule was A — a, then S — 0Aw in k steps and v = va. By
induction hypothesis, the pushdown automaton can process © in k processing steps
having a memory Aw and then in the next processing step read a and use up A, as
d(s,A,a) = {(s,e)} so that the pushdown automaton has read v and produced the
stack of w in k + 1 steps.

Second, if the last rule applied was A — BC then S — vAw® in k steps with
w = BCw®w and the pushdown automaton can process v and having step Aw after k
steps. Furthermore, (s, BC') € §(s,e, A) and therefore the pushdown automaton can
have the stack BCw = w after k 4+ 1 steps with the input processed still being the

105

same v.

This induction shows that S =* vw with v € ¥* and w € N* iff there is a run of
the pushdown automaton which starts on stack being S and which has, after reading
input v and doing some processing the stack w. This equivalence is in particular true
if w = ¢ and therefore the words generated by the grammar are the same as those
accepted by the pushdown automaton in some run.

Exercise 7.5. Construct a pushdown automaton accepting by empty stack for the
language {0"1™2F :n +m =k + 1}.

Exercise 7.6. Construct a pushdown automaton accepting by empty stack for the
language {0"1™2% : n +m < k}.

Exercise 7.7. Construct a pushdown automaton accepting by empty stack for the
language {0"1™2% : n % m and k > 0}.

The next algorithm describes how to generate a pushdown automaton accepting by
state from a given context-free grammar in Chomsky Normal Form; the verification
is similar and therefore only sketched.

Algorithm 7.8. Assume that (N, X, P,S) is a context-free grammar in Chomsky
Normal Form. Then the following pushdown automaton recognises L with the accep-
tance method by state. The pushdown automaton is ({s,t}, X, N U N’ d,s,5", {t})
where N = {A" : A € N} is a “primed copy” of N. The primed version of a non-
terminal is always the last non-terminal in the stack. For every non-terminal A € N
and the corresponding A" € N’, one defines the following transition function:

d(s,e,A) ={(s,BC) : A— BCis arule in P};

i(s,e,A") = {(s,BC") : A — BC is arule in P} U {(t,e) : A’ = 5" and
S — eis arulein P};

for all terminals a, if the rule A — a is in P then §(s,a, A) = {(s,¢)} and
o(s,a, A") = {(t,e)} else 6(s,a, A) = 0 and d(s,a, A’) = 0;
§(t,v,A),0(t, v, A’) are () for all v.

Similar as in the algorithm before, one can show the following: S =* vwA with
v e X, w e N and A € N iff the pushdown automaton can, on input v reach
the stack content wA’ and is in state s. Furthermore, the pushdown automaton can
process input v and reach empty stack iff it can process v and reach the state ¢ —
the reason is that for reaching state ¢ it has to transform the last stack symbol of the
form A’ into £ and this transformation always leads from s to t.

106

Exercise 7.9. Construct a pushdown automaton accepting by state for the language
{0m1™m2% : n +m > k}.

Exercise 7.10. Construct a pushdown automaton accepting by state for the language

{0m1™m2% i n £k or m # k}.

Exercise 7.11. Construct a pushdown automaton accepting by state for the language
{w € {0,1}* : w is not a palindrome}.

Theorem 7.12. If L can be recognised by a pushdown automaton accepting by final
state then it can also be recognised by a pushdown automaton accepting by empty stack.

Proof. Given a pushdown automaton (Q, >, N, d, s, S, F') for L, one constructs a new
automaton (Q U {t}, N,d s, S, FU{t}) as follows (where ¢ is a new state outside Q):

e Forallge @, A€ N and v, §'(q,v, A) = §(q,v, A) U{(t,e) : v =€ and q € F'};
e Forall Ae N and v #¢, §(t,e,A) = {(t,e)} and §'(t,v, A) = 0.

So whenever the original pushdown automaton is in an accepting state, it can opt to
remove all remaining non-terminals in the stack by transiting to ¢; once it transits to
t, during this transit and afterwards, it does not process any input but only removes
the symbols from the stack. Thus the new pushdown automaton can accept a word
v by empty stack iff the old pushdown automaton can accept that word v by final
state. 1

Furthermore, one can show that whenever a language L is recognised by a pushdown
automaton using the empty stack acceptance condition then it is generated by context-
free grammar.

Algorithm 7.13: Pushdown Automaton to Grammar. Given a pushdown au-
tomaton (Q, >, N, 6, s, S, F) for L which accepts by empty stack, let the new grammar
(@ x N xQ)U{S'},%, P,S") be defined by putting the following rules into P:

e For all p € F, put all rules S” — (s,5,p) into P;
e For each ¢,r € Q, A€ N, v e X* and (p1,w) € §(¢q,v, A) with w = BB ... B,
with n > 0 and for all p,...,p, € @, put the rule

(q,A,7) = v(p1, B1,p2)(p2, B, p3) - .. (Pny By, 1)

into P;
e Foreachqe Q, A€ N,v e ¥ and (p,e) € 6(q,v, A), put the rule (¢, A, p) — v
into P.

107

The idea of the verification is that a non-terminal (p, A, q) generates a word v iff the
pushdown automaton can on state p process the input v with exactly using up the
symbol A in some steps and ending up in state ¢ afterwards with the stack symbols
behind A being untouched. The construction itself is similar to the construction which
looks at the intersection of a context-free language with a regular language and the
verification is done correspondingly.

Example 7.14. Consider the following pushdown-automaton.

o () ={s,t}, F ={t}, start state is s;
e X ={0,1}

e N ={S U,T}, start symbol is S

. (5, V), (1,U), (1)}

S

0(s,0,5) =
5(5.1,5)
o(t,0,U)
o(t,1,T)

0,9) ={

1,9) ={(s,ST),(t,T),(t,e)};
L0,U) ={(t,e)}; 6(t,1,U) = 0;
1, T) =A{(t,e)}; 6(t,0,T) = 0;
6(q,e,A) =0 for all g € Q and A € N.

Now, one can obtain the following context-free grammar for the language:

Set of non-terminals is {5’} UQ x N x @ with start symbol S’;
Set of terminals is {0, 1};
o S —(s,5,1);
(s,S,t) — 0(s, S, t)(t, U, t)|0(t, U, t)|[0|1(s, S, t)(¢t, T, t)|1(t, T, t)|1;
(t,U,t) — 0;
(t,T,t) — 1;
e Start symbol 5.

Unnecessary rules are omitted in this example; the set of non-terminals could just be
{5, (s,5,t),(t,T,t),(t,U,t)}.

If one does not use U, T as place-holders for 0,1 and identifies ', (s,S,t) to S,
then one can get the following optimised grammar: The unique non-terminal is the
start symbol S, the set of terminals is {0,1}, the rules are S — 050/00/0]1S1|11|1.
Thus the pushdown automaton and the corresponding grammar just recognise the set
of non-empty binary palindromes.

Greibach [36] established a normal form which allows to construct pushdown automata
which can check the membership of a word with processing one input symbol in each
step. The automaton accepts words by state.

Algorithm 7.15: Pushdown Automaton reading Input in Each Cycle. Let
(N, X, P,S) be a grammar in Greibach Normal Form. The pushdown automaton uses
the idea of primed symbols to remark the end of the stack. It is constructed as follows:

108

The set of states is {s,t,u} and if € is in the language then {s,u} are accepting
else only {u} is the set of accepting states; s is the start state.

Let N ={A,A": A€ N} and S’ be the start symbol.

The terminal alphabet is ¥ as for the grammar.

For all symbols a € ¥ and A € N,

i(s,a,8) = {(t,B1By...B)) : S = aB1By...B, is a rule in P with n >
0} U{(u,e): S — aisarulein P};

d(t,a,A) ={(t,B1By...B,) : A— aB1By... B, is a rule in P with n > 0};
d(t,a,A") = {(t,B1By...B])) : A — aBB,y...B, is a rule in P with n >
0} U{(u,e): A — aisarulein P}

d(q,v,A),0(q,v,A’) are () for all states g, A € N and v where not defined
otherwise before; note that in a righthand side of a rule, only the last symbol
can be primed.

Exercise 7.16. The above algorithm can be made much simpler in the case that e
is not in the language. So given a grammar (N, 3, P,S) in Greibach Normal Form
for a language L with € ¢ L, show that there is a pushdown automaton with non-
terminals N, start symbol S, terminals ¥ and accepting by empty stack; determine
the corresponding transition function o in dependence of P such that in each step, the
pushdown automaton reads one non-terminal.

Example 7.17. Consider the following pushdown automaton:

Q = {s}; F = {s}; start state s;
N = {S}; start symbol S;
¥ =40,1,2,3}

8(s,0,8) = {(s,¢)};
o(s 7175) ={(s; 9}
6(s,2,8) ={(s,99)};
8(s,3,5) ={(s,559)};
d(s,e,8) = 0;

Acceptance mode is by empty stack.

The language recognised by the pushdown automaton can be described as follows:
Let digitsum(w) be the sum of the digits occurring in w, that is, digitsum(00203) is
5. Now the automaton recognises the following language:

{w : digitsum(w) < |w| and all proper prefixes v of w with satisfy
digitsum(v) > |v|}.

109

This pushdown automaton has one property: In every situation there is exactly one
step the pushdown automaton can do, so it never has a non-deterministic choice.
Thus the run of the pushdown automaton is deterministic.

Exercise 7.18. Provide context-free grammars generating the language of Exam-
ple 7.17 in Greibach Normal Form and in Chomsky Normal Form.

Note that languages which are recognised by deterministic pushdown automata can
be recognised in linear time, that is, time O(n). For that reason, the concept of a
deterministic pushdown automaton is quite interesting. It is much more flexible, if
one uses the condition of acceptance by state rather than acceptance by empty stack;
therefore it is defined as follows.

Definition 7.19. A deterministic pushdown automaton is given as (@, 2, N, J, s, S, F')
and has the acceptance mode by state with the additional constraint that for every
A € N and every v € ¥* and every ¢ € () there is at most one prefix v of v
for which 6(q, v, A) is not empty and this set contains exactly one pair (p,w). The
languages recognised by a deterministic pushdown automaton are called deterministic
context-free languages. Without loss of generality, 6(q, v, A) is non-empty only when
veXuU{e}

Proposition 7.20. Deterministic context-free languages are closed under comple-
ment.

Proof. Given a deterministic pushdown automaton (Q,%, N, d,s, S, F) which has
acceptance mode by state, one constructs the new automaton as follows:

Q' = QU {t,u} for new state t,u; F' = {u} UQ — F; new start state is t;

the terminal alphabet ¥ remains the same;

N’ = N U{S"} for a new start symbol S’;

The new transition function ¢’ is as follows, where v € YU {e}, a € 3, ¢ € Q,
AeN:

1. §'(t,e,8") ={(s,55)};

if 0(q,v, A) # 0 then §'(q,v, A) = d(q, v, A);

if (¢, a, A) and 6(q,e, A) are both () then §'(q,a, A) = (u, 5");

5(g,a,8) = {(u,)}

5/(u7 a, SI) = {(u7 S/)};

' takes on all combinations not previously defined the value 0.

AN il o

The new pushdown automaton does the following:

110

e It starts with state £ and symbol S” and pushes SS’ onto the stack before sim-
ulating the old automaton by instruction of type 1;

e [t then simulates the old automaton using instructions of type 2 and it accepts
iff the old automaton rejects;

e When the old automaton gets stuck by a missing instruction then the new
automaton pushes S’ and goes to state u by instruction of type 3;

e When the old automaton gets stuck by empty stack then this is indicated by S’
being the symbol to be used and the new automaton pushes S’ back onto the
stack and goes to state u by instruction of type 4;

e Once the automaton reaches state v and has S’ on the top of the stack, it stays
in this situation forever and accepts all subsequent inputs by instructions of
type 9;

e The instruction set is completed by defining that ¢’ takes () in the remaining
cases in order to remain deterministic and to avoid choices in the transitions.

Note that the new automaton never gets stuck. Thus one can, by once again invert-
ing the accepting and rejecting state, use the same construction to modify the old
automaton such that it never gets stuck and still recognises the same language.

Proposition 7.21. If L is recognised by a deterministic pushdown automaton (Q, 3,
N,0,s,S, F) which never gets stuck and H is recognised by a complete determinis-
tic finite automaton (Q',%,0',s', F') then L N H is recognised by the deterministic
pushdown automaton

(QxQ %, N §xd,(s,8),S FxF)
and L U H 1s recognised by the deterministic pushdown automaton
(@xQ,E,N',6xd,(s,5),8,Qx FUF x Q)

where (6 x §')((¢,4'),a,4) = {((p,p),w) : (p,w) € §(¢q,a,A) and p" = §'(¢',a)} and
(0 x0)(q.¢) e, 4) ={((p,q),w) : (p,w) € 6(q,¢, A)}.

Proof Idea. The basic idea of this proposition is that the product automaton simu-
lates both the pushdown automaton and finite automaton in parallel and since both
automata never get stuck and the finite automaton does not use any stack, the sim-
ulation of both is compatible and does never get stuck. For L N H, the product
automaton accepts if both of the simulated automata accept; for L U H, the product
automaton accepts if at least one of the simulated automata accepts. Besides that,
both product automata do exactly the same.

Example 7.22. There is a deterministic pushdown-automaton which accepts iff two
types of symbols appear in the same quantity, say 0 and 1 and which never gets stuck:

111

Q = {s,t}; {s} is the set of accepting states; s is the start state;

Y contains 0 and 1 and perhaps other symbols;

N ={S,T,U,V,W} and S is the start symbol;

0 takes non-empty output only if exactly one symbol from the input is parsed;

the definition is the following:
d(q,a,A) ={(q,A)} for alla € ¥ —{0,1} and A € N;

5(s,0,5) = {(t,US)}; 6(s,1,8) = {(t, TS)};
3(t,1,U) = {(s,e)}; 6(,0,U) = {(t, VU)}
5(t,1,V) = {(t,e)}; 8(t,0,V) = {(t, VV)};
5(t,0,T) = {(s,€)}; 0(t,1,T) = {(t, TW)};
o(t,0,W) = {(t,e)}; 6(t, 1, W) = {(t, WW)}.

The idea is that the stack is of the form S when the symbols are balanced and of the
form US if currently one zero more has been processed than ones and of the form
VrUS if currently n+ 1 zeroes more processed than ones and of form T'S if currently
one one more has been processed than zeroes and of the form W™TS if currently n+ 1
ones more have been processed than zeroes. The state s is taken exactly when the stack
is of the form S and the symbols U, T are there to alert the pushdown automaton that,
when the current direction continues, the next symbol on the stack is S.

Theorem 7.23. The deterministic context-free languages are neither closed under
unton nor under intersection.

Proof. If the deterministic context-free languages would be closed under union, then
they would also be closed under intersection. The reason is that if L and H are
deterministic context-free, then

LNH=%—((S*=L)U(Z* — H))

and so it is sufficient to show that they are not closed under intersection. By Exam-
ple 7.22 there language Lo, of all words in {0, 1,2}* with the same amount of 0 and 1
is deterministic context-free and so is also the language L; » of all words in {0, 1,2}*
with the same amount of 1 and 2. Now assume that the intersection Ly, N L; 2 would
be deterministic context-free. Then so is also the intersection of that language with
0*1*2* by Proposition 7.21; however, the language

Loy N Lo N0°172* = {0"1"2" : n € N}

is not context-free and therefore also not deterministic context-free. Thus the de-
terministic context-free languages are neither closed under union nor under intersec-
tion. 1

112

Exercise 7.24. Show that the language L = {0"10™ : n > m} is deterministic
context-free. What about L*? Give reasons for the answer, though a full proof is not
requested.

Exercise 7.25. Assume that L is deterministic context-free and H is reqular. Is
it always true that L - H is deterministic context-free? Give reasons for the answer,
though a full proof is not requested.

Exercise 7.26. Assume that L is deterministic context-free and H is reqular. Is
it always true that H - L is deterministic context-free? Give reasons for the answer,
though a full proof is not requested.

Exercise 7.27. Is L™ deterministic context-free whenever L is? Give reasons for
the answer, though a full proof is not requested.

There has been a lot of research under which condition one can in a grammar in
Greibach normal form find out by inspecting the next terminals in the word which rule
applies. One can consult the Wikipedia pages on LL-grammars and LL(1)-grammars
or see the textbook by Waite and Goos [84]. The following exercise investigate the
connections between the forms of the derivatives and grammars in Greibach normal
form where there is at most one rule of the form A — bw for each non-terminal A
and terminal b.

Exercise 7.28. Assume that L is recognised by a grammar in Greibach normal form
such that for every b € ¥ and every nonterminal A € N there is exactly one rule
A — bw with w € N* in the grammar. Show that there is a finite family of languages
Hy, ..., H, with HA = L, Hy = {e} and H3 = 0 such that for every a € X and every
Hy, the derivative (Hy), is either an Hy or a product of several of the Hy. Note that
0o =0 for all a € X.

Exercise 7.29. Assume L is prefiz-free and L # {e} and L satisfies that every deriva-
tive of L 1s the product of some fixed languages Hy, ..., H,. Is then L is recognised
by a grammar in Greibach normal form where for every A € N and b € ¥ there is at
most one rule in the grammar of form A — bw?

Exercise 7.30. Consider the language L of all ternary words which have as many
0 as 1. Show that every derivative of L is the product of several items of L, Ly and
Ly but that there is no grammar in Greibach normal form for L which has for every
A€ N and b € X at most one rule of the form A — bw with w € N*.

Exercise 7.31. Consider the context-free language L over the alphabet {f,(,),0,1,,}
with the last symbol being a comma. The rules of the grammar are S — f(.S,.5)[0[1

113

and create all expressions of a binary function f from {0,1}? to {0,1}. Construct for
L a grammar in Greibach normal form where for each pair (A,b) there is at most one
rule A — bw in the grammar.

Exercise 7.32. Prove the following rules of the derivative:
(LUH), =L, UH,;
Ifee Landa€ X then (L-H)y=L,-HUH else (L-H),=L,-H.

This rules can be used to prove the following theorem in the spirit of the Theorem
of Myhill and Nerode: A language is context-free iff there is a finite list of languages
H,, H,, ..., H, such that all derivatives of L and also all derivatives of Hy, H», ..., H,
can be obtained by forming concatenations and unions of members of Hy, Hs, ..., H,,
repeatedly. Though the list of derivatives is not finite, they are all finitely generated
from finitely many choices.

Theorem 7.33. A language L is context-free iff there is a finite list of languages
Hy,H,, ..., H, with L = H;y such that for every word x and every H,,, (Hp,); is a
finite union of finite products of some Hy.

Exercise 7.34. Prove this theorem.

114

Selftest 7.35. Construct a homomorphism h and a context-free set L of exponential
growth such that h(L) has polynomial growth and is not regular.

Selftest 7.36. Construct a homomorphism from {0, 1,2,...,9}* to {0, 1}* are there
such that

e The binary value of h(w) is at most the decimal value of w for all w € {0,1}";

o h(w) € 0% iff w € 0%

e h(w) is a multiple of three as a binary number iff w is a multiple of three as a
decimal number.

Note that h(w) can have leading zeroes, even if w does not have them (there is no
constraint on this topic).

Selftest 7.37. Consider the language L generated by the grammar ({S, 7T}, {0, 1, 2},
{S — 052|152|02|12|T2,T — 0T|17},S). Provide grammars for L in Chomsky
Normal Form, in Greibach Normal Form and in the normal form for linear languages.

Selftest 7.38. Carry out the Algorithm of Cocke, Kasami and Younger with the
word 0122 with the grammar in Chomsky Normal Form from Selftest 7.37. Provide
the table and the decision of the algorithm.

Selftest 7.39. Carry out the O(n?) Algorithm derived from the one of Cocke, Kasami
and Younger with the word 0022 using the grammar in the normal form for linear
grammars from Selftest 7.37. Provide the table and the decision of the algorithm.

Selftest 7.40. Provide an example of a language L which is deterministic context-free
and not regular such that also L - L is deterministic context-free and not regular.

Selftest 7.41. Provide an example of a language L which is deterministic context-free
and not regular such that L - L is regular.

115

Solution for Selftest 7.35. Let L = {w € {0,1}*-{2}-{0,1}* : w is a palindrome}
and let h(0) = 1, h(1) = 1, A(2) = 2. While L has exponentially many members
— there are 2" words of length 2n + 1 in L — the set h(L) = {1"21" : n € N} and
therefore h(L) has only polynomial growth, there are n 4+ 1 many words up to length
2n + 1 in h(L). However, h(L) is not regular.

Solution for Selftest 7.36. One can define h as follows: h(0) = 00, h(1) = 01,
h(2) = 10, h(3) = 11, h(4) = 01, h(5) = 10, h(6) = 11, h(7) = 0L, h(8) = 10,
h(9) = 11. Then one has that

binval(h(ana,_1 ... a1ap)) = Z 4" binval(h(a,))

m
< Z 4" - a,, < decval(a,an_1 ... a1a0)
m

which gives the constraint on the decimal value. Furthermore, when taking modulo
3, 10™ and 4™ are 1 modulo 3 and a,, and h(a,,) have the same value modulo three,
thus they are the same. In addition, as only h(0) = 00, it follows that h(w) € 0* iff
w € 0.

Solution for Selftest 7.37. The non-terminal 7" in the grammar is superfluous.
Thus the grammar is ({S}, {0, 1,2},{S — 052|152|02|12}, 5) and has the following
normal forms:

Chomsky Normal Form: Non-terminals S, T, X,Y, Z; Terminals 0, 1,2; Rules S —
XTIYT'\XZ)YZ, T —SZ, X -0,Y — 1, Z — 2; start symbol S.

Greibach Normal Form: Non-terminals S, T'; Terminals 0,1,2; Rules S — 0ST|
1ST|0T|1T, T' — 2; start symbol S.

Normal Form of linear grammar: Non-terminals S,7; Terminals 0,1,2; Rules
S — 0T|1T, T — 52|2; start symbol S.

Solution for Selftest 7.38.

E174 — {S}
E1,3 = @ E2,4 = {T}
El,2 = @ E2,3 = {S} E3,4 = @
El,l == {X} E272 = {Y} E373 - {Z} E4’4 - {Z}
0 1 2 2

As S € By 4, the word 0122 is generated by the grammar.

Solution for Selftest 7.39.

116

El,g :(Z) E24 == {T}
Eia=0 E,3={S} Es4=10
El,l = E22 :® E33 - {T} E44 - {T}
0 0 2 2

As S € Ey 4, the word 0022 is generated by the grammar.

Solution for Selftest 7.40. The following example L is non-regular and determin-
istic context-free: L = {0"1" : n > 0}. Now L - L = {0"1"0™1™ : n,m > 0} is also
deterministic context-free.

Solution for Selftest 7.41. The following example provides a non-regular and
deterministic context-free L such that L - L is regular: L = {0"10™ : n # m}. Now
L-L={0"10*10m:k>2o0r (k=1andn#0and m# 1) or (k=1and n # 0 and
m # 1) or (k=0 and n # 0 and m # 0)}, thus L is regular. Let a word 0"10*10™
be given. If k > 2 there are at least three ways to write k as a sum ¢ + j and at least
one way satisfies that n # i and j # m and 0"10¥10™ € L - L; for k = 1 there are
only two ways and it is coded into the condition on L - L that one of these ways has
to work; for £ = 0 it is just requiring that n, m are both different from 0 in order to
achieve that the word 0"10¥10™ is in L - L.

117

8 Games on Finite Graphs

The easiest game in a finite graph is a race to reach a member of a set of targets. Two
players, Anke and Boris, move a marker alternately and that player who moves the
marker first into a target-node wins the game, the game is supposed to start outside
the set of targets. Without loss of generality, Anke is the player who moves first.
So a game is given by a graph with a special set of vertices being the targets plus a
starting-position of the marker (unless that is random). Furthermore, one might say
that if a player ends up being unable to move, this player also loses the game.

Example 8.1. Consider a graph whose vertices are all labeled with 3-digit figures,
so with 000,001, ...,999, the start point is random. Now a player can move from ijk
to i'7'k" iff two digits are the same and the third digit is smaller than the previous
one; the player who moves into 000 is the one who wins the game. The players move
alternately.

Assume that 257 is the randomly chosen starting configuration. Now Anke moves
257 — 157. Boris replies by 157 — 156. Anke now moves 156 — 116. Boris replies
116 — 110. Now Anke moves 110 — 100 and Boris wins moving 100 — 000.

Assume now that 111 is the randomly chosen starting configuration. Then Anke
wins: in each move, the number of 1s goes down by 1 and so Anke, Boris and then
Anke can move where Anke reaches 000. For example Anke: 111 — 110; Boris:
110 — 010; Anke: 010 — 000. The game has a quite large graph, here just the small
parts of the last play and the next one.

start — start —{ 003

v

002

001

o5

In the second play, starting at 003, Anke could win by 003 — 000; if she plays
003 — 002, Boris could win or make a bad move as well. So it depends on the move

118

which player wins.

Definition 8.2: Winning Positions and Winning Strategies. A winning strat-
egy is an algorithm or table which tells Anke in each position how to move (in depen-
dence of the prior moves which occurred in the game) such that Anke will eventually
win. A node v is a winning position for Anke iff there is a winning strategy which
tells Anke how to win, provided that the game starts from the node v. Similarly one
defines winning strategies and positions for Boris.

Example 8.3. In the game from Example 8.1, the node 111 is a winning position
for each of the player (when it is his or her turn). The node 012 is also a winning
position, as the player (whose turn it is) moves to 011; the opponent can only either
move to 010 or 001 after which the player wins by moving to 000.

Exercise 8.4. Consider the game from Example 8.1 and the following starting posi-
tions: 123, 232, 330, 333. Which of these starting positions are winning positions for
Anke and which of these are winning positions for Boris? Explain the answer.

Example 8.5. Consider the following game:

S O=0=0S OO0

Each player who is in v cannot go directly to w but only to v; if the player decides,
however, to go to v then the opponent would reach w and win the game. Therefore,
if the player does not want to lose and is in u, the player would have to move to s.
Thus the nodes s, ¢, u are not a winning position for either player, instead in these
positions the player can preserve a draw. Such a draw might result in a play which
runs forever; many board games have special rules to terminate the game as draw in
the case that a situation repeats two or three times.

Several games (like the above) do not have that the starting position is a winning
position for either player. Such games are called draw games.

Theorem 8.6. There is an algorithm which determines which player has a winning
strategy. The algorithm runs in time polynomial in the size of the graph.

Proof. Let) be the set of all nodes and T be the set of target nodes. The games
starts in some node in) — 7.

1. Let Tp =T and Sy = 0 and n = 0.

119

2. Let S;p1 =S, U{qe @ —(T,US,) : one can go in one step from ¢ to a node
in T,}.

3. Let Ty =T, U{q € Q — (T, US,11) : if one goes from ¢ one step then one
ends up in Sy, 11}

4. If Syq # Sy, or Ty # T, then let n =n + 1 and goto 2.

5. Now S, is the set of all winning positions for Anke and 7;, — T is the set of all
winning positions for Boris and the remining nodes in @ — (7,, U S,,) are draw
positions.

One can see that the algorithm terminates, as it can run the loop from steps 2 to 4
only as long as it adds nodes to the sets S,, or T},, hence it runs at most |@Q| times
through the loop.

Now one shows by induction that every set S, consists of winning positions for
Anke and T,, of winning positions for Boris. Clearly the nodes in S} permit Anke to
win in one move. If Anke has to move from a node in T} — T then she can either only
move to nodes in Sy or cannot move at all; in the first case, Boris wins the game (by
symmetry), in the second case Anke loses the game as she cannot move.

Assume now that the S,, consists of winning-positions for Anke and T;, of losing-
positions for her, that is, winning-positions for Boris. Now S, is the set of all nodes
on which Anke can go into a node in T,,, that is, either Anke would win the game
directly or Boris would lose it when continuing to play from that position. Hence
every node in S, is a winning-position for Anke. Furthermore, every node in T},
is a losing-position for Anke, for the nodes in 7}, this is true by induction hypothesis
and for the nodes in 7,1, — T,,, Anke can only move into a node in S, from which
on then Boris would win the game.

Hence, by induction, the final sets S, are all winning positions for Anke and
T, are all winning-positions for Boris. Consider now any position in ¢ € R with
R=Q— S, —1T,. Each node in R has at least one successor in R and every successor
of it is either in R or in S,,. Hence the player (whether Anke or Boris) would move
to a successor node in R and avoid going to 5, so that the opponent cannot win the
game; as a result, the marker would circle indefinitely between the nodes in R.

The proof is illustrated by the following two examples of graphs. The nodes are
labelled with the names of the sets to which they belong, therefore several nodes can
have the same label, as they belong to the same set.

So the above game is a losing game for Anke and a winning game for Boris.

120

Here the players will always move inside the set R of nodes and not move to the nodes
of S as then the opponent wins. |

Exercise 8.7. Consider a graph with node-set Q = {0,1,2,...,13}, target T = {0}
and the following edges between the nodes.

/m/m @ 6
Determine which of the nodes 1,2,3,4,5,6,7,8,9,10,11,12,13 are winning-positions,
losing-positions and draw-positions for player Anke.

Example 8.8: Tic Tac Toe. Tic Tac Toe is a board game with a 33 board. Anke
and Boris place alternately an X and an O on the board until either there are three
times the same symbol in a row, diagonal or column or all fields are full. In the case
that a player makes the three symbols in a row / diagonal / column full, this player
wins. Otherwise the game is a draw.

One can represent this as a game on a graph. Each possible board configuration
represents a node and one makes an edge from one node to another one if the board
of the second node is obtained from the board of the first node by placing one X or
O into one field, respectively; furthermore, if there are as many X as O, an X has to
be placed. If there are more X than O, an O has to be placed.

<4l
O | <
ollelle

121

There are two more conditions to be taken care off: The starting configuration is the
empty board and there is no outgoing edge in the case that the target has already
been reached, that is, three symbols of the same type are already in a row / diagonal
/ column.

It should be noted that there are two types of nodes: Those nodes which equally
many X and O are the nodes where Anke moves and places an X, those nodes with
more X than O are the nodes where Boris moves and places an O.

One might ask how many nodes one needs to represent the game. An upper bound
is certainly 3° = 19683 which is the number of all 3 * 3 boards with a space, X or
O on each cell. So the graph of the game can easily be analysed by a computer.
Furthermore, the number of nodes is even smaller as there are many cases which do
not occur in a play, for example a board where there are all X in the top row and all
O in the bottom row or a board with 5 X and 2 O in total. Indeed, the graph of the
game has been analysed well and it has been shown that the game is a draw game;
good human players can also always obtain a draw.

Description 8.9: Board Games. Many games have a default starting position
and are played by two players with alternating moves where the set of possible
configurations is finite, that is, such games can be represented as a graph game as
done for Tic Tac Toe above. Traditionally, for board games with pieces, the start-
ing player Anke has white pieces in the board game and the second player Boris
the black pieces, so they are sometimes also referred as “White” or “First Player”
and “Black” or “Second player”, respectively. There are now three possible out-
comes: The first player always wins the game when playing optimally, the second
player always win the game when playing optimally, the game always ends up in a
draw when both players play optimally. For some famous games it has been com-
puted which player can force a win or whether the game ends up in a draw, see
http://en.wikipedia.org/wiki/Solved_game for a current list of solved games and
descriptions of the corresponding games. Here just an overview with the most famous
games:

e The first player wins: Connect Four, Hex (on n *n board), 15 % 15 Gomoku (no
opening rules).

e The second player wins: 4 x 4 Othello, 6 * 6 Othello.

e Draw: Draughts (also known as Checkers), Nine Men’s Morris, Tic Tac Toe.

e Unknown: Chess, Go, 19 x 19 Gomoku (conjecture: second player wins), 8 % 8
Othello (conjecture: draw).

Gomoku is played on both sizes, 15 15 and 19 % 19; the latter is popular due to being
the size of a Go board. The Wikipedia page on Gomoku has an example with a 15%15

122

board. Opening rules are introduced in order to balance the chances for the winner
and computers were not able to solve the balanced version of the 15 % 15 Gomoku so
far.

Furthermore, 88 is the usual board size for Othello. Also this game has only been
solved for smaller board sizes, so one does not know how the game would behave on
the traditional size. Although an algorithm is known in principle, it uses up too much
resources (computation time and space) to run on current computers. Nevertheless,
computers can for some still unsolved games like chess compute strategies which are
good although not optimal; such computer programs can defeat any human player,
even the world chess champion Garry Kasparov was defeated by a computer in a
tournament of six games in 1997.

Games involving random aspects (cards, dices, ...) do not have perfect strategies.
The reason is that a move which is good with high probability might turn out to be
bad if some unlikely random event happens. Nevertheless, computers might be better
than humans in playing these games.

Multiplayer games with more than two players usually do not have winning strate-
gies as at three players, two of them might collaborate to avoid that the third player
wins (although they should not do it). So it might be impossible for a single player
to force a win.

Therefore the above analysis was for games with two players games without ran-
dom aspects. If there is just a random starting point (in the graph), but no other
random event, one can determine for each possible starting point which player has a
winning strategy when starting from there.

Exercise 8.10. Let Divandinc,,,, be given by the graph with domain {1,2,...,n},
starting state m € {2,...,n} and target state 1. Furthermore, each player can move
fromk e {2,...,n} tol € {1,2,... ,n} iff either { = k+1 or £ = k/p for some prime
number p. Hence the game is called “Divandinc, ,” (Divide and increment).

(a) Show that there is no draw play, that is, whenever the game goes through an
infinite sequence of moves then some player leaves out a possibility to win.

(b) Show that if m < n < n' and n is a prime number, then the player who can
win Diwvandinc, ., can also win Divandincy .

(¢) Find values m,n,n’ with m < n < n’ where Anke has a winning strategy for
Divandinc,, ,, and Boris for Dwandinc, .

Remark 8.11. One can consider a variant of the game on finite graphs satisfying
the following constraints:

e The set of nodes is partitioned into sets A, B such that every node is in exactly
one of these sets and player Anke moves iff the marker is in A and player Boris
moves iff the marker is in B;

123

e There are three different disjoint sets T4, T, Tp of target nodes and Anke wins
whenever the game reaches one of the nodes in T4 and Boris wins whenever the
game reaches one of the nodes in Tz and the game is draw when it ends up in
Tp. Furthermore, a node is in Ty U Tg U Tp iff it has no outgoing edges.

Tic Tac Toe, as described above, satisfies both constraints. A 3 * 3 board is in A iff
there are as many Xs as Os; a 3 % 3-board is in B iff there are one X more than Os.
Furthermore, T4 contains those boards from A U B for which there is at least one
row / diagonal / column with three X's and none with three Os. T contains those
boards from AU B for which there is at least one row / diagonal / column with three
Os and none with three Xs. Tp contains those 3 * 3-boards where every field is either
O or X but where there is no row, column or diagonal with all three symbols being
the same. Boards with rows for both / diagonals / columns of three own symbols for
both players cannot be reached in a play starting at the empty board without going
through 7'y U T's, thus one can ignore those.

Example 8.12. Assume that a game with states () and target set T is given. Now
one can consider a new game with nodes @ x {a, b}, there are the edges (p,a) — (¢, b)
and (p,b) — (¢, a) in the new game whenever the edge p — ¢ exists in the old game,
Ty=Tx{b}, Tg =T x{a}. Now qop = ¢1 — ¢2 = ... = Gon —> Gons1 is a play in the
old game iff (qo,a) — (q1,0) — (g2,a) = ... = (g2n,a) — (¢2n+1,b) is a play in the
new game. Furthermore, that play is a winning play for Anke in the old game, that
is, @antr1 € T and no node before is in 7', iff it is a winning play for Anke in the new
game, that is, (gant1,a) € T4 and no node before is in T4y U T. One can now show
the following: A node g € T'— @ is a winning position for Anke in the old game iff
(q,a) is a winning position for Anke in the new game.

O~ Cm

The above graph with 7" = {0} is translated into the below one with T4 = {(0,0)},
T = {(0,a)},

As 1,3 are the winning positions and 2 is a losing position in the old game, (1, a), (3, a)
are now winning positions and (2, a) is a losing position for Anke in the new game.
Furthermore, Boris wins from (1,b), (3,b) and loses from (2,b).

Exercise 8.13. Design a game with A, B being disjoint nodes of Anke and Boris and
the edges chosen such that

the players move alternately;

the sets Ta, T of the winning nodes are disjoint;

every node outside To U Ty has outgoing edges, that is, Tp = ();

the so designed game is not an image of a symmetric game in the way it was
done in the previous example.

Which properties of the game can be used to enforce that?

Exercise 8.14. The following game satisfies the second constraint from Remark 8.11
and has an infinite game graph.

Assume that Q = N, x + 4,2+ 3,2+ 2,2+ 1 — x for all x € N with the
exception that nodes in Tx and Ty have no outgoing edges where Ty = {0,6,9} and
T =1{5,7,12,17}.

If the play of the game reaches a node in Ty then Anke wins and if it reaches a
node in Ty then Boris wins. Note that if the game starts in nodes from Tx or Ty then
it is a win for Anke or Boris in 0 mowves, respectively.

Determine for both players (Anke and Boris) which are the winning positions for
them. Are there any draw positions?

Alternation. Assume that an nfa is given and two players Anke and Boris. They
process an input word w by alternatingly doing a move. Anke wins if the nfa is after
the moves in an accepting state, Boris wins if the nfa is after the moves in a rejecting
state.

This alternation game has been investigated in automata theory. However, it
turned out that it is for many applications better if the two players do not move
alternatingly but if there is an indication depending on state and character who moves.
This gives rise to the notion of an alternating automaton.

Definition 8.15. An alternating finite automaton (afa) is a finite automaton where
for each pair q,a there are the following three possibilities:

e On (q,a) there is exactly one successor state ¢'. Then the automaton goes to ¢q'.
e On (q,a) there is a disjunctive list like ¢'V " V ¢"" of successor states. Then
player Anke picks the successor among ¢, q",q".

125

e On (q,a) there is a conjunctive list like ¢ N q" N ¢" of successor states. Then
player Boris picks the successor among ¢, q",q" .

Anke wins a play of the automaton on a word w iff the automaton after all characters
being processed is in an accepting state. An alternating automaton accepts a word w
iff Anke has a winning strategy for w, that is, if Anke can win the game independent
of whatever moves Boris makes when it is his turn to choose.

Example 8.16. Consider the alternating finite automaton with states {p,q,r}, al-
phabet {0, 1} and the transition-rules as given by the following table:

state type 0 1
p | start, rejecting | pAgAT | gV T
q accepting | pAgAr | pVr
T accepting | pAgATr | pVyg

This alternating finite automaton accepts all words which ends with 1. To see this,
consider any word w ending with 1. When the last 1 comes up, it is Anke to move. If
the current state is p, she can either move to ¢ or r, both are accepting; if the current
state is ¢, she moves to the accepting state r; if the current state is r, she moves to
the accepting state ¢. The empty word is rejected and a word with 0 is rejected as
well. When the last digit 0 comes up, Boris moves and he can in all three cases choose
the rejecting state p.

One can simulate an afa by an nfa. The idea is similar to Biichi’s construction. Given
an afa with a state () of states, the states of the new nfa are the subsets of Q. When
the nfa is in a state P, then the new state P’ can be chosen by Anke as follows: For
every p € P, if the transition on (p,a) is to a conjunctive list g1 A g2 A ... A g, then
Anke has to put all the states ¢i,qo, ..., ¢, into P’; if the transition for (p,q) is a
disjunctive list ¢; V ¢ V ...V ¢,, then Anke can choose one of these states and put it
into P’. If there is exactly one successor state (no choice), Anke puts this one into P’.
The successor state for the full set P is then the list of states which Anke has put into
P'. This defines a non-deterministic run and that is successful iff after processing the
word all members of the state of the nfa are accepting states of the afa. This permits
to state the below theorem.

Theorem 8.17. If an afa with n states recognises a language L then there is an nfa
with up to 2™ states which recognises L.

For Example 8.16 from above, the initial state would be {p}. If a 0 comes up, the next
state is {p, ¢, 7}, if a 1 comes up, the next state would be either {¢} or {r}. In the

126

case that the nfa is in {p,¢,7} and a 0 comes up, the nfa remains in {p,q,r}. If a 1
comes up, all the states are mapped to {¢, 7} and the state is accepting. Furthermore,
in the case that the state is {q}, the successor chosen on 1 is {r}; in the case that
the state is {r}, the successor chosen on 1 is {¢}, in the case that the state is {q, 7},
the successor chosen on 1 is {¢,r} again. These non-deterministic choices guarantee
that the nfa accepts whenever the run ends with a 1 and one could eliminate other
possible choices in order to obtain a dfa recognising the language {0,1}* - 1. Indeed,
there is even a two-state dfa doing the same.

One might ask in general how much the blow-up is when translating an afa into
a dfa. This blow-up is double-exponential although it is slightly smaller than 22". In
fact, using Biichi’s construction to make the nfa from above a dfa would then lead
to a dfa whose states are sets of subsets of (). These sets, however, do not need to
contain two subsets A, B C () with A C B. The reason is that any future set of states
derived from B contains as a subset a future set of states derived from A and when
all those of B are accepting, the same is true for those in A. Thus, it is safe to drop
from a state P € Powerset(Powerset(Q)) all those members B € P for which there
isan A € P with A C B. Furthermore, the afa is defined above such that it has to be
complete, so in both exponentiations the empty set is not used. Thus the cardinality
of the so remaining states is smaller than 22", The next example, however, shows that
the blow-up is still very large.

Example 8.18. There is an afa with 2n + 2 states such that the corresponding dfa
has at least 22" states.

Proof. The alternating finite automaton has the states s,q and pi,...,p, and
r1,...,7. The alphabet is {0,1,...,n} (all considered as one-symbol digits). The
transitions are given by the following table, where i € {1,...,n} refers in the first
two rows to some arbitrary value and in the last two rows to the index of p; and 7;,
respectively.

state 0 ¢|je{l,...,n}—{i}
S sVql| s S
g 1N ADpn| g q
Di Pi | Ti Yz
T Ti | Pi Ti

Let L be the language recognised by the afa. It contains all words u of the form x0y0z
such that z,y,z € {0,1,...,n}* and z contains each of the digits 1,...,n an even
number of times.

Now consider for each subset R C {1,...,n} the word vy consisting of the digits
occurring in R taken once and wr = vgOvg. Let S be some non-empty set of such

127

sets R and R’ be a member of S and u be the concatenation of 00vg with all wg such
that R € S. For R C {1,...,n}, the following statements are equivalent:

e vp € Ly;

o uvg € L;

e there is a 0 in uvg such that all non-zero digits after this 0 appear an even
number of times;

e cither vgr0vgr belongs to the components from which w is built or R = R;

e ReS.

Furthermore, one can see that L. does not contain any vg. Thus for each S C
Powerset({1,...,n}) there is an v with R € S < vg € L, for all R € S and so
there are 22" many different derivatives. Any dfa recognising L must have at least 22"
states.

Indeed, one can make a dfa with 22" + 1 states: It has a starting state s which it
only leaves on 0. All other states are members of Powerset(Powerset({1,...,n})).
On a 0, the state s is mapped to (). On each further 0, the state P is mapped to PU{0}.
On symbol k£ > 0, a state P is mapped to {AU{k}: Ae PNk ¢ AJU{A—{k}: A€
PAEk e A}. A state P is accepting iff P is different from s and P is a set containing
(@ as an element. [

If one scales the n in the above construction such that it denotes the number of
states, then the theorem says that given an afa with n states, it might be that the
corresponding dfa has at least 22"*7 states. This is near to the theoretical upper
bound 22" which, as said, is not the optimal upper bound. So the real upper bound
is between 22"°7% and 22".

Exercise 8.19. Show that every afa with two states is equivalent to a dfa with up to
four states. Furthermore, give an afa with two states which is not equivalent to any
dfa with three or less states.

Theorem 8.20. If there are n dfas (Q;, %, d;, si, ;) with m states each recognising
Lq,...,L,, respectively, then there is an afa recognising L1 N ... N L, with 1 + mn
states.

Proof. One assumes that the @); are pairwise disjoint; if they were not, this could be
achieved by renaming. Furthermore, one chooses an additional starting state s ¢ | J, @;
and let Q) = {s} U, Q:.

On symbol a, let s — 01(s1,a) A ... Ady(Sp, a); furthermore, for all Q; and ¢; € Q;,
on a let ¢; — 6;(g;,a). In other words, in the first step Boris chooses which of the
automata for the L; he wants to track down and from then on the automaton tracks

128

exactly this automaton; Boris can win iff the word on the input is not in the L; chosen.

The state s is accepting iff e € Ly N ... N L, and a state ¢; € Q); is accepting iff
¢; € Q;. Thus, in the case that the word on the input is in all L;, whatever Boris
choses, Anke will win the game; in the case that the word on the input is not in some
L;, Boris can choose this L; in the first step to track and from then onwards, the
automaton will follow this language and eventually accept. |

Example 8.21. Let L; contain the word with an even number of digit ¢ and ¥ =
{0,1,....,n}, n = 3. Now Q; = {si,t;}, F; = {s;} and if ¢ = j then §;(s;,j) =
ti, 5z(tzaj) = S; else 5Z(Sz,j) = S;, 51(75“]) = tz

Now Q = {s, s1, 52, S3,t1,t2,t3}, on 0, s — 51 A sy Asg,on 1, s — £ A s2 A s3, on
2,5 = 51 ANta Asz,on 3, s — spAse Atsg. On g, s; — 0;(s;,7) and t; — ;(¢;, 7). The
states s, s1, S9, S3 are accepting.

The automaton does the following on the word 2021: First, on 2, the automaton
transits by s — s; Aty Ass; then, on 0, the automaton updates sy AtaAs3 — 1At ASs;
then, on 2, it updates s; Aty A s3 — s1 A sg A sg; lastly, on 1, it updates s; A so A s3 —
t1 N\ sy N s3.

Note that one can write the states of the dfa equivalent to a given afa as a formula
of alternatingly “and” and “or” between the afa states; then, when transiting on a,
one replaces the afa states in the leaves by the corresponding formula on the right
side of the arrow; at the end, when all input symbols are processed, one replaces
all accepting afa states by the logical constant “true” and all rejecting afa states by
the logical constant “false” and then evaluates the formula. So the above formula
evaluates to “false” as t; is a rejecting states and it only contains conjunctions.

Exercise 8.22. If there are n nfas (Q;, %, d;, si, ;) with m states each recognising
Lq,...,L,, respectively, show that there is an afa recognising Ly N ... N L, with 1 +
(m +|X]) - n states.

In particular, forn =2 and X = {0,1,2}, construct explicitly nfas and the product
afa where Ly is the language of all words where the last letter has already appeared
before and Lo is the language of all words where at least one letter appears an odd
number of times.

The proof can be done by adapting the one of Theorem §8.20 where one has to
replace dfas by nfas. The main adjustment is that, in the first step, one goes to new,
congunctively connected states which have to memorise the character just seen, as they
can not yet do the disjunction of the nfa. The next step has therefore to take care of
the disjunctions of two steps of the nfa, the one of the memorised first step plus the
one of the next step. From then on, all rules are now disjunctive and not deterministic
as before.

Exercise 8.23. Assume that a game has an infinite board N and starts with three

129

numbers a, b, ¢ such that a < b < c¢; the initial value is a = 12,b = 13, ¢ = 14. Possible
moves are to increment one of the numbers by 1, as long as the condition on the
order of the numbersis not violated. The game ends with a winner, when ¢ becomesthe
double of a. Anke starts to move. Is this game a winning game for Anke, a winning
game for Boris or a draw game. Provide the winning strategy of the respective player
or the draw strategies for both players.

Exercise 8.24. A game has fields {0,1,2,3,4,5,6,7,8,9,10,11} and two markers
which initially stand on 0 and 6. The players move alternately one of the markers by
adding, modulo 12, either 1 or 2 to its position. When a player makes a move such
that both markers stand on the same field, the game ends. Is this game a winning game
for Anke, a winning game for Boris or a draw game. Provide the winning strategy of
the respective player or the draw strategies for both players.

Exercise 8.25. Find a reqular language L and a number n such that both the best
dfa and nfa have n states but some afa needs less states.

Exercise 8.26. Construct an afa for the language of all decimal numbers which are
not divisible by any 1-digit prime number.

Exercise 8.27. Consider a game on decimal numbers a,a,_1 ...ajaqg. Players Anke
and Boris move alternately. Determine for the below games which player wins from
the following start situations: 300, 288, 1111, 1024. The player who reaches 0 wins.
Let x denote the current number when the move is to be made, for each nonzero x,
some move have to be made. Here the rule to move for players is as follows: The
player can replace x by x —y where y is odd and y < x.

Exercise 8.28. Do the same as in Fxercise 8.27 with the only difference that the
move-rule is now as follows: The player who moves has to reduce one non-zero digit
by 1.

Exercise 8.29. Do the same as in Ezercise 8.27 with the only difference that the
move-rule is now as follows: The player who moves replaces one digit by a digit which
15 one or two or three smaller.

Exercise 8.30. Do the same as in Fxercise 8.27 with the only difference that the
move-rule is now as follows: The player can reduce one nonzero digit a,, by 1 and
change (optional) one digit ay, with k < m to an arbitrary value from 0,1,2,3,4,5,6,7,
8,9.

Description 8.31. Consider the following game GG on binary numbers. The “board”
of the game is one binary number x. The players move alternatingly. In a move, the

130

player makes the number smaller by either changing a 1 to a 0 or by interchanging
a 1 with a more behind 0. The game terminates when 0 is reached and the player
reaching 0 wins.

Exercise 8.32. Determine which of the given binary numbers are winning for Anke
in the game G from Description 8.31. Sketch the winning strategies for the winner to
win the games. The numbers are 1010, 10101010, 10000, 100001, 1111.

Exercise 8.33. Determine which of the given binary numbers are winning for Anke
in the game G from Description 8.31. Sketch the winning strategies for the winner
to win the games. The numbers are 1110, 111100, 110011001100, 101111, 101010,
10101000.

Exercise 8.34. For the game G from Description 8.31, provide a reqular infinite set

of binary numbers such that each of them is a winning position for Boris (the player
who moves second). Prove that this set works.

131

9 Games Played for an Infinite Time

Infinite games are games where plays can go for an infinite time and nevertheless been
won. A bit, the above finite games touched already this case, as for some case the draw
was obtained by playing forever without going into a winning node for either player.
The first type of game is a parallel situation: Anke wins iff the game runs forever.

Description 9.1: Survival Games. Mathematicians consider time often as an
infinite number of steps numbered as 0,1,2,...; so while there is a first time 0, there
is no last time and the game runs forever. Nevertheless, there is an evaluation of
the overall play of the two players. Such games might be still of some interest. The
most easy of these is the survival game: One player (representing a human) can
influence the environment by going from one state to another, the other player (nature
or weather) can modify the environment in its own way and react to the human.
Both player move alternating and the Human wins if he can avoid the bad nodes
(representing unacceptable environment conditions) all the time. One can represent
the bad nodes by nodes without outgoing edge; then the goal of the first player (Anke)
would be to be able to move as long as possible while the goal of the second player
(Boris) would be that the game after some time ends up in a node without outgoing
edge.

Example 9.2. Anke and Boris move alternately in the following game. Anke starts
in node 0. The game has a winning strategy for Anke, as it will always be her turn to
move when the game is in node 4 and Boris cannot force the game to move into the
dead end 5. The reason is that Anke will always move on nodes with even numbers
and Boris on nodes with odd numbers.

0N OSoS 0= 0S0

The next game is a slight modification of the above. Here now, when Anke wants is in
node 4, she can only move back to 0 or 2 so that Boris gets to move on even numbers
while she will end up on moving on odd numbers. So the next time Boris has the
choice to move on node 4 and can terminate the game by moving into 5

EROSOROSOPOS0

132

If one writes the possible plays with Boris moving into 5 whenever possible, then the
plays which arise in a way consistent with this strateqy are 0 —1—2—3—4—15 (where
Anke gives up), 0 —1—-2—-3—-4—-0—-1—-2—-3—4—5 (where Anke moves from 4 to
0 and then Boris moves from 4 to 5 at the next time), 0 —1—-2—-3—-4—-2—-3—-4-5
(where Anke moves from 4 to 2 and then Boris moves form 4 to 5 at the next time).

The winning strateqy of Boris is memoryless: That is, whenever Boris makes a
move, he does not have to consider the past, he has only to use the information in
which node the game currently is. One can show that for a survival game, either Anke
or Boris have always a memoryless winning strategy.

Quiz 9.3. Consider the following game. Here Boris wins if the player reaches node
5 and Anke wins if the game never reaches this node.

start —(0) 2 @—G)
\é)@w

Which player has a winning strateqy? Give a memoryless winning strategqy for the
player.

Theorem 9.4. There is an algorithm which can check which player wins a survival
game (when playing optimally). The algorithm runs in polynomial time.

Proof. Let V be the set of vertices of the graph. Now one constructs a function f
with domain V' x {Anke, Boris} which tells for every node and every player whether
the game will be lost for Anke within a certain amount of moves.

Make the partial function f as follows: f(v, Anke) = 0 or f(v,Boris) = 0 if the
node v has no outgoing edge. Having once defined this, one extends the definition
in rounds n = 1,2,...,2 - |V] as follows: For each v € V| if the value f(v, Anke) is
still undefined and every outgoing edge v — w satisfies that f(w, Boris) < n then let
f(v, Anke) = n; if the value f(v,Boris) is still undefined and there is an outgoing edge
v — w with f(w, Anke) < n then let f(v,Boris) = n.

After 2 x |V| rounds, all values of f which can be defined in this way are de-
fined, so further rounds would not add further values. Therefore, one now says that
f (v, player) = oo for the remaining, not yet defined entries.

Now it is shown that the function f can be used to implement a memoryless win-
ning strategy for that player who can win the game.

Let s be the starting node. If f(s, Anke) = oo then Anke has a winning strategy.

133

Each time, when its Anke’s turn to move, she moves from the current node v with
f(v, Anke) = oo to a node w with f(w,Boris) = oo; if such a w would not exist then

f(v, Anke) < max{l + f(w,Boris) : v — w is an edge in the graph.} < co

in contradiction to the assumption on f(v, Anke). Now, Boris cannot move from w to
any node u where f(u, Anke) < oo, hence Boris moves to a node u with f(u, Anke) =
00. So Anke can play in a way that the f remains on the value oo and will not end
up in a node without outgoing edge. This strategy is obviously memoryless.

In the case that f(s, Anke) < 0o, Boris could play the game in a way that it takes
at most f(s, Anke) moves. When the game is in a node with f taking the value 0, it
has terminated; so consider the case that the value is larger than 0. If it is Anke’s
turn, she can only move from a node v to a node w with f(w,Boris) < f(v, Anke).
If it is Boris’ turn and 0 < f(v,Boris) < oo then he can move to a node w with
f(w, Anke) < f(v,Boris), so again the f value goes down. Also this strategy for Boris
is obviously memoryless.

It is easy to see that the algorithm goes only through 2 x |V| rounds and in each
round checks for 2 x |V| entries whether a certain condition is satisfied; this condition
needs to follow all edges originating from wv; therefore the overall algorithm is in
O(]V[?), hence polynomial time. Note that this algorithm is not optimised for its
runtime and that the cubic bound is not optimal; it is a special case of the algorithm
in Theorem 8.6. 1

Exercise 9.5. Consider the following game G(p, q,w, v, w) which is played on a graph
G with u,v,w being vertices and p € {Anke, Boris} and q C {Anke, Boris}. Anke
wins a play in this game if the game starts in node u and player p starts to move and
the player mowves alternately and the game goes through node v at some time and the
game ends after finitely many steps in w with a player in the set q being the next to
move.

Note that if ¢ = {Anke, Boris} then the last condition on the last player to move
1s void. Furthermore, going through v includes the possibility that v is the first or last
node to be visited so that the constraint on v is void in the case that v =u or v = w.
Furthermore, the graph might have more nodes than u,v,w; u,v,w are just the nodes
mentioned as parameters of the game.

Give an algorithm to determine which player in this game has a winning strategy.

Description 9.6: Update Games. An update game is given by a graph with
vertices V and edges E and a set W of special nodes such that Anke wins a game iff
she visits during the infinite play each node in W infinitely often. Update games are so
a special form of survival games, as they do not only require Anke to survive forever,
but also to visit the nodes in W infinitely often; if the game gets stuck somewhere or

134

runs forever without visiting every node in W infinitely often, then Boris wins.

Such a game might, for example, model a maintenance task where the maintenance
people have to visit various positions regularly in order to check that they are in
order and where various constraints — moves by own choice (player Anke) and moves
imposed by other conditions beyond their control (player Boris) — influence how they
navigate through this graph.

Example 9.7. Update games do not necessarily have memoryless strategies, as the
following example shows (where the nodes in W are those with double boundaries).

start — @

Anke starts the game in s; whenever she moves to ¢ or u, Boris moves the game back
into s. Now, if Anke would have a memoryless strategy, she would always move to
one of the two nodes in W, say to ¢, but then the other node in W, here u, will never
be visited. So Anke has no memoryless winning strategy.

She has, however, a winning strategy using memory. Anke moves from node t to
u, from node u to t and from node s to that node of u and ¢ which has longer not
yet been visited. So if Anke has to move in node s, she remembers from which node
the game came to s. If the previous move (of Boris) was ¢ — s then Anke moves
s — u else Anke moves s — t. This makes sure that after each visit of u, the node t is
visited within 2 moves; furthermore, after each visit of ¢, the node wu is visited within
2 moves.

Theorem 9.8. There is an algorithm which determines which player has a winning
strategy for an update game.

Proof. Let s be the starting node and wy, ws, ..., w, be the nodes in W.

Now one first decides the following games G(p, ¢, u, v, w) where u,v,w € V and
p € {Anke, Boris} and ¢ is a non-empty subsets of {Anke, Boris}. Now Anke wins
the game G(p, q,u,v,w), if it starts with some player p moving from u and it runs
only finitely many steps visiting the node v in between and then ends up in w with
a player in ¢ being the next one to move. There are algorithms to decide this games,

135

similar to those given in Theorem 8.6 and Theorem 9.4; Exercise 9.5 asks to design
such an algorithm.

Now Anke has a winning strategy for the game iff one of the following conditions
are satisfied:

e In Case 1 there is a node v and a player p € {Anke, Boris} such that Anke can
win the game G(Anke, {p}, s,v,v) and for each w € W Anke can win the game
G(p, {p}; v, w,v).

e In Case 2 there is a node v such that for every w € W and every player
p € {Anke, Boris}, Anke can win the games G(Anke, { Anke, Boris}, s, v, v) and
G(p, {Anke, Boris}, v, w, v).

By assumption, this can be checked algorithmically. The algorithm is in polynomial
time.

First it is verified that Anke has a winning strategy in the first case. She then
can force from s that the game comes to node v and that it is player p to move.
Furthermore, she can now alternatively for w = wy,ws,...,w, force that the game
visits this node and eventually returns to v with player p being the one to move. So
she can force an infinite play which visits each of the nodes in W infinitely often.

Second it is verified that Anke has a winning strategy in Case 2. Anke can force
the game into v without having a control which player will move onwards from wv.
Then, for each of the two cases, she can force that the game visits any given node
w € W and returns to v, hence she can force that the game visits each of the nodes
in W infinitely often.

Third assume that Case 1 and Case 2 both fail and that this is due because there
is a player p and a node u € W such that Anke does not win G(Anke, { Anke, Boris} —
{p}, s, u,u) and Anke does not win G(p, { Anke, Boris}, u, v, u) for some v € W. Hence
Boris can first enforce that either Anke visits u only finitely often or is at some point
in u with the player to move being p; from then onwards Boris can enforce that the
game either never reaches v or never returns to u after visiting v. Hence Boris has a
winning strategy in this third case.

Fourth, assume that Cases 1 and 2 fail and that there are nodes u,v,v" € W such
that Anke loses the games G(Anke, {Anke}, u,v,u) and G(Boris, {Boris}, u, v, u);
hence Anke cannot enforce that a game visiting all nodes in W infinitely often has
always the same player being on move when visiting u. As Case 2 fails, there is a
node w € W and p € {Anke, Boris} such that Boris has a winning strategy for the
game G(p, {Anke, Boris}, u, w, u). It follows that once the player p is on the move in
node u, Boris can enforce that either w or u is not visited again. Hence Boris can
enforce that at least one of the nodes u,v,v’,w is not visited infinitely often and so
Boris has a winning strategy in this fourth case. This case distinction completes the
proof. 1

136

Quiz 9.9. Which player has a winning strategy for the following update game?

() Q)
(2 <@'{>

How much memory needs the strategqy?

Exercise 9.10. Letn >4, n be odd, V={m:0<m <n} and E = {(m,m+ 1) :
m<n—1}U{(m,m+2):m<n—-2}U{(n—-2,0),(n—1,0),(n—1,1)} and s = 0.
Show that Anke has a winning strategy for the update game (V, E,s, V') but she does
not have a memoryless one.

010100

Here the game for n = 5.

OnG

Description 9.11. A Biichi game (V, E, s, W) is played on a finite graph with nodes
V and edges FE, starting node s and a special set W C V' (like an update game). Anke
wins a play in the game iff, when starting in s, the game makes infinitely many moves
and during these moves visits one or more nodes in W infinitely often.

Anke has a winning strategy for this game. The game is visiting node 0 infinitely
often as all backward arrows end up in this node.

In the case that it is Anke’s turn, she moves from 0 to 1. Then Boris can either
move to 3 and visit one node in W or to 2 so that Anke in turn can move to 3 or 4
and hence visiting one of the accepting nodes.

In the case that it is Boris” move, he moves to 1 or 2 and Anke can go to the
accepting node 3 from either of these nodes.

137

Theorem 9.12. There is a polynomial time algorithm which decides which player
can win a given Bichi game.

Proof. Given a Biichi game (V, E, s, W), the idea is to make a function f : V x
{Anke, Boris} — {0,1,...,30- |V]*} which guides the winning strategies of Anke and
Boris (which are memoryless).

Initialise f(v,p) = 0 for all nodes v and players p. The algorithm to compute f is
to do the below updates as long as one of the if-conditions applies; if several apply,
the algorithm does the statement of the first if-condition which applies:

e If there are nodes v € V. — W and w € V with (v,w) € E and f(v, Anke) <
f(w,Boris) — 1 then update f(v, Anke) = f(v, Anke) + 1;

o If there is v € V — W with an outgoing edge and all w € V with (v,w) € E
satisfy f(v,Boris) < f(w, Anke) — 1 then update f(v, Boris) = f(v, Boris) + 1;

o If there are v € W with f(v,Anke) < 30 - |V|> =3 -|V] and w € V with
(v,w) € E and f(v,Anke) < f(w,Boris) + 6 - |V| then update f(v, Anke) =
f(v, Anke) + 3 - |V;

e If there is v € W with outgoing edge and f(v,p) < 30-|V|* —3-|V]| and all
w € V with (v,w) € E satisfy f(v,Boris) < f(w, Anke) 4+ 6 - |V/| then update
f(v,Boris) = f(v,Boris) + 3 - |V].

Note that there are at most 60 - |V|*> updates as each update increases one value of
f by one and the domain has cardinality 2 - |[V| and the values in the range can be
increased at most 30 |V|? times. Hence the whole algorithm is polynomial in the size
of |V].

Now the strategy of Anke is to move from v to that node w with (v,w) € E for
which f(w, Boris) is maximal; the strategy of Boris is to move from v to that node w
with (v, w) € E for which f(v, Anke) is minimal.

As there are only 2 - |V| many values in the range of f but the range can be
spread out between 0 and 30 - [V'|?, there must, by the pigeon hole principle, be
a natural number m < 2 - |V] such that there are no nodes v and players p with
10-|V|-m < f(v,p) <10-|V|-(m+1). Let m be the least such number. Now one
shows the following claim.

Claim. If f(v,p) > 10-m - |V| then Anke can win the game else Boris can win the
game.

To prove the claim, first observe that for all w € V' — W with f(w, Anke) > 0 there
is a node u with (w,u) € E and f(u,Boris) = f(w,Anke) + 1. The reason is that
when f(w, Anke) was updated the last time, there was a successor u € V such that
f(u,Boris) > f(w, Anke) — 1. Now this successor causes f(w, Anke) to be updated

138

until f(w, Anke) > f(u, Boris) — 1. Similarly, for all w € V — W with f(w, Boris) > 0
one has that f(w,Boris) = min{ f(u, Anke) : (w,u) € E} — 1; again, this follows from
the update rules. In particular as long as the game is in V — W either the values of f
remain constant at 0 or they go up. As there are only finitely many values, it means
that the game eventually visits a node in W whenever the f-values of the current
situation in the game is positive.

Now consider the case of any w € W and a player p moves from w to u following
its strategy. If p = Anke then f(u,Boris) > f(w, Anke) — 6 - |V]; if p = Boris then
f(u, Anke) > f(w,Boris) — 6 - |V, as otherwise f(w,p) would not have reached the
final value in the update algorithm. Furthermore, unless f(w,p) > 30-|V|*> =3 - |V],
one also can conclude that f(w,p) < f(u,q)+3-|V] for ¢ # p, as otherwise a further
update on f(w,p) would have been done.

Thus, if f(w,p) > 10-m - |V| and the move from w to w is done in a play where
Anke follows her winning strategy then actually f(w,p) > 10-m -|V|+ 10 - |V| and
flu,q) >10-m-|V|+10-|V] as well. Thus the game will go forever and visit nodes
in W infinitely often.

However, consider now the case that the starting point satisfies f(v, p) < 10-m-|V/|.
Then in particular f(v,p) < 30-|V|?*—3-|V|. For all (w, q) with f(w,q) < 10-m-|V]|
it holds that f(w,q) cannot be increased as the conditions of the update-rules for
f do no longer apply. This means that when f(w,Anke) < 10 -m - |V] then all
successor configurations satisfy the same condition; if f(w,Boris) < 10 - m - |V]|
then some successor configuration satisfies the same condition. Furthermore, when
w € W and f(w,Anke) < 10 -m - |[V| then all successor configurations (u, Boris)
satisfy f(u,Boris) < f(w,Anke) — 6 - |V, if f(w,Boris) < 10-m - |V| and at least
one successor configuration exists then there is a successor-node u with f(u, Anke) <
f(w,Boris) — 6 - |[V|. Thus the play reduces each time by at least 3 - |V| whenever
it goes through a node in W. Furthermore, there is a constant ¢ such that there is
no w, p taking a value f(w,p) having the remainder ¢ modulo 3 - |V'|; thus, the game
cannot go up from a value of the form 3k - [V to 3(k + 1) - |V| without in between
visiting a node in W. Therefore the game cannot visit a node in W infinitely often
when starting at (v,p) with f(v,p) <10-m - |V].

This two case distinctions complete the proof that the function f defines a mem-
oryless winning strategy for one of the players in the given Biichi game. 1

Description 9.13: Parity Games. A parity game is given by a graph (V, E') and
a function val which attaches to each node v € V' a value and a starting node s € V.
The players Anke and Boris move alternately in the graph with Anke moving first.
Anke wins a play through nodes vy, vy, ... in the game iff the limit superior of the
sequence val(vg), val(vy), ... is an even number.

139

(D=L

In this game, the nodes are labeled with their value, which is unique (what does not
need to be). Anke has now the following memoryless winning strategy for this game:
0—-0,1—22—0,3—4,4— 0. Whenever the game leaves node 0 and Boris
moves to node 1, then Anke will move to node 2. In the case that Boris moves the
game into node 3, Anke will move to node 4. Hence whenever the game is in a node
with odd value (what only happens after Boris moved it there), the game will in the
next step go into a node with a higher even value. So the largest infinitely often
visited node is even and hence the limit superior of this numbers is an even number.
Hence Anke has a winning strategy for this parity game given here.

One can show that in general, whenever a player has a winning strategy for a parity
game, then this winning strategy can be chosen to be memoryless; furthermore, there
is always a player which has a winning strategy.

Quiz 9.14. Which player wins this parity game? Give a winning strategy.

Exercise 9.15. Consider the following parity game:

start — 4 6

140

Which player has a winning strategy for this parity game? Give the winning strategy
as a table (it is memoryless).

Description 9.16: Infinite games in general. The following general concept
covers all the examples of games on finite graphs (V, £') with starting node s seen so
far: The players Anke and Boris move alternately with Anke starting in s along the
edges of the graph (which can go from a node to itself) and the winning condition
consists of a function F from subsets of V' to {Anke, Boris} such that the winner of a
play is F/(U) where U is the set of nodes visited infinitely often during the play. Here
U = () stands for the case that the game gets stuck after finitely many moves and no
node is visited infinitely often. Here an overview how the winning conditions of the
above games are translated into this general framework.

In the case of a survival game, F'()) = Boris and F'(U) = Anke for all non-empty
subsets U C V.

In the case of an update game with parameter W, if W C U then F(U) = Anke
else F(U) = Boris.

In the case of a Biichi game with parameter W, if W N U # () then F(U) = Anke
else F(U) = Boris.

In the case of a parity game, F(()) = Boris. For each non-empty set W, if
max{val(w) : w € U} is an even number (where the function val assigns to each
node in V' a natural number, see above) then F(U) = Anke else F'(U) = Boris.

There are games which can be captured by this framework and which are not of
any of the types given above. For example, a game with V = {s,t,u} where the
players can move from each node to each node such that if |[U| = 2 then F(U) = Anke
else F(U) = Boris.

Exercise 9.17. Determine the function F' for the following game: V = {0,1,2,3,4,5}
the edges go from each node v to the nodes (v + 1) mod 6 and (v + 2) mod 6. The
game starts in 0 and the players move alternately. Anke wins the game iff for each
infinitely often visited node v, also the node (v + 3) mod 6 is infinitely often visited.

Define the function F on all possible values of U which can occur as an outcome of
the game. List those values of U which cannot occur, that is, for which a value F(U)
does not need to be assigned. For example, as the game graph has for each node two
outgoing edges, so it cannot get stuck somewhere and therefore U = () is irrelevant.

Which player has a winning strategy for this game? Can this winning strategy be
made memoryless?

Exercise 9.18. Let a game (V, E,s,W) given by set V' of nodes, possible moves F,
starting node s and a set of nodes W to be avoided eventually. Let U be the infinitely
often wvisited nodes of some play.

Say that if UNW =0 and U # () then Anke wins the game else Boris wins the

141

game.

Determine an easy way mapping from (V, E,s,W) to (V',E',s', F') and players
p to p' such that player p wins the avoidance game (V, E, s, W) iff p' wins the game
(V' E', s, F") (see Description 9.16) where the type of (V', E',s', F') is one of survival
game, update game, Biichi game or parity game. Say which type of game it is and
how the mapping is done and give reasons why the connection holds.

Exercise 9.19. Describe an algorithm which transforms a parity game (V, E, s, val)
into a new parity game (V', E', s’ val') such that this game never gets stuck and Anke
wins (V, E, s,val) iff Boris wins (V', E', s, val’); without loss of generality it can be
assumed that V is a finite subset of N and val(v) = v. Do the mapping such that V'
has at most two nodes more than V.

Exercise 9.20. Consider the following game on the board N: The game terminates
at 1 and one can move from number 2n + 2 to n + 1 and from number 2n + 1 to
(2n+1)-k+ h for some k,h € {1,3,5,7,9}. Anke wins if the game runs forever and
Boris wins if the game eventually reaches 1. Clearly Boris wins if the game starts in
2,4,8,16 and other powers of 2. Determine for all further numbers up to 20 who has
a winning strategy when Anke starts at this number.

Exercise 9.21. Consider the game on the board N with the following moves: One
can move from number 2n 4+ 2 to n + 1 and from number 2n + 1 to one of 2n + 2,
2n+4,6n +6,6n + 8. If the game reaches 1, Boris wins; if the game visits each node
only finitely often without going to 1, Anke wins; if the game goes through some number
infinitely often, it is draw. Give an algorithm which says which starting numbers are
wins for Anke, wins for Boris and draw.

Exercise 9.22. Consider an update game on the board {0,1,2,3,4,5,6,7,8,9,10,11}
where players move by adding 1 or 3 modulo 12 to the current position and where
Anke wins when 0,4, 8 are visited infinitely often. Which starting positions are wins
for Anke and which are wins for Boris?

Exercise 9.23. Consider a Biichi game on {abed : a,b,c,d € {0,1,2,3}}. One can
add 1 or 2 modulo 4 to one out of four digits abed. So from 0123, one can move to
1123, 2123, 0223, 0323,0133,0103, 0120, 0121. Let F' = {0000, 1111, 2222, 3333}. De-
termine the winner of the Biichi game where during the infinite duration of this game,
one node in F has to be visited infinitely often.

Exercise 9.24. If one plays the game from Ezercise 9.23 as a update game where
each node in F' has to be visited infinitely often and F' is any nonempty set. Which
player has a winning strateqy?

142

Exercise 9.25. If one plays the Buchi game from Ezercise 9.23 but with a modified
set F which contains all nodes where three digits are equal, which player has a winning
strategy?

Exercise 9.26. If one plays the Buchi game from Ezercise 9.23 but with a modified
set F' which contains all nodes which have exactly one 0, which player has a winning
strateqy?

Exercise 9.27. Consider a game on {abcd : a,b,c,d € {0,1,2,3}}, where in a move
one can add 1 or 3 modulo 4 to one out of four digits abed. So from 0123, one can
move to 1123,3123,0223,0023,0133,0113,0120,0122. Let F' contain all nodes which
have at least two digits 3. Determine the winning positions of player Anke in a Biichi
game and in the survival game. Recall that in a Bichi game, some node in F' has to
be wisited infinitely often and that in a survival game, all the nodes in F' have to be
avoided forever. The survival game is lost for Anke if it starts in a node of F.

Exercise 9.28. Modify F' from Fxercise 9.27 such that F' contains all nodes where at
least one digit is 3. Determine the winning positions of the Buchi game and survival
game for Anke in this game.

143

10 Automata on Infinite Sequences

An infinite sequence byb1bs . .. € 3¢ is a function from N to 3J; such sequences are called
w-words. One can for example represent all the real numbers between 0 and 1 by w-
words with bobibs ... € {0,1,2,3,4,5,6,7,8,8}* representing the sum »_, 107% - b
where only the finite decimal fractions are not uniquely represented and have two
representatives; for example % is represented by 25600000... and 255999999. ..
while % has the unique representative 333... in this set. Representing real numbers
is indeed one of the motivations in the study of w-words and one can make more
advanced systems which represent all numbers in R. Richard Biichi and Lawrence
Landweber [9, 10] investigated methods to deal with such representations in a way

similar to what can be done with sets of finite words.

Description 10.1: Biichi Automata [9, 10]. A Biichi automaton is a non-deter-
ministic automaton (Q, 3,0, s, F') where @) is the set of states, ¥ the finite alphabet
used, § a set of possible transitions (p,a,q) € @ X ¥ x @ such that the automaton
can on symbol a go from p to ¢, s the starting state and F a set of states. Given an
infinite word bob1bs ... € 3¢, a run on this sequence is a sequence ¢oq1qs2 ... € Q¥ of
states such that ¢y = s and (qx, bx, gr+1) € 60 for all k£ € N. Let

U={pecQ:3%[q = pl}

be the set of infinitely often visited states on this run. The run is accepting iff
UNF # (. The Biichi automaton accepts an w-word iff it has an accepting run on
this w-word, otherwise it rejects the w-word.

A Biichi automaton is called deterministic iff for every p € @ and a € X there is
at most one ¢ € @ with (p,a,q) € ¢; in this case one also writes §(p,a) = q. The
following deterministic Biichi automaton accepts all decimal sequences which do not
have an infinite period of 9; that is, each real number r with 0 < r < 1 has a unique
representation in the set of sequences accepted by this automaton.

9 0,1,2,3,4,5,6,7,8

tart —{ S
Stat 0,1,2.3,4,5,6,7,8

This automaton goes infinitely often through the accepting state t iff there is infinitely
often one of the digits 0,1,2,3,4,5,6,7,8 and therefore the word is not of the form

w9,

144

Exercise 10.2. Make a deterministic Bichi automaton which accepts an w-word from
{0,1,2}* iff it contains every digit infinitely often.

Exercise 10.3. Make a deterministic Biichi automaton which accepts an w-word from
{0, 1,2} iff it contains at least two digits infinitely often.

Exercise 10.4. Make a deterministic Biicht automaton with three states which accepts
all w-words in which at least sixz of the usual ten decimal digits occur infinitely often
and which rejects all w-words where only one digit occurs infinitely often. There is no
requirement what the automaton does on other w-words.

While non-deterministic and deterministic finite automata have the same power, this
is not true for Biichi automata.

Example 10.5. Let L be the language of all w-words which from some point onwards
have only 9s, so L ={0,1,2,3,4,5,6,7,8,9}* - 9“. Then there is a non-deterministic
but no deterministic Biichi automaton accepting L. Furthermore, the languages recog-
nised by deterministic Biichi automata are not closed under complement.

First, one shows that a non-deterministic Biichi automaton recognises this lan-
guage. So an accepting run would at some time guess that from this point onwards
only 9s are coming up and then stay in this state forever, unless some digit different
from 9 comes up.

0,1,2,3,4,5,6,7,8,9 0,1,2,3,4,5,6,7,8,9

9
0,1,2,3,4,5,6,7,8
9 % Y Y Y)) Y))
_/

start —{ s

Second, it has to be shown that no deterministic Biichi automaton recognises this
language. So assume by way of contradiction that (@, {0,1,2,3,4,5,6,7,8,9},0,s, F)
would be such an automaton. Now one searches inductively for strings of the form
00,01, ... € 09* such that 0(s, 0901 ...0,) € F for all n. If there is an n such that
o, cannot be found then the sequence ogo ...,_109* is not accepted by the Biichi
automaton although it is in L, as states in F' are visited only finitely often in the
run. If all o, are found, then the infinite sequence ogo; ... has the property that it
contains infinitely many symbols different from 9 and that it is not in L; however,
the automaton visits infinitely often a state from F. This contradiction shows that L
cannot be recognised by a deterministic Biichi automaton. |

Quiz 10.6. Show the following: if L and H are languages of w-words recognised by
deterministic Bichi automata then also LUH and LNH are recognised by deterministic
Biichi automata. Show the same result for non-deterministic Biuchi automata.

145

Quiz 10.7. Make a Biichi automaton which recognises the language of all w-words in
which ezactly two digits from {0,1,2,3,4,5,6,7,8,9} occur infinitely often. Describe
how the automaton is build; it is not necessary to make a complete diagram of its
states.

Product Automata 10.8. Given w-languages L and H, assume that the automata
(Qr,%,01, s, Fr) and (Qy, %, 0y, sy, Fy) recognise L and H, respectively.

Now let Q@ = Qr x Qg x {10,01,11} and for each (qr,qy) € Q X Qg and a € X2
let 0((qz,qm,7),a) = (0r(qr,a),0m5(qu,a),r") where ' = r if q; ¢ Fp and qg ¢ Fy
and " = Fp(qr)Fu(qm) if at least one of these bits is 1.

For the union, (qr,qy,r) € F if either q; € Fy, or qg € Fy. For the intersection,
(qr,qu,r) € F iff q;, € Fy, and the second bit or r is 1 or gy € Fy and the first bit of
ris 1.

Example 10.9. Let L is the set of all w-words containing infinitely many even digits
and let H is the set of all w-words containing infinitely often either 0 or 5.

A Biichi automaton for L consists of two states sy, t; where the automaton goes
to tr, iff it has just seen an even digit and to sy iff it has just seen an odd digit.
Fr=A{tr}.

A Biichi automaton for H consits of two states sy, ty where the automaton goes
to ty iff it has just seen 0 or 5 and to sy otherwise. Fy = {ty}.

The intersection L N H contains all w-words where infinitely many even digits and
also infinitely many digits from 0,5 appear in the w-word.

Product automaton has states from {sp,t.} x {sy,ty} x {01,10,11}.

The successor of (qr,qm,r) on input a is determined as follows: Let r' = r for
(sp,su,r), v = 10 for (tr,sy,r), r' = 01 for (sp,ty,r) and v = 11 for (tp,ty, 7).
Now

5((QL7QH7T)>O) = (tL’tH’r/);
6((qr,qm;7),5) = (S0, ta,1');
0((qr,qu,7),a) = (tr, sy, ') for a € {2,4,6,8};
0((qr,qu,r),a) = (sg, sy, r’) for a € {1,3,7,9}.

Starting state is (sr, sg, 11). The set F' of accepting states contains all nodes of form
(tr,qu,zl) and of form (qr,tm,1x). Here qr,qy are any states in the corresponding
automata and x is any bit 0 or 1.

Example 10.10. Consider the following automaton B;; with i # j.

146

0,1,2,3,4,5,6,7,8,9
start —

Now make a central starting node s connected to cycles of three nodes q; ;,7; ;,ti; for
all pairs of distinct digits i, 5 as in the diagramme above. The nodes t; ; are the only
accepting ones.

Exercise 10.11. Construct deterministic Biichi automata for the language Lgy, of all
w-word which do not contain the subword ab anywhere. Then construct the intersection
automaton for Lo; N Los. The alphabet is {0,1,2,3}.

Exercise 10.12. Chnstruct a deterministic Biichi automaton for the language Hyy, of
all w-words which in which the subword ab occurs infinitely often. Then construct the
intersection via a product automaton for Hoy N Has. The alphabet is {0,1,2,3}.

Exercise 10.13. Construct a deterministic Biichi automaton with four states for
Hy, U Hog with Hy, as in Exercise 10.12. This automaton does not need to be of the
form of a product automaton. The alphabet is {0, 1,2, 3}.

Biichi [9] found the following characterisation of the languages of w-words recognised
by non-deterministic Biichi automata.

Theorem 10.14: Biichi’s Characterisation [9]. The following are equivalent for
a language L of w-words:

(a) L is recognised by a non-deterministic Biichi automaton;

(b) L = Ume{l,...,n} AnBY for some n and 2n reqular languages Ay, By, ..., Ap, By.

Proof, (a)=(b). Assume that a non-deterministic Biichi automaton (Q, %, d, s, F')
recognises L. Let n be the cardinality of F' and py,ps,...,p, be the states in F.
Now let A, be the language of strings recognised by (Q, 3,9, s, {p}) when viewed
as an nfa and B,, be the set of non-empty words in the language recognised by
(Q, 2,6, Pm,{Pm}) when viewed as an nfa. It is clear that all these languages are
regular. Furthermore, for each w-word in A,, - B there is a run of the original Biichi
automaton which goes infinitely often through the state p,,. Furthermore, if a w-word
has a run which goes infinitely often through states in the set F' then there is at least
one state p,, which is infinitely often visited by this run; one can now partition this

147

w-word in parts oy, 01, 09, . . . such that the run is after processing oyo . .. oy in p,, for
visit number & (with the first visit having number 0). Note that all o) are non-empty
and that oy € A, and each oy with £ > 0 is in B,,. Hence the w-word is in A,,B%.

(b)=(a). Assume that L = A;-BYUAs-ByU...UA,,-B¥. Assume that each language
A,, is recognised by the nfa (Noy,—1, %, 021, S2m—1, Fom—1) and each language B,, U
{€} is recognised by the nfa (Noy,, X, dom, Som, Fom); note that here s, € Fy, for
all m.

Now let Ng = {so} U N; U Ny U. ..U Ny, where all these sets are considered to be
disjoint (by renaming the non-terminals, if necessary). The start symbol of the new
automaton is sg. Furthermore, let dg be 01 UdaU. . .Uds, plus the following transitions
for each a € X: first, (so, a, ¢) if there is an m such that (sgm_1,a,q) € dom_1; second,
(S0, a,q) if there is an m such that ¢ € A,, and (Sgm,a,q) € dop; third, (so,a, som)
if a € A,,; fourth, (q,a,sey), if there are m and p € Fy,, 1 with ¢ € Ny,_1 and
(q,a,p) € am_1; fifth, (q,a, soy), if there are m and p € Fy,, with ¢ € N, and
(q,a,p) € dopm. These added rules reconnect the transitions from the starting state
into A, (first case) or directly into Bj; (when € € A, for the second case or a € A,,
for the third case) and the transition from A, into B,, on the reach of an accepting
state of A,, (fourth case) and the return to the starting state of B,, when an accepting
state can be reached (fifth case). In the fourth or fifth case, the automaton could go on
in A,, or B,, instead of going to ss,,, this choice is left non-deterministic on purpose;
indeed, one cannot in all cases make this Bilichi automaton deterministic.

Now {sa, 84, S6, - - -, San } 18 the set Fy of final states of the newly constructed Biichi
automaton (Ng, X, dg, So, Fo). That is, this Biichi automaton accepts an w-word iff
there is a run of the automaton which goes infinitely often through a node of the form
Som; by the way how Jg is defined, this is equivalent to saying that the given w-word
is in A,, - B . The further verification of the construction is left to the reader. 1

Muller introduced a notion of automata which overcomes the shortage of deterministic
Biichi automata and can nevertheless be made deterministic.

Description 10.15: Muller automaton. A Muller automaton (@, %, d, s, G) con-
sists of a set of states (), an alphabet ¥, a transition relation ¢, a starting state s and
a set GG of subsets of (). A run of the Muller automaton on an w-word bgb1b, ... € X¢
is a sequence qoq1qz - .. with go = s and (qx, @, qe41) € 6 for all k. A run of the Muller
automaton is accepting iff the set U of infinitely often visited states satisfies U € G.
The Muller automaton accepts the w-word bbb, . .. iff it has an accepting run on it.

A Muller automaton is deterministic iff the relation ¢ is a function, that is, for
each p € @ and a € X there is at most one ¢ € @ with (p,a,q) € 4.

While the language of all w-words of the form w9* is not recognised by a de-
terministic Biichi automaton, it is recognised by the following deterministic Muller

148

automaton: ({s,t},{0,1,2,3,4,5,6,7,8,9},9,s,{{s}}) where 6(s,a) =t for t < 9,
d(s,9) = s and 0(t,a) = s. The following diagram illustrates the Muller automaton:

9 0,1,2,3,4,5.6,7,8,9

tart —(s G =
star 0.1.2.3.4.5.6,7.8 st}

If the w-word consists from some time onwards only of 9s then the automaton will
after that time either go to s or be in s and then remain in s forever so that U = {s}
and U € G hence the run of the automaton on this w-word is accepting.

If the w-word consists of infinitely many symbols different from 9 then the au-
tomaton will leave on its run infinitely often the state s for the state t and U = {s,t}
what is not in (G. Hence the run of the automaton on this w-word is rejecting.

As the automaton is deterministic, the automaton accepts a word iff it contains
from some point onwards only 9s.

Exercise 10.16. Make a deterministic Muller automaton which accepts all those
w-words in which at least one of the symbols from the alphabet {0,1,2} occurs only
finitely often.

Exercise 10.17. Make a deterministic Muller automaton with alphabet {0, 1,2} which
recognises the language of all w-words for which there is an even number of ab €
{01,12,20} which occurs infinitely often as a subword in the w-word.

Exercise 10.18. Make a deterministic Muller automaton with alphabet {0, 1,2} which
recognises the language of all w-words for which there are no ab € {21,10,02} which
occur infinitely often as a subword in the w-word.

McNaughton [58] established the equivalence of these three conditions. The direct
translation from (a) to (b) was also optimised by Safra [72, 73].

Theorem 10.19: McNaughton’s Characterisation [58]. The following are equiv-
alent for a language L of w-words:

(a) L is recognised by a non-deterministic Biichi automaton;

(b) L is recognised by a deterministic Muller automaton;

(c) L is recognised by a non-deterministic Muller automaton.

Proof, (a)=-(b). Let a non-deterministic Biichi automaton (@, ¥,d, s, ') be given.
Without loss of generality, the given Biichi automaton has on every w-word some
infinite run; if not, one could add one state ¢ such that one can go from every state

149

into ¢, ¢ ¢ F and one can go from ¢ only into ¢ itself (irrespective of the input).

The idea is that the corresponding deterministic Muller automaton keeps track
of which non-terminals can be reached and how the history of visiting accepting
states before the current state is. So for each initial part of a non-deterministic run
09192 - - - ¢n of the Biichi automaton while processing input b1bs . .. b,, the Muller au-
tomaton machine would ideally archive the current state ¢, and a string 7 € {0, 1}"*!
representing the history where 7(m) = 0 for ¢,, € F and 7(m) =1 for ¢, ¢ F. So the
overall goal would be to have as many 0 as possible in the string 7 and to have them
as early as possible (what might be even more important than the actual number).

Hence, if there are two different runs having the traces 7 and n, both ending up in
the same state ¢,, then the learner would only archive min;.,.{7,n}. For that reason,
after processing b1b, . ..b,, the Muller automaton would represent the current state
by a set of pairs (p, 7) with p being a state reachable on input b1bs . ..b, and T being
the lexicographically least string representing the history of some run on this input.
Note that if one can go with histories 7,7’ from s to p on b1bs ... b, and with histories
n,n’ from p to ¢ on b,41b,, ... b, then one can also go with each of the histories 77,
', 7'n, 7'n’ from s to q on byby...b,,. Furthermore, the lexicographic minimum of
these four strings is ming., {7, 7'} - ming,{n, n'}. For that reason, it is save always only
to store the lexicographic minimum. Furthermore, for determining the lexicographic
minimum for going from s to ¢ on bibs . ..b,,, it is sufficient to know for each state p
the lexicographic minimum of the history on the first n steps and then the history for
the resulting m steps will be one of these strings in {0, 1}

The disadvantage of this approach is that the information archived is growing and
growing, that is, in each step the strings archived in the pairs get longer and longer.
Therefore, one does the more complicated following algorithm to update the state,
which is represented by a set of pairs (p,7) where all the strings in the state are of
same length and where for each p € @) there is at most one pair (p,7) in the state
of the Muller automaton. Furthermore, one stores in the state besides these pairs
one special symbol representing a number between 0 and the maximum length of a 7
which represents a column deleted in the last step. For the next state, this number is
irrelevant.

First one creates the initial state § of the Muller automaton by taking {oc, (s,0)}
in the case that s € F' and {00, (s,1)} in the case that s ¢ F. Now, one determines
for each state p created so far and each symbol b a successor state d(p) as follows; one
keeps adding these successor states to the set P of states of the Muller automaton
until no new state is created this way. Let a state p € P and a symbol b € X be given.

1. Let Q" ={q:30,[(q,0,) € D]}
2. Now one determines whether there is a & such that for all o, 0p,: The first bit
differing in 0,, 0, is not at position k and if o,(k) = 0 then there is a k' > k

150

with o, (k") = 0 as well. If this k& exists then choose the least among all possible
values else let k = oc.

3. Start creating the state A(p,b) by putting the element k into this state (which
is considered to be different from all pairs).

4. Let 7, be obtained from o, by omitting the bit at position ¢ in the case k < oo
and by letting 7, = o, in the case k = oo.

5. For each ¢ € F', determine the set {7,0 : p € Q" A (p,b,q) € 0}. If this set is not
empty, then let 7, is lexicographic minimum and put (g, 7,) into the new state
A(p,b).

6. For each ¢ € Q) — F, determine the set {7,1 : p € Q" A (p,b,q) € d}. If this set
is not empty, then let 7, is lexicographic minimum and put (g, 7,) into the new
state A(p,b).

7. The new state A(p,b) consists of all the information put into this set by the
above algorithm.

Now one shows that whenever the o, in the state p have at least length 2 * |Q)| then
k < oo and therefore the 7, in the state A(p,b) will have the same length as the oy,
hence the length of the archived strings is not increasing and so the number of states
created is finite, actually P has at most 221Q"+2 « (2 % |Q| + 1)? members.

To see this, assume that all the strings o, in p have length 2 % |Q|. There are at
most |@Q] of these strings. They and their prefixes form a binary tree with up to |Q)
leaves of length 2 |Q| and so there are at most || — 1 branching nodes ¢’ in the tree.
For each branching node o', there are ¢’0,0’1 in the tree. Now let K = {|¢o’| : ¢’ is a
branching node in the tree}. Furthermore, for each leave o, let &’ be the largest value
where o,(k") = 0; for each 0, add this &” into K. Then K has at most 2 |Q|— 1 many
members. Hence £ = min({0,1,...,2* |Q| — 1} — K) exists and is identical to the k
chosen in step 2, as for all 0, 0,, if 0,(k) = 0 then some o,(k’") = 0 for ¥’ > k and if
o,(k) # o4(k) then there is some k' < k with o,(k’) # o,(k"). Hence the 7, are shorter
than the o, by one bit and the 7, have the same length as the 7,. Furthermore, it is
clear that A is a function and the resulting Muller automaton will be deterministic.

The remaining part of the Muller automaton to be defined is G: So let G contain
every set W such that there is a k < oo satisfying k = min{k’ : Ip € W [k’ € p|} and
W N Uy # () where

Up={p:30 € {0,1}*B(q,0) € plo € ¥ -{0,1}*] AV(q,0) € po ¢ V- 1]},

Consider any given w-word and let W be the set of states which the Muller automaton
visits on this w-word infinitely often. Let p,, denote A(S,b1bs...b,,). There is an n
so large that p,, € W for all m > n.

First assume that there is an p,, € U, for some n’ > n. Now the Muller au-
tomaton accepts biby..., as p,, € W. So one has to show that biby... is also

151

accepted by the Biichi automaton. As p,, € Uy there is a ¥ € {0,1}* satisfying
(q,0) € pw o € 9-{0,1}*] AV(q,0) € P o ¢ U -1*]. Now consider A(py, by).
By construction, whenever (¢q,0) € p, and o extends ¥ then o(k') = 0 for some
k' > k; this property is preserved by the corresponding 7 associated with ¢ in p,.
Furthermore, each pair (¢, 0) € p,11 satisfies that o = Ta for some a and the lexico-
graphically least 7 which belongs to some ¢ € @ with (q, b/, q") € 6; whenever that 7
extends ¥ then it contains a 0 after position k and therefore n has the same property.
Hence every pair (¢',0) € p,41 satisfies that either o does not extend ¥ or o extends
¥ with a string containing a 0. Furthermore, if some of the p,, with m > n’ would
not contain any (g, 0,) with o, extending ¥, then this property would inherit to all p,
with o > m; as p,» = p, for infinitely many o, this cannot happen. Hence all members
of W are in U}, as witnessed by the same).

Now let T be the tree of all finite runs quq; . . . ¢, such that there is an associated
sequence (0q, 01, . ..,0,) of strings with (g, 04) € pp, for all h < 'm and ¥ < oy, for all
h with n < h < m and satisfying for all h < m and the k&’ € p11 that (gs, bp, qas1) €
and 0,41 is obtained from o}, by omitting the £’-th bit (in the case that &’ # oco) and
then appending 0 in the case that ¢;,1 € F' and appending 1 in the case that g, ¢ F.
Each pair in each p,, for each m must be reachable by such a sequence; hence T is
infinite. By Konig’s Lemma there is an infinite sequence of ¢, of states with the
corresponding sequence of ¢, with the same property. This sequence then satisfies
that from some n onwards there is always a 0 somewhere after the k-th bit in o,,;
furthermore, the k-th bit is infinitely often deleted; hence it is needed that infinitely
often a 0 gets appended and so the sequence qyq; . . . satisfies that ¢, € F for infinitely
many m. Hence byb; ... has the accepting run ¢gq; . .. of the Biichi automaton.

Second assume that there is no p,, € U for any m > n. Then the Muller automa-
ton rejects the run and one has to show that the Biichi automaton does the same.
Assume by way of contradiction that there is an accepting run ¢gq,¢s . . . of the Biichi
automaton on this sequence and let 0y, 01,09, ... be the corresponding strings such
that (¢m, 0m) € Pm for all m. There is a string ¥ € {0, 1}* which is for almost all m a
prefix of the ¢,,. Furthermore, by assumption, there is for all m > n a state r,, € @
with (7, 171%) € pp. There are infinitely many m with o, = 9 A 0,,, # 91, Let ¥’
be the minimum of the &’ > k such that o,/ (k') = 0 A Y < o,» for some m > n; the
minimal £ exists; fix some n” with the chosen property. Then the number k" € p,n 4
satisfies that k” > k. Furthermore, k” # k' as (r,»,91%) and (g, 0,7) are both in p,»
and k' is the first position where they differ. Furthermore, it does not happen that
k < k" <k’ as then o,»,1 would have the 0 at ¥ — 1 and k' — 1 > k in contradiction
to the choice of k’. Hence not k but &' + 1 would be the limit inferior of all the
numbers in p,, with m > n” which equals to the states in W, a contradiction. Thus
such an accepting run of the Biichi automaton on byb1bs ... does not exists and the

152

Biichi automaton rejects the input in the same way as the Muller automaton does.

So it follows from the case distinction that both automata recognise the same lan-
guage. Furthermore, the deterministic Muller automaton constructed from the Biichi
automaton has exponentially many states in the number of states of the original
non-deterministic Biichi automaton.

(b)=-(c). This holds, as every deterministic Muller automaton can by definition also
be viewed as a non-deterministic one.

(c)=(a). Let a non-deterministic Muller automaton (Q,X,d,s,G) be given. Let
succ(w, W) be a function which cycles through the set W: if W = {wy, wq, w3}
then succ(wy, W) = ws, succ(wy, W) = ws and succ(ws, W) = wy. Now let P =
Q x Q x (GU{0}) is the set of states of the equivalent Biichi automaton, the al-
phabet ¥ is unchanged, the starting state is (s, s,()) and for each transition (p,a, q)
and each r and each W € G with p,q,r € W, put the following transitions into
A: ((p,p,0),a,(q,9,0)), ((p,p,0),a,(q,¢,W)), ((p,7, W), a,(g,r,W)) in the case that
p # r and ((p,p, W), a, (q, Succ(p, W), W)). The set F is the set of all (p,p, W) with
p € W and W € G (in particular, W #)). Now it is shown that (P, X, (s,s,0), A, F)
is a non-deterministic Biichi automaton recognising L.

Given a word recognised by the Biichi automaton, there is an accepting run which
goes infinitely often through a node of the form (p,p, W) with p € W. When it is in
(p,p, W), the next node is of the form (q,p’, W) with p’ = Suce(p, W) and ¢ € W,
the second parameter will remain p’ until the run reaches (p/,p’, W) from which it
will transfer to a state of the form (¢/,p”, W) with p” = Succ(p’, W). This argument
shows that the run will actually go through all states of the form (q,q, W) with ¢ € W
infinitely often and that the first component of the states visited after (p,p, W) will
always be a member of (). Hence, if one takes the first components of the run, then
almost all of its states are in W and all states occur in W infinitely often and it forms
a run in the given Muller automaton. Hence the given w-word is recognised by the
Muller automaton as well.

On the other hand, if one has a run gq; ... accepting an w-word in the given
Muller automaton and if W is the set of states visited infinitely often and if n is
the position in the run from which onwards only states in W are visited, then one
can translate the run of the Muller automaton into a run of the Biichi automaton as
follows: (qo,q0,9), (¢1,q1,0), -, (Gns @, 0), (Gni1, Gns1, W). For m > n and the m-th
state being (¢, 7m, W) then the 7,,.1 of the next state (g1, 7m+1, W) is chosen such
that 7,41 = Suce(W,ry,) in the case g, = rm and ry,41 = 1y, in the case ¢, # 7. It
can be seen that all the transitions are transitions of the Biichi automaton. Further-
more, one can see that the sequence of the r,, is not eventually constant, as for each
rm there is a k > m with gy = rp, 76 = 1y, and 7,11 = Suce(r,,, W). Hence one can

153

conclude that the states of the form (p, p, W) with p € W are infinitely often visited
in the run and the Biichi automaton has also an accepting run for the given word.
Again the construction gives an exponential upper bound on the number of states of
the Biichi automaton constructed from the Muller automaton. This completes the
proof. 1

In the above proof, an exponential upper bound on the number of states means
that there is a polynomial f such that the number of states in the new automaton
is bounded by 202D where @ is the set of states of the old automaton and |Q)|
denotes the number of states. So the algorithm gives the implicit bound that if one
computes from some non-deterministic Biichi automaton another non-deterministic
Biichi automaton recognising the complement then the number of states is going
up in an double-exponential way, that is, there is some polynomial g such that the
number of states in the Biichi automaton recognising the complement is bounded by
22709V " This bound is not optimal, as the next result shows, but it can be improved
to an exponential upper bound. Schewe [76] provides a tight exponential bound, the
following theorem just takes the previous construction to give some (non-optimal)
way to complement a Biichi automaton which still satisfies an exponential bound.

Theorem 10.20. Assume that (Q), 3,0, s, F') is a non-deterministic Biichi automaton
recognising the language L. Then there is an only exponentially larger automaton
recognising the complement of L.

Proof. For the given automaton for a language L, take the construction from The-
orem 10.19 (a)=-(b) to find a deterministic Muller automaton for L with a set P of
states, a transition function A, p and the numbers k£ and sets Uy defined as there.
Now define the new state-space as R = PU{pU {h} : Fk[h < k < co Ak € |}
where 0,1,... are considered as different from 0,1,... (for avoiding multi-sets) and
the mapping h +— h is one-one. So besides the states in P, there are states with
an additional number i which is considered as a commitment that the value of the
numbers in future states will never be below h. Note that |R| < (2% |Q|+ 1) x |P| so
that the exponential bound on R is only slightly larger than the one on P. The idea is
that the transition relation on R follows in general A with the additional constraints,
that at any time a commitment can be made but it can never be revised; furthermore,
the commitment cannot be violated. So the following transitions are possible:

L. (5,0, A(p,a)) if f € P;
2. (p,a,A(p,a) U{h}) if p € P and h is any number between 0 and 2 * |Q|;
3. (pU{h},a,A(p,a) U{h})if p € P and there is a b’ > h with b/ € A(p).

The set F' has the role to enforce that for the limit inferior £ of the numbers occurring
in the states p, the commitment % is made eventually and some state pU{k} is visited

154

infinitely often with & € p A p ¢ Ug. Note that Theorem 10.19 (a)=-(b) showed
that this is exactly the behaviour of the underlying Muller automaton (without the
commitments) when running on an w-word: it rejects this w-word iff it runs through a
state p infinitely often such that k& € p for the limit inferior £ of the numbers encoded
into each of the infinitely often visited states and p ¢ Uy. Indeed, all the states visited
infinitely often are either all in Uy or all outside U,. Therefore, one can choose F' as
follows:

F={pu{k}:pePAkephpd¢Us}.

Now the non-deterministic part of this Biichi automaton is to eventually guess k£ and
do the corresponding commitment; if it then goes infinitely often through a node
pU {l%} of F', then the fact that k£ € p enforces that the limit inferior of the positions
deleted in the strings is k; furthermore, the commitment enforces that it is not below
k. Hence the simulated Muller automaton has the parameter k for its limit and cycles
infinitely often through a node not in Uy; this implies that it rejects the w-word and
that the word is not in L. It is however accepted by the new Biichi automaton.

On the other hand, if the new Biichi automaton has only rejecting runs when
chosing the right parameter k, then therefore all the states through which the Biichi
automaton cycles through an infinite run with the right commitment are of the form
pU {fe} with p € Ug; hence the underlying Muller automaton accepts the w-word and
the Biichi automaton correctly rejects the w-word. Hence the new Biichi automaton
recognises the complement of L. |

Exercise 10.21. Let X = {0,1,2} and a parameter h be given. Make a non-
deterministic Buchi automaton recognising the language L of all w-words bibs ... in
which there are infinitely many m such that b, = by,p. Give a bound on the number
of states of this automaton. Construct a Muller automaton recognising the same lan-
guage and a Bichi automaton recognising the complement of L. How many states do
these automata have (in terms of the value h)?

Exercise 10.22. Let h = |X| and let L be any language where for each w-word « the
membership of o in L only depends on the set of symbols which appears infinitely often

in «. Show that there is a deterministic Muller automaton with h states recognising
L.

Exercise 10.23. Let L contain all w-words a € X% for which at least half of the
symbols in X occurs infinitely often.

1. Make a deterministic Biichi automaton recognising L with up to 21¥1=1 states.
2. Make a non-deterministic Biichi automaton recognising L with up to |3[*/2 + 2
states.

155

Description 10.24: Rabin and Streett Automata. Rabin and Streett automata
are automata of the form (Q,%,d,s,Q) where €2 is a set of pairs (E, F') of subsets
of @) and a run on an w-word bybibsy ... is a sequence ¢oqig2 ... with ¢g = s and
(Gns bry Gny1) € 0 for all n; such a run is accepting iff the set U = {p € Q : I®n[p =
qn)} of infinitely often visited nodes satisfies

e in the case of Rabin automata that U N E # () and U N F = () for one pair
(E,F) e Q;

e in the case of Streett automata that UNE # () or U N F = () for all pairs
(E,F) € Q.

Given a deterministic Rabin automaton (@, X, d, s, Q2), the Streett automaton
(Q,%,0,s,{(F,E): (E,F) € Q})
recognises the complement of the Rabin automaton.

Example 10.25. Assume that an automaton with states @ = {qo,q1,...,q} on
seeing digit d goes into state gg. Then the condition {2 consisting of all pairs (¢ —
{qa},{qa}) produces an Rabin automaton which accepts iff some digit d appears only
finitely often in a given w-word.

Assume that an automaton with states @ = {s,qo,q1,---,qo}, start state s and
transition function d given by (s, d) = ¢4 and if d = e then §(qq, €) = d else §(qq, €) =
s. Let E = {qo,q1,...,q} and F = {s} and Q = {(E,F)}. This automaton is
a deterministic Rabin automaton which accepts all w-words where exactly one digit
occurs infinitely often.

Furthermore, if one takes Q2 = {(0,{s})} then one obtains a Streett automaton
which accepts exactly the w-words where exactly one digit occurs infinitely often, as
the automaton cannot obtain that a state in () comes up infinitely often and therefore
has to avoid that the state s is visited infinitely often. This happens exactly when
one digit comes infinitely often.

Quiz 10.26. Give an algorithm to translate a Bichi automaton into a Streett au-
tomaton.

Exercise 10.27. Assume that, for k = 1,2, an w-language Ly is recognised by a
Streett automaton (Qg, %, Sk, Ok, Q). Prove that then there is a Streett automaton
recognising Ly N Loy with states Q1 X Qa, start state (s1, sq2), transition relation §; X dy
and an € containing ||+ |Qa| pairs. Here (61 X 82)((q1,q2), a) = (91(q1, a), d2(qz2, a)).
Explain how) is constructed.

Description 10.28. A alternating Biichi automaton is an adjustment of an alter-
nating finite automaton to the procssing of infinite words. So the automaton has

156

states (), input alphabet Y, transition rules d, start state s and final states F. The
alternating Biichi automaton processes an w-word w in a way similar to an alternat-
ing automaton processing finite words. There are three cases of transition rules for
current state ¢ and next input symbol a:

e (q,a) — r: Next state is r;
e (q,a) = rV p: Anke picks r or p;
e (q,a) — r A p: Boris picks r or p.

Now the alternating Biichi automaton accepts an w-word w iff Anke has a winning
strategy to ensure that the game always goes infinitely often through states from F,
independently of what moves Boris does.

Example 10.29. The following alternating Biichi automaton has states {p,q,r},
alphabet {0, 1} and recognises the w-language ({0}* - {1})*, that is, all w-words with
infinitely many 1:

state type 0 1
p | start, rejecting | pAgATr | gVr
q accepting | pAgAr | pVr
r accepting | pAgA1T | pVgq

The idea for the verification is if a 0 comes then Boris can enforce that the game goes
into a rejecting state and if a 1 comes then Anke can enforce that the game goes to
an accepting state. enforce to go to go to an accepting or a rejecting node. If the
symbol is a 1 then Anke decides where to go; if the symbol is a 0 then Boris decides
where to go. Thus Anke can force the game to go infinitely often into an accepting
states iff the w-word has infinitely many digits 1.

Example 10.30. Assume a Biichi Game (G, F, s, W) is given. Now one can construct
a Biichi alternating automaton as follows: The set GG is the state set, the alphabet is
{Anke, Boris}. Assume that for a node ¢ the outgoing edges to nodes py, pa, ..., Pg.
Then the Biichi alternating automaton has the following transitions:
d(q, Anke) = p1 Vpa V...V pg;
d(q, Boris) = py Apa A ... A py.
So the input tells which player selects the next move. The accepting states of the
Biichi AFA are those in W.

Now Anke has a winning strategy for the game (G, E, s, W) iff the Biichi alternat-
ing automaton accepts (Anke Boris)*.

157

Exercise 10.31. Given a Bichi game (G, E, s, W), construct a deterministic Biichi
automaton which reads plays (sequences of nodes visited by alternating moves of Anke
and Boris) and which accepts iff all moves in the play are possible and Anke wins the

play.

Exercise 10.32. Given a Biichi game (G, E,s,W), a nondeterministic Biichi au-
tomaton is using the states G U {r} with W U {r} being accepting and the input is
every second node of a play, so if the play is Sq1 q2q3 q4 . .. then Anke does the moves
to q1,q3,qs5,... and Boris to qo,q4, gs, . . .; now the game is that Anke reads qop, with
qo = s and if one cannot go from the current state qor_1 to qo then Anke mowves to
r else Anke moves to a successor node of qor, which is called qop1. From r, one can
only move to r (independently of the input).

Show that Anke has a winning strateqy for the Biichi game iff the so constructed
nondeterministic finite automaton accepts all halfplays as described here.

Exercise 10.33. Construct the Biichi automaton from the previous exercise ex-
plicitly for the Biichi game given by G = {1,2,3,4}, s = 1, W = {2,3} and
E={(1,1),(1,2),(1,3),(1,4),(2,2),(2,1),(3,3),(3,1), (4, 4)}.

158

Selftest 10.34. Assume that a finite game has the nodes {00,01,...,99} and the
game can go from ab to be for all a,b,c € {0,1,...,9}; except for the node 00 which is
the target node. The player reaching 00 first wins the game. Which nodes are winning
nodes for Anke and which are winning nodes for Boris and which are draw nodes?

Selftest 10.35. Consider a game on N3 where each player can move from (a,b,c)
to (a/,V,c) if eithera =ad ANb=bUVANc=cd+1ora=dANb=b+1ANc=0 or
a=a+1ANb=0Ac=0. The player which moves into (0,0,0) loses the game, so
other than in the previous task, each player has to try to avoid moving to (0,0,0). Are
there draw nodes in the game? Is every play of the game finite? The node (0,0,0) is
not counted.

Selftest 10.36. Let V = {0,1,...,19} and E = {(p,q) : ¢ € {p+1,p+2,p+ 3}
(modulo 20)}; the starting node is 0. Does Anke have a memoryless winning strategy
for the set {6,16} of nodes which must be visited infinitely often? If so, list out this
memoryless winning strateqy, if not, say why it does not exist.

Selftest 10.37. Explain the differences between a Biichi game, a survival game and
an update game.

Selftest 10.38. Construct a non-deterministic Biichi automaton recognising the w-
language {0,1,2}* - {001,002} U {0,1,2}* - {01,02}.

Selftest 10.39. Construct a deterministic Biichi automaton which recognises the
w-language {00}* - {11,22}* - {00} - {22,00}*.

Selftest 10.40. Prove that if a Rabin automaton recognises an w-language L so does
a Bichi automaton.

159

Solution for Selftest 10.34. The winning nodes for Anke are {10, 20, ...,90} where
she moves to 00; for all other nodes, Anke must avoid that Boris can move to 00 and
would move from ab to any number bec with ¢ # 0. Boris does the same, hence all
numbers of the form ab with b # 0 are draw nodes.

Solution for Selftest 10.35. One can see that every move of the game from (a, b, c)
to (a',V,c) satisfies (a',V,c) <jer (a,b,c) for the lexicographic order on triples of
numbers. As this ordering is, on N®, a well ordering, every play of the game must
eventually go to (0,0,0) and one of the players loses and the other one wins. So there
are no infinite plays and thus also no draw nodes from which both players could enforce
an infinite play.

Solution for Selftest 10.36. Yes, Anke has a memoryless winning-strategy and it
1s giwen by the following table: 0 - 3,1 —+3,2—-3,3—-6,4—6,5—6,6—7,
7—8,8—9,9—10, 10 - 13, 11 —» 13, 12 — 13, 13 — 16, 14 — 16, 15 — 16,
16 — 17, 17 — 18, 18 — 19, 19 — 0. When the game is in node p with 0 < p < 2
then it goes to Anke either in p or in some node q with p+1 < q < p+3. If it goes to
Anke in node p then she moves to 3; now Boris can either move to 6 and satisfy the
visit-requirement or to 4 or 5 in which case Anke satisfies the visit-requirement for 6
in the next move. If it is Boris move while the game is in 0 or 1 or 2, he can move it
to 1,2, 3,4 orb and either Anke will move to 3 or to 6 directly, if the game goes to 3
it will also eventually visit 6. Similarly one shows when the game comes across some
of the nodes 10, 11,12 it will eventually go to 16 with Anke’s winning strategy. Thus
Anke can play a memoryless winning strateqy which enforces infinitely many visits of
6 and 16 in this update game.

Solution for Selftest 10.37. A survival game is a game where Anke wins if the
game runs forever. A Bichi game has in addition to the set V' of nodes also a subset
W such that Anke wins iff the game runs forever and at least one node of W is visited
infinitely often. Every survival game is also a Biichi game (by chosing W = V') but
not vice versa. An update game is a game which has like a Biichi game a selected
set W of nodes; the difference to the Biichi game is, however, that every node in W
must be visited infinitely often. While Biichi games have always memoryless winning
strategies, update games might fail to do so (at least for player Anke).

Solution for Selftest 10.38. The Biichi automaton has states qo, 1, G2, q3, 4, ¢5 and
qo 1S the start state, q1,q3 are the accepting states and one can go on 0,1,2 from q
to qo, q1,q3, from g1 on 0 to qo and from qa on 1,2 to q1, from qz on 0 to q4, from q4
on 0 to qs and from g5 on 1,2 to q3. Thus when going to q, the automaton only will
process further inputs from {01,02}* and when going to qs, the automaton will only
process further inputs from {001,002},

160

Solution for Selftest 10.39. The table of the Biichi automaton looks as follows:

state | type 0 1 2
qo start,reject | qoo | Go1 | q1,2
do,0 reject Qo | — -
do1 reject - @ | -
Q1 reject @0 | 91,1 | 1,2
di1 reject - @i | -
q1,2 reject - - 5t
Q2 accept Q20 | — 2,2
42,0 reject q2 | — -
42,2 reject - - 42

It accepts an infinite word iff it goes infinitely often through qs. After the first time it
went thorough this node, it will only process concatenations of 00 and 22, as required.

Solution for Selftest 10.40. The idea is that for every e, E, F with (E,F) € Q
and e € E, one considers the reqular language A, of all words w such that the given
Rabin automaton can go on w from the start state to e and the language B. r of all
non-empty words v such that the Rabin automaton can go from e to e on v without
visiting any state in F'. Now the automaton can on every w-word from A - By go
in the Ac-part of the w-word from the start state to e and then in the By p-part of the
w-word cycle from e to e without visiting any state from F'. Thus there is an infinite
run on the w-word where the state e from E is visited infinitely often while no state
from F' is visited infinitely often and so A. - Be r is a subset of the language recognised
by the Rabin automaton. One can see that the language of all w-words recognised by
the Rabin automaton is the union of all A. - B¢ for which there is an E with e € £
and (E, F) € Q. So the w-language recognised by the Rabin automaton is of the form
from Theorem 10.14 and therefore recognised by a Biichi automaton.

161

11 Automatic Functions and Relations

So far, only regular sets were considered. The notion of the reqular sets has been
generalised to automatic relations and functions.

Definition 11.1: Automatic Relations and Functions [5, 38, 39, 50]. A relation
R C X XY is automatic iff there is an automaton reading both inputs at the same speed
(one symbol per cycle with a special symbol # given for inputs which are exhausted)
such that (x,y) € R iff the automaton is in an accepting state after having read both,
x and y, completely.

Similarly one can define that a relation of several parameters is automatic.

A function f : X =Y is automatic iff the relation {(x,y) : x € dom(f)\y = f(z)}
15 automatic.

Example 11.2. The relation |z| = |y| is an automatic relation, given by an automa-
ton which remains in an accepting starting state as long as both inputs are in > and
transfers to a rejecting state (which it does not leave) whenever exactly one of the
inputs x,y is exhausted.

o @ () () () (7)

Here (Z) means that the first input (z) provides an a and the second input (y) provides
a b; the alphabet is {0, 1}.

For example, if z = 00 and y = 1111, then the automaton starts in s, reads ((1))
and remains in s, reads ((1)) and remains in s, reads (?{f) and goes to r, reads (T) and
remains in state r. As now both inputs are exhausted and the automaton is in a
rejecting state, it rejects the input; indeed, |00 # |1111].

If x = 010 and y = 101, then the automaton starts in s and remains in s while
processing ((1)), ((1)) and ((1])

Notation 11.3. A set of pairs, or in general of tuples, can be directly be written in the
way as the automaton would read the inputs. For this let conv(z, y) be the set of pairs
with symbols from z and y at the same position, where # is used to fill the shorter

string (if applicable). So conv(00,111) = (})(?) (%), conv(101,222) = (1) (5)(;) and

conv(0123,33) = (g) (;) (i) (i) For this, it is always understood that the symbol #

is not in the alphabet used for x and y; if it would be, some other symbol has to be

162

used for denoting the empty places of the shorter word. So a relation R C ¥* x ¥* is
automatic iff the set {conv(x,y) : (z,y) € R} is regular. Similarly for relations with
an arity other than two.

Example 11.4. Assume that the members of 3 are ordered; if ¥ = {0, 1} then the
default ordering is 0 < 1. One says that a string v = ajas . .. a, is lexicographic before
a string w = biby ... b, iff either n < m and a; = by Aay =by A ... ANa, = b, or there
is a k < min{n,m} with a1 = by Aas = by A ... ANap = by A agy1 < bry1. One writes
v <per w if v is lexicographic before w; v <., w means either v <;., w or v = w. So
000 <jer 00110011 <jep 0101 <jep 010101 <pepe 1 <pez 10 <pepe 100 <y 11.

The lexicographic ordering is an automatic relation. For the binary alphabet
{0, 1}, it is recognised by the following automaton.

. ()
. H@ (. (5). () @
J
ANARG

(o):

() Cd=>y

Here (Z) on an arrow means that the automaton always goes this way.

Exercise 11.5. Say in words which automatic relations are described by the following
reqular expressions:

o {(), (D, @) Y-, Y- H@):)y u{@): I,
o {(0), () - {3 u{()-{(2) (1), (),
o {(0): @) @) (@)} ?

Which of these three relations define functions? What are the domains and ranges of
these functions?

Exercise 11.6. Which of the following relations are automatic (where xy, is the k-th
symbol of x = x1x9 ... 2, and |x| =n):

163

Ri(z,y,2) & Vk € {1,2,...,min{|z|,|y|, |2|}} [vx = yr V Tk = 21 V yr = 2&);
Ro(w,y,2) & |z + [y| = |2];
Ry(a, 2) & 3y[lo] + Iyl = |21]
Ry(z,y,2) < Ik € {1,2,...,min{|z|, |y|, |2} } [xx = vk = 2x];
(l’ Y,z)@Eﬁ,j,k[l‘lzyjzzk]’
Ro(z,y) &y = 012 - z - 012.

Give a short explanations why certain relations are automatic or not; it is not needed
to construct the corresponding automata by explicit tables or diagrams.

Theorem 11.7: First-Order Definable Relations [50]. If a relation is first-order-
definable using automatic functions and relations then it is automatic; if a function
18 first-order-definable using automatic functions and relations, then it is automatic.
Furthermore, one can construct the automata effectively from the automata used in
the parameters to define the relation or function.

Example 11.8. The length-lexicographic or military ordering can be defined from
the two previously defined orderings: v <; w iff |v| < |w| or |v| = |wW] AV <jer w.
Hence the length-lexicographic ordering is automatic.

Furthermore, for every automatic function f and any regular subset R of the
domain of f, the image f(R) = {f(z) : * € R} is a regular set as well, as it is
first-order definable using f and R as parameters:

y € f(R) & 3w e R[f(z) =yl

Exercise 11.9. Let I be a reqular set and {L. : e € I} be an automatic family, that
is, a family of subsets of ¥* such that the relation of all (e,x) withe € I Nx € L, is
automatic. Note that D = |J,.; L; is first-order definable by

reD&Jiellxely,

hence D is a reqular set. Show that the following relations between indices are also
automatic:

o {(i,j)eIxI:L;=L,}

o {(1,7)eIxI:L;C L},

o {(,j)eIxT:LiNL,=0);

e {(i,j) € I xI:L;NL;isinfinite}.

164

Show this by showing that the corresponding relations are first-order definable from
given automatic relations. One can use for the fourth the length-lexicographic order
in the first-order definition.

Example 11.10. Let (N, X, P,S) be a grammar and R = {(z,y) € (NUX)* x (N U
¥)* 1z = y} be the set of all pairs of words where y can be derived from z in one
step. The relation R is automatic.

Furthermore, for each fixed n, the relation {(z,y) : 3z0,21,..., 2, [= 20 Ay =
Z2n N zZo = 21 Nz = 29 A ... Az = 2|} of all pairs of words such that y can be
derived from z in exactly n steps is automatic.

Similarly, the relation of all (z,y) such that y can be derived from z in at most n
steps is automatic.

Remark 11.11. In general, the relation =* is not automatic for a non-regular
grammar, even if the language generated by the grammar itself is regular. For ex-
ample, one could consider the grammar ({S}, {0, 1,2}, {S — S5]0|1|2}, S) generating
all non-empty words over {0,1,2}. Then consider a derivation S =* S01™m2S =*
0*1m2". If =* would be automatic, so would be the relation of all pairs of the form
(S01m2S,0%1™2") with k > 1 Am > 0 An > 1; this is the set of those pairs in =*
where the first component is of the form S011*2S. If the set of the convoluted pairs
in =% is regular, so is this set.

Now, choose n = h+4, m = h, k = h + 4 for a h much larger than the pumping
constant of the assumed regular set; then the regular set of the convoluted pairs in
the relation would contain for every r the string

g 0 1cld7‘1h—c—d2 IS #h#h+4‘
LEE 6 6 ©6E)E)
where ¢ > 0, d > 0 and h—c—d > 0. In contrast to this, the condition on =* implies
that the first S is transformed in a sequence of 0 and the second S into a sequence of
2 while the number of 1 is preserved; therefore the number ¢+ dr + h — ¢ — d must be
equal to h, which gives a contradiction for r # 1. Hence the relation =* cannot be
automatic.

It should however be noted, that the relation =* is regular in the case that the
grammar used is regular. In this case, for N denoting the non-terminal and ¥ the
terminal alphabet and for every A, B € N, let L, p denote the set of all words w
such that A =* wB and L4 be the set of all words w such that A =* w. All sets
L4 and Ly p are regular and now x =* y iff either x = y or z = vA and y = vwB
with w € Ly p or x = vA and y = vw with w € L4 for some A, B € N; hence the

165

convoluted pairs of the relation =* form the union

{conv(z,y): x ="y} = U ({conv(vA,vwB) v e ¥, w e Ly} U
A,BEN
{conv(vA,vw) : v € X", w € Lu})

which is a regular set.

Exercise 11.12. Let R be an automatic relation over X* U I'* such that whenever
(v,w) € R then |v| < |w| and let L be the set of all words x € ¥* for which there
exists a sequence Yo, Y1, .-, Ym € I' with yo = €, (Yr,Yrs1) € R for all k < m and
(Ym,) € R. Note that ¢ € L iff (e,¢) € R. Show that L is context-sensitive.

Note that the converse direction of the statement in the exercise is also true. So assume
that L is context-sensitive. Then one can take a grammar for L — {¢} where each rule
v — w satisfies |v] < |w| and either v,w € NT or |v| = |[w|Av E NT Aw € X, Now
let (z,y) € R if either x,y € NT Az = yorz € Nt ANy € T A (x =* y by rules
making non-terminals to terminals) or (z,y) = (¢,¢) Ae € L.

Theorem 11.13: Immerman and Szelepcsényi’s Nondeterministic Count-
ing [41, 79]. The complement of a context-sensitive language is context-sensitive.

Proof. The basic idea is the following: Given a word z of length n and a context-
sensitive grammar (N, 3, P, S) generating the language L, there is either a derivation
of x without repetition or there is no derivation at all. One can use words over > U N
to represent the counter values for measuring the length of the derivation as well as
the number of counted values; let u be the largest possible counter value. Now one
determines using non-determinism for each ¢ how many words can be derived with
derivations up to length ¢; the main idea is that one can obtain the number for ¢ + 1
from the number for ¢ and that the number for £ = 0 is 1 (namely the start symbol
S). The idea is to implement a basic algorithm is the following:

Choose an x € ¥* and verify that « ¢ L as follows;

Let u be the length-lexicographically largest string in (N U)
Let i = Sucey(e);

For ¢ = ¢ to u Do Begin

Let j =¢;
For all y <;; u Do Begin

Derive the words w1, ws, . .., w; non-determinis-
tically in length-lexicographic order in up to
¢ steps each and do the following checks:

166

If there is a w,, with w,, = y or w,, = y then
let j = Sucey(5);

If there is a w,, with w,, = x or w,, = x then
abort the computation End;

Let © = j; End;

If the algorithm has not yet aborted then generate z;

This algorithm can be made more specific by carrying over the parts which use plain
variables and replacing the indexed variables and meta-steps. For this, the new vari-
ables v, w to run over the words and k£ to count the derivation length; A is used to
count, the words processed so far. Recall that the special case of generating or not
generating the empty word is ignored, as the corresponding entry can be patched
easily in the resulting relation R, into which the algorithm will be translated.

1:

2:

Choose an x € X1 and initial all other variables as ¢;
Let u = (max; (N U %))k

Let i = Succy(e) and £ = ¢;

While ¢ <;; u Do Begin

5: Let j =¢;
6: Let y = ¢;
7: While y <;; u Do Begin
8: Let y = Sucey(y);
9: Let h=¢ and w = ¢;
10: While A <;; @ Do Begin
11: Nondeterministically replace w by w’ with w <; w" <;; u;
12: Let v =5,
13: Let k = ¢;
14: While (v # w) A (k <y £) Do Begin
15: Nondeterministically replace (k,v) by (k',v") with k <;; k" and
v = v End;
16: If v # w Then abort the computation (as it is spoiled);
17: If w = z or w = x Then abort the computation (as z € L);
18: If w #y and w A y
19: Then let h = Succy(h);

167

20: Else let h = i;
21: End (of While Loop in 10);
22: If w =y or w = y Then j = Succy(j);
23: End (of While Loop in 7);
24: Let 1 =j;
25: Let ¢ = Sucey(¢) End (of While Loop in 4);

26: If the algorithm has not yet aborted Then generate x;

The line numbers in this algorithm are for reference and will be used when making
the relation R. Note that the algorithm is non-deterministic and that z is generated
iff some non-deterministic path through the algorithm generates it. Pathes which lose
their control information are just aborted so that they do not generate false data.

The variables used in the algorithm are h, 1, 5, k, ¢, u, v, w, x,y whose values range
over (NUX)* and furthermore, one uses a for the line numbers of the algorithm where a
takes one-symbol words representing line numbers from the set {4, 7,10, 14, 16, 18, 22,
24,26}. Now the relation R is binary and connects words in ¥* with intermediate non-
terminal words represented by convolutions of the form conv(a, h, i, j, k, ¢, u, v, w, z,y).
The relation contains all the pairs explicitly put into R according to the following list,
provided that the “where-condition” is satisfied. The arrow “—” indicates the order
of the two components of each pair.

Input: ¢ — conv(4,h,i,j,k, 0, u,v,w, z,y) where h = ¢, i = Sucey(e), j = ¢, k = ¢,
l=c,u€(max(NUX) T, v=c,w=c¢ 23 y=¢

4: Put conv(4, h,i,j, k, 0, u, v, w,z,y) — conv(26, h, i, j, k, ¢, u,v,w, x,y) into R where
¢ = u (for the case where the while-loop terminates);
Put conv(4, h,i,j, k., 0, u,v,w,x,y) — conv(7, h,i, e, k, Succy(l),u,v, w, x,c) into
R where ¢ <;; u (for the case there another round of the loop is started with
resetting j and y in lines 5 and 6 and then continuing in line 7);

7: Put conv(7, h, i, j, k,{,u,v,w,x,y) — conv(24, hyi, §, k, 0 u, v, w, z,y) into R where
y = u (for the case where the while-loop terminates);
Put conv(7,h,i,j,k, ,u,v,w,x,y) — conv(10,e,4, 7, k, 0, u,v, e, x, Sucey(y))
into R (for the case that the while-loop starts and y, h, w are updated in lines
8,9);

10: Put conv(10,h,i, j, k,{,u,v,w,x,y) — conv(22,h,i,j, k,{,u,v,w,z,y) into R
where h = i (for the case where the while-loop terminates);
Put conv(10, h,i,j, k,{,u,v,w, x,y) — conv(14, h,i,j,e,0,u, S,w' z,y) into R

168

where h <;; i and w <y w' <; w (for the case that the body of the loop is
started and the commands in lines 11, 12 and 13 are done);

14: Put conv(14, h,i,j, k, 0, u,v,w, x,y) — conv(14, h,i,j, k', ¢, u, v, w, x,y) into R
where v # w and k <; k' < ¢ and v = v (for the case that the body of the
loop in line 15 is done one round);

Put conv(14, h,i,j,k, 0, u,v,w, x,y) — conv(18, h,i,j, k,{,u,v,w, z,y) into R
where v = w and w # x and w % x (for the case that the loop leaves to line 18
without the computation being aborted);

18: Put conv(18,h,i,j, k, l,u,v,w, x,y) — conv(10, Succy(h),, 7, k, {, u, v, w, z,y)
into R where w # y or w # y (in the case that the program goes through the
then-case);

Put conv(18, h,i,j, k,l,u,v,w,x,y) — conv(10,4,4,j, k, ¢, u,v,w, x,y) into R
where w = y or w = y (in the case that the program goes through the else-case);

22: Put conv(22, h,i,j,k, 0, u,v,w, x,y) — conv(7, h,i, Succy(j), k, ,u, v, w, x,y) into
R where w = y or w = y (for the case that the condition of line 22 applies before
going to line 7 for the next round of the loop);

Put conv(22,h,i,j, k, 0, u,v,w,z,y) — conv(7,h,i,j,k,,u,v,w,x,y) into R
where w # y and w # y (for the case that the condition of line 22 does not
apply and the program goes to line 7 for the next round of the loop directly);

24: Put (22,h,i,5,k, (,u,v,w,z,y) — conv(4,h, j,j, k, Sucey(£),u,v,w, x,y) into R
(which reflects the changes from lines 24 and 25 when completing the body of
the loop starting in line 4);

Output: Put (26, h,i,5,k, ¢, u,v,w,z,y) — z into R (which produces the output
after the algorithm has verified that = ¢ L);

Special Case: Put ¢ — ¢ into R iff ¢ ¢ L.

The verification that this relation is automatic as well as the proof of Exercise 11.12
are left to the reader. 1

Exercise 11.14. Consider the following algorithm to generate all non-empty strings
which do not have as length a power of 2.

1. Guessx € X Let y = 0;

2. If |x| = |y| then abort;

3. Let z =y,

4. If |z| = |y| then generate x and halt;

169

5. Remove last 0 in z;
6. Let y = y0;
7. If z = ¢ then goto 2 else goto 4.

Make an R as in Fxercise 11.12 choosing I' such that I'* contains all strings in
{conv(line,z,y, z) : line € {1,2,3,4,5,6, 7} Az € 2T Ay, 2z € {0}*}

but no non-empty string of ¥X* — the symbols produced by the convolution of these
alphabets are assumed to be different from those in ¥. A pair (v,w) should be in R
iff |v| < |w| and one of the following conditions hold:

1. v=-¢ and w is a possible outcome of line 1, that is, of the form conv(2,z,0,¢)
for some v € ¥

2. v is the configuration of the machine before executing the line coded in v and w
the configuration after executing this line where the line number in w is either the
next one after the one in v or a line number to which the program has branched
by a condition or unconditional goto-command (whatever is applicable);

3. v 1s the configuration in line 4 and w s the value of x, provided that y and x
have the same length and that = is as long as conv(4,x,y, z).

Give a full list of all the pairs which can occur such that, when starting from € and
iterating along the relation in R, exactly those x € ¥* can be reached which do not
have a length of a power of 2.

The following dfas are supposed to compute automatic functions, that is, to check
whether the value y is the output of x under the corresponding function.

Exercise 11.15. Let x = aga;...a, be a ternary number representing ngn 3m .
ay, over the alphabet {0,1,2}. Construct a dfa which is correct on all convolutions
conv(x,y) and which checks whether y =z + 1.

Exercise 11.16. Let x = aga; ...a, be a ternary number representing ngn 3m .
ay, over the alphabet {0,1,2}. Construct a dfa which is correct on all convolutions
conv(x,y) and which checks whether y =z + x + x + x.

Exercise 11.17. Let x = aga; ...a, be a ternary number representing ngn 3m .
ay, over the alphabet {0,1,2}. Construct a dfa which is correct on all convolutions
conv(x,y) and which checks whether y =z + x + 1.

Exercise 11.18. Let x = agay...a, be a ternary number representing ngn 3" -
an, over the alphabet {0,1,2}. Construct a dfa which is correct on all convolutions
conv(z,y) and which checks whether y = 3" —x — 1.

170

Exercise 11.19. Let x = aga; ...a, be a ternary number representing ngn 3m .
ay, over the alphabet {0,1,2}. Construct a dfa which is correct on all convolutions
conv(x,y) and which checks whether y = (x — ag)/3 4+ 3™ - ay.

Exercise 11.20. Let x = apa; ...a, be a ternary number representing y . 3™ -
am over the alphabet {0,1,2}. Construct a dfa which is correct on all convolutions
conv(x,y) and which checks whether y = Even(x) where Even(x) is 1 if x is even
and is 0 if © is odd.

171

12 Groups, Monoids and Automata Theory

There are quite numerous connections between group theory and automata theory. On
one hand, concepts from group theory are used in automata theory; on the other hand,
one can also use automata theory to describe certain types of groups and semigroups.
First the basic definitions.

Definition 12.1: Groups and Semigroups. Let G be a set and o be an operation
on G, that is, o satisfies for all x,y € G that xoy € G.

(a) The structure (G, o) is called a semigroup iff v o (yo z) = (x oy) oz for all
x,y,z € G, that is, if the operation o on G is associative.

(b) The structure (G, o,e) is called a monoid iff e € G and (G, o) is a semigroup and
e satisfies roe =ecox =x for allx € G.

(c) The structure (G, o, e) is called a group iff (G, o, e) is a monoid and for each x € G
there is an y € G with x oy = e.

(d) A semigroup (G, o) is called finitely generated iff there is a finite subset F C G
such that for each x € G there are n and yy,Yy2,...,Yn € F with x =y, 0ys0...0y,.
(e) A semigroup (G, o) is finite iff G is finite as a set.

Example 12.2. The set ({1,2,3,...},4) forms a semigroup, the neutral element
0 is not in the base set and therefore it is not a monoid. Adding 0 to the set and
using N = {0, 1,2,3,...} gives the additive monoid (N, +,0) of the natural numbers.
The integers (Z, +,0) form a group; similarly the rationals with addition, denoted by
(Q,+,0). Also the multiplicative structure (Q — {0}, , 1) of the non-zero rationals is
a group.

Example 12.3. A semigroup with a neutral element only from one side does not
necessarily have a neutral element from the other side, furthermore, the neutral ele-
ment from one side does not need to be unique.

To see this, consider G = {0,1} and the operation o given by z oy = z. This
operation is associative, as zo (yoz) =xoy =z and (zoy)oz =x 0z = z. Both
elements, y = 0 and y = 1, are neutral from the right side: z oy = x. On the other
hand, none of these two elements is neutral from the left side, as the examples 0ol = 0
and 100 =1 show.

Example 12.4. Let) be a finite set and G be the set of all functions from @) to Q.
Let f o g be the function obtained by (f o g)(q) = g(f(q)) for all ¢ € Q. Let id be the
identity function (id(q) = ¢ for all ¢ € Q). Then (G, o,id) is a finite monoid.

Let G' = {f € G : f is one-one}. Then (G’,0,id) is a group. The reason is that
for every f € G’ there is an inverse f~! with f~!(f(q)) = ¢ for all ¢ € Q. Indeed,
G ={feG:3geGlid= foygl}.

172

Example 12.5. Let (Q, X, 9, s, F') be a complete dfa and G be the set of all mappings
f from @ to @) and id be the identity function. Now one considers the set

G'={feG:Fwer Ve Qldlgw) = flqg)]}

which is the monoid of those functions which are all realised as operations given by a
word in ¥*. Then (G’ 0,id) is a monoid as well. Note that if f is realised by v and g
is realised by w then f o g is realised by w-v. The identity id is realised by the empty
word €.

This monoid defines an equivalence-relation on the strings: Every function realises
only one string, so one can chose for each string w the function f, € G’ realised by
w. Now let v ~ w iff f, = f,. This equivalence relation partitions >* into finitely
many equivalence classes (as G’ is finite).

Furthermore, v ~ w and z ~ y imply vz ~ wy: Given any ¢ € @, it is mapped
bY fur t0 fo(fo(@) and by fuy t0 f,(ful@)). As fo = fu and f, = f,. it follows that
for(@) = fuy(q). Hence f,, = fuy and ve ~ wy. A relation ~ with this property is
called a congruence-relation on all strings.

Let L be the language recognised by the given dfa. Recall the definition L, =
{y : zy € L} from Theorem 2.19. Note that z ~ y implies that L, = L,: Note that
fx(s) = f,(s) and therefore 6(s, xz) = d(s,yz) for all z; hence z € L, iff z € L, and
L, = L,. Therefore L is the union of some equivalence classes of ~.

If the dfa is the smallest-possible dfa, that is, the dfa produced in the proof of
Theorem 2.19, then the monoid (G, o, id) derived from it is called the syntactic monoid
of the language L.

The syntactic monoid is a widely used tool in formal language theory. An immediate
consequence of the ideas laid out in the above example is the following theorem.

Theorem 12.6. A language is reqular iff it is the finite union of equivalence classes
of some congruence relation with finitely many congruence classes.

Example 12.7. Let a dfa have the alphabet ¥ = {0, 1} and states Q = {s,¢,¢,¢,¢"}
and the following state transition table:

state s 18 1q|q

successor at 0 | 5" | s | q

successor at 1 | ¢ | ¢ | ¢ | ¢" | ¢q

Q
L)

Now the syntactic monoid contains the transition functions f. (the identity), fo, f1,
fi11 and fi11. The functions fp and f; are as in the state transition diagramme and
f11 and fi1; are given by the following table.

173

!/ / /"

state | s | s | q |q
fll q// ql/ q/l q q/
fin g Jq Jg |[d|¢

Other functions are equal to these, for example fi10 = f11 and fooo0 = f-.

Definition 12.8. Let (G, 0) be a semigroup and w € G* be a string of elements in G.
Then elg(w) denotes that element of G which is represented by w. Here elg(e) denotes
the neutral element (if it exists) and elg(aias . . . ay,) the group element a;oaso. ..oa,.
Furthermore, if R is a set of strings over G* such that for every x € G there is exactly
one w € R with elg(w) = x, then one also uses the notation elg(v) = w for every
v € G* with elg(v) = elg(w).

Let F C G be a finite set of generators of G, that is, F' is finite and satisfies for
every x € G that there is a word w € F* with elg(w) = x. Now the word-problem of
G asks for an algorithm which checks for two v,w € F* whether elg(v) = elg(w).

Definition 12.9. A language L defines the congruence {(v,w) : L, = L,} and
furthermore L also defines the syntactic monoid (G, o) of its minimal deterministic
finite automaton.

Theorem 12.10. Every finite group (G, o) is the syntactic monoid of a language L.

Proof. Let L = {v € G* : elg(v) = €} be the set of words which are equal to the
neutral element.

The corresponding dfa is (G, G, 6, s, {s}) with d(a,b) = aob for all a,b € G; here
the same names are used for the states and for the symbols. In order to avoid clashes
with the empty word, the neutral element of G is called s for this proof; it is the start
symbol and also the only accepting symbol.

For each a € G, the inverse b of a satisfies that b is the unique one-letter word in
G* such that L,, = L. Therefore, for all a € G, the languages L, are different, as two
different elements a,b € G have different inverses. Thus the dfa is a minimal dfa and
has a congruence ~ satisfying v ~ w iff elg(v) = elg(w) iff L, = L,,. Note that every
word w € G* satisfies elg(w) = a for some a € G. For each a € G, the function f,
belonging to G is the function which maps every b € G to boa € G. It is easy to see
that the syntactic monoid given by the f,, with w € G* is isomorphic to the original

group (G, o). 1

Example 12.11. There is a finite monoid which is not of the form (Gp, o) for any
language L.
Let ({£,0,1,2},0) be the semigroup with coe =¢,ace =coa=aand aob=">

174

for all a,b € {0,1,2}.

The set {0, 1,2} generates the given monoid. Consider all words over {0, 1,2}*.
Two such words v, w define the same member of the semigroup iff either both v, w
are empty (and they represent) or both v, w end with the same digit a € {0, 1,2}
(and they represent a).

The monoid is the syntactic monoid of the dfa which has alphabet ¥ = {0, 1,2},
states @ = {s,0, 1,2}, start state s and transition function (g, a) = a for all symbols
a and states ¢. One can easily see that after reading a word wa the automaton is in
the state a and initially, after reading the empty word ¢, it is in s.

Consider now any language L C ¥* which would be a candidate for (Gp,0) =
(G,0). Furthermore, assume that L # () and L # ¥*. Then (Gp,o) must contain
equivalence classes of the form ¥* - {a} with a € ¥ and one equivalence class of the
form {e} which belongs to the neutral element of the monoid — note that there is
always a neutral element, as the semigroup operation belonging to reading & does
not change any state, so the equivalence class of {¢} will not be not be fusionated
with any other one except for the case that there is only one equivalence class Y*.
Furthermore, the equivalence classes of the form ¥* - {a} are due to the fact that for
each non-neutral element b € GG, b is idempotent and ¢ o b = b for all other monoid
elements c.

Furthermore, if for a,b € ¥ the condition L(a) = L(b) holds then in the minimal
automaton of L both a,b lead to the same state: for further ¢ € 3}, the transition
goes to the state representing the equivalence class ¥* - {c}. Thus there are besides
¢ at most two further states in the minimal automaton of L and the corresponding
syntactic monoid is one of the following three (with names 0, 1 used for the monoid
elements different from ¢):

(a) ({¢,0,1},0) with € being the neutral element and a0 0 =0 and ao1 =1 for all
group elements a;

(b) ({e,0},0) with & being the neutral element and ao0 = 0 for all group elements «;
(¢) ({e},0) witheoe=e¢.

These three syntactic monoids are all different from the given one.

Exercise 12.12. Determine the syntactic monoids (Gp,, o) for the following lan-
guages Ly and Ly:

1. Ly ={0"1™ :n+m < 3};

2. Ly ={w : w has an even number of 0 and an odd number of 1}.

Exercise 12.13. Determine the syntactic monoids (G, ,0) for the following lan-
gquages Lz and Ly:

175

1. Ly = {00} - {11}*;
2. Ly = {0,1}*- {00, 11}.

Quiz 12.14. Determine the syntactic monoids (G, o) for the languages Ly = {0}* -

{1}~

Notation. For a semigroup (G, o), researchers have found various ways to introduce
for it the notion of automaticity. In particular there is the approach of Hodgson
38, 39] and later Khoussainov and Nerode [50] who required that the group elements
are represented in some arbitrary way but the full semigroup operation is automatic as
a function in both inputs while there is also the approach of Epstein, Cannon, Holt,
Levy, Paterson and Thurston [27] who only consider finitely generated groups and
semigroups and who furthermore only require that multiplication with constants is
automatic; while this is a weakening to the case of automatic groups, they also require
that the representatives of the group elements are words over the generators. In order
to distinguish these two notions of “automatic semigroups”, Hodgson’s model will
from now on be called “fully automatic” (as the full semigroup operation is automatic)
while the more popular model of Epstein, Cannon, Holt, Levy, Paterson and Thurston
[27] will just be called “automatic”.

Description 12.15: Automatic groups and semigroups [27]. An automatic
semigroup is a finitely generated semigroup which is represented by a regular subset
G C F* such that the following conditions hold:

e (G is a regular subset of F™*;
e Each element of the semigroup has exactly one representative in G;
e For each y € G the mapping x — elg(zy) is automatic.

The second condition is a bit more strict than usual; usually one only requires that
there is at least one representative per semigroup element and that the relation which
checks whether two representatives are equal is automatic. Furthermore, for monoids
and groups, unless noted otherwise, € is used as the representative of the neutral
element.

Furthermore, an automatic semigroup (G, o,¢) is called biautomatic if for each
y € G both mappings x — elg(zy) and x — elg(yzr) are automatic functions.

A semigroup (G, *,¢) is isomorphic to (G, o,¢) iff there is a bijective function
f: G — G with f(e) = e and f(v*w) = f(v) ov(w) for all v,w € G'. One says that
(G', %, €) has an automatic representation iff it is isomorphic to a automatic semigroup
and (G’ *,¢) has a biautomatic representation iff it is isomorphic to a biautomatic
semigroup.

176

Example 12.16. Let F' = {G,a} and G = a* U@". Then (G,o,¢) is a automatic
group with

aoa™ = a"™,

a™™m if n > m;

aoam = € if n =m;
a™ ™ ifn < m;

a*™ ifn > m;
{ € if n =m;
a™™" if n <m.

One can see that the multiplication is realised by an automatic function whenever
one of the operands is fixed to a constant. In general, it is sufficient to show that
multiplication with the elements in F' is automatic.

The additive group of integers (Z,+,0) is isomorphic to this automatic group;
in other words, this group is a automatic representation of the integers. The group
element a" represents +n (so aaa is +3), @" represents —n and e represents 0. The
operation o is isomorphic to the addition +, for example a™ o @™ has as result the
representative of n — m.

Example 12.17. Let F' = {a,a,b,c} generate a monoid with the empty string
representing the neutral element, G = (a*Ua*) - {b, c}* and assume that the following
additional rules governing the group operations: ba = ¢, ca = ab, aa = ¢, aa = .
These rules say roughly that @ is inverse to a and c is an element representing ba.
One can derive further rules like ab = baa and ba®** = a™b.

Now one uses these rules see that the monoid is automatic, where w € G and n is
the number of ¢ at the beginning of w (when multiplying with @) and the number of
b at the end of w (when multiplying with @), the parameters m,n can be any number
in N:

wob = wb;
woc = we
a™tiprif w = a™c
woa = < a™" ifw=a""ey
veb™ if w = vbc™;
a™c" if w=am™to;
woa = < a™ter if w=am
vbc” if w = veb™;

177

To see these rules, consider an example: bebboa = bbabboa = bbbaaboa = bbbabaaoa =
bbbaba = bbce, so veb? o a = vbc?.

Note that multiplication from the other side is not realised by an automatic func-
tion in this representation; indeed, boa®"bc = a™bbc and this would involve halving the
length of the part a®® what is impossible. Indeed, some problem of this type occurs
in every automatic representation of this monoid and the monoid does not have a
biautomatic representation.

Exercise 12.18. Consider a monoid G = a*b* with the additional rule that boa = b
and neutral element €. Show that this representation is automatic but not biautomatic.
Does the monoid have a biautomatic representation?

Hodgson [38, 39] as well as Khoussainov and Nerode [50] took a more general ap-
proach where they did not require that group elements are represented by strings over
generators. This representation can be used for all semigroups.

Description 12.19: Automatic groups and semigroups in the framework of
Hodgson, Khoussainov and Nerode [38, 39, 50]. A structure (G, o) is called
a fully automatic semigroup iff G is a regular subset of ¥* for some finite alphabet
Y, the function o : G x G — G is an automatic function and o satisfies the law of
associativity, that is, satisfies z o (yoz) = (roy) oz for all z,y,2z € G. A fully
automatic monoid / group is a fully automatic semigroup with a neutral element /
a neutral element and an inverse for every group element. A semigroup has a fully
automatic presentation iff it is isomorphic to a fully automatic semigroup (G, o).

Exercise 12.20. In order to represent (Z,+,0), use ¥ = {0,1,+,—} and use 0 to
represent the 0 and apay . .. a,+ with a, = 1 and ag,aq, . ..,a,—1 € {0,1} to represent
the positive integer Y . - 2™ and apq . .. a,— with a,, =1 and ag, aq, ..., a1 €
{0,1} to represent the negative integer — > _ @y, - 2™. Show that now the addition
on the so represented group of the integers is an automatic function (with two inputs).
Ezxplain why numbers like 000000001+ (256) and 0101+ (10) and 010100001+ (266)
are given with the least significant bits first and not last in this presentation.

Exercise 12.21. Consider again the monoid G = a*b* with the additional rule that
boa =" from Fxercise 12.18. Now, for h,k,i,7 € N,

h+ipj ; —0N-
hik g Ja™™y if k=0,
“boabj_{ahbkﬂ if k> 0;

use these rules to find a fully automatic presentation in the sense of Hodgson, Khous-
sainov and Nerode for this group.

178

Theorem 12.22. The strings over a finite alphabet A with at least two symbols plus
the concatenation form a semigroup which has an automatic representation in the
sense of Epstein, Cannon, Holt, Levy, Paterson and Thurston [27] but not a fully
automatic representation in the sense of Hodgson, Khoussainov and Nerode.

Proof. First, one can easily see that A* itself is a regular set in which every string
over A has a unique representation and in which A is the set of generators of the
corresponding semigroup; concatenation with a fixed string y is an automatic function
mapping = to xy.

Assume now that some regular set G C ¥* represents the semigroup A* and that o
represents the concatenation in this semigroup G and that o is fully automatic. Now
let ' C G be the set of representatives of A in G. Let F} = F and F,,,; = {vow :
v,w € F,}. There is a constant ¢ such that each word in F; has at most length ¢
and that v o w has at most length max{|v|,|w|} + ¢ for all v,w € G. It follows by
induction that all words in £, have at most length cn.

By induction one can see that F} represents the strings in A! and F), represents
the strings in A?". As A has at least 2 elements, there are at least 22" members in
the set F,,. On the other hand, F,, has at most) _ |X|™ elements, which can —
assuming that |¥| > 2 — be estimated with |X|"*1. This gives a contradiction for
large n as the upper bound n — |X|"*! is exponential while the lower bound n s 22"
is double-exponential. So, for large n, the lower bound is not below the upper bound.
Hence the above mentioned fully automatic representation of the monoid of strings
over a finite alphabet with at least two letters cannot exist. |

Exercise 12.23. Assume that F is finite and has at least two elements. Let (G, o,¢)
be the free group generated by F. Show that this group is not isomorphic to a fully
automatic group (in the sense of Hodgson, Khoussainov and Nerode); that is, this
group does not have a fully automatic presentation.

Example 12.24. Let a,b,c be generators of the monoid satisfying c o b = ¢ and
boa =a and a o c = coa which gives the equation

At i k=0A1 =0;
aty R ifk=0Ad >0;
AVt i k> 0Ad =0;
At RE i k> 0N > 0;

T VW
atcFod Ve =

where i, j,k, 7,5, k" € N. This monoid is fully automatic. One can represent the
group as a convolution of three copies of (N, +) and use above formula for o. When
adding these components, one has both entries available of the input and those three
of the output available. Then one can test for each entry whether they are zero or

179

whether the sum of two entries give a third. This is sufficient to verify that the update
is done according to the formula above.

However, the monoid is not automatic. Intuitively, the reason is that when mul-
tiplying with ¢ from the front or with a from the back, the corresponding deletions
of the entries for b cannot be done. The deletion is needed. Assume that i, 7, k are
given with j much larger than 4, k. Note that (a'~! o &’ o ¢*) o a and a’ o ¢* represent
the aame semigroup elements, thus the last multiplication in the first expression must
match the long representation of a*~* o b’ o c* whose length is linear in j to the shorter
representation of a’ o ¢* whose length is linear in 7 + k. During this shrinking process,
the representation of c¥ at the end of both words must be moved to the front. This is
something what an automatic function can only do for a constant value of k£ but not
when £ is a parameter ranging over many values as it is here the case.

Similarly if one would consider multiplication with constants from the front only,
then the corresponding representation would also not be automatic, as when multi-
plying a’’c*~! from the front with ¢, a deletion operation as indicated above has to be
done and the representatives of c¢* have moved a lot to the front, what the automatic
function cannot do.

Exercise 12.25. Let a,b be generators of a group satisfying

o htipk+i :)
hik i a"th if k is even

b v = L ’
avea { aR if ks odd;

where h,k,i,j € Z. Show that this group is biautomatic as well as fully automatic;
find for both results representations.

There is no finitely generated group which is fully automatic in the sense of Hogdson
(38, 39], Khoussainov and Nerode [50], but not automatic in the sense of Epstein,
Cannon, Holt, Levy, Paterson and Thurston [27]. But for monoids, there is such an
example.

Exercise 12.26. Use the pumping lemma to show the following: If (G,0) is a finitely
generated semigroup which on one hand has a fully automatic semigroup operation
and on the other hand uses natural representatives, that is, all members of G are
words over generators from a finite set F' of generators, then G is a finite semigroup.

Note that there are indeed infinite groups which have both an automatic representa-
tion in the sense of Epstein, Cannon, Holt, Levy, Paterson and Thurston [27] and a
fully automatic representation in the sense of Hodgson [38, 39]. What the above ex-
ercise shows is that these two representations have for infinite semigroups necessarily
to be distinct, they cannot be the same.

180

Exercise 12.27. Construct an automatic representation of the group H of all ratio-
nals (positive or negative) with multiplication which have only one-digit prime factors
~ 50 they are of the form 2" - 3.5 . 7% or —2" .37 . 57 . 7% with h,i,j,k € Z.

Exercise 12.28. Construct a fully automatic representation for the group H from
Exercise 12.27. Note that one cannot use the same representation by Exercise 12.26.

Exercise 12.29. Let a representation (G,0) of a group be given and let f map each
x € G to its inverse. Are the following true: (a) If (G,0) is automatic then f is
automatic; (b) If (G, o) is fully automatic then f is automatic?

For an automatic or fully automatic semigroup (G, o), let fg(n) be the number of
elements which have representatives in GG of length shorter than n. The next exercise
ask for possible values of fg(n).

Exercise 12.30. Prove that every automatic representation of (Z,4) satisfies that
the function fg is bounded by the expression cn for some constant c.

Exercise 12.31. Provide an example of an automatic group with quadratic function

Jfa-

Exercise 12.32. Determine the function fg of the monoid with alphabet {a,a,b,c}
and the rules ab = baa,ba = c,aa = €,aa = ¢, where € is the neutral element and the
set of representatives is G = ({a}* U {a}*) - {b,c}*.

Exercise 12.33. For fully automatic semigroups, the above questions would be quite

easy by showing the folloinwg fact: For every nonempty reqular set G there is an
Abelian semigroup operation o such that (G, o) is fully automatic.

181

13 Automatic Structures in General

Fully automatic groups (in the sense of Hodgson, Khoussainov and Nerode) are only
a special case of an automatic structure. For automatic structures which are nei-
ther semigroups nor groups, one just uses the term “automatic” instead of “fully
automatic”, as there are no competing concepts with the same name for this type of
structure.

Definition 13.1: Automatic Structure [38, 39, 50]. A structure (A, Ry, Ro, .. .,
Ru, f1, f2y - fx) is called automatic iff A is a reqular subset of some domain ¥* and
all relations Ry, R, ..., Ry and functions fi, fa, ..., fr are automatic. More general,
also structures which are isomorphic to automatic structures are called automatic.

Example 13.2. The automatic structure (0%, Succ) with Suce(x) = 20 is isomorphic
to the automatic structure of the natural numbers with successor Suce(n) =n+1. In
this structure, the addition is not automatic, as the function n — n 4+ n has in that
representation the graph {conv(0",0?") : n € N} which is not regular.

An automatic semigroup can be represented as an automatic structure consisting
of a regular set R plus functions f, mapping x to x o a for every generator a of the
semigroup. So ({0,1}*,z — Ox,z — lx,¢) is an automatic structure representing
the monoid of binary strings with concatenation; here is, however, instead of the full
concatenation only the concatenation with the fixed strings 0 and 1 given.

({0,1}*,{0}*, <y) is the set of binary strings with length-lexicographical order plus
an additional set representing all those strings which only consist of 0s. Now |z| < |y
is definable in this structure as

[<[yl & 3z € {0} [z <uz A (z=yVz<uy)

So a string in {0}* is the shortest string among the strings of its length; if one could
compare the length of strings, then one could define

r e {0} e Vy <y z(ly| < |z|].
So comparison of sizes and {0}* are definable from each other using the ordering <.

Description 13.3: Semirings and Rings. A commutative ring (A, &, ®,0, 1) with
1 satisfies the following axioms:

e Vr,yc Alxdy =y x;
o Vr,yz€ Az @ (y®dz2)=(rdy) ® zJ;
e Vryc Alz@y=y®xl;

182

Vr,y,z€ Alr@ (y©z) = (z0y) @ 2;
Vi,y,z € Alr @ (y®z) = (z@y) © (v @ 2));
Vee Alrd0=x/Az®1 =2

Vee Adye Alzdy =0].

The laws listed here are the commutative and associative laws for @ and ®, the law
of distributivity, the law on the neutral elements and the existence of an inverse with
respect to @.

If one replaces the last axiom (existence of an inverse for addition) by * ® 0 =
0® z = 0 for all z, the structure (A, ®,®,0,1) is called a commutative semiring with
1. Note that the statement that x ® 0 = 0 is true in all rings, for semirings one needs
to postulate it explicitly.

Furthermore, “commutative” refers to the multiplication ®. Also for rings which
are not commutative, one assumes that the addition @ is commutative. A structure
without any law of commutativity is called a near-ring or a near-semiring which is
defined as follows: Here a near-semiring (A, ®,®,0) satisfies the associative laws
for & and ®, the neutrality of 0 for the addition &, one of the distributive laws
Py R@z2=2R2)d(YRz)orrzR(Ydz) =2y d(r®z2) and 0@z =0
for all z,y,z € A. A near-ring has the additional property that (A, ®,0) is a group,
that is, that every element has an inverse for @. Which of the distributive laws is
used in a near-ring is a convention; each near-ring satisfying one distributive law can
be transformed into a near-ring satisfying the other distributive law (by inverting the
order of the operations in the near-ring).

An example for a ring is (Z, +, *,0, 1); furthermore, for every n € {2,3,...}, the
structure ({0,1,...,n — 1}, +,%,0,1) with addition and multiplication taken modulo
n is a ring. (Z X Z,4+,*,(0,0),(1,1)) with + and * carried out componentwise is a
ring.

Example 13.4. Let (F,+,) be the finite ring of addition and multiplication modulo
a fixed number r € {2,3,...}; so the domain F'is {0,1,...,7r—1} and for i, 7 € F one
definesthat i ¢ j =1+ jifi+j<randi®j=i+j—rif i+ 7 > r. Furthermore,
1 ® j is the last digit of 7 * 7 when written in an r-adic number system.

Now consider in the set F all functions f : N — F which are eventually constant.
Each such function can be represented by a string aga; . ..a, € F* where f(m) = a,,
for m <n and f(m) = a, for m > n. Furthermore, let rep(apa; ...a,) = apa; ... an,
for the least m € {0,1,...,n} such that a, = a; for all k € {m,m +1,...,n}. Let
A= {rep(apa ...a,) :n € NAag,ay,...,a, € F}. Now one can define the pointwise
operations @ and ® on A as follows:

Given agay . .. a, and byb; ... b,,, one says that cocy ...cp = agay ... a, ®boby ... b,
iff for all h, cmingr,ny = Amingn,h} @ Omin{m,py- Similarly for ®. These operations corre-

183

spond to the pointwise addition and multiplication on eventually constant functions
in FN. The element 0 represents the neutral element for the addition, that is, the
function which is everywhere 0; the element 1 represents the neutral element for the
multiplication, that is, the function which is everywhere 1.

The resulting structure is automatic. Furthermore, it is an example of a well-
known type of mathematical structures, namely of an infinite ring.

Description 13.5: Orderings. An ordering C on a base set A is a relation which
satisfies the following two axioms:

o Vi, yz€ Az CyAyC 2=z C 2];
o Vu|[-x C .

The first law is called transitivity, the second irreflexivity. An ordering is called linear
iff any two x,y € A are comparable, that is, satisfy x © y or x = y or y C x. Often
one writes t Cy forx CyVar=y.

There are well-known automatic orderings, in particular <;., and <; can be intro-
duced on any set of strings. Also the ordering which says that x C y iff x is shorter
than y can be introduced on every regular set. Another one x < y says that y extends
x, that is, y = xz for some z.

Exercise 13.6. Consider ({0} - {0,1}* U {1}, maxje,, min,,0,1). Show that this
structure is an automatic semiring and verify the corresponding properties as well as
the automaticity.

Does this work for the maximum and minimum of any automatic linear ordering
C when the least element 0 and greatest element 1 exist?

Given the commutative automatic semiring (R, +,*,0,1), consider the extension
on R x R x R with the componentwise operation + and the new multiplication © given
by (x,y,2) © (2/,y, 7)) = (xx a2’ yxy ,xx 2 + 2zxy)? Is this a semiring? Is ®
commutative? What are the neutral elements for + and ® in this ring? Prove the
answer.

A field is a ring with 1 where there exists for every z € A — {0} an y € A with
x ®y = 1. The next result shows that infinite automatic fields do not exist.

Theorem 13.7. There is no infinite automatic field.

Proof. Assume that (A, +,%,0,1) is an infinite automatic field; one can enrich this
structure with the length-lexicographic ordering which is also automatic.

Now let f(x) be the length-lexicographically first y € A such that for all a,d’, b, b’
<y x with a # o it holds that (a — a') xy # b —b. The y exists. To see this,

184

note that for each quadruple (a,a’,b,0) with a — o’ # 0 there is at most one y
with (@ — a') xy = b — b. If there would be a second y' with the same property
then (a —d’) * (y —y') = 0 and now one can derive a contradiction. Let z be the
multiplicative inverse of y — ¢/, that is, (y—¢)*xz = 1. Now ((a—a')*(y—9¢'))*xz =0
and (a—d')*((y—1vy')*2) = a—a’. However, by assumption, a —a’ # 0, hence the law
of associativity would be violated, a contradiction. Hence each quadruple (a,a’, b, b")
with a # @' disqualifies only one y and as A has infinitely many y, there is some y
which can be f(z).

The function f is first-order defined using automatic parameters and therefore
automatic.

Now consider g(z,a,b) = ax f(z)+band h(x) = max;{g(x,a,b) : a,b € ANa,b <y
x}. Both functions are automatic. Furthermore, if there are m elements in A up to
x then there are at least m? elements up to h(x); the reason is that if (a,b) # (a’,)
and a,b <; x then one of the following two cases holds: in the case a = d/, it holds
that a % f(z) = a’ * f(z) and b # b' and this gives a x f(x) + b # a' * f(x) + V; in the
case a # d, it holds that (a —a') % f(z) # ' — b and again a* f(z)+b # a' * f(x) +
by a simple transformation of the inequality. So A has at least m? many elements of
the form a * f(x) 4+ b with a,b <, z and a x f(z) + b <, h(x).

Now let & € N be a constant so large that the field-elements A has at least 2
elements shorter than k and that |h(x)| < |z| + k for all z € A. Now let A, = {z €
A |z| < r-k}. By induction, A has at least 22° elements and A, has at least 22"
elements, as the number of elements in A, is at least the square of the number of
elements in A,, hence |A, 1| > |A,] - |A,] > 2% - 2% = 22'+2" = 22" This would
mean that the function r — |A,| grows at least double-exponentially in contradiction
to the fact that all strings in A, have length up to r - k so that there are at most
(1+ |Z])"**! elements in A, where ¥ is the alphabet used. This contradiction shows
that a field cannot be automatic. |

Description 13.8: Ordinals. In particular of interest are sets of ordinals. Small
ordinals — and only they are interesting — can be viewed as expressions using finitely
often exponentiation, power and addition and as constants w and 1, where 1 stands
for w°. Each exponentiation is of the form w® where « is an ordinal defined in the
same way. If o < B then w® < w?. Furthermore, o < w® for all the o considered
here. Sums are always written with w-powers in descending order. For example,
Wt et g L L L L 1 11 4+ 1 + 1. To simplify notation,
repeated additions can be replaced by the corresponding natural numbers and w® - 5
abbreviates that one has a sum of 5 identical terms w®. Above example gives w*? +
w2 4w+ w?-2+4. One can compare two ordinals given by sums by looking at the
first w-power from above which has a different coefficient in both ordinals and then
the ordinal with the larger coefficient is the larger one: w**? + w* - 3 + w?*® - 373 <

185

warQ +w¥ 4 < ww+2 + warl < ww+2 + ww+1 + w256‘

There is furthermore an addition of ordinals. Given the ordinals as descending
sums of w-powers, the rule is to write the w-powers of the second operand behind
those of the first and then to remove all powers w® for which there is a power w?
behind with o < . The coeflicients of the highest w-power occurring in the second
operand are added in the case that this w-power occurs in both operands. Here an
example: w® + w® + w? plus w® + w* gives wW® + W’ + W’ + W = W + WP - 2+ Wt

Note that the addition of the ordinals is not commutative. On one hand w+1 # w
and on the other hand 1 + w = w by the cancellation-rule. Furthermore, one can
introduce a multiplication for ordinals and show that the resulting structure is a
near-semiring. As (N, +,-,0,1) is a substructure of the ordinals whenever they go up
to w or beyond and as that structure is not automatic, the multiplication of ordinals
is uninteresting for automatic structures.

So one investigates the ordinals with respect to the automaticity of their ordering
and their addition. In particular, for given ordinal « one is interested in the linearly
ordered set {3 : § < a} and the following question had been investigated for years:
For which « is the structure ({5 : § < a}, <) isomorphic to an automatic linear order?

Example 13.9: Ordinals [20]. The ordinals below w* are automatic. For this,
recall that there is an automatic copy of (N, +, <). One can now represent each such
ordinal by conv(ag, ay, as,as) standing for w3 a3 +w? - ay +w-a; + ap. Now the
addition follows the following equation:

conv(ag + bo, ay, as,az) if by =0, by =0, by = 0;
COTL’U(CLO, ay, a2, a3)+ COTLU(bo, ay + bl, a2, ag) if bl > 0, bg =0, bg =0;
conv(b, by, by, by) =) conv(bg, by, as + by, az) if by > 0, by = 0;
conv(bg, by, by, az + bs) if by > 0.

This function is automatic, as one can decide with automatic predicates which case
applies and then form a convolution of functions which either copy one of the input-
components or add two of them. Furthermore, the relation < is first-order definable
from the addition:

conv(ag, ay, as, az) < conv(bg, by, by, bs) <
dconv(co, c1, ¢, c3) # conv(0,0,0,0)

[conv(ag, a1, as, az) + conv(cy, ¢1, ca, ¢3) = conv(bg, by, by, b3)].

Hence the ordinals below the power w* form a fully automatic monoid with ordering.
Delhommé [20] showed the following more general result.

Theorem 13.10: Delhommé’s Characterisation of Automatic Ordinals [20].
The following is equivalent for any ordinal c:

186

(a) a < w;

(b) ({8 : 8 < a}, <) is an automatic structure;

(c) {B: B <a},+) is an automatic structure.

Here, in the case of (c), the domain of + is the set of all pairs (B,~) with §+~v < a;
in the case of a being an w-power, this domain is the set {8 : f < a} x {y:7 < a}.

Proof. Above it was shown for a = w? that the ordinals below o with addition and
ordering can be represented as an automatic structure. This proof generalises to all
w™. Furthermore, if & < w" for some n € N, then the set {8 : 8 < a} can be defined
in the automatic structure ({8 : 5 < w"}, +, <) using « as a parameter and the result-
ing structure can serve to satisfy (b) and (c), simultaneously. So assume by way of
contradiction that o > w* and that the structure ({8 : f < a}, <) is automatic with
a regular domain A and an automatic relation <. Add the string extension relation <
on the domain to this structure as well as a relation to compare the length of strings.
Assume that u, represents w” in this structure. Now consider for all strings v with
|v| = |u,| the sets B, , ={w € A:v 2 wAw < u,}.

Each set B, , is defined in an uniform way and there is a finite automaton check-
ing whether w € B,,, when reading conv(u,,v,w). Furthermore, for wy,ws €
B, v, there is a further automaton checking whether w; < wy in a way uniform
in conv(uy,, v, wr, wy). It is now easy to see that the structure B, , = ({w' :vw' €
By, v}, <') with w] <’ w) < vw; < vw, only depends on the states of the automata
recognising B,,, , and < after having read the first |u,| symbols of conv(u,,v,vw’)
and conv(u,, v, vw], vwh), respectively. Hence there are only finitely many different
such structures.

However, the set {w : w < w,} is for each w, the union of finitely many sets
B,, ., and a finite set (of ordinals represented by strings shorter than w,). One of
the partially ordered sets (B,, », <) must be isomorphic to ({f : f < w"}, <) and
therefore the same holds for (B, ,,<’). As there are infinitely many such sets (differ-
ent ordinals give non-isomorphic linearly ordered sets), this is a contradiction to the
assumption that the structure of the ordinals below « is automatic. |

Exercise 13.11. The above proof used one fact implicit: If {f : f < w"} is the
union of finitely many sets Ay, As, ..., A, then one of the sets satisfies that (A, <)
is isomorphic to ({8 : B < w"},<). Forn =1 this is easily to be seen: Every infinite
subset of the ordinals below w is isomorphic to (N, <) and hence isomorphic to the set
of ordinals below w. For n =2, this can be seen as follows: For each set Ay let

Each i € N must appear in at least one set Ay,. Hence there is a k for which Ay is
infinite. Now do the following: First, complete the case n = 2 by showing that for

187

each k with Ay, being infinite the linearly ordered set (Ag, <) is isomorphic to the set
of ordinals below w?; second, generalise the whole proof to all n € {3,4,5,6,...}.

Remarks 13.12. There are quite many structures for which one was able to show
that they are not automatic structures (that is, not fully automatic monoids): the
multiplicative monoid of the natural numbers, of the rationals, of the positive rationals
and so on. Furthermore, the polynomial ring in one or more variables over a finite
field is not an automatic structure.

It had also been investigated when a graph can be automatic, that is, be isomorphic
to an automatic graph. Here (V, F) is an automatic graph iff V' is a regular set and the
set of edges F on V is an automatic relation. A graph on an infinite and countable set
V is called a random graph iff the graph is undirected (that is, (z,y) € F < (y,z) € E
for all z,y € V') and for any disjoint finite sets A, B there is a node x with (z,y) € £
for all y € A and (x,y) ¢ FE for all y € B. It is known that all random graphs are
isomorphic, that is, if (V, E') and (V’, E’) are random graphs then there is a bijection
f:V =V withVz,y € Vi](z,y) € E< (f(x), f(y)) € E']. Delhommé showed that
no random graph is automatic [20]. The next paragraphs give a proof of this result.

Assume that (V, E) would be an automatic copy of the random graph. Further-
more, let <; be the automatic length-lexicographic order on V.

Now define a relation R(x,y) as there is no z < y with Yu <, z[(u,2) € F &
(u,y) € E]. This relation says that y is the first of all nodes z which connect to the
nodes up to = in the same way as y. Note that for every x there are only finitely many
y with R(z,y), as there are only finitely many ways how a node can connect with the
finitely many nodes up to z. As R is first-order defined with automatic parameters,
R is automatic. Furthermore, fr(z) = mazy{y : R(x,y)} is an automatic function;
thus there is constant ¢ with |fr(x)| < |z| 4 ¢ for all z and ¢ > |miny (V).

Let g(n) be the number of element of V' up to length ¢-n. Now ¢g(1) > 1 and
g(n +1) > 29 as for each splitting (A, B) of the elements of V up to length ¢ - n
there is an y connecting to those in A and not to those in B. On one hand g(n) grows
superexponentially and on the other hand there are only exponentially many elements
up to length ¢ - n. Due to this contradiction, (V, E') cannot be automatic.

Exercise 13.13. Let (G,0) be a fully automatic group and F be a reqular subset of
G. Is the graph (G, E) with E = {(x,y) : 3z € F [x 0o z = y|} automatic?

To which extent can the result be transferred to automatic groups? Consider the
special cases for F' being finite and F' being infinite. In which cases are there automatic
groups (G, o) in the sense of Epstein, Cannon, Holt, Levy, Paterson and Thurston
[27] such that for given finite ' the graph (G, E) is automatic? How about infinite
F?

188

Exercise 13.14. Consider the following structure: For a = (ag,ay,...,a,) € N

let .
ful@) = > - (;)

m=0

and let F be the set of all so defined f, (where n is not fized). For which of the
following orderings <y is (F, <y) an automatic partially ordered set?

(1) a <1 b< f, # fo and fo(x) < fo(x) for the first x where they differ;
(2) a < b& I°x [fa(x) < fb(l')L
(3) a <3b< Vo |f(z) < fo(z)].

Give reasons for the answer.

For the following exercises, let the binary string val(apa; ...a,) denote > 2™ - ay,
where a,, € {0,1} and allow leading zeroes. For convolutions, there is in this specific
case no need to distinguish # and 0.

Exercise 13.15. Construct a two-state dfa which checks whether val(z) < val(y) for
binary strings ,y.

Exercise 13.16. Construct a dfa which checks whether val(z) < val(y) + val(z) for
binary strings x,y, z.

Exercise 13.17. Construct a dfa which checks whether
max{val(z),val(y)} < wval(z) + val(z)
for binary strings x,y, z.

Exercise 13.18. Construct a dfa which checks for binary strings x,y,z whether
max{val(z),val(y)} < min{val(y),val(z)}.

Exercise 13.19. The structure ({0,1}*, Pal,u — u0,u — ul) is not automatic in
the current representations, as the set Pal of all palindromes is not reqular. Is there
any other automatic presentation of this structure? Prove the answer.

Yuri Matiyasevich [56] showed that there is a polynomial p(z,y1,...,y9) with inte-
ger coefficients such that one cannot decide whether for given x € N one can find

yl,-..,ygENWithp(x7y17"'7y9):0'

Exercise 13.20. Show that the ring (Z,+,-,<,0,1) is not automatic.

189

Exercise 13.21. Show that the structure (Z,+, S, <,0,1) is not automatic, where S
is the set of square numbers.

Exercise 13.22. Cuall a subset A C N eventually k-periodic, iff there are i,j with
1 < j <k such that, for all x > i, A(x) = A(z + j). Prove that for each k € N with
k > 0 there is an automatic representation of all eventually k-periodic sets such that
union, intersection and symmetric difference are fully automatic.

Exercise 13.23. Call a function [: Z — 7Z to be a k-step function iff there are at
most k vaues x with f(x) # f(x +1). Construct an automatic structure of all k-step
functions which has a two-place automatic function e,x — f.(x) mapping x € Z to
the value f.(x) for the e-th member of this class Fy.

Exercise 13.24. Prove that one can define Fy,, Fy, from Exercise 13.23 such that
there is an automatic function g, mapping each two indices i, j for functions in Fj, to
an index gi(i,j) for a function in Fo, with Va [fo, 6 (x) = fi(x) + f;()].

190

14 Transducers and Rational Relations

There are two ways to generalise regular sets to regular relations: One is the notion of
an automatic relation where all inputs are processed at the same speed (and exhausted
shorter inputs padded with #) and the other notion is that of a rational relation which
is defined below, where different inputs can be processed at different speed; rational
relations are also called asynchronously automatic relations.

Definition 14.1: Rational Relation. A relation R C (X*)" is given by an non-
deterministic finite state machine which can process n inputs in parallel and does
not need to read them in the same speed. Transitions from one state p to a state
q are labelled with an n-tuple (wy,ws, ..., w,) of words wy,ws,...,w, € X* and the
automaton can go along this transition iff for each input k the next |wy| symbols in the
input are exactly those in the string wy (this condition is void if wy = €) and in the
case that the automaton goes on this transition, |wy| symbols are read from the k-th
input word. A word (x1,%s,...,x,) is in R iff there is a run of the machine which
ends up in an accepting state after having reached the end-positions of all n words.

Example 14.2: String Concatenation. The concatenation of strings over ¥* is a
rational relation. The following machine is given for 3 = {0, 1,2} and works for other
alphabets correspondingly.

start 4’ (0a570)7<1a671)7(2a572)

(€,0,0),(¢,1,1),(g,2,2)

(2,0,0), (£,1,1), (,2,2)

In the following graphical notation of a run on three input-words, the state is written
always at that position which separates the read and not yet read parts of the input-
words; the triple of input-words is (01,210, 01210) and the run is (s01, s210, s01210) =
(0s1, 5210, 0s1210) = (01s, s210,01s210) = (01¢, 2¢10,012¢10) = (01q, 2140, 0121¢0)
= (01¢, 210q,01210q).

Example 14.3: Subsequence-Relation. A string x is a subsequence of y iff it can

be obtained by from y by deleting symbols at some positions. The following one-state
automaton recognises this relation for the binary alphabet {0, 1}.

191

stext H (0.0), (1, 1), (£,0), (&, 1)

In general, there are one initial accepting state s with self-loops s — s labelled with
(¢,a) and (a,a) for all a € 3.

So if x = 0101 and y = 00110011 then the automaton goes from s to itself
with the transitions (0,0), (¢,0),(1,1),(¢,1),(0,0),(£,0),(1,1),(e,1) and has after-
wards exhausted both, x and y. As it is in an accepting state, it accepts this pair.

However, if z = 00111 and y = 010101 then the automaton cannot accept this
pair: it gets stuck when processing it. After the first (0,0), it has to use the transition
(¢,1) in order to go on and can afterwards use the transition labelled (0,0) again.
But once this is done, the automaton has now on the x-side of the input 111 and on
the y-side 101 so that it could go on with using (1,1) once and would then have to
use (g,0) and afterwards (1,1) again. However, now the automaton gets stuck with
1 being on the x-side while the y-side is exhausted. This is indeed also correct this
way, as x is not a subsequence of y.

Example 14.4. This rational relation recognises that = is a non-empty substring of
y, that is, x # ¢ and y = vaxw for some v, w € {0, 1}*. The automaton is the following.

(,0), (e, 1) 0,0), (1,1) (,0), (e, 1)
(0,0), (1, 1) 8@
)

When the automaton is in s or u, it parses the parts of z which are not in y while
when going forward from s to u with perhaps cycling in ¢, the automaton compares
x with the part of y which is equal to it in order to verify that = is a subword of y;
furthermore, the automaton can do this only if contains at least one symbol.

start —

(0,0), (
(0,0),(1,1)

¢

(0,0), (

0,0), (1,1

Exercise 14.5. Rational relations got their name, as one can use them in order to
express relations between the various inputs words which are rational. For example,
one can look at the set of all (z,y) with |x| > %\y| +5. This relation could be recognised
by the following automaton (assuming that x,y € {0}*):

(0,¢), (0,0), (00, 000)

(00000, 5)
start —| S t

192

Make automata which recognise the following relations:
() {(z,y) € (07,07) : 5 - [z = 8- [yl};
(b) {(x,y,2) € (07,0%,07) - 2 [z = [y| + |2[};
(c) {(x,y,2) € (0%,0%,0%) : 3~ || = [yl + |2 V |y| = |z[}.
Which automaton needs more than one state?

Description 14.6: Transducers. A rational function f mapping strings over X to
strings over X is a function for which there is a rational relation R such that for each
z,y € X% (z,y) € Riff x € dom(f) and f(z) = y. Transducers are mechanisms to
describe how to compute such a rational function and there are two types of them:
Mealy machines and Moore machines. Both define the same class of functions.

A Mealy machine computing a rational function f is a non-deterministic finite
automaton such that each transition is attributed with a pair (v,w) of strings and
whenever the machine follows a transition (p, (v,w),q) from state p to state ¢ then
one says that the Mealy machine processes the input part v and produces the output
part w. If some run on an input x ends up in an accepting state and produces the
output gy, then every run on x ending up in an accepting state produces the same
output and f(x) = y; if no run on an input z ends up in an accepting state then f(x)
is undefined.

Every automatic function is also a rational function and computed by a transducer,
but not vice versa. For example, the function 7 preserving all symbols 0 and erasing
the symbols 1,2 is given by the following one-state transducer: Starting state and
accepting state is s, the transitions are (s, (0,0),s), (s, (1,¢),s), (s,(2,¢),s). This
function 7 is not automatic.

Description 14.7: Moore machines [62]. Edward Moore [62] formalised functions
computed by transducers by the concept of an automaton which is now known as a
Moore machine. This is a non-deterministic finite automaton with possibly several
starting states such that each state ¢ owns a word w, and each transition if of the
form (q,a,p) for states ¢,p and elements a € ¥. On input ajas...a,, an accepting
run is a sequence (qo, q1, - - -, ¢n) Of states starting with a starting state gy and ending
in an accepting state ¢, such that the transition-relation of the nfa permits for each
m < n to go from ¢, to ¢, on symbol a,,,; and the output produced by the run
is the word wg wy, ... w,,. A function f is computed by a Moore machine iff for
each x € dom(f) there is an accepting run on input x with output f(z) and for each
string = and accepting run on input x with output y it holds that f(z) is defined and
f@)=y.

First, consider the projection = from {0, 1,2}* to {0}* which erases all 1,2 and

193

preserves all 0; for example,

states.

Second, let f(ajas ..

table computes f:

start H—a

.a,) = 012a1aq1aza5 . .
and places 012 before and after the output.

.a,0,012. That is f doubles each symbol
The Moore machine given by the following

m(012012) = 00. It needs a Moore machine having two

state | starting | acc/rej | output | succ on 0 | succ on 1 | succ on 2
s yes rej 012 p, P q,q r,r!
D no rej 00 p, 7 q,q r,r!
q no rej 11 p,p q,q r,r
r no rej 22 p,p q,q r,r
s yes acc | 012012 - - -
P’ no ace 00012 - - -
q no acc 11012 - - -
r! no acc 22012 — - -

Now f(0212) has the accepting run sprqr’ and this accepting run produces the output
wswpw,waw,r = 012001100012. The non-determinism mainly stems from the fact that
the automaton does not know when the last symbol is read; therefore, it has non-
deterministically choose between the states and their primed versions: s versus s, p
versus p’, ¢ versus ¢’ and r versus 7’.

For an example with a more severe amount of non-determinism, consider the
function ¢ given by g(aias...a,) = (max({ai,as,...,a,}))", so g(e) = &, g(000) =
000, ¢(0110) = 1111 and g(00512) = 55555. Now the Moore machine has to produce
output in each state, but it has to choose in the first state which output to produce.
So one has a starting state s with wy = ¢ and for each symbol a two states ¢, and r,
with w,, = w,, = a. The states s and r, are accepting, the states g, are rejecting.
The following transitions exist: (s,b,q,) for all a,b with b < a, (s,a,q,) for all a,
(Ga, b, qo) for all a,b with b < a and (ry,b,7,) for all a,b with b < a. So when the
Moore machine sees the first symbol and that is a 0, it has to decide which symbol a
to write and there is no way to avoid this non-determinism.

Exercise 14.8. Write down Mealy machines for the functions f and g from De-
scription 14.7 of the Moore machines. For both, the alphabet can be assumed to be

{0,1,2}.

194

Exercise 14.9. Determine the minimum number m such that every rational function
can be computed by a non-deterministic Moore machine with at most m starting states.
Give a proof that the number m determined is correct.

Exercise 14.10. Say that a Moore machine / Mealy machine is deterministic, if it
has exactly one starting state and for it always reads one symbol from the input and
for each state and each input symbol it has at most one transition which applies.

Make a deterministic Moore machine and make also a deterministic Mealy machine
which do the following with binary inputs: As long as the symbol 1 appears on the
input, the symbol is replaced by 0; if at some time the symbol O appears, it is replaced
by 1 and from then onwards all symbols are copied from the input to the output without
a change.

So the function f computed by these machines satisfies f(110) = 001, f(1111) =
0000, f(0) =1 and f(110011) = 001011.

Exercise 14.11. Let the alphabet be {0, 1,2} and let R = {(z,y, z,u) : u has has |x|
many 0s, |y| many 1s and |z| many 2s}. Is R a rational relation? Prove the result.

Theorem 14.12 [64]. Assume that 31,3, ..., %, are disjoint alphabets. Further-
more, let m be the function which preserves all symbols from ¥y and erases all other
symbols. Then a relation R C X7 X X5 X ... X X* 1is rational iff there is a reqular set
P over a sufficiently large alphabet such that (wy,ws, ..., w,) € R< Jv € P[m(v) =
wy A (V) = wa Ao AT (V) = Wiy

Proof. First, assume that a non-deterministic finite automaton recognises the ratio-
nal relation R. Let () be the set of states of this finite automaton and assume that @) is
disjoint to all alphabets ;. Furthermore, let the word qow; jw1 2. .. Wi m@rwa1wa2 . ..
WomQ2 - - Wy 1Wyo ... Wymy be in P iff qo is a starting state, g, is an accepting state
and for each k < n the automaton goes from g on (w411, Wk+1,2 - - - s Wkt1,m) tO Qrg1-
In other words, P consists of representations of all accepting runs of the nfa on some in-
put and if v € P then the input-tuple processed in this run is (w1 (v), 7o (v), . . ., T (V).
Second, for the converse direction, assume that a regular language P is given and
that the dfa with starting state s and accepting states F' is recognising P. Let) be
its states. Now one can make an nfa recognising the relation R by replacing every
transition (p, a,q) of the original dfa with (p, (m1(a), m2(a),...,mm(a)),q) in the new
nfa. One has now to show that the new nfa recognises exactly the relation R.
Assume that there is a word v = ayas...a, € P with (wy,ws, ..., wy,) = (m1(v),
mo(v), ..., Tm(v)). There is a run goaiqias . . . a,gq, of the dfa which accepts the word v.
Now one translates this run into qq (71(a1), m2(a1), ..., mm(a1)) ¢ (mi(az), m(as),. . .,
Tm(a2)) qo ... (m(an), m(an), ..., Tm(a,)) ¢, and one can see that this is an accepting

195

run of the nfa. Hence (wy,ws, ..., w,) € R.

Assume that (wq,ws,...,w,) € R. Then the nfa accepts (wy,ws, ..., w,). This
acceptance is witnessed by a run of the form gy (m1(a1), m2(a1), ..., mm(a1)) ¢ (m1(az),
mo(ag), ..., Tm(az)) qo ... (m1(an), m(ay), ..., mm(a,)) g, where qq is a starting state

and ¢, is an accepting state and the tuples between two states indicate the symbols
read from the corresponding inputs. Then corresponds to an accepting run qg a; ¢
as ¢ ... a, ¢, on the original dfa which then accepts the word v = aqas ... a,. Hence,
v € P and (wy,ws,...,wy) = (m(v),mV),...,7m(v)). 1

Remark 14.13. Above Theorem of Nivat can also be stated in a more general form.
Recall that a homomorphism is a mapping which preserves concatenation and maps
every symbol to a finite word. Now an n-ary relation R is rational iff there are n
homomorphisms 7y, ..., m, such that for each symbol at most one of them maps it to
a nonempty word and there is a regular set P such that

Vay, ..., xn [R(xy, ... 2n) < Jy € Plmi(y) = a1 Ao ATn(y) = 23]

This allows to use pumping lemmas to show that certain relations are not rational.
For the ease of notation, the two letters are different in the next example, so that the
Theorem of Nivat applies in its original form.

The relation R = {(0",1"") : n. > 1} is not rational.

To see this, one uses the Theorem of Nivat and considers a regular set P such that
for each n there is a word y € P with 0" = m;(y) and 1"° = 7y (y).

As the set is regular, it satisfies the block pumping lemma with a constant k.
There is an n which is large enough so that n? > (k+ 1) - (n + 1). Thus there are at
least k£ + 1 many 1 without a 0 between them in any word y € P with 0" = m;(y) and
1" = mo(y). Thus one can cut the word into blocks such that all inner blocks contain
each at least one 1 and no 0.

Now when one pumps up with the block pumping lemma, the number of 1 increases
while the number of 0 remains the same. The pumping destroys R and R is not
rational.

Description 14.14: Rational Structures. One could replace the requirement that
relations are automatic by the requirement that relations are rational in oder to obtain
a notion of rational structures. These are more general than automatic structures,
but here various properties of automatic structures are lost:

e There are relations and functions which are first-order definable from rational
relations without being a rational relation;

e There is no algorithm to decide whether a given first-order formula on automatic
relations is true.

196

So the counterpart of the Theorem of Khoussainov and Nerode on automatic struc-
tures does not exist. While some properties are lost, the expressibility is in general
higher. So various structures which are not automatic can be represented using ra-
tional relations. One example is given above: The monoid given by concatenation of
strings over the alphabet {0, 1}.

Post’s Correspondence Problem allows to define a rational structure where one
cannot decide the first-order theory with an algorithm which uses the automata de-
scribing a specific instance as input. For more information, see Description 18.12. In
the current context, an instance of Post’s Correspondence Problem consists of two
homomorphism f, g — given as transducers — which maps words of an index set ¥* to
words over X* (as long as there are at least two indices, what is needed for making
the structure interesting, one can use the same alphabet for the indices and the words
over it). So the homomorphism f is given by f(a) for all @ € ¥ and maps a word
ajas...a, € ¥* to f(ay) - f(ag) - ...- f(a,). Similarly for g. It is easy to see that
every homomorphism is rational: The corresponding transducer has a single state s
which is the starting state and accepting; there are transitions are from s to s which
are labelled (a, f(a)) for each a € 3. Now the rational structure also has equality and
one considers the following first-order formula:

JueX [u#eA flu) =g(u).

This formula is true iff the instance (¥, f, g) of Post’s Correspondence Problem has a
solution. As Post’s Correspondence Problem is undecidable, the corresponding class
of structures does not have a decidable first-order theory.

Nicer would it of course to have a single structure with an undecidable first-order
theory. This is indeed possible and the structure is a quite easy one: ({0,1}*, -, <,
0,1,e). This is the structure of all binary words with concatenation - and strict
prefix-relation < as well as the constants for the empty word and the two single-letter
words. The result that this theory is undecidable is well-known. Recent work by
Kristiansen and Murwananshyaka [53] analyses which types of first-order formulas
are already undecidable and finds that the set of all existentially quantified formulas
with additional bounded quantifiers is undecidable while the usage of only bounded
quantifiers leads to a decidable fragment of the first-order theory of this structure.

Exercise 14.15. There is a rational representation of the random graph. Instead
of coding (V,E) directly, one first codes a directed graph (V,F) with the following
properties:

o For each z,y € V, if (x,y) € F then |x| < |y|/2;
e For each finite W C 'V there is a y with Vz [(z,y) € F < x € W].

197

This is done by letting V = {00,01,10,11}" and defining that (z,y) € F iff there are
n,m,k such that y = agbpaib; ...a,b, and a,, = a = 0 and a, = 1 for all h with
m < h <k and x = bypbyy1...0_1. Give a transducer recognising F' and show that
this F' satisfies the two properties above.

Now let (x,y) € E < (z,y) € FV (y,x) € F. Show that (V, E) is the random
graph by constructing to any given disjoint finite sets of strings A, B a string y longer
than every string in A and B satisfying that for allz € AUB, (x,y) € E iff (x,y) € F
iff v € A.

Example 14.16. The multiplicative monoid (N— {0}, %, 1) has a rational representa-
tion. Note that every natural number is given by its primefactors: So (ny,ns, ..., ng)
with ng > 0 represents the number 2™ «3™2x. . .xp,™* and the empty vector represents
1. So 36 is represented by (2,2) (for 2% x 3%) and 3 is represented by (0,1). Now one
has that 36 * 3 is represented by (2,3) which is the componentwise sum of (2,2) and
(0,1). Furthermore, 30 is represented by (1,1, 1) so that 36«30 needs that one adjust
the length of the shorter vector before one does the componentwise addition: 3630 is
represented by (2,2) 4+ (1,1,1) = (2,2,0) + (1,1,1) = (3,3,1). In other words the set
N — {0} with multiplication and the finite vectors of natural numbers with a non-zero
last component with the operation of componentwise addition (where 0 is invoked for
missing components) are isomorphic monoids.

In the next step, one has to represent each vector (ny,ns,...,n,) by a string, so
one takes 0"110"21...0™ 1 and represents the empty vector (standing for the natural
number 1) by e. Now 36 x 3 = 108 is represented by 001001 x 101 = 0010001 and
36 x 30 = 1080 is represented by 001001 % 010101 = 0001000101. The domain is
{e} U{0,1}* - {01} and is therefore regular. The following automaton recognises the
graph of the rational relation x:

198

(£,0,0), (=, 1,1)

(1,1,1)

Q)@ (0,¢,0),(£,0,0),(1,1,1)

(1,1,1)

<@Q (0,2,0), (1,2,1)

When verifying that «y = 2, t is the node which is used as long as z and y are
both not exhausted; u is the node to be used when the end of = is reached while the
end of y has still to be found while v is the node to be used when the end of y has
been reached while the end of = has still to be found. There are transitions on empty
tuples from s to all of these three nodes as the two extreme cases that one of x and
y is € need to be covered as well.

For the following exercises, given a a binary rational relation R and a ternary rational
relation S and any languages L and H, let R(L) = {v : Jw € L[R(v,w)]} and
S(L,H) ={u:3v e L3we H[S(u,v,w)]}.

Exercise 14.17. Show that if L and H are regular, so are R(L) and S(L, H).
Exercise 14.18. Show that if L is context-free, so is R(L).

Exercise 14.19. If L, H are context-free, is then also S(L, H) context-free? Prove
the answer.

Exercise 14.20. If L is context-sensitive, is then also R(L) context-sensitive?

Exercise 14.21. For which Boolean operations (union, intersection, set difference,
symmetric difference) is there a rational relation S such that S(L,H) is the corre-
sponding combination of L and H?

199

Exercise 14.22. Is there a transducer () which recognises the relation of all pairs
(0™, 1m2™) with n € N?

Exercise 14.23. Assume that the alphabet is ¥ = {0,1}. Construct a transducer R
which accepts a triple (u,v,w) iff there is a common subsequence of length at least |ul

of v and w. Here x is a subsequence of y iff x can be split into parts x1,xs,...,xx
with y € X -xy - X% a9+ ... - X5 -y - X,

Exercise 14.24. Is there a transducer S which recognises a pair (v,w) iff v = w™,
that is, v is the mirror image of w?

Exercise 14.25. [s there a transducer T which recognises a pair (v, w) iff v occurs
inw two times as a subword?

Exercise 14.26. Is there a transducer U which recognises all pairs (v,w) such that
in v,w occur the same symbols the same number of times?

200

Selftest 14.27. Let f be an automatic function from a reqular set A to a reqular set
B. Let B, ={y € B :y = f(x) for exactly n words x € A} and let B, = {y € B :
y = f(x) for infinitely many x € A}. Which of the sets By, By, ..., Bo are regqular?

Selftest 14.28. Assume that a group is generated by elements a,b,c and their in-
verses G,b,¢ and has the following rules: aob=coa, aoc=boa, boc=cob and
correspondingly for the inverses, that is, aob==¢oa, Gob=coa and so on.

Show that this group s fully automatic by providing a fully automatic representa-
tion and explain why the group operation conv(z,y) — x oy is an automatic function
(with two inputs) in this representation.

Selftest 14.29. Let L = {00, 11}* be a regular language over the alphabet {0,1,2,3}.
Determine the syntactic monoid G for this language.

Selftest 14.30. Let G = {a* Ua*} - {b*Ub } be a representation for the automatic
group generated by a,b and the inverses @,b with the rule a ob = boa. Let L be the
set of all strings over {a,a,b,b} which are equivalent to the neutral element ¢ in this
group.

What is the complexity of L? (a) regular, (b) context-free and not regular, (c)
context-sensitive and not context-free, (d) recursively enumerable and not context-
sensuitive.

Give a justification for the taken choice.

Selftest 14.31. Let {Ly, : d € I} and {H. : e € J} be two automatic families with
reqular sets of indices I, J. Prove or disprove the following claim.

Claim. There are an automatic relation B C I x I and an automatic function
f: R — J with domain R such that for all d,d’ € I the following statement holds: if
thereis an e € J with LgNLy = H, then (d,d’) € Rand Hyg 4y = H. else (d,d') ¢ R.

Selftest 14.32. Is every function which is computed by a non-deterministic Moore
machine also computed by a deterministic Moore machine?

If the answer is “yes” then explain how the Moore machine is made deterministic,
if the answer is “no” then give an example of a function which is computed only by a
non-deterministic Moore machine and not by a deterministic one.

Selftest 14.33. Construct a Mealy machine which recognises the following function:
f(z) doubles every 0 and triples every 1 if x does not contain a 2; f(x) omits all 0
and 1 from the input if x contains a 2.

Sample outputs of f are f(01) = 00111, f(01001) = 001110000111, f(021) = 2
and £(012210012) = 222.

201

Solution for Selftest 14.27. All of the sets By, B, ..., By are regular. The reason
is that one can first-order define each of the sets using automatic functions (like f)
and relations (like membership in A and length-lexicographic order). For example,

y€ By ye BAVr e Aly # f(x)]
and

yEBQ = Elxl,xQEAVxEA
f(z1) =yAflze) =yAzr #F a2 A f(x) =y — (y =21 Vy=129)].

The formula for B, has to be a bit different, as one has to say that there are infinitely
many = which are mapped to y. For this one assumes that A is infinite, as otherwise
Bo, = 0. Now the formula is

Y€ By oV e AT e Alx <y 2’ A f(2!) = y].

It is okay to introduce new automatic parameters (like the length-lexicographic order-
ing on A) in order to show that some set or relation or function is regular / automatic
by providing the corresponding first-order definition.

Solution for Selftest 14.28. Take any fully automatic representation (A, +) of the
integers and note that the set B = {z : Jy [y +y = x|} of the even integers is regular.
Now represent the group (G, o) by {conv(i, j, k) : i, j, k € A} where conv(i, j, k) stands
for a’ o b/ o c*. Now conv(i,j, k) o conv(i’, j', k') is conv(i + 4,5 + j',k + k') in the
case that ' is even and conv(i + i,k + j',j + k') in the case that i’ is odd. As B is
regular, this case-distinction is automatic; furthermore, the addition is automatic in
A and can therefore be carried out on the components.

Solution for Selftest 14.29. For the language {00, 11}*, one has first to make the
minimal dfa which has four states, namely s, z, o, t. Its transition table is the following
(where s is the starting state):

state | acc/rej | 0 [1|2 |3
S accept | z o |t | ¢
z reject | s |t |t |t
0 reject |t | s |t |t
t reject |t |t |t |t

The corresponding monoid has the following function f, where for each f, only one
representative word u is taken.

202

word u | Ju(s) | Ja(z) | Ju©) | Ful®)
€ S z 0] t
0 z s t t
00 s z t t
001 0 t t t
0011 S t t t
01 t 0 t t
011 t s t t
0110 t z t t
1 0 t S t
10 t t z t
100 t t s t
1001 t t 0 t
11 s t 0] t
110 z t t t
2 t t t t

Solution for Selftest 14.30. The answer should be (c) “context-sensitive and not
context-free”. Let L, be the set of all words in {a,a, b,l_a}* which have as many a
as @ and Ly be the set of all words in {a,@,b,b}* which have as many b as b. Then
L = L, N Ly, thus L is the intersection of two context-free languages and therefore
context-sensitive or context-free or regular.

Note that all levels of the Chomsky hierarchy are closed with respect to intersection
with regular sets. Now one forms the set L N a*(ba)*b*. This set consists of all words
of the form a™(b@)™b" and this is a well-known example of a context-sensitive language
which is not context-free. Therefore the language L cannot be regular and cannot be
context-free; so context-sensitive is the right level.

Solution for Selftest 14.31. The claim is true. The main idea is that the function
f plus its domain is first-order definable from automatic parameters. Indeed, one can
introduce a relation R’ and then derive R, f from R’ as follows:
(d,d';e)e R < ddelnhec JANVe[re H < x € LygNx € Lyl;
(d,d)e R & ZFee J[R'(d,d,e);
fld,d)y=e < R(d,d,e) Ve € J[R'(d,d e)=e <€

Here again one uses the automatic length-lexicographic ordering and the automaticity
of the membership problem of the corresponding automatic families.

Solution for Selftest 14.32. The answer is “no” and the reason is that a non-
deterministic Moore machine can anticipate some information which the deterministic

203

Moore machine cannot anticipate.

For example, a Moore machine should map any input agay .. . a, to (a,)""', that
is, replace all a,, by the last digit a,,. For this the Moore machine needs non-determi-
nistically to anticipate what a,, is. So the Moore machine has a start state s without
any output and for each symbol a € ¥ it has two states r, (rejecting) and ¢, (accept-
ing). Now on the first symbol b the Moore machine non-deterministically chooses a
and if b = a then it goes to ¢, else it goes to r,. On each further symbol ¢, if a = ¢
then the machine goes to g, else it goes to r,. Both states r, and g, output in each
cycle one symbol a. If the last input symbol is a then the automaton will be in the
accepting state ¢, else it will be in the rejecting state r,. So if the input ends with a
the run is accepting and the output is correct; if the input does not end with a then
the run ends in a rejecting state and the output is not valid.

A deterministic Moore machine cannot compute this function. If the Moore ma-
chine sees an input 0, it needs to respond with a 0 immediately, as it otherwise would
not map 0 to 0, hence it goes on 0 to a state with output 0. If then a 1 follows, the
output has to be 11, what is impossible for the deterministic Moore machine to do,
as it has already written a 0.

Solution for Selftest 14.33.

(D)

(0,00), (1,111)

(0,00), (1,111) @

204

15 Models of Computation

Since the 1920ies and 1930ies, mathematicians investigated how to formalise the no-
tion of computation in an abstract way. These notions are the Turing machine, the
register machine and the p-recursive functions.

Definition 15.1: Turing Machine [83]. A Turing machine is a model to formalise
on how to compute an output from an input. The basic data storage is an infinite
tape which has at one place the input word on the tape with infinitely many blancs
before and after the word. The Turing machine works on this work in cycles and is
controlled by states, similarly to a finite automaton. It also has a head position on
the tape. Depending on the state on and the symbol under the head on the tape, the
Turing machine writes a new symbol (which can be the same as before), chooses a
new state and moves either one step left or one step right. One special state is the
halting state which signals that the computation has terminated; in the case that one
wants several outcomes to be distinguishable, one can also have several halting states,
for example for “halt and accept” and “halt and reject”. These transitions are noted
down in a table which is the finite control of the Turing Machine; one can also see
them as a transition function J.

One says that the Turing machine computes a function f from ¥* to ¥* iff the
head before the computation stands on the first symbol of the input word, then the
computation is performed and at the end, when the machine goes into the halting
state, the output is the content written on the Turing machine tape. In the case
that for some input w the Turing machine never halts but runs forever then f(w) is
undefined. Thus Turing machines compute partial functions.

Note that Turing machines, during the computation, might use additional symbols,
thus their tape alphabet I' is a superset of the alphabet ¥ used for input and output.
Formally, a Turing machine is a tuple (Q,[',U, ¥, d, s, F') where @ is the set of states
with start state s and the set of halting states F'; ¥ is the input alphabet, I' the tape
alphabet and LI the special space symbol in I' — ¥; so ¥ C I'. ¢ is the transition
functions and maps pairs from (@ — F') x I' to triples from @ x I x {left,right}.
0 can be undefined on some combinations of inputs; if the machine runs into such a
situation, the computation is aborted and its value is undefined.

Example 15.2. The following Turing machine maps a binary number to its successor,
so 100 to 101 and 111 to 1000.

205

state | symbol | new state | new symbol | movement
5 0 S 0 right

5 1 S 1 right

s U t U left

t 1 t 0 left

t 0 u 1 left

t U u 1 left

This table specifies the function ¢ of the Turing machine ({s,¢,u}, {0, 1, U}, 1, {0, 1},
J,s,{u}). At the beginning, the head of the Turing machine stands on the first symbol
of the input, say on the first 1 of 111. Then the Turing machine moves right until
it reaches a blanc symbol LI. On U it transits into ¢ and goes one step to the left
back onto the input number. Then it transforms each 1 into a 0 and goes left until
it reaches a 0 or L. Upon reaching this symbol, it is transformed into a 1 and the
machine halts.

Exercise 15.3. Construct a Turing machine which computes the function x — 3x
where the input x as well as the output are binary numbers.

Exercise 15.4. Construct a Turing machine which computes the function x — x +5
where the input x as well as the output are binary numbers.

In the numerical paradigm, one considers natural numbers as primitives. For this,
one could, for example, identify the numbers with strings from {0} U {1} - {0, 1}*.

If one wants to use all binary strings and make a bijection to the natural numbers,
one would map a string ajas . . . a,, the value b—1 of the binary number b = lajas .. . a,,
so € maps to 0, 0 maps to 1, 1 maps to 2, 00 maps to 3 and so on. The following table
gives some possible identifications of members with N with various ways to represent
them.

decimal | binary | bin words | ternary | ter words
0 0 € 0 €
1 1 0 1 0
2 10 1 2 1
3 11 00 10 2
4 100 01 11 00
5 101 10 12 01
6 110 11 20 02
7 111 000 21 10
8 1000 001 22 11
9 1001 010 100 12
10 1010 011 101 20

206

Now one defines a register machine as a machine working on numbers and not on
strings. Here the formal definition.

Description 15.5: Register Machine. A register machine consists of a program
and a storage consisting of finitely many registers Ry, Rs, ..., R,. The program has
line numbers and one can jump from one to the next; if no jump instruction is given,
after an instruction, the next existing line number applies. The following types of
instructions can be done:

e R; = c¢ for a number c;

e 1}; = R; + c for a number c;

[J Rl = Rj + Rk;

e [}; = R; — c for a number ¢, where the number 0 is taken if the result would be
negative;

e I}, = R; — Ry, where the number 0 is taken if the result would be negative;
o If R; = ¢ Then Goto Line k;
o If R, = R; Then Goto Line £;
o If R, < R; Then Goto Line k;
e Goto Line k;
e Return(R;), finish the computation with content of Register R;.
One could be more restrictive and only allow to add or subtract the constant 1 and to
compare with 0; however, this makes the register programs almost unreadable. The
register machine computes a mapping which maps the contents of the input registers
to the output; for making clear which registers are input and which are not, one could
make a function declaration at the beginning. In addition to these conventions, in
the first line of the register program, one writes the name of the function and which
registers are read in as the input. The other registers need to be initialised with some
values by the program before they are used.

Register machines of this type were first studied in detail by Hartmanis and Simon
[37] and subsequently by Floyd and Knuth [28] who called them “addition machines”.

Example 15.6. The following program computes the product of two numbers.

Line 1: Function Mult(R;, R»);

Line 2: R3 =0;

Line 3: Ry = 0;

Line 4: If R3 = R; Then Goto Line 8;
Line 5: Ry = Ry + Ro;

Line 6: R3 = R3+ 1;

207

Line 7: Goto Line 4;
Line 8: Return(Ry).

The following program computes the remainder of two numbers.

Line 1: Function Remainder(R;, Ry);
Line 2: R3 =0;

Line 3: Ry = 0;

Line 4: R5 = Ry + Ro;

Line 5: If Ry < R5 Then Goto Line §;
Line 6: Ry = Rs;

Line 7: Goto Line 4;

Line 8: R3 = Ry — Ry;

Line 9: Return(Rs3).

The program for integer division is very similar.

Line 1: Function Divide(R;, Rs);
Line 2: R3 =0;

Line 3: Ry = 0;

Line 4: R5 = Ry + Ro;

Line 5: If Ry < R5 Then Goto Line 9;
Line 6: R3 = R3+ 1;

Line 7: Ry = Rs;

Line 8: Goto Line 4;

Line 9: Return(R3).

Exercise 15.7. Write a program P which computes for input x the value y =142+
3+...+ .

Exercise 15.8. Write a program Q) which computes for input x the value y = P(1) +
P(2) 4+ P(3) + ...+ P(x) for the program P from the previous exercise.

Exercise 15.9. Write a program O which computes for input x the factorial y =
1-2-3-...-x. Here the factorial of 0 is 1.

Description 15.10: Subprograms. Register machines come without a manage-
ment for local variables. When writing subprograms, they behave more like macros:
One replaces the calling text with a code of what has to be executed at all places inside
the program where the subprogram is called. Value passing into and the function and
returning back is implemented; registers inside the called function are renumbered to
avoid clashes. Here the example of the function “Power” using the function “Mult”.

208

Line 1: Function Power(Rs, Rg);

Line 2: R; =0;

Line 3: Ry =1;

Line 4: If Rg = R; Then Goto Line 8;
Line 5: Rg = Mult(Rs, R5);

Line 6: R; = R; + 1;

Line 7: Goto Line 4;

Line 8: Return(Ry).

Putting this together with the multiplication program only needs some code adjust-
ments, the registers are already disjoint.

Line 1: Function Power(Rs, Rg);
Line 2: R; =0;
Line 3: Ry =1;
Line 4: If Rg = R; Then Goto Line 16;
Line 5: Ry = Rj; // Initialising the Variables used
Line 6: Ry = Rg; // in the subfunction
Line 7: R3 = 0; // Subfunction starts
Line 8: R4 = 0;
Line 9: If R3 = R; Then Goto Line 13;
Line 10: Ry = Ry + Ro;
Line 11: R3 = R3 + 1;
Line 12: Goto Line 9;
Line 13: Rg = Ry; // Passing value back, subfunction ends
Line 14: R; = R; + 1;
Line 15: Goto Line 4;
Line 16: Return(Rg).

This example shows that it is possible to incorporate subfunctions of this type into the
main function; however, this is more difficult to read and so the subfunctions are from
now on preserved. Note that due to the non-implementation of the saving of the line
number, the register machines need several copies of the called function in the case
that it is called from different positions, for each position one. In short, subprograms
are more implemented like macros than like functions in programming. Though this
restriction is there, the concept is useful.

The next paragraph shows how to code a Turing machine using a one-sided tape (with
a starting point which cannot be crossed) in a register machine.

209

Description 15.11: Coding and Simulating Turing Machines. If one would
have I' = {0,1,2,...,9} with 0 being the blanc, then one could code a tape starting
at position 0 as natural numbers. The leading zeroes are then all blanc symbols on
the tape. So, in general, one represent the tape by numbers in a system with |I'| many
digits which are represented by 0,1,...,|T'| — 1. The following functions in register
programs show how to read out and to write a digit in the tape.

Line 1: Function Read(Ry, Re, R3); // R1 = |I'|, R2 = Tape, R3 = Position
Line 2: Ry = Power(Ry, R3);

Line 3: R; = Divide(Rq, Ry);

Line 4: Rg = Remainder(Rs, R;);

Line 5: Return(Rg). // Return Symbol

The operation into the other direction is to write a digit onto the tape.

Line 1: Function Write(Ry, Ry, R3, Ry); // R1 = |I'|, Ry = Tape, R3 = Position, R,
= New Symbol

Line 2: R; = Power(Ry, R3);

Line 3: Rg = Divide(Rq, R5);

Line 4: R; = Remainder(Rg, R;);

Line 5: RG = RG + R4 - R7;

Line 6: Rg = Mult(Rg, R5);

Line 7: Ry = Remainder(Ry, Rs);

Line 8: Ry = Rg + Rg;

Line 9: Return(Ry). // Return New Tape

For the general implementation, the following assumptions are made:

e Input and Output is, though only using the alphabet ¥, already coded in the
alphabet I" which is a superset of X.

e When representing the symbols on the tape, 0 stands for LI and X is represented
by 1,2,...,|¥| and the other symbols of I" are represented by the next numbers.

e The starting state is 0 and the halting state is 1 — it is sufficient to assume
that there is only 1 for this purpose.

e The Turing machine to be simulated is given by four parameters: R; contains
the size of I, Ry contains the number |@Q)| of states, R3 contains the Turing Table
which is an array of entries from I" x @ x {left,right} organised by indices of
the form ¢ - [I'| + v for state ¢ and symbol v (in numerical coding). The entry
for (v, q, movement) is v - |Q| - 2+ q - 2 + movement where movement = 1 for
going right and movement = 0 for going left. This table is read out like the

210

tape, but it cannot be modified by writing. R4 contains the Turing tape which
is read and updated.

e Input and Output are on tapes of the form Uwl*™ and the Turing machine
cannot go left on 0, it just stays where it is (0 — 1 = 0 in this coding). The
register R5 contains the current tape position.

e Ry contains the current symbol and R; contains the current state and Rg the
current instruction.

e The register machine simulating the Turing machine just runs in one loop and
if the input is a coding of the input word and the Turing machine runs correctly
then the output is a coding of the tape at the output.

So the main program of the simulation is the following.

Line 1: Function Simulate(R;, Ry, R3, R4);

Line 2: R5 =1;

Line 3: R7 =0;

Line 4: Ry = Mult(Mult(2, Ry), R1); // Size of Entry in Turing table
Line 5: R = Read(Ry, Ry, R5); // Read Symbol

Line 6: Rg = Read(Ry, R3, Mult(R;, R7) + Rg); // Read Entry

Line 7: Ry¢ = Divide(Rg, Mult(Rs,2)); // Compute New Symbol

Line 8: Ry = Write(Ry, R4, Rs, Ry9); // Write New Symbol

Line 9: R; = Remainder(Divide(Rs, 2), Ry); // Compute New State
Line 10: If R; = 1 Then Goto Line 13; // If State is Halting, Stop
Line 11: Rs; = Rs + Mult(2, Remainder(Rs,2)) — 1; // Move Head
Line 12: Goto Line 5;
Line 13: Return(Ry).

This simulation shows that for fixed alphabet ¥, there is a universal Register machine
which computes a partial function v such that (i, j, k,) is the unique y € * for
which the simulation of the Turing machine given by tape alphabet of size ¢, number
of states j and table £ maps the tape LzLU*> to the tape UylLI* and halts. The three
parameters ¢, 7, k are usually coded into one parameter e which is called the Turing
program.

Theorem 15.12. Every Turing machine can be simulated by a register machine and
there is even one single register machine which simulates for input (e, x) the Turing
machine described by e; if this simulation ends with an output y in the desired form
then the register machine produces this output; if the Turing machine runs forever, so
does the simulating register machine.

211

Exercise 15.13. FExplain how one has to change the simulation of the Turing machine
in order to have a tape which is in both directions infinite.

Alan Turing carried out the above simulations inside the Turing machine world. This
permitted him to get the following result.

Theorem 15.14: Turing’s Universal Turing Machine [83]. There is one single
Turing machine which simulates on input (e,) the actions of the e-th Turing machine
with input z.

In the same way that one can simulate Turing machines by register machines, one
can also simulate register machines by Turing machines. Modulo minor adjustments
of domain and range (working with natural numbers versus working with words), the
two concepts are the same.

Theorem 15.15. If one translates domains and ranges in a canonical way, then the
partial functions from 3* to ¥* computed by a Turing machine are the same as the
partial functions from N to N computed by a register machine.

Another way to define functions is by recursion. The central notion is that of a
primitive recursive function, which is also defined by structural induction.

Definition 15.16: Primitive Recursive Functions [78]. First, the following base
functions are primitive recursive.

Constant Function: The function producing the constant 0 without any inputs s
primitive recursive.

Successor Function: The function x — x + 1 is primitive recursive.

Projection Function: Fach function of the form xi,...,x, v« x, for some m,n
with m € {1,...,n} is primitive recursive.

Second, there are two ways to define inductively new primitive recursive functions
from others.

Composition: If f:N*" — N and g1,...,¢, : N = N are primitive recursive, so is
1oy T > flg1(z, o), g, T).

Recursion: If f : N* — N and g : N**2 — N are primitive recursive then there is
also a primitive recursive function h with h(0,xy,...,z,) = f(z1,...,2,) and
hMy+ 1z, x,) =gy, h(y, 1, .., 20), X1, -, Tp).

212

In general, this says that one can define primitive recursive functions by some base
cases, concatenation and recursion in one variable.

Example 15.17. The function h(x) = pred(z) = x — 1, with 0 — 1 = 0, is primitive
recursive. One defines pred(0) = 0 and pred(y+1) = y, more precisely pred is defined
using f, g with f(x) =0 and g(y, pred(z)) = y.

Furthermore, the function z,y — h(x,y) = = — y is primitive recursive, one
defines # —0 = x and — (y+ 1) = pred(x —y). This definition uses implicit that one
can instead of h(x,y) use ;L(y,x) which is obtained by swapping the variables; now
hiy,x) = h(second(y,x), first(y,z)) where first,second pick the first and second
input variable of two inputs. By induction one has h(0,z) = = and h(y + 1,z) =
pred(y, z), so h(y,z) = x — y.

Now one can define equal(x,y) =1 — (x —y) — (y — «) which is 1 if 2, y are equal
and which is 0 if one of the terms x — y and y — = is at least 1.

Another example is = 4+ y which can be defined inductively by 0 + y = y and
(x +1) + y = succ(x + y), where succ : z — z + 1 is one of the base functions of the
primitive recursive functions.

Exercise 15.18. Prove that every function of the form h(xy,za,...,2,) = a171 +
9Ty + ...+ a,x, + b with fixed parameters ai,as,...,a,,b € N is primitive recursive.

Exercise 15.19. Prove that the function h(x) = 1+2+...+x is primitive recursive.
Exercies 15.20. Prove that the multiplication h(x,y) = x - y is primitive recursive.

Primitive recursive functions are always total. Thus one can easily derive that there
is no primitive recursive universal function for them. In the case that there would
be a function f(e,z) which is primitive recursive such that for all primitive recursive
functions g with one input there is an e such that Vx [g(z) = f(e, z)] then one could
easily make a primitive recursive function which grows faster than all of these:

h(z) =1+ f(0,z)+ f(1,z) + ...+ f(z,).

To see that this function is primitive recursive, one first considers the two place
function

hMy,z) =1+ f(0,2) + f(1,2) + ...+ f(y,x)
by defining B(O,x) =1+ f(0,z) and ﬁ(y +1,2) = ﬁ(y,x) + f(y+ 1,2). Bow h(z) =
ﬁ(m, x). Thus one has that there is no universal primitive recursive function for all
primitive recursive functions with one input; however, it is easy to construct such
a function computed by some register machine. Ackermann [1] was able to give a
recursive function defined by recursion over several variables which is not primitive

213

recursive. In the subsequent literature, several variants were studied; generally used
is the following form of his function:

e f(0,y)=y+1
e f(x+1,0)= f(x,1);
o flex+ly+1)= f(z, f(z+1,9)).

So it is a natural question on how to extend this notion. This extension is the notion
of p-recursive functions; they appear first in the Incompleteness Theorem of Godel
[34] where he characterised the recursive functions on the way to his result that one
cannot make a complete axiom system for the natural numbers with + and - which
is enumerated by an algorithm.

Definition 15.21: Partial recursive functions [34]. If f(y,z1,...,2,) is a func-
tion then the p-minimalisation g(xq, ..., x,) = py [f(y, 21, ..., 2,)] is the first value y
such that f(y,z1,...,z,) = 0. The function g can be partial, since f might at certain
combinations of x1,...,x, not take the value 0 for any y and then the search for the
y 1s undefined.

The partial recursive or p-recursive functions are those which are formed from
the base functions by concatenation, primitive recursion and p-minimalisation. If a
partial recursive function is total, it is just called a recursive function.

Theorem 15.22. FEvery partial recursive function can be computed by a register
machine.

Proof. It is easy to see that all base functions are computed by register machines and
also the concatenation of functions. For the primitive recursion, one uses subprograms
F for f and G for g. Now A is computed by the following program H. For simplicity,
assume that f has two and g has four inputs.

Line 1: Function H(Ry, Rs, R3);

Line 2: Ry = 0;

Line 3: Rs = F(Ry, R3);

Line 4: If Ry = R; Then Goto Line 8§;
Line 5: R5 = G(R4, R5, RQ, Rg);

Line 6: Ry = R4+ 1;

Line 7: Goto Line 4;

Line 8: Return(Rs).

Furthermore, the p-minimalisation h of a function f can be implemented using a
subprogram F for f; here one assumes that f has three and g two inputs.

214

Line 1: Function H(R;, Rs);

Line 2: R3 =0;

Line 3: Ry = F(Rs3, Ry, Ry);

Line 4: If Ry = 0 Then Goto Line 7;
Line 5: R3 = R3+ 1;

Line 6: Goto Line 3;

Line 7: Return(R3).

These arguments show that whenever the given functions f, g can be computed by
register programs, so are the functions derived from f and ¢ by primitive recursion or
p-minimalisation. Together with the corresponding result for concatenation, one can
derive that all partial recursive functions can be computed by register programs. |

Indeed, one can also show the converse direction that all partial functions computed
by register programs are partial recursive. Thus one gets the following equivalence.

Theorem 15.23. For a partial function f, the following are equivalent:

e f as a function from strings to strings can be computed by a Turing machine;

e f as a function from natural numbers to natural numbers can be computed by a
register machine;

e f as a function from natural numbers to natural numbers is partial recursive.

Alonzo Church formulated the following thesis which is also a basic assumption of
Turing’s work on the Entscheidungsproblem [83]; therefore the thesis is also known as
“Church—Turing Thesis”.

Thesis 15.24: Church’s Thesis. All sufficiently reasonable models of computation
on N or on ¥* are equivalent and give the same class of functions.

One can also use Turing machines to define notions from complexity theory like classes
of time usage or space usage. The time used by a Turing machine is the number of
steps it makes until it halts; the space used is the number of different cells on the tape
the head visits during a computation. One measures the size n of the input x in the
number of its symbols in the language model and by log(x) = min{n € N : z < 2"}
in the numerical model.

Theorem 15.25. A function f is computable by a Turing machine in time p(n) for
some polynomial p iff f is computable by a register machine in time q(n) for some
polynomial q.

215

Theorem 15.26. A function f is computable by a Turing machine in space p(n) for
some polynomial p iff f is computable by a register machine in such a way that all
registers take at most the value 29 for some polynomial q.

The notions in Complexity Theory are also relatively invariant against changes of the
model of computation; however, one has to interpret the word “reasonable” of Church
in a stronger way than in recursion theory. Note that for these purposes, the model of
a register machine where it can only count up steps of one is not reasonable, as then
even the function — x + x is not computed in polynomial time. On the other hand,
a model where the multiplication is also a primitive, one step operation, would also
be unreasonable as then single steps have too much power. However, multiplication
is still in polynomial time.

Example 15.27. The following register program computes multiplication in polyno-
mial time.

Line 1: Function Polymult(R;, Ry);

Line 2: R3 =0;

Line 3: Ry = 0;

Line 4: If R3 = R; Then Goto Line 13;
Line 5: R5 =1;

Line 6: Rg = Ro;

Line 7: If R3 + Rs > Ry Then Goto Line 4;
Line 8: R3 = R3 + Rs;
Line 9: Ry = R, + Rg;

Line 10: R5 = R5 + Rs;

Line 11: Rg = Rg + Rg;

Line 12: Goto Line 7;

Line 13: Return(Ry).

Alternatively, one can do in linear time by mimicking the school algorithm for binary
numbers. For a bit compacter program, several commands per line are allowed.

Line 1: Function Binarymult(R;, Rs);

Line 2: Ry =1; Ry =1; R5 = 0; Rg = Ro;

Line 3: If R3 > Rg Then Goto Line 5;

Line 4: R3 = R3 + R3; Goto Line 3;

Line 5: Rg = R¢ + Rg; R5 = Rs + Rs; Ry = Ry + Ry;
Line 6: If Rg < R3 Then Goto Line §;

Line 7: R5 = R5 + Ry; Rg = R¢ — Rs;

216

Line 8: If R4 < R3 Then Goto Line 5;
Line 9: Return(Rs).

In this program, Rg initially holds the input and later the input times some power of
2. Rj3 is doubled until it is larger than Ry and is a power of 2. In the loop starting
in Line 5, R4 is then used as counter going to R4, but again by doubling up in order
to need the same time. In the loop body, the highest order bit of Rg is read out and
Rs5 is updated accordingly. Rj is doubled in each iteration of the loop in order to
accomodate then the processing of lower order bits of Rg.

Exercise 15.28. Write a register program which computes the remainder in polyno-
maal time.

Exercise 15.29. Write a register program which divides in polynomaal time.

Exercise 15.30. Let an extended register machine have the additional command
which permits to multiply two registers in one step. Show that an extended register
machine can compute a function in polynomial time which cannot be computed in
polynomial time by a normal register machine.

Floyd and Knuth [28] called such register machines “addition machines” and also
showed that they can multiply, divide and form remainders in linear time (with the
same primitive steps as here for register machines). Their method used the represen-
tation of numbers by Fibonacci numbers and their method is superior to the above.
However, for avoiding copy and paste, please use in the solutions to the before exercises
one of the methods indicated in Example 15.27.

217

16 Recursively Enumerable Sets

A special form of programs can employ For-Loops in place of arbitrary Goto-com-
mands. Such a register machine program does not use backward goto-commands
except for a For-Loop which has to satisfy the following condition: The Loop variables
does not get changed inside the loop and the bounds are read out when entering the
loop and not changed during the run of the loop. For-Loops can be nested but they
cannot partly overlap. Goto commands can neither go into a loop nor from inside a
loop out of it. The rules for Goto commands also apply for if-commands. Here an
example.

Line 1: Function Factor(Ry, Ry);
Line 2: R3 = Ry;
Line 3: Ry = 0;
Line 4: If Ry < 2 Then Goto Line 10;
Line 5: For Rs =0 to R,
Line 6: If Remainder(Rj3, R2) > 0 Then Goto Line 9;
Line 7: R3 = Divide(R3, R»);
Line 8: Ry = Ry + 1;
Line 9: Next Rs;
Line 10: Return(Ry);

This function computes how often Rs is a factor of Ry and is primitive recursive. Using
For-Loops to show that programs are primitive recursive is easier than to follow the
scheme of primitive recursion precisely. Consider the following easy function.

Line 1: Function Collatz(R;);

Line 2: If Remainder(Ry,2) = 0 Then Goto Line 6;
Line 3: If Ry = 1 Then Goto Line 8;

Line 4: Ry = Mult(Ry,3) + 1;

Line 5: Goto Line 2;

Line 6: R; = Divide(Ry,2);

Line 7: Goto Line 2;

Line 8: Return(R;);

It is unknown whether this function terminates for all inputs larger than 1. Lothar
Collatz conjectured in 1937 that “yes”, but though many attempts have been made
since then, no proof has been found that termination is there. Though one does not
know whether the function terminates on a particular output, one can write a function
which simulates “Collatz” for R, steps with a For-Loop. In the case that the output

218

line is reached with output y, one outputs y + 1; in the case that the output line is
not reached, one outputs 0. This simulating function is primitive recursive.

In order of avoiding too much hard coding in the function, several instructions per
line are allowed. The register LN for the line number and T for the loop are made
explicit.

Line 1: Function Collatz(Ry, Ry);
Line 2: LN = 2;
Line 3: For T'=0 to R,
Line 4: If LN = 2 Then Begin If Remainder(R;,2) = 0 Then LN = 6 Else LN = 3;
Goto Line 10 End;
Line 5: If LN = 3 Then Begin If Ry =1 Then LN = 8 Else LN = 4; Goto Line 10
End;
Line 6: If LN = 4 Then Begin R; = Mult(Ry,3) + 1; LN = 5; Goto Line 10 End;
Line 7: If LN =5 Then Begin LN = 2; Goto Line 10 End;
Line 8: If LN = 6 Then Begin R; = Divide(R;,2); LN = 7; Goto Line 10 End;
Line 9: If LN =7 Then Begin LN = 2; Goto Line 10 End;
Line 10: Next T
Line 11: If LN = 8 Then Return(R; + 1) Else Return(0);

In short words, in every simulation step, the action belonging to the line number LN
is carried out and the line number is afterwards updated accordingly. The simulation
here is not yet perfect, as “Mult” and “Divide” are simulated in one step; a more
honest simulation would replace this macros by the basic commands and then carry
out the simulation.

Exercise 16.1. Write a program for a primitive recursive function which simulate
the following function with input Ry for Ry steps.

Line 1: Function Expo(R;);

Line 2: R3 =1;

Line 3: If Ry = 0 Then Goto Line 7;
Line 4: R3 = R3 + Rs;

Line 5: Ry = R; — 1;

Line 6: Goto Line 3;

Line 7: Return(R3).

Exercise 16.2. Write a program for a primitive recursive function which simulate
the following function with input Ry for Ry steps.

219

Line 1: Function Repeatadd(R;);
Line 2: R3 = 3;

Line 3: If Ry = 0 Then Goto Line 7,
Line 4: R3 = R3+ R3+ R3+ 3;
Line 5: R1 = Ry — 1;

Line 6: Goto Line 3;

Line 7: Return(Rj).

Theorem 16.3. For every partial-recursive function f there is a primitive recursive
function g and a register machine M such that for all t,

If f(xy,...,2,) is computed by M within t steps
Then g(x1,...,Tn,t) = f(z1,...,2,) + 1
Else g(xy,...,x,,t) = 0.

In short words, g simulates the program M of f for t steps and if an output y comes
then g outputs y + 1 else g outputs 0.

Based on Theorem 16.3, one can make many equivalent formalisations for the notion
that a set is enumerated by an algorithm.

Theorem 16.4. The following notions are equivalent for a set A C N:

(a) A is the range of a partial recursive function;

(b) A is empty or A is the range of a total recursive function;

(c) A is empty or A is the range of a primitive recursive function;

(d) A is the set of inputs on which some register machine terminates;

(e) A is the domain of a partial recursive function;

(f) There is a two-place recursive function g such that A = {x : 3y [g(z,y) > 0]}.

Proof. (a) = (¢): If A is empty then (c¢) holds; if A is not empty then there is
an element a € A which is now taken as a constant. For the partial function f
whose range A is, there is, by Theorem 16.3, a primitive function ¢ such that either
g(x,t) =0or g(z,t) = f(x)+ 1 and whenever f(z) takes a value there is also a t with
g(z,t) = f(z)+1. Now one defines a new function 4 which is also primitive recursive
such that if g(x,t) = 0 then h(x,t) = a else h(z,t) = g(x,t) — 1. The range of h is A.

(¢) = (b): This follows by definition as every primitive recursive function is also
recursive.

220

(b) = (d): Given a function h whose range is A, one can make a register machine
which simulates h and searches over all possible inputs and checks whether A on these
inputs is x. If such inputs are found then the search terminates else the register
machine runs forever. Thus x € A iff the register machine program following this
behaviour terminates after some time.

(d) = (e): The domain of a register machine is the set of inputs on which it halts
and outputs a return value. Thus this implication is satisfied trivially by taking the
function for (e) to be exactly the function computed from the register program for

(d).

(e) = (f): Given a register program f whose domain A is according to (e), one takes
the function g as defined by Theorem 16.3 and this function indeed satisfies that f(x)
is defined iff there is a ¢ such that g(x,t) > 0.

(f) = (a): Given the function g as defined in (f), one defines that if there is a ¢ with
g(x,t) > 0 then f(z) = x else f(x) is undefined. The latter comes by infinite search
for a t which is not found. Thus the partial recursive function f has range A. 1

The many equivalent definitions show that they capture a natural concept. This is
formalised in the following definition (which could take any of the above entries).

Definition 16.5. A set is recursively enumerable iff it is the range of a partial
recursive function.

If a set is recursively enumerable there is a function which can enumerate the members;
however, often one wants the better property to decide the membership in the set.
This property is defined as follows.

Definition 16.6. A set L C N is called recursive or decidable iff the function x +—
L(zx) with L(z) =1 forx € L and L(x) = 0 for x ¢ L is recursive; L is undecidable or
nonrecursive iff this function is not recursive, that is, if there is no algorithm which
can decide whether x € L.

One can also cast the same definition in the symbolic model. Let ¥ be a finite
alphabet and A C X*. The set A is recursively enumerable iff it is the range of
a partial function computed by a Turing machine and A is recursive or decidable
iff the mapping = +— A(z) is computed by a Turing machine. There is a natural
characterisation. The next result shows that not all recursively enumerable sets are
decidable. The most famous example is due to Turing.

221

Definition 16.7: Halting Problem [83]. Let e,z — @ (z) be a universal partial
recursive function covering all one-variable partial recursive functions. Then the set
H = {(e,z) : ¢.(x) is defined} is called the general halting problem and K = {e :
we(€)} is called the diagonal halting problem.

The name stems from the fact that Turing considered universal partial recursive func-
tions which are defined using Turing machines or register machines or any other such
natural mechanism. Then ¢, (z) is defined iff the e-th register machine with input x
halts and produces some output.

Theorem 16.8: Undecidability of the Halting Problem [83]. Both the diag-
onal halting problem and the general halting problem are recursively enumerable and
undecidable.

Proof. It is sufficient to prove this for the diagonal halting problem. Note that Turing
[83] proved that a universal function like e,z — @.(x) exists, that is, that one can
construct a partial recursive function which simulates on input e and x the behaviour
of the e-th register machine with one input. Let F(e, z) be this function. Furthermore
let Halt(e) be a program which checks whether p.(e) halts; it outputs 1 in the case
of “yes” and 0 in the case of “no”. Now one can make the following register program
using F and Halt as macros.

Line 1: Function Diagonalise(R;);

Line 2: Ry = 0;

Line 3: If Halt(R;) = 0 Then Goto Line 5;
Line 4: Ry = F(Ry, Ry) + 1;

Line 5: Return(Ry).

Note that Diagonalise is a total function: On input e it first checks whether ¢, (e)
is defined using Halt. If not, Diagonalise(e) is 0 and therefore different from ¢ (e)
which is undefined.l If yes, Diagonalise(e) is @¢(€) 4+ 1, as ¢.(e) can be computed by
doing the simulation F(e,e) and then adding one to it. So one can see that for all
e, the function ¢, differs from Diagonalise on input e. Thus Diagonalise is a register
machine having a different input/output behaviour than all the functions .. Thus
there are three possibilities to explain this:

1. The list @q, 1, . . . captures only some but not all functions computed by register
machines;

2. The simulation F(e, e) to compute ¢, (e) cannot be implemented,;

3. The function Halt(e) does not always work properly, for example, it might on
some inputs not terminate with an output.

222

The first two items — that register machines cover all partial-recursive functions and
that the universal simulating register machine / partial recursive function exists —
has been proven before by many authors and is correct. Thus the third assumption,
that the function Halt exists and is total and does what it promises, must be the
failure. This gives then Turing’s result on the unsolvability of the halting problem.

The halting problem is recursively enumerable — see Entry (d) in Theorem 16.4
and the fact that there is a register machine computing e +— ¢.(e) — and therefore
it is an example of a recursively enumerable set which is undecidable. This notion is
formalised in the following definition. [

There is a close connection between recursively enumerable and recursive sets.
Theorem 16.9. A set L is recursive iff both L and N— L are recursively enumerable.
Exercise 16.10. Prove this characterisation.

Exercise 16.11. Prove that the set {e : v.(2e + 5) is defined} is undecidable.
Exercise 16.12. Prove that the set {e : p.(e* + 1) is defined} is undecidable.

Exercise 16.13. Prove that the set {e : ¢.(e/2) is defined} is undecidable. Here e/2
is the downrounded value of e divided by 2, so 1/2 should be 0 and 3/2 should be 1.

Exercise 16.14. Prove that the set {x* : x € N} is recursively enumerable by proving
that there is a register machine which halts exactly when a number is square.

Exercise 16.15. Prove that the set of prime numbers is recursively enumerable by
proving that there is a register machine which halts exactly when a number is prime.

Exercise 16.16. Prove that the set {e : p.(e/2) is defined} is recursively enumerable
by proving that it is the range of a primitive recursive function. Here e/2 is the
downrounded value of e divided by 2, so 1/2 should be 0 and 3/2 should be 1.

Exercise 16.17. Prove or disprove: Every recursively enumerable set is either () or
the range of a function which can be computed in polynomial time.

Exercise 16.18. Prove or disprove: Every recursively enumerable set is either () or
the domain of a function f where the graph {(z, f(x)) : x € dom(f)} can be decided in
polynomial time, that is, given inputs x,y, one can decide in polynomial time whether

(z,y) = (z, f(x)).

Exercise 16.19. Prove or disprove: Every recursively enumerable set is either () or
the domain of a {0,1}-valued function f where the graph {(x, f(x)) : x € dom(f)}
can be decided in polynomial time.

223

17 Undecidable Problems

Hilbert posed in the year 1900 in total 23 famous open problems. One of them was
the task to construct an algorithm to determine the members of a Diophantine set.
Among them are Diophantine sets. These sets can be defined using polynomials,
either over the integers Z or over the natural numbers N. Let P(B) be the set of all
polynomials with coefficients from B, for example, if B = {0, 1,2} then P(B) contains
polynomials like 1 -1 + 2 - zow3 + 1 - 3.

Definition 17.1. A C N is Diophantine iff one of the following equivalent conditions
are true:

(a) There are n and a polynomials p(x,y1, ..., Yn), ¢(x,y1, ..., yn) € P(N) such that,
for all z € N,

r€AS Iy, yn €N, y1, .- Yn) = (2, Y1, -, Yn)];
(b) There are n and a polynomial p(z,y1,...,Yn) € P(Z) such that, for all x € N,
reAs Iy, ...,y € Npx,y1,...,yn) =0
(c) There are n and a polynomial p(x,y1,...,ys) € P(Z) such that, for all x € N,
r€e€AS Iy, ..., yn €ELp(x,y1,...,yn) =0];
(d) There are n and a polynomial p(y1, - ..,yn) € P(Z) such that, for all x € N,
r€e€AS Iy, ...,y €EZLp(Y1,...,Yn) =z,

that is, A is the intersection of N and the range of p.

Proposition 17.2. The conditions (a) through (d) in Definition 17.1 are indeed all
equivalent.

Proof. (a) = (b): The functions p, ¢ from condition (a) have natural numbers as
coefficients; their difference has integers as coefficients and (p — q)(z,y1,-..,Yn) =

0<:>p<x7y17“'7yn) ZQ(nyla"wyn)'

(b) = (c): The functions p from condition (b) is of the corresponding form, however,
the variables have to be quantified over natural numbers in (b) while over integers in
(c). The way out is to use the following result from number theory: Every natural
number is the sum of four squares of natural numbers; for example, 6 =0+ 1+ 1+4.
Furthermore, as squares of integers are always in N, their sum is as well. So one can
write

224

There are n and a polynomial p(x,y1,...,y,) € P(Z) such that, for all

reN ze Aiff
Elzl? ceey Zan € Z [p(l‘, Z%"‘Z%"‘Zg*‘%%a ce 7Zzn—3+zzn—2+zin—1+”22n) = O]
Thus the function q(x, 21, ..., 24,) given as p(z, 27 + 22 + 25+ 23,..., 22 .+ 22 ,+

22 |+ 231) is then the polynomial which is sought for in (c).

(c) = (d): The functions p from condition (c) can be used to make the corresponding
condition for (d). Indeed, if p(x,y1,...,y,) = 0 then it follows that

Q(x7y17"'7yn> Il’—(l‘—i—l) '(p(xvyla"'ayn))2

takes the value x in the case that p(z,v1,...,y,) = 0 and takes a negative number
as value in the case that the polynomial p(x,y,...,y,) has the absolute value of at
least 1 and therefore also the square (p(z, 91, .. .,y,))? has at least the value 1. Thus
q can be used as the polynomial in (d).

(d) = (a): The functions p from condition (d) can be modified to match condition
(a) in three steps: First one replaces each input yy by zop_1 — 2o, Where 2951, 295 are
variables ranging over N. Second one forms the polynomial

(517 - P(Zl T R2,23 T Z4,---5%2n—1 — 22n))2

which takes as values only natural numbers and has as variables only natural numbers.
Now any polynomial equation mapping to 0 like

22 — Adxz + 4z + 4zf + 4z§ — 82129 =0

can be transformed to the equality of two members of P(N) by brining terms with
negative coefficient onto the other side:

2% 4+ dxze + 4zf + 423 = 4xz1 + 82125.
This then permits to choose the polynomials for (a). |

Example 17.3. The set of all composite numbers (which are the product of at least
two prime numbers) is Diophantine. So x is composite iff

=04yt +y -ty 4y tys i+ ul)

225

for some yy,...,ys € Z. Thus condition (d) shows that the set is Diophantine.
The set of all square numbers is Diophantine: x is a square iff x = y? for some ;.
The set of all non-square numbers is Diophantine. Here one could use condition
(b) best and show that x is a non-square iff

Jy1,y2, Y3 EN[ﬂczy%+1—|—y2 and = + y3 :y%—i—le]
which is equivalent to
1, v0, 3 EN[(i + 1+ —2)* + (x +ys — 5 — 2y1)> = 0].

This second condition has now the form of (b) and it says that z is properly between
y? and (y; + 1)? for some y;.

Quiz

(a) Which numbers are in the Diophantine set {x : Jy e N[z =4 -y + 2]} ?
(b) Which numbers are in the Diophantine set {x : Jy € N[z'® =17y +1]}?

Exercise 17.4. Show that the set of all x € N such that x is odd and x is a multiple
of 97 is Diophantine.

Exercise 17.5. Show that the set of all natural numbers which are multiples of 5 but
not multiples of 7 is Diophantine.

Exercise 17.6. Consider the set

{r € N:3y1,y0 € N[((2y1 +3) - y2) — 2 = 0]}
This set is Diophantine by condition (b). Give a verbal description for this set.
Proposition 17.7. Fvery Diophantine set is recursively enumerable.

Proof. If A is Diophantine and empty, it is clearly recursively enumerable. If A
is Diophantine and non-empty, consider any a € A. Furthermore, there is a poly-
nomial p(x,y1,...,y,) in P(Z) such that x € A iff there are yy,...,y, € N with
p(z,y1,...,yn) = 0. One can now easily build a register machine which does the
following on input z,yy,...,yn: If p(x,y1,...,y,) = 0 then the register machine out-
puts x else the register machine outputs a. Thus A is the range of a total function
computed by a register machine, that is, A is the range of a recursive function. It
follows that A is recursively enumerable. |

226

Proposition 17.8. If A, B are Diophantine sets so are AU B and AN B.
Proof. There are an n, m and polynomials p,q in P(Z) such that

r€AS Iy, ..., yn € Np(z,y1,...,yn) = 0]

and

r€B& 3z, . 2m €Nlg(z,21,. .., 2m) = 0]
These two conditions can be combined. Now z is in AU B iff p(z,y1,...,9n) -
q(z, 21, .., 2m) = 0 for some y1,...,Yn, 21, ..., 2m € N; the reason is that the prod-
uct is 0 iff one of the factors is 0. Furthermore, x € AN B iff (p(z,y1,...,9n))* +
(q(z, 21, ..., 2m))? =0 for some yy,...,¥Yn, 21, ., 2m € N; the reason is that this sum

is 0 iff both subpolynomials p, ¢ evaluate to 0, that is, x is in both sets; note that
the variables to be quantified over are different and therefore one can choose them
independently from each other in order to get both of p,q to be 0 in the case that
€ ANB. 1

Exercise 17.9. Show that if a set A is Diophantine then also the set
B={zeN:3 e N[z +2)*+z € A]}
1s Diophantine.

David Hilbert asked in 1900 in an address to the International Congress of Math-
ematicians for an algorithm to determine whether Diophantine sets have members
and to check whether a specific x would be a member of a Diophantine set; this was
the tenth of his list of 23 problems he thought should be solved within the twenti-
eth century. It turned out that this is impossible. In the 1930ies, mathematicians
showed that there are recursively enumerable sets for which the membership cannot
be decided, among them Alan Turing’s halting problem to be the most famous one.
In 1970, Matiyasevich [56, 57] showed that recursively enumerable subsets of N are
Diophantine and thus there is no algorithm which can check whether a given z is a
member of a given Diophantine set; even if one keeps the Diophantine set fixed.

Theorem 17.10: Unsolvability of Hilbert’s Tenth Problem [56]. FEvery recur-
siwely enumerable set 1s Diophantine; in particular there are undecidable Diophantine
sets.

A general question investigated by mathematicians is also how to decide the correct-
ness of formulas which are more general than those defining Diophantine sets, that is,
of formulas which also allow universal quantification. Such lead to the definition of
arithmetic sets.

227

Definition 17.11.Arithmetic setsTa36 A set A C N is called arithmetic iff there is
a formula using existential (3) and universal (V) quantifiers over variables such that
all variables except for x are quantified and that the predicate behind the quantifiers
only uses Boolean combinations of polynomials from P(N) compared by < and = in
order to evaluate the formula; formulas can have constants denoting the corresponding
natural numbers, constants for 0 and 1 are sufficient.

The following examples are the starting point towards the undecidability of certain
arithmetic sets.

Example 17.12. The set P of all prime numbers is defined by
re€PSVy,zlx>1and (y+2)-(z2+2) # 1]
and the set T of all powers of 2 is defined by
reT & Vy,yIzlx>0and (z=y -y = (y=1lory=2-2))]
and, in general, the set E of all prime powers is defined by
(p,x) e ESVy,yIzp>landex>pand (z=y -y = (y=1lory=p-2))]

which says that (p,x) € E iff p is a prime number and z is a non-zero power of p. In
the last equations, F is a subset of N x N rather than N itself.

Example 17.13: Configuration and Update of a Register Machine [83]. The
configuration of a register machine at step t is the line number LN of the line to be
processed and the content Ry, ..., R, of the n registers. There is a set U of updates
of tuples of the form (LN, Ry,...,R,, LN, R},..., R, p) where such a tuple is in U
iff p is an upper bound on all the components in the tuple and the register program
when being in line number LN and having the register content Ry, ..., R, goes in one
step to line number LN’ and has the content R, ..., R]. Note that here upper bound
means “strict upper bound”, that is, LN < p and R; < p and ... and R, < p and
LN < pand R} <pand ... and R/ < p. Consider the following example program
(which is a bit compressed to give an easier formula):

Line 1: Function Sum(R;); Ry = 0; R3 = 0;
Line 2: Ry = Ry + R3; R3 = Rs + 1;

Line 3: If R3 < R; Then Goto Line 2;

Line 4: Return(Ry);

The set U would now be defined as follows:

228

(LN, Rl,RQ,Rg,LN/,R/17R/2,Ré,p) is in U iff

LN < pand Ry < pand Ry < pand R; < pand LN’ < pand R} <p
and R, < p and R, < p and

[(LN =1and LN’ =2 and R} = Ry and R, = 0 and R; = 0) or (LN =2
and LN’ =3 and R) = Ry and R, = Ry + Ry and R, = R+ 1) or

(LN = 3 and LN’ = 2 and R} = R} and R, = Ry and Ry = Rj3 and
Rs < Ry) or

(LN = 3 and LN’ = 4 and R} = Rj and R, = Ry and Ry = R3 and
Rs > Rl)]

Note the longer the program and the more lines it has, the more complex are the
update conditions. They have not only to specify which variables change, but also
those which keep their values. Such an U can be defined for every register machine.

Example 17.14: Run of a Register Machine. One could code the values of
the registers in digits step by step. For example, when all values are bounded by
10, for computing sum(3), the following sequences would permit to keep track of the
configurations at each step:

LN: 1232323234
R1: 3333333333
R2: 0000113366
R3: 0011223344

So the third column says that after two steps, the register machine is going to do
Line 3 and has register values 3,0,1 prior to doing the commands in Line 3. The last
column says that the register machine has reached Line 4 and has register values 3,6,4
prior to doing the activity in Line 4 which is to give the output 6 of Register Ry, and
terminate.

Now one could code each of these in a decimal number. The digit relating to
10" would have the configurations of the registers and line numbers at the beginning
of step t of the computation. Thus the corresponding decimal numbers would be
4323232321 for LN and 3333333333 for R, and 6633110000 for R, and 4433221100 for
R3. Note that the updates of a line take effect whenever the next step is executed.

In the real coding, one would not use 10 but a prime number p. The value of this
prime number p just depends on the values the registers take during the computation;
the larger these are, the larger p has to be. Now the idea is that the p-adic digits for
p! code the values at step ¢t and for p'*! code the values at step t + 1 so that one can
check the update.

Now one can say that the program Sum(z) computes the value y iff there exist
q,p, LN, Ri, Ry, R3 such that ¢ is a power of p and p is a prime and LN, Ry, Ry, R3

229

code a run with input x and output y in the format given by p, q. More precisely, for
given x,y there have to exist p,q, LN, Ry, Ry, R3 satisfying the following conditions:

(p,q) € E, that is, p is a prime and ¢ is a power of p;
Ri=ri-p+xand LN =rpy-p+1and p > x+ 1 for some numbers rx, 71;
Ry =¢q-y+ryand LN = q-4+rpy and p > y+4 for some numbers 9, 7 n < @;

- W=

For each p' < ¢ such that p’ divides g there are rpn, 71,72, 73, 77 Ny 71, Ty Th T A
ri oy g el e el such that
ery<pand LN =riy+p iy +p p-rin+0 0> 11y
ery<pand Ry=r +p -rvi+p -p-r'+p p* r{;
ery<pand Ro=ro+p -1rh+p p-ry+p-p*-rl;
e ry<pand Ry=ry+p -ry+p -p-ri+p-p’ry;
b (T/LN,Tll,T’IQ,Té,TZN,T/{,T’/ZI,Tg,p) ev.

This can be formalised by a set R of pairs of numbers such that (z,y) € R iff the
above described quantified formula is true. Thus there is a formula in arithmetics
on (N, +,+) using both types of quantifier (3,V) which is true iff the register machine
computes from input z the output y.

Furthermore, one can also define when this register machine halts on input = by
saying that the machine halts on z iff Jy [(z,y) € R].

This can be generalised to any register machine computation including one which
simulates on input e,z the e-th register machine with input = (or the e-th Turing
machine with input x). Thus there is a set H definable in arithmetic on the natural
numbers such that (e,z) € H iff the e-th register machine with input z halts. This
gives the following result of Turing.

Theorem 17.15: Undecidability of Arithmetics. The set of all true formulas
in arithmetic of the natural numbers with + and - using universal (V) and existential
(3) quantification over variables is undecidable.

Church [17] and Turing [83] also used this construction to show that there is no general
algorithm which can check for any logical formula, whether it is valid, that is, true in
all logical structures having the operations used in the formula. Their work solved the
Entscheidungsproblem of Hilbert from 1928. Note that the Entscheidungsproblem did
not talk about a specific structure like the natural numbers. Instead Hilbert asked
whether one can decide whether a logical formula is true in all structures to which
the formula might apply; for example, whether a formula involving + and - is true in
all structures which have an addition and multiplication.

One might ask whether every arithmetical set is at least recursively enumerable.

230

The next results will show that this is not the case; for this one needs the following
definition.

Definition 17.16. A set I C N is an index set iff for all d,e € N, if pg = . then
either d, e are both in I or d,e are both outside I.

The definition of an index set has implicit the notion of the numbering on which it is
based. For getting the intended results, one has to assume that the numbering has a
certain property which is called “acceptable”.

Definition 17.17: Acceptable Numbering [34]. For index sets, it is important
to see on what numbering they are based. Here a numbering is a two-place function
e,x — @(x) of functions ¢, having one input which is partial recursive (in both e
and x). A numbering ¢ is acceptable iff for every further numbering v there is a
recursive function f such that, for all e, 1. = @y«). That is, f translates “indices” or
“programs” of ¢ into “indices” or “programs” of ¢ which do the same.

The universal functions for register machines and for Turing machines considered
above in these notes are actually acceptable numberings. The following proposition
is more or less a restatement of the definition of acceptable.

Proposition 17.18. Let ¢ be an acceptable numbering and f be a partial-recursive
function with n 4+ 1 inputs. Then there is a recursive function g with n inputs such
that

velv e 76717 x [f(617 st 76717 l’) = Spg(el,uqen)(x)}

equality means that either both sides are defined and equal or both sides are undefined.

This proposition is helpful to prove the following theorem of Rice which is one of the
milestones in the study of index sets and undecidable problems. The proposition is in
that proof mainly used for the parameters n = 1 and n = 2. For the latter note that
e1,e9 > (e1+ e) - (e1 +ex+ 1)/2+ ey is a bijection from N x N to N and it is easy
to see that it is a recursive bijection, as it is a polynomial. Now given f with inputs
e1, e, x, one can make a numbering ¢ defined by

w(61+62)~(61+62+1)/2+ez (CC) = f(€1, 62795)

and then use that due to ¢ being acceptable there is a recursive function g with

Ve = Py(e)
for all e. Now let g(e1,es) = g((e1 + e2) - (e1 + €2+ 1)/2 + e3) and it follows that

Ver, e, x [f(elv €2,T) = 909(61,62)(5”)]

231

where, as usual, two functions are equal at given inputs if either both sides are de-
fined and take the same value or both sides are undefined. The function g is the
concatenation of the recursive function g with a polynomial and thus recursive.

Theorem 17.19: Rice’s Characterisation of Index Sets [70]. Let ¢ be an
acceptable numbering and I be an index set (with respect to).

(a) The set I is recursive iff I =0 or I =N.

(b) The set I is recursively enumerable iff there is a recursive enumeration of finite
lists (x1, Y1, .., Tn, Yn) of conditions such that every index e satisfies that e € I iff
there is a list (x1,Y1,...,%n, Yn) in the enumeration such that, form =1,... n,
Ye(Tm) 18 defined and equal to Yy, .

Proof. First one looks into case (b) and assume that there is an enumeration of
the lists (21,41, ..., Zn, yn) such that each partial function in I satisfies at least the
conditions of one of these lists. Now one can define that f(d,e) takes the value e in
the case that p.(z1) = y1,. .., pe(Tn) = yy, for the d-th list (z1,91,...,%n, yn) in this
enumeration; in the case that the d-th list has the parameter n = 0 (is empty) then
f(d,e) = e without any further check. In the case that the simulations for one x,, to
compute ¢ (x,,) does not terminate or gives a value different from vy, then f(d,e) is
undefined. Thus the index set I is range of a partial recursive function and therefore
I is recursively enumerable.

Now assume for the converse direction that I is recursively enumerable. Let
Time(e, x) denote the time that a register machine needs to compute @.(z); if this
computation does not halt then Time(e, x) is also undefined and considered to be 0o so
that Time(e, x) >t for all t € N. Note that the set of all (e, z,t) with Time(e,z) <t
is recursive.

Now define f(i, j,) as follows: If Time(i,x) is defined and it furthermore holds
that Time(j,7) > Time(i,z) + x then f(i,7,2) = pi(x) else f(i, 7, x) remains unde-
fined.

The function f is partial recursive. The function f does the following: if ¢;(x)
halts and furthermore ¢;(j) does not halt within Time(i, x) 4z then f(i, j, z) = ¢;(z)
else f(i,7,) is undefined. By Proposition 17.18, there is a function g such that

\V/Z,],I [Sﬁg(z,g)(x) = f(27]7 $)]

where again equality holds if either both sides of the equality are defined and equal
or both sides are undefined.
Now consider any ¢ € I. For all j with ¢;(j) being undefined, it holds that

Pi = Py(i.j)

232

and therefore g(7,j) € I. The complement of the diagonal halting problem is not
recursively enumerable while the set {j : g(7,7) € I} is recursively enumerable; thus
there must be a j with ¢(i,7) € I and ¢;(j) being defined. For this j, it holds that
g6 () is defined iff Time(e,x) + < Time(j,j). This condition can be tested
effectively and the condition is not satisfied for any x > Time(j, 7). Thus one can
compute an explicit list (z1,¥1,...,%n,Yn) such that g ;) (x) is defined and takes
the value y iff there is an m € {1,...,n} with = z,, and y = y,,. There is an
algorithm which enumerates all these lists, that is, the set of these lists is recursively
enumerable. This list satisfies therefore the following:

e If i € I then a there is a list (21,91, ..., Zn, Yn) enumerated such that ¢;(z;) =
Y1, - -, i(,) = yn; note that this list might be empty (n = 0), for example in
the case that ; is everywhere undefined;

o If (x1,41,...,%n,yn) appears in the list then there is an index ¢ € I such that
vi(x) is defined and equal to y iff there is an m € {1,...,n} with z,, = = and

Ym = Y-
What is missing is that all functions extending a tuple from the list have also their
indices in I. So consider any tuple (z1,y1,...,Zs,ys) in the list and any function

v; extending this tuple. Now consider the following partial function f": f'(j,xz) =y
iff either there is an m € {1,...,n} with z,, = x and vy, = y or ¢,(j) is defined
and ¢;(z) = y. There is a recursive function ¢’ with ¢y (x) = f'(j,z) for all
j,x; again either both sides of the equation are defined and equal or both sides are
undefined. Now the set {j : ¢’(j) € I} is recursive enumerable and it contains all j
with ¢;(j) being undefined; as the diagonal halting problem is not recursive, the set
{j : ¢'(j) € I} is a proper superset of {j : ¢;(j) is undefined}. As there are only
indices for two different functions in the range of g, it follows that {j : ¢’(j) € I} = N.
Thus ¢ € I and the set I coincides with the set of all indices e such that some finite
list (x1,Y1,---,%n, Yn) is enumerated with ¢.(x,,) being defined and equal to y,, for
all m € {1,...,n}. This completes part (b).

Second for the case (a), it is obvious that () and N are recursive index sets. So assume
now that [is a recursive index set. Then both I and N— I are recursively enumerable.
One of these sets, say I, contains an index e of the everywhere undefined function.
By part (b), the enumeration of conditions to describe the indices e in the index set
I must contain the empty list. Then every index e satisfies the conditions in this list
and therefore I = N. Thus () and N are the only two recursive index sets. [

Corollary 17.20. There are arithmetic sets which are not recursively enumerable.

Proof. Recall that the halting problem
H ={(e,z) : pe(z) is defined }

233

is definable in arithmetic. Thus also the set
{e:Vz[(e,x) € H|}

of indices of all total functions is definable in arithmetic by adding one more quantifier
to the definition, namely the universal one over all . If this set would be recursively
enumerable then there would recursive enumeration of lists of finite conditions such
that when a function satisfies one list of conditions then it is in the index set. However,
for each such list there is a function with finite domain satisfying it, hence the index
set would contain an index of a function with a finite domain, in contradiction to its
definition. Thus the set
{e:Vx|(e,x) € H]}

is not recursively enumerable. |

The proof of Rice’s Theorem and also the above proof have implicitly used the fol-
lowing observation.

Observation 17.21. If A, B are sets and B s recursively enumerable and if there is
a recursive function g with © € A < g(x) € B then A is also recursively enumerable.

Such a function g is called a many-one reduction. Formally this is defined as follows.

Definition 17.22. A set A is many-one reducible to a set B iff there is a recursive
function g such that, for all z, x € A & g(x) € B.

One can see from the definition: Assume that A is many-one reducible to B. If B
is recursive so is A; if B is recursively enumerable so is A. Thus a common proof
method to show that some set B is not recursive or not recursively enumerable is to
find a many-one reduction from some set A to B where the set A is not recursive or
recursively enumerable, respectively.

Example 17.23. The set F = {e : V even z [p.(z) is defined]} is not recursively
enumerable. This can be seen as follows: Define f(e,x) such that f(e,2x) = f(e,2z+
1) = @c(x) for all e,z. Now there is a recursive function g such that ¢4 (z) = f(e,)
for all z; furthermore, g (22) = @.(x) for all e, z. It follows that . is total iff @g
is defined on all even inputs. Thus the set of all indices of total functions is many-one
reducible to E via g and therefore E' cannot be recursively enumerable.

Example 17.24. The set F' = {e : ¢, is somewhere defined} is not recursive. There
is a partial recursive function f(e,z) with f(e,x) = p.(e) for all e,z and a recursive

234

function g with @y (x) = f(e,x) = @c(e) for all e. Now e € K iff g(e) € F and thus
F' is not recursive.

Theorem 17.25. Fvery recursively enumerable set is many-one reducible to the
diagonal halting problem K = {e : .(e) is defined}.

Proof. Assume that A is recursively enumerable. Now there is a partial recursive
function f such that A is the domain of f. One adds to f one input parameter which
is ignored and obtains a function f such that f(e,x) is defined iff e € A. Now there
is a recursive function g such that

Ve’ x [Spg(e)(go = f(@, x)]

If e € A then gy is total and g(e) € K; if e ¢ A then @y is nowhere defined and
g(e) ¢ K. Thus g is a many-one reduction from A to K. 1

Exercise 17.26. Show that the set F' = {e : ¢, is defined on at least one x} is
many-one reducible to the set {e : p.(x) is defined for exactly one input x}.

Exercise 17.27. Determine for the following set whether it is recursive, recursively

enumerable and non-recursive or even not recursively enumerable: A = {e : Vx [pe(x)
is defined iff p,(z + 1) is undefined)}.

Exercise 17.28. Determine for the following set whether it is recursive, recursively
enumerable and non-recursive or even not recursively enumerable: B = {e : There
are at least five numbers x where p.(x) is defined}.

Exercise 17.29. Determine for the following set whether it is recursive, recursively
enumerable and non-recursive or even not recursively enumerable: C' = {e : There are
infinitely many x where p.(x) is defined}.

Exercise 17.30. Assume that p. is an acceptable numbering. Now define 1 such

that
undefined if d=0 and x = 0;

V(dte)-(dtet1)/24e(T) = ¢ d—1 ifd >0 and z = 0;
©e() if x > 0.
Is the numbering ¢ enumerating all partial recursive functions? Is the numbering 1)
an acceptable numbering?

Exercise 17.31. Is there a numbering v with the following properties:

o The set {e: V. is total} is recursively enumerable;
o Fuvery partial recursive function . is equal to some Vq.

Prove the answer.

235

18 Undecidability and Formal Languages

The current section uses methods from the previous sections in order to show that
certain problems in the area of formal languages are undecidable. Furthermore, this
section adds another natural concept to describe recursively enumerable languages:
they are those which are generated by some grammar. For the corresponding con-
structions, the notion of the register machine will be adjusted to the multi counter
machine with respect to two major changes: the commands will be made much more
simpler (so that computations / runs can easily be coded using grammars) and the
numerical machine is adjusted to the setting of formal languages and reads the input
in like a pushdown automaton (as opposed to register machines which have the input
in some of the registers). There are one counter machines and multi counter machines;
one counter machines are weaker than deterministic pushdown automata, therefore
the natural concept is to allow several (“multi”) counters.

Description 18.1: Multi Counter Automata. One can modify the pushdown
automaton to counter automata, also called counter machines. Counter automata are
like register machines and Turing machines controlled by line numbers or states (these
concepts are isomorphic); the difference to register machines are the following two:

e The counters (= registers) have much more restricted operations: One can add
or subtract 1 or compare whether they are 0. The initial values of all counters
is 0.

e Like a pushdown automaton, one can read one symbol from the input at a time;
depending on this symbol, the automaton can go to the corresponding line. One
makes the additional rule that a run of the counter automaton is only valid iff
the full input was read.

e The counter automaton can either output symbols with a special command
(when computing a function) or terminate in lines with the special commands
“ACCEPT” and “REJECT” in the case that no output is needed but just a
binary decision. Running forever is also interpreted as rejection and in some
cases it cannot be avoided that rejection is done this way.

Here an example of a counter automaton which reads inputs and checks whether at
each stage of the run, at least as many 0 have been seen so far as 1.

Line 1: Counter Automaton Zeroone;

Line 2: Input Symbol — Symbol 0: Goto Line 3; Symbol 1: Goto Line 4; No further
Input: Goto Line 7;

Line 3: Ry = R; + 1; Goto Line 2;

Line 4: If Ry = 0 Then Goto Line 6;

236

Line 5:
Line 6:
Line 7:

Ry = Ry — 1; Goto Line 2;
REJECT;
ACCEPT.

A run of the automaton on input 001 would look like this:

Line: 1232324527
Input 0 0 1 -
R1: 0001122211

A run of the automaton on input 001111000 would look like this:

Line: 1

Input:

R1: 0

Note that in a run, the values of the register per cycle always reflect those before
going into the line; the updated values of the register are in the next columnl. The
input reflects the symbol read in the line (if any) where “-” denotes the case that the

2323245245246
0 O 1 1 1
0011222111000

input is exhausted.

Theorem 18.2. Register machines can be translated into counter machines.

Proof Idea. The main idea is that one can simulate addition, subtraction, assignment
and comparison using additional registers. Here an example on how to translate the
sequence Ry = Ry + R3 into a code segment which uses an addition register R, which

is 0 before and after the operation.

Line 1:
Line 2:
Line 3:
Line 4:
Line 5:
Line 6:
Line 7:
Line 8:
Line 9:
Line 10:
Line 11:
Line 12:

Operation R; = Ry + R3 on Counter Machine

If Ry =0 Then Goto Line 4;

R, = Ry — 1; Goto Line 2;

If Ry =0 Then Goto Line 6;

R, =R;+1; Ry = Ry — 1; Goto Line 4;

If R4 =0 Then Goto Line §;

Ri=Ri+1, Ro=Ry+1; Ry = Ry — 1; Goto Line 6;
If R3 =0 Then Goto Line 10;

R, = R4+ 1; R3 = R3 — 1; Goto Line 8§;

If R4 =0 Then Goto Line 12;

Ri=R;+1, R3=R3+1; Ry = Ry — 1; Goto Line 10;
Continue with Next Operation;

A further example is R; = 2 — Ry which is realised by the following code.

237

Line 1: Operation R; = 2 — Ry on Counter Machine
Line 2: If Ry = 0 Then Goto Line 4;
Line 3: Ry = R; — 1; Goto Line 2;
Line4: Ri =R+ 1; Ry = R, + 1;
Line 5: If Ry = 0 Then Goto Line 10;
Line 6: Ri =R, —1; Ry = Ry — 1;
Line 7: If Ry = 0 Then Goto Line 9;
Line 8: Ri = Ry — 1;
Line 9: Ry = Ry + 1;
Line 10: Continue with Next Operation;

Similarly one can realise subtraction and comparison by code segments. Note that
each time one compares or adds or subtracts a variable, the variable needs to be
copied twice by decrementing and incrementing the corresponding registers, as regis-
ters compare only to 0 and the value in the register gets lost when one downcounts it
to 0 so that a copy must be counted up in some other register to save the value. This
register is in the above example Ry. |

Quiz 18.3. Provide counter automaton translations for the following commands:

L4 R2:R2+3;
o Ry=Rs—2;
[J R1:2

Write the commands in a way that that 1 is subtracted only from registers if those are
not 0.

Exercise 18.4. Provide a translation for a subtraction: Ry = Ry — R3. Here the
result is 0 in the case that Rs is greater than Ry. The values of Ry, Rz after the
translated operation should be the same as before.

Exercise 18.5. Provide a translation for a conditional jump: If Ry < Ry then Goto
Line 200. The values of Ry, Ry after doing the conditional jump should be the same
as before the translation of the command.

Corollary 18.6. Fuvery language recognised by a Turing machine or a register ma-
chine can also be recognised by a counter machine. In particular there are languages
L recognised by counter machines for which the membership problem is undecidable.

Theorem 18.7. If K is recognised by a counter machine then there are deterministic
context-free languages L and H and a homomorphism h such that

K =h(LNH).

238

In particular, K 1is generated by some grammar.

Proof. The main idea of the proof is the following: One makes L and H to be
computations such that for L the updates after an odd number of steps and for H
the updates after an even number of steps is checked; furthermore, one intersects one
of them, say H with a regular language in order to meet some other, easy to specify
requirements on the computation.

Furthermore, h(LNH) will consist of the input words of accepting counter machine
computations; in order to achieve that this works, one requires that counter machines
read the complete input before accepting. If they read only a part, this part is the
accepted word, but no proper extension of it.

Now for the detailed proof, let K be the given recursively enumerable set and M
be a counter machine which recognises K. Let Ry, Rs,..., R, be the registers used
and let 1,2,...,m be the line numbers used. Without loss of generality, the alphabet
used is {0, 1}. One uses 0, 1 only to denote the input symbol read in the current cycle
and 2 to denote the outcome of a reading when the input is exhausted. For a line
LN € {1,2,...,m}, let 3%" code the line number. Furthermore, one codes as 4% the
current value of the counter where x = p?l -pQR2 ... pBand py,po, ..., p, are the
first n prime numbers. For example, if Ry = 3 and R3 = 1 and all other registers are
0 then x =23.3%.5.70. . =40. Thus the set I of all possible configurations is of
the form

I=10,1,2,¢}-{3,33,...,3"} - {4}F

where the input (if requested) is the first digit then followed by the line number
coded as 3%V then followed by the registers coded as 4%; note that x > 0 as it is the
multiplication of prime powers. Furthermore, let

J={v-w:v,w € I and w is configuration of next step after v}

be the set of all legal successor configurations. Note that J is deterministic context-
free: The pushdown automaton starts with S on the stack. It has several states
which permit to memorise the symbol read (if any) and the line number which is the
number of 3 until the first 4 comes; if this number is below 1 or above m the pushdown
automaton goes into an always rejecting state and ignores all further inputs. Then
the pushdown automaton counts the number of 4 by pushing them onto the stack.
It furthermore reads from the next cycle the input symbol (if any) and the new line
number and then starts to compare the 4; again in the case that the format is not
kept, the pushdown automaton goes into an always rejecting state and ignores all
further input. Depending of the operation carried out, the pushdown automaton
compares the updated memory with the old one and also checks whether the new line
number is chosen adequately. Here some representative sample commands and how
the deterministic pushdown automaton handles them:

239

Line 2: R, = Ry + 1;
In this case, one has that the configuration update must be of the form

{37} {4} {0,1,2,e} - {371} - {4}

and the deterministic pushdown automaton checks whether the new number of
3 is one larger than the old one and whether when comparing the second run
of 4 those are py times many of the previous run, that is, it would count down
the stack only after every pi-th 4 and keep track using the state that the second
number of 4 is a multiple of py.

Line i: Ry = Ry — 1,
In this case, one has that the configuration update must be of the form

{3i} -{4}*-{0,1,2,¢} - {3”1} . {4}93/1%

and the deterministic pushdown automaton checks whether the new number of
3 is one larger than the old one and whether when comparing the second run
of 4 it would count down the stack by p, symbols for each 4 read and it would
use the state to check whether the first run of 4 was a multiple of p; in order to
make sure that the subtraction is allowed.

Line ¢: If Ry = 0 then Goto Line j;
In this case, the configuration update must either be of the form

{3} - {4} -{0,1,2,¢e} - {37} - {4}"
with x not being a multiple of p; or it must be of the form
{3} - {4} -{0,1,2,} - {3} - {4}

with x being a multiple of p,. Being a multiple of p, can be checked by using the
state and can be done in parallel with counting; the preservation of the value is
done accordingly.

Line 7: If input symbol is 0 then goto Line jo; If input symbol is 1 then goto Line
J1; If input is exhausted then goto Line js;
Now the configuration update must be of one of the form

w- {3} {4} {0,1,2,} - {37} - {4}

for some u € {0,1,2} and the deterministic pushdown automaton can use the
state to memorise u,7 and the stack to compare the two occurrences of 4%.
Again, if the format is not adhered to, the pushdown automaton goes into an
always rejecting state and ignores all future input.

240

One can see that also the language J* can be recognised by a deterministic pushdown
automaton, as the automaton, after processing one word from J, has in the case of
success the stack S and can now process the next word. Thus the overall language of
correct computations is

(Jr-(Iuf{ep))n(L-J-(ITU{e}))NR

where R is a regular language which codes that the last line number is that of a line
having the command ACCEPT and that the first line number is 1 and the initial value
of all registers is 0 and that once a 2 is read from the input (for exhausted input)
then all further attempts to read an input are answered with 2. So if the lines 5 and
8 carry the command ACCEPT then

R= ({34} - I* - {3°,3°} - {4}") N ({0,1, 3,4} - {2, 3,4}").

As the languages J* - (I U{e}) and I - J*- (I U {e}) are deterministic context-free,
one has also that L = J*- (I U{e}) and H = ({ - J*- (I U{e})) N R are deterministic
context-free.

Thus one can construct a context-sensitive grammar for H N L. Furthermore, let h
be the homomorphism given by h(0) =0, A(1) =1, h(2) =&, h(3) = ¢ and h(4) = ¢.
Taking into account that in an accepting computation v accepting a word w all the
input symbols are read, one then gets that h(v) = w. Thus h(L N H) contains all the
words accepted by the counter machine and K = h(L N H). As L N H are generated
by a context-sensitive grammar, it follows from Proposition 4.12 that A(L N H) is
generated by some grammar. [

Exercise 18.8. In the format of the proof before and with respect to the sample
multi counter machine from Definition 18.1, give the encoded version (as word from
{0,1,2,3,4}") of the run of the machine on the input 001.

Exercise 18.9. In the format of the proof before and with respect to the sample
multi counter machine from Definition 18.1, give the encoded version (as word from
{0,1,2,3,4}") of the run of the machine on the input 001111000.

Theorem 18.10. A set K C X* is recursively enumerable iff it is generated by some
grammar. In particular, there are grammars for which it is undecidable which words
they generate.

Proof. If K is generated by some grammar, then every word w has a derivation
S = vy = vy = ... = v, in this grammar. It is easy to see that an algorithm
can check, by all possible substitutions, whether v,, = v,,;1. Thus one can make a

241

function f which on input S = v; = v9 = ... = v,, checks whether all steps of the
derivation are correct and whether v, € ¥* for the given alphabet; if these tests are
passed then the function outputs v, else the function is undefined. Thus K is the
range of a partial recursive function.

The converse direction is that if K is recursively enumerable then K is recognised
by a Turing machine and then K is recognised by a counter automaton and then K
is generated by some grammar by the previous theorem. [

Corollary 18.11. The following questions are undecidable:

e Given a grammar and a word, does this grammar generate the word?

e Given two deterministic context-free languages by deterministic push down au-
tomata, does their intersection contain a word?

e Given a contextl-free language given by a grammar, does this grammar generate
{0,1,2,3,4}*7

e Given a context-sensitive grammar, does its language contain any word?

Proof. One uses Theorem 18.7 and one lets K be an undecidable recursively enu-
merable language, say a suitable encoding of the diagonal halting problem.

For the first item, if one uses a fixed grammar for K and asks whether an in-
put word is generated by it, this is equivalent to determining the membership in the
diagonal halting problem. This problem is undecidable. The problem where both,
the grammar and the input word, can be varied, is even more general and thus also
undecidable.

For the second item, one first produces two deterministic pushdown automata for
the languages L and H. Second one considers for an input word w = by ...b, € {0,1}"
the set

Ry = (3,4} - {b} - {3, 43 - {b} - ... - {3,4)* - {b,) - {2,3,4}".

and notes that L " H N R, only contains accepting computations which read exactly
the word w. One can construct a deterministic finite automaton for R,, and combine
it with the deterministic pushdown automaton for H to get a deterministic pushdown
automaton for H,, = H N R,,. Now the question whether the intersection of L and H,,
is empty is equivalent to whether there is an accepting computation of the counter
machine which reads the input w; this question cannot be decided. Thus the corre-
sponding algorithm cannot exist.

For the third item, note that the complement {0, 1,2,3,4}* — (LN H,) of LN H,,
equals to ({0,1,2,3,4}* — L)U ({0,1,2,3,4}* — H,). The two parts of this union are
deterministic context-free languages which have context-free grammars which can be

242

computed from the deterministic pushdown automata for L and H,,; these two gram-
mars can be combined to a context-free grammar for the union. Now being able to
check whether this so obtained context-free grammar generates all words is equivalent
to checking whether w ¢ K — what was impossible.

The fourth item is more or less the same as the second item; given deterministic
pushdown automata for L and H,, one can compute a context-sensitive grammar for
L N H,. Checking whether this grammar contains a word is as difficult as deciding
whether w € K, thus impossible. 1

The above proof showed that it is undecidable to check whether a context-free gram-
mar generates {0,1,2,3,4}*. Actually this is undecidable for all alphabets with at
least two symbols, so it is already undecidable to check whether a context-free gram-
mar generates {0, 1}*.

A further famous undecidable but recursively enumerable problem is the Post’s
Correspondence Problem. Once one has shown that this problem is undecidable, it
provides an alternative approach to show the undecidability of the above questions in
formal language theory.

Description 18.12: Post’s Correspondence Problem. An instance of Post’s
Correspondence Problem is a list (z1,y1), (x2,%2), - - -, (Zn, yn) of pairs of words. Such
an instance has a solution iff there is a sequence ki, ks, . . ., k,, of numbersin {1,... n}
such that m > 1 — so that the sequence is not empty — and

xklku te aTkm - yklka tte ykm’

that is, the concatenation of the words according to the indices provided by the
sequence gives the same independently of whether one chooses the z-words or the
y-words.

Consider the following pairs: (a,a), (a,amanap), (canal,nam), (man,lanac), (0,00),
(panama,a), (plan,nalp), This list has some trivial solutions like 1, 1,1 giving aaa for
both words. It has also the famous solution 2,4, 1,7, 1, 3,6 which gives the palindrome
as a solution:

a man a plan a canal panama
amanap lanac a nalp a nam a

The following instance of Post’s correspondence problem does not admit any solution:
(1,0), (2,135), (328,22222), (4993333434,3333), (8,999). The easiest way to see is that
no pair can go first: the x-word and the y-word always start with different digits.

Exercise 18.13. For the following version of Post’s Correspondence Problem, de-
termine whether it has a solution: (23,45), (2289,2298), (123,1258), (777,775577),
(1,9999), (11111,9).

243

Exercise 18.14. For the following version of Post’s Correspondence Problem, deter-
mine whether it has a solution: (1,9), (125,625), (25,125), (5,25), (625,3125), (89,8),
(998,9958).

Exercise 18.15. One application of Post’s Correspondence Problem is to get a proof
for the undecidability to check whether the intersection of two deterministic context-
free languages is non-empty. For this, consider an instance of Post’s Correspondence
Problem given by (z1,y1), ..., (ZTn,yn) and assume that the alphabet 3 contains the
digits 1,2,...,n,n + 1 plus all the symbols occurring in the x,, and y,,. Now let
L=A{knkpn...ki(n+ V)xgap, ... 2, :m >0 and ky, ko, ... ky € {1,...,n}} and
H = {knkn_1...ki(n + Dys,Yry - - Yg,, : m > 0 and ky, ko, ... ky € {1,...,n}}.
Show that L, H are deterministic context-free and that their intersection is non-empty
iff the given instance of Post’s Correspondence Problem has a solution; furthermore,
explain how the corresponding deterministic pushdown automata can be constructed
from the instance.

Description 18.16: Non-deterministic machines. Non-determinism can be re-
alised in two ways: First by a not determined transition, that is, a Goto command
has two different lines and the machine can choose which one to take or the Turing
machine has in the table several possible successor states for some combination where
it choses one. The second way to implement non-determinism is to say that a register
or counter has a value x and the machine replaces = by some arbitrary value from
{0,1,...,z}. In order to avoid too much computation power, the value should not
go up by guessing. Non-deterministic machines can have many computations which
either and in an accepting state (with some output) or in a rejecting state (where
the output is irrelevant) or which never halt (when again all contents in the machine
registers or tape is irrelevant). One defines the notions as follows:

e A function f computes on input x a value y iff there is an accepting run which
produces the output y and every further accepting run produces the same out-
put; rejected runs and non-terminating runs are irrelevant in this context.

e A set L is recognised by a non-deterministic machine iff for every x it holds that
x € L iff there is an accepting run of the machine for this input .

One can use non-determinism to characterise the regular and context-sensitive lan-
guages via Turing machines or register machines.

Theorem 18.17. A language L is context-sensitive iff there is a Turing machine
which recognises L and which modifies only those cells on the Turing tape which are
occupied by the input iff there is a non-deterministic register machine recognising the

244

language and a constant ¢ such that the register machine on any run for an input
consisting of n symbols never takes in its registers values larger than c".

These machines are also called linear bounded automata as they are Turing machines
whose workspace on the tape is bounded linearly in the input. One can show that
a linear bound on the input and working just on the cells given as an input is not
giving a different model. An open problem is whether in this characterisation the
word “non-deterministic” can be replaced by “deterministic”, as it can be done for
finite automata.

Theorem 18.18. A language L is reqular iff there is a non-deterministic Turing
machine and a linear bound a - n + b such that the Turing machine makes for each
input consisting of n symbols in each run at most a-n + b steps and recognises L.

Note that Turing machines can modify the tape on which the input is written while a
deterministic finite automaton does not have this possibility. This result shows that,
on a linear time constraint, this possibility does not help. This result is for Turing
machines with one tape only; there are also models where Turing machines have
several tapes and such Turing machines can recognise the set of palindromes in linear
time though the set of palindromes is not regular. In the above characterisation, one
can replace “non-deterministic Turing machine” by “deterministic Turing machine”;
however, the result is stated here in the more general form.

Example 18.19. Assume that a Turing machine has as input alphabet the decimal
digits 0,1,...,9 and as tape alphabet the additional blanc L. This Turing machine
does the following: For an input word w, it goes four times over the word from left
to right and replaces it a word v such that w = 3v + a for a € {0,1,2} in decimal
notation; in the case that doing this in one of the passes results in an a ¢ {0, 1,2}, the
Turing machine aborts the computation and rejects. If all four passes went through
without giving a non-zero remainder, the Turing machine checks whether the resulting
word is of the from the set {0}* - {110} - {0}* - {110} - {0}*.

One detail, left out in the overall description is how the pass divides by 3 when
going from the front to the end. The method to do this is to have a memory a which
is the remainder-carry and to initialise it with 0. Then, one replaces in each step the
current decimal digit b by the value (a - 10 + b)/3 where this value is down-rounded
to the next integer (it is from {0, 1,...,9}) and the new value of a is the remainder
of a- 10+ b by 3. After the replacement the Turing machine goes right.

Now one might ask what language recognised by this Turing machine is. It is the
following: {0}*-{891}-{0}*-{891}-{0}*. Note that 110 times 3* is 8910 and therefore
the trailing 0 must be there. Furthermore, the nearest the two blocks of 110 can be

245

is 110110 and that times 81 is 8918910. Thus it might be that there is no 0 between
the two words 891.

Exercise 18.20. Assume that a Turing machine does the following: It has 5 passes
over the input word w and at each pass, it replaces the current word v by v/3. In the
case that during this process of dividing by 3 a remainder different from 0 occurs for
the division of the full word, then computation is aborted as rejecting. If all divisions
go through and the resulting word v is w/3° then the Turing machine adds up the
digits and accepts iff the sum of digits is exactly 2 — note that it can reject once it
sees that the sum is above 3 and therefore this process can be done in linear time with
constant memory. The resulting language is reqular by Theorem 18.18. Determine a
reqular expression for this language.

Exercise 18.21. A Turing machine does two passes over a word and divides it the
decimal number on the tape each time by 7. It then accepts iff the remainders of the
two divisions sum up to 10, that is, either one pass has remainder 4 and the other
has remainder 6 or both passes have remainder 5. Note that the input for the second
pass is the downrounded fraction of the first pass divided by 7. Construct a dfa for
this language.

Exercise 18.22. Assume that a Turing machine checks one condition, does a pass
on the input word from left to right modifying it and then again checks the condition.
The precise activity is the following on a word from {0,1,2}*:

Initialise ¢ = 0 and update ¢ to 1 —c whenever a 1 is read (after doing the replace-
ment). For each symbol do the following replacement and then go right:

Ifc=0thenl1l —0,2—1,0—0;
Ifc=1thenl1l —2,2—20—1.

Here an example:

Before pass 0100101221010210
After pass 0011200222001220

The Turing machine accepts if before the pass there are an even number of 1 and
afterwards there are an odd number of 1.

Ezplain what the language recognised by this Turing machine is and why it s
reqular. As a hint: interpret the numbers as natural numbers in ternary representation
and analyse what the tests and the operations do.

246

Selftest 18.23. Provide a register machine program which computes the Fibonacci
sequence. Here Fibonacci(n) = n for n < 2 and Fibonacci(n) = Fibonacci(n — 1) +
Fibonacci(n — 2) for n > 2. On input n, the output is Fibonacci(n).

Selftest 18.24. Define by structural induction a function F' such that F'(o) is the
shortest string, if any, of the language represented by the regular expression o. For
this, assume that only union, concatenation, Kleene Plus and Kleene Star are per-
mitted to combine languages. If o represents the empty set then F(o) = oo. For

example, F({0011,000111}) = 4 and F({00,11}*) = 2.

Selftest 18.25. Construct a context-sensitive grammar for all words in {0} which
have length 2" for some n.

Selftest 18.26. Construct a deterministic finite automaton recognising the language
of all decimal numbers x which are multiples of 3 but which are not multiples of 10.
The deterministic finite automaton should have as few states as possible.

Selftest 18.27. Determine, in dependence of the number of states of a non-determi-
nistic finite automaton, the best possible constant which can be obtained for the
following weak version of the pumping lemma: There is a constant k£ such that, for
all words w € L with |w| > k, one can split w = zyz with y # € and zy*z C L. Prove
the answer.

Selftest 18.28. Which class C' of the following classes of languages is not closed un-
der intersection: regular, context-free, context-sensitive and recursively enumerable?
Provide an example of languages which are in C' such that their intersection is not in

C.

Selftest 18.29. Provide a homomorphism A which maps 001 and 011 to words which
differ in exactly two digits and which satisfies that hA(002) = h(311) and |h(23)| =
|h(32)].

Selftest 18.30. Translate the following grammar into the normal form of linear
grammars:

({5}, 10,1,2}, {S — 00511]222}, S).

Furthermore, explain which additional changes one would to carry out in order to
transform the linear normal form into Chomsky normal form.

Selftest 18.31. Consider the grammar

({8,7,UY,{0,1},{S — ST|TT|0,T — TU[UT|UU|1,U — 0}, S).

247

Use the algorithm of Cocke, Kasami and Younger to check whether 0100 is generated
by this grammar and provide the corresponding table.

Selftest 18.32. Let L be deterministic context-free and H be a regular set. Which
of the following sets is not guaranteed to be deterministic context-free: L - H, H - L,
LN H or LUH? Make the right choice and then provide examples of L, H such that
the chosen set is not deterministic context-free.

Selftest 18.33. Write a register machine program which computes the function
2+ 2%, All macros used must be defined as well.

Selftest 18.34. The universal function e, z — ¢.(x) is partial recursive. Now define
¥ as Y(e) = pe(px [pe(x) > 2€]); this function is partial-recursive as one can make
an algorithm which simulates ¢.(0), @.(1), ... until it finds the first z such that ¢, ()
takes a value y > 2e and outputs this value y; this simulation gets stuck if one of the
simulated computations does not terminate or if the corresponding input x does not
exist. The range A of 1) is recursively enumerable. Prove that A is undecidable; more
precisely, prove that the complement of A is not recursively enumerable.

Selftest 18.35. Let W, be the domain of the function ¢, for an acceptable numbering
o, 1, - - - of all partial recursive functions. Construct a many-one reduction g from

A = {e: W, is infinite}

to the set
B ={e: W, =N}

that is, g has to be a recursive function such that W, is infinite iff W) = N.

Selftest 18.36. Is it decidable to test whether a context-free grammar generates
infinitely many elements of {0}* - {1}*?

248

Solution for Selftest 18.23. The following register program computes the Fibonacci
sequence. Ry will carry the current value and R3, R4 the next two values where
R4 = Ry + R3 according to the recursive equation of the Fibonacci sequence. Rj is a
counting variable which counts from 0 to R;. When R; is reached, the value in R, is
returned; until that point, in each round, Rs3, R4 are copied into R,, R3 and the sum
R, = Ry 4+ Rj3 is updated.

Line 1: Function Fibonacci(R;);

Line 2: Ry = 0;
Line 3: R3 =1;
Line 4: R5 = 0;

Line 5: Ry = Ry + Rs;
Line 6: If R5 = Ry Then Goto Line 11;
Line 7: Ry = Rz;
Line 8: R3 = Ry;
Line 9: Rs = R5 + 1;
Line 10: Goto Line 5;
Line 11: Return(Ry).

Solution for Selftest 18.24. One can define F' as follows. For the base cases, F is
defined as follows:

o F(0) = oc;
o F({wy,wy,...,w,}) = min{|wy,|:m € {1,...,n}}.

In the inductive case, when F'(0) and F(7) are already known, one defined F'(c UT),
F(o-71), F(o*) and F(o™) as follows:

o If F(0) =00 then F(c UT) = F(7);
If F(1) = oo then F(o UT) = F(0);
If F(o) < oo and F(7) < oo then F(oc UT) = min{F (o), F(7)};
o If F(0) =00 or F(1) =00
then F(o-7) = 00
else F(o-7) = F(o)+ F(7);
e F(o*)=0;
e F(om) = F(o).

Solution for Selftest 18.25. The grammar contains the non-terminals S, T, U and
the terminal 0 and the start symbol S and the following rules: S — 0[00|70U, T' —

249

TV, VO — 00V, VU - 0U, T — W, W0 — 00W, WU — 00. Now S = TOU =
WOU = 00WU = 0000 generates 0*. Furthermore, one can show by induction
on n that S =* T0*'~'U = TV0*'~'U =* T0*""'2VU = T0>""'~'U and S =*
TO¥" U = W02"~1U =* 02" 2WU = 02""'. So, for each n, one can derive 02"
and one can also derive 0,00 so that all words from {0} of length 2" can be derived.

Solution for Selftest 18.26. The deterministic finite automaton needs to memorise
two facts: the remainder by three and whether the last digit was a 0; the latter needs
only to be remembered in the case that the number is a multiple of 3. So the dfa has
four states: s, qo, q1, g where s is the starting state and qg, q1, g2 are the states which
store the remainder by 3 of the sum of the digits seen so far. The transition from
state s or ¢, (a € {0,1,2}) on input b € {0,1,2,3,4,5,6,7,8,9} is as follows (where
also a = 0 in the case that the state is s):

e If a + bis a multiple of 3 and b = 0 then the next state is s;
e If a + b is a multiple of 3 and b # 0 then the next state is qo;
e If a + b has the remainder ¢ € {1,2} modulo 3 then the next state is g..

Furthermore, s is the start state and ¢q is the only accepting state.

Solution for Selftest 18.27. Assume that L is recognised by a non-deterministic
finite automaton having n states. Then the following holds: For every word w € L of
length n or more, one can split w = zyz such that y # ¢ and zy*z C L. For this one
considers an accepting run of the nfa on the word w which is a sequence qoq; . . . ¢, of
states where g, is the state after having processed m symbols, so qq is the initial state.
The state g, must be accepting. As there are n + 1 values qq,q1,...,q, but only n
states in the automaton, there are 4, j with 0 <7 < j < n such that ¢; = ¢;. Now let
be the first ¢ symbols of w, y be the next j —¢ symbols and z be the last n — j symbols
of w, clearly w = xyz and |y| = j —i > 0. It is easy to see that when y is omitted
then qoqi . .. ¢igj+1 - - - gn is a Tun of the automaton on zz and if y is repeated, one can
repeat the sequence from ¢;tog; accordingly. So qo...qi(giv1---¢;)%qjs1---qn is an
accepting run on zy3z. Thus all words in xy*z are accepted by the non-deterministic
finite automaton and zy*z C L.

Furthermore, there are for each n finite automata with n states which accept
all words having at most n — 1 symbols, they advance from one state to the next
upon reading a symbol and get stuck once all states are used up. Thus the pumping
constant cannot be n — 1, as otherwise the corresponding language would need to
have infinitely many words, as a word of length n — 1 could be pumped. So n is the
optimal constant.

Solution for Selftest 18.28. The context-free languages are not closed under in-
tersection. The example is the language {0"1"2" : n € N} which is the intersection of

250

the two context-free languages {0"1"2™ : n,m € N} and {0"1™2™ : n,m € N}. Both
languages are context-free; actually they are even linear languages.

Solution to Selftest 18.29. One can choose the homomorphism given by h(0) = 55,
h(1) = 66, h(2) = 6666 and h(3) = 5555. Now h(001) = 555566 and h(011) = 556666
so that they differ in two positions and h(002) = h(311) = 55556666. Furthermore,
|h(23)| = |h(32)] is true for every homomorphism and a vacuous condition.

Solution to Selftest 18.30. The grammar can be translated into the normal form
for linear grammars as follows: The non-terminals are S, S, 5", S, 8", T,T" and the
rules are S — 05|27, 8" — 05", S — S"1, 8" — S1, T = 27", T" — 2.

For Chomsky Normal form one would have to introduce two further non-terminals
V,W representing 0 and 1 and use that 7" — 2. Then one modifies the grammar
such that the terminals do not appear in any right side with two non-terminals. The
updated rules are the following: S — VS'|T'T, S' — VS", S" — S"W,6 " — SW,
T—->TT,T =2, V—=>0W—1.

Solution for Selftest 18.31. The given grammar is ({S,7,U},{0,1},{S — ST|T'T|
0,7 - TU|UT|\UU|1,U — 0}, 5). Now the table for the word 0100 is the following:

E1’4 — {S, T}
E,3={S5T} Esy={S,T}
Eio={ST} Ey3 ={T} Es,={T}
E171 = {S, U} E272 = {T} E373 == {S, U} E474 == {S, U}
0 1 0 0

As S € Ey 4, the word 0100 is in the language.

Solution for Selftest 18.32. If L is deterministic context-free and H is regular then
LNH, LUH and L-H are deterministic context-free. However, the set H - L might not
be deterministic context-free. An example is the following set: H = ({0}*-{1})U{e}
and L = {0"10" : n € N}. L is one of the standard examples of deterministic
context-free sets; however, when a deterministic pushdown automaton processes an
input starting with 010", it has to check whether the number of 0 before the 1 and
after the 1 are the same and therefore it will erase from the stack the information on
how many 0 are there. This is the right thing to do in the case that the input is from
{e} - L. However, in the case that the input is from {0}* - {1} - L, the deterministic
pushdown automaton has now to process in total an input of the form 0"10"10™ which
will be accepted iff n = m. The information on what n was is, however, no longer
available.

Solution for Selftest 18.33. One first defines the function Square computing x

x2.

251

Line 1: Function Square(R;);

Line 2: R3 =0;

Line 3: Ry = 0;

Line 4: Ry = Rs + Ry;

Line 5: R3 = R3+ 1;

Line 6: If R3 < Ry then goto Line 4;
Line 7: Return(R;).

Now one defines the function x — z8.

Line 1: Function Eightspower(R;);
Line 2: Ry = Square(Ry);

Line 3: R3 = Square(Ry);

Line 4: R4 = Square(R3);

Line 5: Return(Ry).

Solution for Selftest 18.34. First note that the complement of A is infinite: All
elements of AN {0,1,...,2e} must be from the finite set {¢(0),¢(1),...,9(e — 1)}
which has at most e elements, thus there must be at least e non-elements of A below
2e. If the complement of A would be recursively enumerable then N — A is the range
of a function ¢, which is defined for all . Thus ¢(e) would be @.(z) for the first
where ¢.(x) > 2e. As the complement of A is infinite, this x must exist. But then
¥(e) is in both: it is in A by the definition of A as range of ¢ and it is in the range
of ¢, which is the complement of A. This contradiction shows that the complement
of A cannot be the range of a recursive function and therefore A cannot be recursive.

Solution for Selftest 18.35. The task is to construct a many-one reduction g from
A = {e: W, is infinite} to the set B = {e: W, = N}.

For this task one first defines a partial recursive function f as follows: Let M be
a universal register machine which simulates on inputs e,z the function ¢.(z) and
outputs the result iff that function terminates with a result; if the simulation does
not terminate then M runs forever. Now let f(e,z) is the first number ¢ (found by
exhaustive search) such that there are at least x numbers y € {0, 1,...,t} for which
M (e, y) terminates within ¢ computation steps. Note that f(e, z) is defined iff W, has
at least x elements. There is now a recursive function g such that g (z) = f(e, x)
for all e, z where either both sides are defined and equal or both sides are undefined.
If the domain W, of ¢, is infinite then g is defined for all x and Wy, = N; if the
domain W, of ¢, has exactly y elements then f(e,z) is undefined for all x > y and
Wy(e) is a finite set. Thus g is a many-one reduction from A to B.

252

Solution for Selftest 18.36. It is decidable: The way to prove it is to construct from
the given context-free grammar for some set L a new grammar for the intersection
LN{0}*-{1}*, then to convert this grammar into Chomsky Normal form and then to
run the algorithm which checks whether this new grammar generates an infinite set.

253

19 Regular Languages and Learning Theory

Angluin [3] investigated the question on how to learn a dfa by a dialogue between a
learner (pupil) and teacher. The learner can ask questions to the teacher about the
concept (dfa) to be learnt and the teacher answers. The learner can ask two types of
questions:

e [s the following dfa equivalent to the one to be learnt?
e Does the dfa to be learnt accept or reject the following word w?

The first type of questions are called “equivalence queries” and the second type of
questions are called “membership queries”. The teacher answers an equivalence query
either with “YES” (then the learner has reached the goal) or “NO” plus a counterex-
ample w on which the dfa given by the learner and the dfa to be learnt have different
behaviour; the teacher answers a membership query by either “YES” or “NO”.

Theoretically, the learner could just take a listing of all dfas and ask “Is dfa; cor-
rect?”, “Is dfag correct?”, “Is dfag correct?” ... and would need s equivalence queries
to find out whether dfa, is correct. This strategy is, however, very slow; as there are
more than 2" dfas with n states, one would for some dfas with n states need more
than 2™ queries until the dfa is learnt. Angluin showed that there is a much better
algorithm and she obtained the following result.

Theorem 19.1: Angluin’s algorithm to learn dfas by queries [3]. There is a
learning algorithm which has polynomial response time in each step and which learns
in time polynomaal in the number of states of the dfa to be learnt and the longest coun-
terexample given an arbitrary dfa using equivalence queries and membership queries.

Proof. A simplified version of Angluin’s algorithm is given. The idea of Angluin
is that the learner maintains a table (S, F,T) which is updated in each round. In
this table, S is a set of words which represent the set of states. E consists of all the
counterexamples observed plus their suffixes. S and E are finite sets of size polynomial
in the number and length of counterexamples seen so far and 7' is a function which
for all members w € S- FUS - % - E says whether the automaton to be learnt accepts
or rejects w.

Angluin defines the notion of a row: For u € SUS - X, let (vy,vg,...,vx) be a
listing of the current elements in £ and for each u € SUS -3, let the vector row(u) be
(T'(uvy), T'(uvy), ..., T(uvg)). The table (S, E,T) is called closed, if for every u € S
and a € ¥ there is a v’ € S with row(u’) = row(ua).

Now Anlguin defines for each closed (S, E, T the finite automaton DFA(S, E, T')
where the set of states is S, the alphabet is ¥ and the transition function finds to a
state u and a € ¥ the unique v’ € S with row(u') = row(ua). The starting state is

254

represented by the empty word € (which is in S). A state u is accepting iff T'(u) = 1.
Note that DFA(S, E, T') is complete and deterministic. The learning algorithm is now
the following.

Teacher has regular set L and learner makes membership and equivalence
queries.
. Initialise S = {¢} and E = {¢}.
For allw € S-EUS - X - E where T'(w) is not yet defined, make a
membership query to determine L(w) and let T'(w) = L(w).
3. If there are u € S and a € ¥ with row(ua) # row(w’) for all v’ € §
then let S = S U {ua} and go to 2.

N —

4. Make an equivalence query whether DFA(S, E, T) recognises L.
5. If the answer is “YES” then terminate with DFA(S, E,T).
6. If the answer is “NO” with counterexample w then let £ = E U {v :

Ju [uv = wl]} and go to 2.

Now one shows various properties in order to verify the termination of the algorithm
and the polynomial bounds on the number of membership and equivalence queries.
For this, assume that (Q,%,d,s, F') is the minimal dfa recognising L. Now various
invariants are shown.

If u,u' are different elements of S then §(s,u) # 0(s,u’) as there is a word v € E with
L(uv) # L(u'v). Hence |S| < |Q| throughout the algorithm.

If (S, E,T) is closed and w € E then the DFA accepts w iff w € L.

To see this, one does the following induction: Let w = ajay...a,. Clearly T'(w) =
L(w) by the corresponding membership query. For m = 0,1, ..., n, one shows that the
automaton is after processing ajas . . . a,, is in a state u,, with T'(t,ami10mio ... ay) =
T'(w). This is true for m = 0 as ug = ¢ is the initial state of DFA(S, £, T'). Assume now
that it is correct for m < n. Then u,,1 is the unique state in S with row(um4+1) =
row(Um@me1). It follows that T(upami1v) = T(Upme1v) for v = Gpiotmys ... Gy.
Hence the induction hypothesis is preserved and DFA(S, E, T') is after processing the
full word in a state u,, with T'(u,) = T'(w). This state is accepting iff T'(u,) = 1 iff
T(w) = 1. Hence DFA(S, E,T') is correct on w.

Assume that the algorithm has the parameters (S, E,T) before observing counterex-
ample w and has the parameters (S', E',T") after it has done all the updates before
the next equivalence query is made. Then S C S’.

Let rowg(u) and rowg (u) denote the rows of u based on E and E’; note that
E C FE' and therefore rowg(u) # rowg(v') = rowg(u) # rowg(u'). Now, as
DFA(S, E,T) # DFA(S, E',T") on w, the states in which these two automata are

255

after processing w must be different. As both dfas have the initial state €, there must
be a first prefix of the form ua of w such that the two automata are in different states
u',u" after processing ua. Now rowg(ua) = rowg(u’) and v’ € S and rowg (ua) =
rowg (u"). It cannot be that v” € S — {u'}, as then rowg(u”) # rowg(ua). Hence u”
must be a new state in 8’ — S and S C 5'.

Let r be the sum of all lengths of the counterexamples observed. The algorithm makes
at most |Q| equivalence queries and at most |Q|- (|2]|+1) - (r+1) membership queries.

As seen, |S| < |Q] throughout the algorithm. As each equivalence query increases
the size of S, there are at most |Q| equivalence queries. Furthermore, E contains all
non-empty prefixes of counterexamples observed plus ¢, hence |E| < r + 1. Now the
table T has at each time the domain S - FU S - ¥ - F what gives then the bound on
the number of membership queries.

The overall runtime of each update is polynomial in the size of the counterexamples
observed so far and in |Q|. So latest when |S| = |Q| the answer to the equivalence
query is “YES” and the learner has learnt the language L. |

Remark 19.2: Angluin’s original algorithm [3]. Angluin did not put the suffixes
of the counterexamples into £ but she put the prefixes of the counterexamples into S.
Therefore, S could contain words w, v’ with row(u) = row(u'). In order to avoid that
this is harmful, Angluin increased then E so long until the table T is consistent, that
is, if row(u) = row(u') then row(ua) = row(v'a) for all u,w’ € S and a € 3. This
consistency requirement was explicitly added into the algorithm. The verification of
the original algorithm is given in Angluin’s paper [3].
Teacher has regular set L and learner makes membership and equivalence
queries.

. Initialise S = {¢} and F = {¢}.
2. Forallwe §-EUS-Y-FE where T(w) is not yet defined, make a

membership query to determine L(w) and let T'(w) = L(w).
3. If there are u,u’ € S, a € ¥ and v € E such that row(u) = row(u’)

and T'(uav) # T'(u'av) then let £ = E U {av} and go to 2.
4. If there are u € S and a € ¥ with row(ua) # row(v') for all v’ € S

then let S = S U {ua} and go to 2.
5. Make an equivalence query whether DFA(S, E,T') recognises L.
If the answer is “YES” then terminate with DFA(S, E,T').
7. If the answer is “NO” with counterexample w then let S = SU {u :

Ju [uv = w|} and go to 2.

—_

&

Description 19.3: Learning from positive data [2, 4, 35]. Gold [35] introduced
a general framework of learning in the limit. His idea was that a learner reads more

256

and more data and at the same time outputs conjectures; from some time on, the
learner should always output the same correct conjecture. More precisely, the learner
consists of a memory mem and an update function uf. In each round, the update
function uf maps pairs (mem,x) consisting of the current memory and a current
datum z observed to pairs (mem’, e) where mem' is the new memory which is based
on some calculations and intended to have incorporated some way to memorise x and
where e is the conjectured hypothesis. In the case of learning regular languages, this
hypothesis could just be a dfa. Gold [35] observed already in his initial paper that
a class is unlearnable iff it contains an infinite set and all of its finite sets. As »*
and each of its finite subsets is regular, the class of regular sets is not learnable from
positive data. Nevertheless, one still might learn some subclasses of regular languages.

For this, one considers so called automatic families. An automatic family is given
by an index set I and a family of sets {L, : d € I} such that the relation of all (d,x)
with € L4 is automatic, that is, the set {conv(d,x) : d € I Nx € L} is a regular
set.

Here the size of the minimal index of each language is invariant up to a constant
with respect to different indexings. So given two indexed families {L, : d € I} and
{H. : e € J}, one can define the automatic functions ¢ : I — J and j : J — [with
i(d) = ming{e € J : H. = Lq} and j(e) = ming{d € I : Ly = H.}. Then there is a
constant k such that the following holds: if i(d) is defined then |i(d)| < |d| + k; if j(e)
is defined then [j(e)| < |e| + k. Hence the sizes of the minimal indices of a language
in both families differ at most by & [45].

The data on the language L to be learnt are presented in form of a text. A text
T for a language L is an infinite sequence of words and pause symbols # such that
L =A{w:w# #A3In[T(n) = w]}. The learner starts now with some fixed initial
memory memg and initial hypothesis e, say € and a hypothesis for the empty set. In
round n, the new memory and hypothesis are computed by the update function wuf:
(mempy1, €ns1) = uf (mem,, T(n)). The learner learns L using the hypothesis space
{Lg:d e I} iff there is a d € I with Ly = L and V*n [e,, = d].

Angluin [2] showed in a very general framework a learnability result which covers the
case of automatic families.

Theorem 19.4: Angluin’s tell-tale criterion [2]. An automatic family {Ly: d €
I} is learnable from positive data iff there is for every d € I a finite subset Fy C Ly
such that there is no further index e with Fy C L. C Lg.

Proof. Assume that {L; : d € I} has a learner. Blum and Blum [4] showed that
for each L, there must be a finite initial part 7°(0)7°(1)...7T(n) of a text for Ly
such that for every extension T'(n + 1)T'(n +2)...T(m) using elements from L, and

257

pause symbols # it holds that the learner conjectures an index for L, after processing
T(0)T(1)...T(m). If such an initial part would not exist, one could inductively define
a text T for L, on which the learner infinitely often outputs an index for a set different
from Ly Now Fy = {T(m) : m < n AT(m) # #}. This is obviously a subset of
Lg; furthermore, when seeing only data of Ly after this initial part 7(0)7'(1) ... T (n),
the learner outputs a conjecture for L4, hence the learner does not learn any proper
subset of Ly from a text starting with 7°(0)7°(1) ... T'(n). It follows that there cannot
be any e with F; C L, C L.

For the other direction, consider that the sets I} exist. Therefore the following
value f(d) is defined for every d € I:

f(d) = minll{b Veel [{ZL’ € Lg:x <y b} CL.CLyj=L,= Ld]}

Then it is clear that one can choose Fy = {x € Ly : x <;; f(b)}. One can first-order
define the subset-relation and equality-relation on sets:

LiCL. & Vr[re L= x¢€ L
Li=L. & Vx[ze€lsexeE L)

Hence the function f is first-order definable using automatic parameters and is auto-
matic. Thus one can make the following learning algorithm which for doing its search
archives all the data seen so far: mem,, is a list of data seen so far; e, is the least
member of I which satisfies that all elements of L, up to f(d) have been observed so
far and no non-elements of L, have been observed prior to round n; if such an index
does currently not exist, the learner can output ? in order to signal that there is no
valid hypothesis.

Assume that the learner reads a text for a language and that d is the minimal
index of this language. Assume that n is so large that the following condition are
satisfied:

e For every w € Ly with w <j; f(d) there is an m < n with T'(m) = w;
e For every e <; d with L, 2 L, there is an m < n with T'(m) € Ly — L.

Note that if e <;; d and L. D L4 then there must be an element w € L, — L, with
w <y f(e); this element does not appear in the text 7. Hence, for the n considered
above it holds that the hypothesis of the learner is d. Thus the learner converges on
the text T' to the minimal index d of the language described by the text T'; it follows
that the learner learns the family {L, : d € I'} from positive data. 1

This characterisation answers when a class is learnable in general. One could now
ask what additional qualities could be enforced on the learner for various classes. In

258

particular, can one make the update function uf automatic? Automatic learners are
defined as follows.

Description 19.5: Automatic learners [12, 44, 45]. An automatic learner is
given by its initial memory memy, initial hypothesis eq and the update function uf
which computes in round n from conv(mem,,, x,,) the new memory and the hypothesis,
represented as conv(memy, 11, €,4+1). An automatic learner for an indexed family {L, :
d € I} (which is assumed to be one-one) might use another hypothesis space {H. :
e € J} and must satisfy that there is an n with H,, = L; and e, € {e,,?} for all
m > n where 7 is a special symbol the learner may output if memory constraints do
not permit the learner to remember the hypothesis.

Memory constraints are there to quantify the amount of information which an
automatic learner is permitted to archive on data seen in the past. In general, this
data never permits to recover the full sequence of data observed, although it is in many
cases still helpful. The following memory constraints can be used while learning Ly
where the current conjecture of the learner is H,, , and where xg,x1,...,x, are the
data observed so far; 7 is the function with L;.) = H. for all e representing a language
in the class to be learnt.

None: The automaticity of uf gives that even in the absence of an explicit constraint
it holds that |mem,, 1| < max{|z,|, |mem,|} + k for some constant k and all
possible values of mem,, and x,,.

Word-sized: |mem,,,1| < max{|zo|, |z1|,.. ., |za|} + k for some constant k.
Hypothesis-sized: |mem,, 11| < |en41] + k for some constant k.

Original-hypothesis-sized: |mem,+1| < |i(en11)| + k for some constant k with the
additional constraint that i(e, 1) is defined, that is, H,, ,, must be in the class
to be learnt.

n+1

Target-sized: |memy 41| < |d| + k for some constant k.
Constant: mem,, 1 € C for a fixed finite set C' of possible memory values.
Memoryless: mem,, 1 = memy.

Note that target-sized always refers to the size of the original target; otherwise the
constraint would not be the same as hypothesis-sized, as the learner could use a
hypothesis space where every language has infinitely many indices and would choose at
every revision a hypothesis longer than the current memory size. Note that one could
fix the constant k to 1 for word-sized, hypothesis-sized, original-hypothesis-sized and

259

target-sized learners as one can adjust the alphabet-size and store the last k symbols in
a convolution of one symbol. As this would, however, make the construction of learners
at various times more complicated, it is easier to keep the constant k unspecified.

Furthermore, a learner is called iterative iff mem, = e, for all n and ¢ is a
hypothesis for the empty set (which is added to the hypothesis space, if needed).
Iterative learners automatically have a hypothesis-sized memory; furthermore, one
writes uf (e, T,) = e,41 in place of uf(e,, z,) = conv(e,i1,€,4+1) in order to simplify
the notation.

Example 19.6. If [is finite then there is a bound b such that for all different d, d’
there is an w <j; b which is in one but not both of L,, Ly. Hence one can make a
learner which memorises for every w <; b whether the datum w has been observed.
In the limit, the learner knows for every w <; b whether w € L, for the language Lq4
to be learnt and therefore the learner will eventually converge to the right hypothesis.
The given learner has constant-sized memory.

If one would require that the learner repeats the correct conjecture forever once it
has converged to the right index, then only finite classes can be learnt with constant-
sized memory. If one permits ? after convergence, then a memoryless learner can
learn the class of all Ly = {d} with d € I for any given infinite regular I: the learner
outputs d on datum d and ? on datum # and does not keep any records on the past.

Example 19.7. Assume that ¥ = {0,1
XAV Spep w} U {conv(3,3)} with Leonuww)y =
conv(v, w) € I. Note that Leonys,3) = 0.

This class has an iterative learner whose initial memory is conv(3,3). Once it sees
a word u € ¥*, the learner updates to conv(u, u). From that onwards, the learner up-
dates the memory conv(v,w) on any word u € ¥* to conv(mine,{u, v}, max,{u, w}).
This hypothesis always consists of the convolution of the lexicographically least and
greatest datum seen so far and the sequence of hypotheses has converged once the
learner has seen the lexicographically least and greatest elements of the set to be
learnt (which exist in all languages in the class to be learnt).

,2} and that I =
{u e ¥

{conv(v,w) : v,w €
20 Sper U <pep w} for all

Data seen so far Hypothesis Language of hypothesis
— conv(3,3) 0

conv(3,3) 0

00 conv(00,00) {00}

00 0000 conv(00,0000) | {00, 000,0000}

00 0000 1 conv(00,1) {u:00 <jep <pepp 1}
00 000010 conv(0,1) {u:0 <pep 0 <pep 1}

00 0000 1 0 112 conv(0,112) {u:0 <per v <pepp 112}
00 0000 1 0 112 011 | conv(0,112) {u:0 <jex v <pep 112}

260

Exercise 19.8. Make an automatic learner which learns the class of all Ly = {dw :
w € X'} with d € ¥*; that is, I = X* in this case.

Exercise 19.9. Assume that a class {Lq : d € I} is given with Ly # Ly whenever
d,d € I are different. Assume that an automatic learner uses this class as a hypothesis
space for learning satisfying any of the constraints given in Description 19.5. Let
{H. : e € J} be any other automatic family containing {Ly : d € I} as a subclass.
Show that there is an automatic learner satisfying the same type of memory constraints
conjecturing indices taken from J in place of I.

Theorem 19.10: Jain, Luo and Stephan [44]. Let I = ¥*, L. = X7 and
Ly ={w e ¥ :w <y d} forde Xt. The class {Ly : d € I} can be learnt using a
word-sized memory but not using an hypothesis-sized memory.

Proof. First assume by way of contradiction that a learner could learn the class
using some chosen hypothesis space with hypothesis-sized memory. Let T(n) be the
n-th string of ¥*. When learning from this text, the learner satisfies e,, = €,,,1 for
some n and all m > n; furthermore, H, = X7 for these m > n. Therefore, from n
onwards, all values of the memory are finite strings of length up to |e,| + k for some
constant k. There are only finitely many such strings and therefore there must be
m, k > n with mem,, = memy. If one now would change the text to T'(h) = ¢ for all
h > m or h > k, respectively, the learner would converge to the same hypothesis on
both of these texts, although it would be a text for either the first m + 1 or the first
k + 1 strings in >*. Thus the learner fails to learn at least one of these finite sets and
cannot learn the class.

Second consider a word-sized learner. This learner memorises the convolution of
the length-lexicographically least and greatest words seen so far. There are three
cases:

e In the case that no word has been seen so far, the learner outputs 7 in order to
abstain from a conjecture;

e In the case that these words are € and v, the learner conjectures Lgyce,(v) = {w:
e <y w <y v}

e In the case that the words v and v memorised are different from e, the learner
conjectures L, = 3T,

The memory of the learner is either a special symbol for denoting that no word (except
#) has been seen so far or the convolution of two words observed whose length is
bounded by the length of the longest word seen so far. Hence the memory bound of
the learner is satisfied. |

261

Theorem 19.11. Assume that ¥ = {0,1} and I = {0,1}* U {2,3} U {conv(v,w) :
v,w € {0,1}* Av <y w} where the convolution is defined such that this unions are
disjoint. Furthermore, let Ly = 0, Ly = ¥*, L, = {v} for v € ¥* and Leonyv,w) =
{v,w} for v,w € ¥* with v <y w. The class {Ly : d € I} can neither be learnt with
constant memory nor with target-sized memory. It can, however, be learnt using an
original-hypothesis-sized memory.

Proof. Assume that some learner with constant-sized memory learns this class. There
is a constant k so large that (1) |e,| < |x,|+k on datum x,, and at memory mem,, € C
and (2) | max(H,.)| < |e|+k whenever H, is finite. As C has only finitely many values,
this constant & must exist. Now assume that v is any member of ¥* and w € ¥* is
such that |w| > |v|+2k+1. Then, whenever the hypothesis e,, 1 is computed from e,,
and either v or #, the set H, ,, is neither {w} nor {v,w}. Hence, when the learner
sees w as the first datum, it must conjecture {w} as all subsequent data might by #
and {w} cannot be conjectured again. Furthermore, if the learner subsequently sees
only v, then it cannot conjecture {v, w}. Hence, either the learner does not learn {w}
from the text w, #, #, ... or the learner does not learn {v, w} from the text w, v, v,..;
thus the learner does not learn the given class.

As ¥* is in the class to be learnt and every data observed is consistent with the
possibility that »* is the language observed, every target-sized learner has at every
moment to keep the index shorter than the index of >* plus some constant, hence this
learner has actually to use constant-sized memory what is impossible by the previous
paragraph.

So it remains to show that one can learn the class by hypothesis-sized memory.
This is done by showing that the class has actually an iterative learner using I as hy-
pothesis space. Hence every hypothesis is from the original space and so the learner’s
memory is original-hypothesis-sized. Initially, the learner conjectures 2 until it sees a
datum v # #. Then it changes to conjecturing H, until it sees a datum w ¢ {#,v}.
Then the learner updates t0 Hcony(miny {v,w},maxy {v,w}))- L1e learner keeps this hypothe-
sis until it sees a datum outside {#, v, w}; in that case it makes a last mind change
to Hy = ¥*. It is easy to see that the learner is iterative and needs only the current
hypothesis as memory; furthermore, the learner is also easily seen to be correct. 1

Theorem 19.12. If a learner learns a class with target-sized memory then the
learner’s memory is also word-sized on texts for languages in the class.

Proof. Let a learner with target-sized memory be given and k be the correspond-
ing constant. Whenever the learner learns has seen examples xg,x1,...,x, when
|memy, 11| < |d| + k for all languages Ly which contain the data observed so far. Let
T, be the longest datum seen so far. Let e be the length-lexicographically first in-
dex with {zg,x1,...,2,} C L. U {#}. If e is shorter than some of the data then

262

|memy 1| < |zm| + k. Otherwise let € be the prefix of e of length |z,,|.

Consider the dfa which recognises the set {conv(d,x) : x € Ls}. Let C be the set
of those states which the automata takes on any u € L, with |u| < |¢/| after having
processed conv(€’,u); it is clear that the automaton will accept conv(e,w) iff it is in
a state in C' after processing conv(e’, u). Hence one can define an automatic function
fo such that fo(d') is the length-lexicographically least index d € I such that

Vu € ¥* with |u| < |d|
[u € Ly < the dfa has after processing conv(d’,u) a state in the set C]

Now fo(d') < |d'|+ k¢ for some constant ko and all d’ where fo(d') is defined. Let &/
be the maximum of all ko where C” ranges over sets of states of the dfa. Furthermore,
as fo(€') is defined and equal to e, one gets that |e| < |fo(e)| < || + K = |zn| + K
and |memy, 1| < |e| + k < |z;,| + k + k. The constant k + &’ is independent of the
language to be learnt and the text selected to present the data; hence the learner has
word-sized memory on all texts belonging to languages in the class. |

Remark 19.13. The result can be strengthed by saying whenever a class is learnable
with target-size memory then it is also learnable with word-size memory. Here the
strengthening is that the learner keeps the memory bound also on texts which are for
languages outside the class to be learnt.

For this, given an original learner having the word-size memory bound only on
languages in the class (with a constant k), one can make a new learner which either
has as memory conv(mem,,, x,,) where mem,, is the memory of the original learner
and x,, is the longest word seen so far or it has a special value 7. The initial memory
is conv(memg, #) and on word x,, it is updated from conv(mem,,, x,,) according to
that case which applies:

1. conv(memy1,) if |2,| < |Tm| and |memyi1| < |zpm| + k;
2. conv(memyy1,x,) if |x,] > |o,| and [memy, 1| < |z,| + k;
3. 7if [memy 41| > max{|zn|, |z.|} + k.

Here mem,,; is the memory computed from mem,, and x,, according to the original
learner. The hypothesis e, 1 of the original learner is taken over in the case that the
new memory is not 7 and the hypothesis is 7 in the case that the new memory is also
7. Note that the special case of the memory and hypothesis being 7 only occurs if the
original learner violates the word-size memory constraint and that only occurs in the
case that the text xg, x1,x9, ... is not for a language in the class to be learnt.

Exercise 19.14. Assume that {Lq : d € 1} is the class to be learnt and that every
language in the class is finite and that for every language in the class there is exactly

263

one index in I. Show that if there is a learner using word-sized memory for this class,
then the memory of the same learner is also target-sized. For this, show that there is
a constant k such that all d € I and x € Ly satisfy |x| < |d| + k and then deduce the
full result.

Exercise 19.15. Show that there is an automatic family {Lq : d € I} such that I
contains for each Lg exactly one index and the Ly are exactly the finite subsets of
{0}* with even cardinality. Show that the class {Ly : d € I} has an iterative learner
using the given hypothesis space. Is the same possible when the class consists of all
subsets of {0}* with 0 or 3 or 4 elements? Note that an iterative learner which just
conjectured an d € I must abstain from updating the hypothesis on any datum x € L.

Exercise 19.16. Is the family of all finite subsets of {0}*-{1}* an automatic family?
If so, then prouvide the corresponding index set and coding else explain why it cannot
be automatic.

Exercise 19.17. Is the family of an infinite regular set L and all subsets of up to
5 elements an automatic family? If so, then provide the corresponding index set and
coding else explain why it cannot be automatic.

Exercise 19.18. Is the family of all sets of decimal numbers which contain, for some
n > 0, ezxactly two digits each n times and all other digits 0 times, an automatic
family? If so, then provide the corresponding index set and coding else explain why it
cannot be automatic.

Exercise 19.19. Consider an automatic family {L. : e € I} such that for each two
distinct d,e € I either Ly C L., or L. C Lg holds. Furthermore, assume that for
each e there is a unique x. such that . € L, but x. ¢ Lq for any d with Ly C L,.
Prove that the mapping e — x. is automatic and provide an automatic learner for the
family.

Exercise 19.20. Given {Ly:d € I} and {L. : e € J} both satisfying the conditions
of Exercise 19.19, construct an automatic learner for the automatic family of all
Keonv(de) withd € I, e € J and Keoppae) = {02 : 20 € Lay U{ly 1y € H.}.

Exercise 19.21. Consider the classes

{L.:e {0} with L.={xe{0}" :]|el <|z|};
{H.:e e {0} with H.={xe€ {0} :|e|#|z|};
{K.:e€ {0} with K.={xe {0} :|e|>|z|}.

264

Which of these classes can be learnt with target-sized memory by an automatic learner?
Provide the corresponding automatic learners or write why they do not exist.

Exercise 19.22. Which of the classes in Fxercise 19.21 can be learnt with hypothesis-
sized memory? Provide the corresponding automatic learners or write why they do not
exist.

Exercise 19.23. Which of the classes in Fxercise 19.21 can be learnt with word-sized
memory? Provide the corresponding automatic learners or write why they do not exist.

Exercise 19.24. Provide an infinite class learnable with constant memory size but not
without any memory. Note that learners do not need to output the correct hypothesis
all the time, but can also intermediately output 7, provided that there is a time where
they output a correct hypothesis and that they do not output any other hypothesis
(except ?) afterwards.

265

20 Open Problems in Automata Theory

This chapter gives an overview of open problems in automata theory. First some
problems left open from research here in Singapore are given, afterwards more difficult,
generally open questions are presented.

First: Open Problems from Work in Singapore. There are various open ques-
tions related to the memory-usage of automatic learners. These questions have not
been solved in the past four years of research on automatic learning. The learners
below are always understood to be automatic.

Open Problem 20.1.

1. Does every automatic family which has an automatic learner also have a learner
with word-sized memory?

2. Does every automatic family which has a learner with hypothesis-sized memory
also have a learner with word-sized memory?

3. Does every automatic family which has a learner with hypothesis-sized memory
also have an iterative learner?

In recursion-theory and complexity theory, one often looks at reducibilities which com-
pare sets with functions, for example one has relations like

A<, B & 3fVr[A(x) = B(f(2))]

where the possible f are taken from a specific class. One could for example do the
same with automatic functions. These notions can be refined, for example one can
additionally ask that f has to be one-one. Then there are quite trivial examples of
incomparable sets: When one fizes the alphabet {0,1} then {0}* and 0*1 - {0, 1}* are
incomparable, as either an exponential set has to be one-one mapped into a linear-
sized one or the exponential complement of a set has to be one-one mapped into the
linear-sized complement of another set. Both cannot be done, as the image of an
exponentially growing set under an automatic function is again exponentially growing.
For this, recall that a set A is linear-sized iff there is a linear function f such that
A has at most f(n) elements shorter than n; similarly, one can define when A is
polynomial-sized and exponential-sized. Wai Yean Tan [80] worked with a slightly
modified version where he ignores the alphabet and defines the notions just restricted
to the sets to be compared.

266

Definition 20.2. Let A <,, B denote that there is an automatic function f such
that

Vr,y € Alf(x) # f(y) A f(z) € B].

Similarly one writes A <. B for the corresponding definition where f is any function
computed by a finite transducer.

Wai Yean Tan [80] investigated both notions. For his findings, one needs the following
notions: A set A has size ©(n*) iff there a constant ¢ such that up to length n there
are at least n*/c — c and at most n* - c+ c elements in A. A regular set is polynomial-
sized in the case that it has size ©(n¥) for some k; a regular set is exponential-sized
in the case that there is a constant ¢ such that A has at least 2/¢ — ¢ elements up to
length n for each n. Note that every regular set is either finite or polynomial-sized or
exponential-sized.

Theorem 20.3. Let A, B be regular sets.

1. The sets A, B are comparable for tr-reducibility: A <,. B or B <. A. Further-
more, A <;. B if one of the following conditions holds:

A, B are both finite and |A| < |B|;

A is finite and B infinite;

A has size ©(n*) and B has size ©(n") with k < h;
B is exponential-sized.

2. If A s polynomial-sized or finite then A <,, B or B <,, A. If A is of size
O(n*), B is of size O(n") and k < h then A <., B and B £, A.

Exercise 20.4. Make an automatic one-one function which maps the domain A =
0*(1* U 2*) to a subset of B = (0000)*(1111)*(2222)*, that is, show that A <., B.

The question on whether exponential-sized regular sets are always comparable with
respect to au-reducibility was left open and is still unresolved.

Open Problem 20.5: Tan [80]. Are there reqular sets A, B such that A £,, B and
B Lo A?

This open problem can be solved in the case that one considers context-free languages
in place of regular languages. Then A = {z-2 -y : x,y € {0,1}* and |z| = |y|} and
B = {0}*. There is no automatic function mapping A to B in a one-one way, as A is
exponential-sized and B is linear-sized. There is no automatic function mapping B to

267

A in a one-one way, as the range of this function would be an infinite regular set and
all words in the language would have exactly one 2 in the middle which contradicts
the regular pumping lemma. Hence these sets A and B are incomparable with respect
to au-reducibility.

One might also look at reducibilities which are not automatic but still sufficiently
easy. One of them is the self-concatenation mapping x to xx. There are two open
questions related to this reduction.

Open Problem 20.6: Zhang [806].

1. Gwen a regular language A, is there a reqular language B such that, for all x,
A(x) = B(zx)?

2. Given a context-free language A, is there a context-free language B such that,

for all z, A(x) = B(xx)?

The converse direction is well-known, see, for example, Zhang [86]: If B is regular
then the set A = {x : xz € B} is also regular. However, the set B = {0"1"2m0™ 12 :
n,m,k € N} is context-free while the corresponding A given as

A={x:zx e B} ={0"1"2" : n € N}

is not context-free; A is a standard example of a properly context-sensitive set.

Follow-up work by Fung [30] deals with the xm-reducibility. Here one maps z to
x - 2™ where the function z — 2™ maps an z to its mirror-image, so (01122123)™ =
32122110. Now one can show that for every regular set A there is a regular set B
such that A(x) = B(x - 2™). The set B is chosen as {u : there are an odd number of
pairs (y, z) with u = yz and y € A and z € A™}.

An ordered group (G, +, <, 0) satisfies besides the group axioms also the order axioms,
namely that z < y Ay < z implies z < z and that always exactly one of the three
options * < y, y < x and x = y. Furthermore, the group operation + has to be
compatible with the ordering <, that is, if x <y thenx+z <y+zand 24z < 24y
for all z,y, z. Jain, Khoussainov, Stephan, Teng and Zou [43] showed that a fully
automatic ordered group is always commutative. Furthermore, they investigated the
following problem which was first posed by Khoussainov.

Open Problem 20.7: Khoussainov [43]. Is there a fully automatic group (G,+)
isomorphic to the integers such that A = {x € G : x is mapped to a positive number
by the isomorphism} is not reqular?

Jain, Khoussainov, Stephan, Teng and Zou [43] showed that the corresponding ques-
tion can be answered positively if one takes GG to be isomorphic to the rationals with

268

denominators being powers of 6: G = {n/6™ : n € Z A m € N}. In this case one
can represent the fractional parts as a sum of a binary represented part n//2™ and
ternary represented part n”/3™" and one can do addition on such a representation
but one cannot compare the numbers with a finite automaton.

Second: Famous Open Problems. For a given dfa, a synchronising word w
such that for all states ¢, the resulting state d(g,w) is the same. Not every dfa has
a synchronising word, for example the dfa which computes the remainder by 3 of a
sequence of digits cannot have such a state. Cerny investigated under which conditions
a dfa has a synchronising word and if so, what the length of the shortest synchronising
word is. He got the following main result.

Theorem 20.8: Cerny [15]. For each n there is a complete dfa with n states which
has a synchronising word of length (n — 1)? and no shorter ones.

Example 20.9. The following automaton gives a dfa for which synchronising words
exist and have at least the length 4; note that it is not needed to designate any states
as starting or accepting, as this does not matter for the question investigated.

Now the word 0110 is a synchronising word which sends all states to r. For ease
of notation, let §(Q,w) = {J(p,w) : p € Q} for any set @) of states. Note that
d({q,r,s},1) = {q,r, s}, hence the shortest synchronising word has to start with 0.
Now 0({gq,r,s},0) = {r,s}. Note that 6({r, s},0) = {r, s}, hence the next symbol has
to be a 1 in order to achieve something and the synchronising word starts with 01 and
d({q,r,s},01) = {q,r}. As d({q,7},1) = {¢,s} and §({q,7},0) = {r, s}, there is no
synchronising word of length 3. However, 6({q,r, s},0110) = 6({q, s},0) = {r} and
0110 is a shortest synchronising word.

The next example is a complete dfa with n = 4 and alphabet {0, 1,2} for which a
synchronising word exist and each such word has at least length 9.

269

The synchronising word for this automaton is 012020120. Again it starts with a
0 and the next symbol has to be a 1 as all others leave the set of reached states
the same. The next symbol must be a 2, as a 1 or 0 would undo the modification
brought by 01, that is, §({¢,r, s,t},010) = 6({q,r, s,t},011) = 6({q,r,s,t},0). After
012 one can again apply 0 in order to reduce the number of alive states to two:
d({q,7,s,t},0120) = {q,t}. Now the next two symbols are 20 in order to move one
alive state away from ¢ and one gets 6({q,t},20) = {r,t}. Now §({r,t},12) = {s,t}
which is the only set of two alive states which can be mapped into one alive state.
This is done by applying 0, so that in summary §({q,, s,t},012020120) = {q}.

Upper bounds on the length of the shortest synchronising word are also known, how-
ever most likely they are not optimal and there is still a considerable gap between the
quadratic lower and cubic upper bound.

Theorem 20.10: Frankl [29]; Klyachko, Rystsov and Spivak [52]; Pin [67].
Assume a complete dfa has n states and has a synchronising word. Then it has a
synchronising word not longer than (n® —n)/6.

In the following, a weaker form of this theorem is proven with an easier to prove
cubic upper bound; this bound is weaker by a factor 3 plus a term of order O(n).
Let @@ be the set of states. If one has two states ¢,r and a word w longer than
n(n + 1)/2 4+ 1 such that 6({q,r}, w) consists of a single state, then there must be
a splitting of w into zyz with y # e such that either 6({¢,r},) = §({q,r},zy) or
d({q,r},) consists of a single state, as there are only n(n + 1)/2 many different
pairs of states. In both cases, d({q,r},zz) would also consist of a single state, so
that w can be replaced by a shorter word. Therefore one can find, inductively, words

270

Wy, Wa, . .., Wy_1 such that 0(Q, wiws ... w,,) has at most n — m states and each wy,,
has at most length n(n+1)/24 1. Then the overall length of the synchronising word
is at most n(n? —1)/2+n — 1 = (n®+n — 2)/2. For some small n it is known that
Cerny’s Conjecture is true.

Example 20.11. If n = 3 and the automaton has a synchronising word, then there
is a synchronising word of length up to 4.

Proof. Let ¢, 7, s be the states of the complete dfa. One can choose the first symbol
of a synchronising word such that at least two states get synchronised. That is,
d({q,r,s},v) C {q,r} for a single-letter word v, where ¢, r, s are some suitable naming
of the three states of the dfa. Now there are only three sets of two states, hence each
set of two states reachable from {¢, 7} can be reached in up to two symbols. Therefore,
a shortest synchronising word w for {g, 7} must have the property that no set of states
is repeated and therefore w has at most the length 3, that is, after the third symbol
the corresponding set of alive states has only one element. Thus §({q,r, s}, vw) has
one element and |vw| < 4. |

One can also show the conjecture for other small values of n; however, the full con-
jecture is still open.

Open Problem 20.12: Cerny’s Conjecture [15]. Cerny conjectured that if a
complete dfa with n states has synchronising words, then the shortest such word has
at most length (n — 1)%.

Exercise 20.13. Prove Cerny’s conjecture for n = 4; that is, prove that given a com-
plete dfa with four states which has a synchronising word, the shortest synchronising
word for this dfa has at most the length 9.

Another basic question in automata theory is that of the star height. If one permits
only the basic operations of forming regular expressions, namely union, concatenation
and Kleene star, one can introduce levels of star usage. Namely one does the following:

e Let Sy contain all finite languages, note that Sy is closed under union and
concatenation;

e For each n, let S, 1 contain all languages which can be formed by taking unions
and concatenations of languages of the form L or L* with L € §,,.

The star-height of a regular language L is the minimal n such that L € S,,. Here are
some examples.

e The language Lo = {0, 11,222,3333} is finite and has star-height 0;

271

e The language L; = {00, 11}* has star-height 1;
e The language Lo = ({00, 11}* - {22,33} - {00, 11}* - {22,33})* has star-height 2.

Eggan [23] investigated the star-height and provided a method to compute it from
the possible nfas which recognise a regular language. It is known that there are
infinitely many different levels of star-height a regular language can take. There is
a generalisation, called the generalised star-height. A language is called star-free if
it can be build from finite languages and ¥* using union, intersection, set difference
and concatenation. These languages are also called those of generalised star-height 0.
The languages of generalised star-height n + 1 are formed by all expressions obtained
by starting with languages of star-height n and their Kleene star languages and then
again combining them using union, intersection, set-difference and concatenation.
Here examples for the first two levels:

e The language {0, 1}* has generalised star-height 0, as

{o1r=x- |J ¥

acex—{0,1}
e [, from above has generalised star-height 1, as
L, ={00,11,22,33}* N {0,1}" - ({22,33} - {0,1}* - {22,33} - {0, 1}")"

and so Lo is the intersection of two languages of generalised star-height 1;

e Ly = {w : w does not have a substring of the form v} for a fixed v is of
generalised star-height 0 as Ly = X* — X" - v - X%

e [, ={w :w has an even number of 0} is of generalised star-height 1.

It is unknown whether every regular language falls into one of these two levels.

Open Problem 20.14. Are there any regular languages of generalised star-height 2%
Is there a maximal n such that reqular languages of generalised star-height n exist? If
so, what is this n?

Exercise 20.15. Determine the generalised star-height of the following languages
over the alphabet {0,1,2} — it is zero or one:

. {00, 11,22}* - {000, 111, 222}*;

{0,137 -2-{0,1}* - 2- {0, 1}*;
({0,132 {0,1}*-2- {0, 1}*)%
: ({07 1}* -2 {07 1}*)*;

- ({0,131 - 22),

T W N =

272

6. ({0,1}*-22)%;

7. (((00)*-11)* - 22)*.

In automatic groups one selects a subset G of words over the generators to represent
all group elements. However, one mostly ignores the words not in G. A central
question is how difficult the word problem is, that is, how difficult is it to determine
whether a word over the generators (including the inverses) represents a word w € G.
That is, if 3 denotes the generators then the word problem is the set {(v,w) : v €
¥ w € G,v = w as group elements}. One can show that the word problem can be
solved in polynomial time (PTIME) by the algorithm which starts with the memory u
being initialised as the neutral word ¢ and then reads out one symbol a after another
from v and updates u to the member of G representing u - a; these updates are all
automatic and one has to just invoke the corresponding automatic function |v| times.
There is a complexity class LOGSPACE in which one permits the algorithm to use
a work space of size logarithmic in the length of the input and to access the input
with pointers pointing on some positions and permitting to read the symbol where
they point to. These pointers can move forward or backward in the input, but not
be moved beyond the beginning and end of the input. Now the algorithm can run
arbitrary long but has to keep the memory constraint and at the end comes up with
the answer ACCEPT or REJECT. Although there is no time constraint, one can show
that the algorithm either needs polynomial time or runs forever, hence LOGSPACE is
a subclass of PTIME. An open problem is whether the word problem of an automatic
group can be solved in this subclass.

Open Problem 20.16. Is the word problem of each automatic group solvable in
LOGSPACE?

Note that a negative answer to this problem would prove that LOGSPACE # PTIME
what might even be a more difficult open problem. On the other hand, a positive
answer, that is, a LOGSPACE algorithm might be difficult to find, as people looked
for it in vane for more than 30 years. So this could be a quite hard open problem.

Widely investigated questions in automata theory is the complexity of membership
for the various levels of the Chomsky hierarchy. While for the level of regular language,
the usage of dfa provides the optimal answer, the best algorithms are not yet known
for the context-free and context-sensitive languages.

Open Problem 20.17. What is the best time complexity to decide the membership
of a context-free language?

Open Problem 20.18. Can the membership in a given context-sensitive language
be decided in deterministic linear space?

273

Both questions are algorithmically important. Cocke, Younger and Kasami provided
an algorithm which run in O(n?) to decide the membership of context-free languages.
Better algorithms were obtained using fast matrix multiplication and today bounds
around O(n*3®) are known. Concerning the context-sensitive membership problem,
it is known to be possible in O(n?) space and non-deterministically in linear space; so
the main question is whether this trade-off cen be reduced. These two problems are
also quite hard, as any progress which involves the handling of fundamental complex-
ity classes.

One topic much investigated in theoretical computer science is whether the iso-
morphism problem of certain structures are decidable and this had also been asked for
automatic structures. For many possible structures, negative answers were found as
the structures were too general. For example, Kuske, Liu and Lohrey [54] showed that
it is undecidable whether two automatic equivalence relations are isomorphic. On the
other hand, it is decidable whether a linear ordered set is isomorphic to the ratio-
nals: By the Theorem of Khoussainov and Nerode, one can decide whether sentences
formulated using the ordering in first order logic are true and therefore one checks
whether the following conditions are true: (a) There is no least element; (b) There
is no greatest element; (c) Between any two elements there is some other element. If
these are true, the corresponding linear order is dense and without end-points and
therefore isomorphic to the ordering of the rationals, as automatic linear orders have
always an at most countable domain. There are still some isomorphism problems for
which it is not known whether they can be decided.

Open Problem 20.19. Are there algorithms which decide the following questions,
provided that the assumptions are met?

1. Assume that (A, Succa, Pa) and (B, Succg, Pg) are automatic structures such
that (A, Succa) and (B, Succg) are isomorphic to the natural numbers with
successor and that Py and Pg are reqular predicates (subsets) on A and B. Is
(A, Succa, Pa) isomorphic to (B, Succg, Pg)?

2. Assume that (A,+) and (B,+) are commutative fully automatic groups. Is
(A, +) isomorphic to (B,+)?

An important open problem for parity games is the time complexity for finding the
winner of a parity game, when both players play optimally; initially the algorithms
took exponential time [59, 87]. Subsequently Petersson and Vorobyov [66] devised
a subexponential randomised algorithm and Jurdzinski, Paterson and Zwick [48] a
deterministic algorithm of similar complexity; here the subexponential complexity
was approximately n®™_ Furthermore, McNaughton [59] showed that the winner

274

of a parity game can be determined in time O(n™), where n is the number of nodes
and m the maximum value aka colour aka priority of the nodes. The following result
provides an improved subexponential bound which is also in quasipolynomial time.
For the below, it is assumed that in every node, a move can be made, so that the
parity game never gets stuck. Furthermore, log(h) = min{k € {1,2,3,...} : 2¥ > h},
so that the logarithm is always a non-zero natural number, what permits to use the
logarithm in multiplicative expressions without getting 0 as well as indices in arrays.

Theorem 20.20: Calude, Jain, Khoussainov, Li, Stephan [11]. One can
decide in alternating polylogarithmic space which player has a winning strategy in a
giwven parity game. When the game has n nodes and the values of the nodes are a
subset of {1,2,...,m} then the algorithm can do this in O(log(n)-log(m)) alternating
space.

Proof. The idea of the proof is that the players move around a marker in the game as
before; however, together with the move they update two winning statistics, one for
Anke and one for Boris, such that whenever one player follows a memoryless winning
strategy for the parity game then this winning statistic will mature (indicating a win
for the player) while the winning statistic of the opponent will not mature (and thus
not indicate a win for the opponent). It is known that every parity game has for one
player a memoryless winning strategy, that is, the strategy tells the player for each
node where to move next, independent of the history. The winning statistic of Anke
has the following goal: to track whether the game goes through a cycle whose largest
node is a node of Anke. Note that if Anke follows a memoryless winning strategy
then the game will eventually go through a cycle and the largest node of any cycle
the game goes through is always a node of Anke’s parity; it will never be a node of
Boris’ parity, as then Anke’s strategy would not be a memoryless winning strategy
and Boris could repeat that cycle as often as he wants and thus obtain that a node
of his parity is the limit superior of the play.

The naive method to do the tracking would be to archive the last 2n 4+ 1 nodes
visited, however, this takes O(n-log(n)) space and would be too much for the intended
result. Thus one constructs a winning statistic which still leads to an Anke win in
the case that Anke plays a memoryless winning strategy, however, it will take longer
time until it verifies that there was a loop with an Anke-node as largest member, as
the winning statistic only memorises partial information due to space restrictions.

Nodes with even value are called Anke-nodes and nodes with an odd value are
called Boris-nodes. For convenience, the following convention is made: when com-
paring nodes with “<” and “<”, the corresponding comparison relates to the values
of the nodes; when comparing them with “=" or “#”, the corresponding comparison
refers to the nodes themselves and different nodes with the same value are different

275

with respect for this comparison. Furthermore, the value 0 is reserved for entries in
winning statistics which are void and 0 < b for all nodes b.

In Anke’s winning statistics, an i-sequence is a sequence of nodes aq, as, ..., i
which had been observed within the course of the game such that, for each k €
{1,2,...,2" — 1}, the value max<{b: b = a; Vb = ay11 V b was observed between ay,
and ay1} has Anke’s parity. For each i-sequence, the winning statistic does not store
the sequence itself but it only stores the maximum value b; of a node which either
occurs as the last member of the sequence or occurs after the sequence.

The following invariants are kept throughout the game and are formulated for
Anke’s winning statistic, those for Boris’ winning statistic are defined with the names
of Anke and Boris interchanged:

e Only b; with 0 < i <log(n)+ 3 are considered and each such b; is either zero or
a value of an Anke-node or a value of a Boris-node;

e An entry b; refers to an i-sequence which occurred in the play so far iff b; > 0;

e If b;,b; are both non-zero and ¢ < j then b; < bj;

o If b;,b; are both non-zero and ¢ < j then they refer to an i-sequence and an
j-sequence, respectively, and, in the play of the game, the i-sequence starts only
after the value b; was observed at or after the end of the j-sequence.

Both players’ winning statistics are initialised with b; = 0 for all ¢+ when the game
starts. In each cycle, when the player whose turn is to move has chosen to move into
the node with value b, the winning statistics of Anke and then of Boris are updated
as follows, here the algorithm for Anke is given and it is followed by an algorithm for
Boris with the names of the players interchanged everywhere.

o [f b is either an Anke-node or b > by then one selects the largest ¢ such that

(a) either b; is not an Anke-node but all b; with j < ¢ are Anke nodes and
(¢ > 0 = max{bp, b} is an Anke-node)
(b) or0<b; <b

and one updates b; = b and b; = 0 for all j < 7;
e If this update produces a non-zero b; for any i with 2 > 2n then the game
terminates with Anke being declared winner.

The winning statistic of Boris is maintained and updated by the same algorithm, with
the roles of Anke and Boris being interchanged in the algorithm. When both winning
statistics are updated without a termination then the game goes into the next round
by letting the corresponding player choose a move.

When updating Anke’s winning statistic and the update can be done by case (a)
then one can form a new i-sequence by putting the j-sequences for j = ¢ — 1,7 —

276

2,...,1,0 together and appending the one-node sequence b which then has the length
20 = 2i=1 1 2i=2 1 421 4+ 29 1 1: in the case that i = 0 this condition just says
that one forms a 0-sequence of length 2° just consisting of the node b. Note that in
the case i > 0 the value max{by, b} is an Anke-node and therefore the highest node
between the last member a of the Fy-sequence and b has the value max{by, b} and is an
Anke-node. Furthermore, for every j < i — 1, for the last node a of the j 4 1-sequence
and the first node a’ of the j-sequence in the new i-sequence, the highest value of a
node in the play between these two nodes a,a’ is bj; which, by choice, has Anke’s
parity. Thus the overall combined sequence is an i-sequence replacing the previous
sequences and b is the last node of this sequence and thus, currently, also the largest
node after the end of the sequence. All j-sequences with j < i are merged into the
new ¢-sequence and thus their entries are set back to b; = 0.

When updating Anke’s winning statistic and the update can be done by case (b)
then one only replaces the largest value at or after the end of the i-sequence (which
exists by b; > 0) by the new value b > b; and one discards all j-sequences with j < i
what is indicated by setting b; = 0 for all j < 1.

The same rules apply to the updates of Boris’ winning statistics with the roles of
Anke and Boris interchanged everywhere.

Note when updating Anke’s winning statistic with a move to an Anke-node b, then
one can always make an update of type (a) with ¢ being the least number where b; is
not an Anke-node (which exists as the game would have terminated before otherwise).
Similarly for updating Boris winning statistics.

If a player wins then the play contains a loop with its maximum node being
a node of the player: Without loss of generality assume this winning player to be
Anke. The game is won by an i-sequence being observed in Anke’s winning statistics
with 2¢ > 2n; thus some node occurs at least three times in the i-sequence and there
are h,0 € {1,2,...,2'} with h < ¢ such that the same player moves at a; and a,
and furthermore a;, = a, with respect to the nodes a;,as,...,ar of the observed i-
sequence. The maximum value b between a;, and a, in the play is occurring between
some ay and agyq (inclusively) for a k with h < k < ¢. Now, by definition of an i-
sequence, b’ has Anke’s parity. Thus a loop has been observed for which the maximum
node is an Anke node.

A player playing a memoryless winning strategy for parity games does not
lose: If a player plays a memoryless winning strategy then the opponent cannot go
into a loop where the maximum node is of the opponent’s parity, as otherwise the
opponent could cycle in that loop forever and then win the parity game, contradicting
to the player playing a memoryless winning strategy. Thus, when a player follows a
memoryless winning strategy, the whole play does not contain any loop where the

277

opponent has the maximum node and so the opponent is during the whole play never
declared to be the winner by the winning statistics.

A player playing a memoryless winning strategy for parity games will even-
tually win: For brevity assume that the player is Anke, the case of Boris is symmetric.
The values b; analysed below refer to Anke’s winning statistic.

Assume that an infinite play of the game has the limit superior ¢ which, by as-
sumption, is an Anke-node. For each time t let

card(c,t) = Z ok

k: bi(t) is an Anke-node and bi(t) > ¢

where the by (t) refer to the value of by at the end of step t. Now it is shown that
whenever at times ¢,¢ with t < ¢’ a move to ¢ was made with ¢ being an Anke-node
and no move strictly between ¢, ¢ was to any node ¢ > ¢ then card(c,t) < card(c,t').
To see this, let i be the largest index where there is a step t” with ¢t < t” <t/ such
that b; becomes updated in step t”. Now one considers several cases:

e Case b;(t") = 0: This case does only occur if also b; 1 gets updated and contra-
dicts the choice of 7, so it does not need to be considered.

e Case b;(t) > c and b;(t) is an Anke node: In this case, the only way to update
this node at t” is to do an update of type (a) and then also the entry b, (t")
would be changed in contradiction of the choice of i, so this case also does not
need to be considered.

e Case b;(t) is a Boris node and b;(t) > ¢: Then an update is possible only by case
(a). If b;(t") < c then, at step t/, another update will occur and enforce by (b)
that b;(t') = c. The value card(c,t) is largest when all b;(t) with j < i are Anke-
nodes at step ¢ and even in this worst case it holds that card(c,t') — card(c,t) >
2 - P>

e Case 0 < b;(t) < ¢: Then latest at stage t', as an update of type (b) at i is
possible, it will be enforced that b;(¢') = ¢ while b,;(t) < ¢ for all j < i and
therefore card(c,t') > card(c,t) + 2° > card(c,t) + 1.

e Case b;(t) = 0: Then at stage t” an update of type (a) will make b;(t") > 0
and, in the case that b;(t”) < ¢, a further update of type (b) will at stage
t" enforce that b;(t') = c. Again, the value card(c,t) is largest when all b;(t)
with 7 < ¢ are Anke-nodes at step t and even in this worst case it holds that
card(c,t') — card(c,t) > 2" =37, 2 > 1.

Thus, once all moves involving nodes larger than ¢ have been done in the play, there

will still be infinitely many moves to nodes of value ¢ and for each two subsequent

278

such moves at ¢,# it will hold that card(c,t) + 1 < card(c,t’). As a consequence,
the number card(c,t) for these nodes will, for sufficiently large ¢ where a move to ¢
is made, rely on some i with b;(t) > ¢ and 2° > 2n and latest then the termination
condition of Anke will terminate the game with a win for Anke.

Thus, an alternating Turing machine can simulate both players and it will accept the
computation whenever Anke has a winning strategy for the game taking the winning
statistics into account. Thus the alternating Turing machine with space usage of
O(log(n) - log(m)) can decide whether the game, from some given starting point,
will end up in Anke winning or in Boris winning, provided that the winner plays a
memoryless winning strategy for the corresponding parity game (which always exists
when the player can win the parity game). |

Chandra, Kozen and Stockmeyer [14] showed that everything what can be computed
by an alternating Turing machine in polylogarithmic space can also be computed
deterministically in quasipolynomial time. More precisely, their more precise bounds
give that the running time of a deterministic Turing machine for the above mentioned
problem is O(n¢°8(™) for some constant c.

Theorem 20.21: Calude, Jain, Khoussainov, Li, Stephan [11]. Assume that
a parity game has n nodes which take values from {1,2,...,m}, note that one can
always choose m < n + 1. Now one can decide in time O(n®'°8"™)) which player has
a winning strategy in the parity game.

In some special cases with respect to the choice of m in dependence of n, one can obtain
a polynomial time bound. McNaughton [59] showed that for every constant m, one
can solve a parity game with n nodes having values from {1,2,...,m} in time O(n™);
Schewe [75, 77] and others brought down the bound, but it remained dependent on
m. The next result shows that for fixed m and large n one can determine the winner
of the parity game in O(n*%); the bound is, however, more general: If m < h-log(n)
then one can determine the winner of a parity game in O(h?* - n?4>+loe(h+2)) = Thig
implies that one can solve the parity games in O((16n)34>Fle(lm/log(m)1+2)) = Calude,
Jain, Khoussainov, i and Stephan [11] give a slightly better bound for h = 1.

Theorem 20.22. If m < h-log(n) and h € N then one can solve the parity game
with n nodes which have values from {1,2,...,m} in time O(h* - n>45+os(h+2)),

Proof. Note that Theorem 20.20 actually showed that the following conditions are
equivalent:

e Anke can win the parity game;

279

e Anke can play the parity game such that her winning statistic matures while
Boris’ winning statistic does not mature.

Thus one can simplify this and play a survival game with the following property:
Anke wins the game iff the parity game runs forever without Boris achieving a win
according to his winning statistics. If Boris follows a memoryless winning strategy
for the parity game then Anke loses, if Anke follows a memoryless winning strategy
for the parity game then she wins. Thus it is sufficient to track only Boris’ winning
statistics for the game. Thus Anke has a winning strategy for the parity game iff she
has a winning strategy for the following survival game:

e The set @ of nodes of the survival game consists of nodes of the form (a,p, Z~))
where a is a node of the parity game, the player p € {Anke, Boris} is that player
whose turn is to move next and b represents the winning statistic of Boris;

e Anke can move from (a, Anke, b) to (a/, Boris,) iff she can move from a to a'
in the parity game and this move causes the winning statistic of Boris to be
updated from b to ¥/;

e Boris can move from (a, Boris, b) to (a’, Anke, ¥) iff he can move from a to d’
in the parity game and this move causes the winning statistic of Boris to be
updated from b to ¥';

e The starting node is (s, Anke,0) where 0 is the vector of all b; being 0 and s is
the starting node of the parity game.

To estimate the number of members of @, first one codes Boris’ winning condition
bo, b1, - -, bliog(n))+2 by a new sequence bo, bl, .. bﬂog(n 1o as follows: bo = by and, for
alli < [log(n)]|+2, if bjx1 = 0 then bl+1 = bi+1 else bl+1 = bl+2+m1n{bz+1—b J<i}.
Note that the latter just says that b, o = b +2+ (b; — b;) for the most recent j where
bj # 0. Now bpiog(nyja < 2 - ([log(n)] + 2) + h - bnog(my1+2 < (b + 2) - ([log(n)] + 3)
what gives O(n"*2). Thus the number of possible values of the winning statistics can
all be coded with (h+ 2) - ([log(n)| + 3) bits. However, one can get a better value by
observing that only [log(n)] + 3 of these bits are 1. The number of all ways to choose
[log(n)] + 3 out of (h + 2) - ([log(n)] + 3) numbers can, by the Wikipedia page on
binomial coefficients and the inequality using the entropy in there, be bounded by
9 (log(n)+4)-(h+2)-((1/(h+2)) log(h+2)+((h+1)/(h+2))-log((h+2)/(h+1)))
_ olog(n)+4)-(log(h+2)+log(1+1/(h+1)): (h+1))
= (160" +D+1og(1+1/(h+1)-(h+1))

S (16n)1.45+log(h+2) S C- h4 X n1.45+log(h+2)

for some constant ¢, so the whole expression is in O(h* - n!45+oe(h+2)) " In these
equations, it is used that log(1 4+ 1/(h+ 1)) - (h + 1) < log(2.718282) < 1.45, for all

280

h € N, where 2.71828 is an upper bound of Euler’s number. Furthermore, one has
to multiply this by one n and by 2 in order to store the current player and current
position, so in total @ has size O(h* - n?4+198("+2)) and the remaining part of the
proof will show that the runtime is bounded by O(h* - n?4>+oe(h+2)),

The survival game can be decided in O(|@]| - n): The algorithm would be the
following: First one computes for each node g € @) the list of the up to n successors
and also generates a linked list of predecessors such that the collection of all these
lists together has the length |@|-n. These inverted lists can also be generated in time
O(]Q| - n). Furthermore, one can determine a list of Q)" C @ of nodes where Boris
winning statistic has matured (that is, Boris has won); determining these nodes is
also in time O(|Q)]).

Note that a node is a winning node for Boris if either Anke moves from this node
and all successor nodes are winning nodes for Boris or Boris moves from this node
and some successor is a winning node for Boris. This idea will lead to the algorithm
below.

For this, a tracking number k, is introduced which is maintained such that the
winning nodes for Boris will eventually all have k, = 0 and that k, indicates how
many further times one has to approach the node until it can be declared a winning
node for Boris. The numbers k, are initialised by the following rule:

e On nodes ¢ € ' the number k, is 1;

e On nodes ¢ = (a, Anke, 5) ¢ (', the number £k, is initialised as the number of
nodes ¢’ such that Anke can move from ¢ to ¢';

e On nodes ¢ = (a, Boris, b) ¢ Q', the number k, is initialised as 1;

These numbers can be computed from the length of the list of predecessors of ¢ for
each ¢ € Q. Now one calls the following recursive procedure initially for all ¢ € @Q’
and each call updates the number k,. The recursive call does the following:

o If £, = 0 then return without any further action else update k, = k, — 1;

o If after this update still k; > 0 then return without further action;

e Otherwise, that is when k, originally was 1 when entering the call then call
recursively all predecessors ¢’ of ¢ with the same algorithm.

After the termination of all these recursive calls, one looks at k, for the start node ¢
of the survival game. If k, > 0 then Anke wins else Boris wins.

Note that in this algorithm, for each node ¢ € @ the predecessors are only called
at most once, namely when £, goes down from 1 to 0 and that is the time where
it is determined that the node is a winning node for Boris. Thus there are at most

281

O(|Q] - n) many recursive calls and the overall complexity is O(|Q| - n).

For the verification, the main invariant is that k, originally says for how many
of the successors of ¢ one must check that they are winning nodes for Boris until
one can conclude that the node ¢ is also a winning node of Boris. In the case that
the winning statistics of Boris have matured in the node ¢, the value k, is taken to
be 1 so that the node is processed once with all the recursive calls in the recursive
algorithm. For nodes where it is Boris’ turn to move, there needs also be only one
outgoing move which produces a win of Boris. Thus one initialises k, as 1 and as soon
as this outgoing node is found, k, goes to 0 what means that the node is declared a
winning node for Boris. In the case that the node ¢ is a node where Anke moves then
one has to enforce that Anke has no choice but to go to a winning node for Boris.
Thus k, is initialised as the number of moves which Anke can move in this node and
each time when one of these successor nodes is declared a winning node for Boris, k,
goes down by one. Note that once the recursive algorithm is completed for all nodes,
exactly the nodes with k, = 0 are the winning nodes of Boris in this survival game. [

For the special case of h = 1, the more direct bound O(n"™*) is slightly better than the
derived bound of O(n34+1°¢()): however, in the general case of larger h, the bound
O(n345+18(h42)) ig better.

When considering h = 1, this special case shows that, for each constant m, the
parity game with n nodes having values from {1,2,...,m} can be solved in time
O(n®) + g(m) for some function g. Such problems are called “Fixed Parameter
Tractable”, as for each fixed parameter m the corresponding algorithm runs in poly-
nomial time and this polynomial is the same for all m, except for the additive constant
g(m) depending on m. Downey and Fellows [21] provide an introduction to the field
of parameterised complexity.

Exercise 20.23. Show that one can decide, for all sufficiently large m,n, the parity
games with n nodes and values from {1,2,...,m} in time O(n'°8™+20): for this use
a direct coding of the winning conditions with [log(n) + 3] - [log(m) + 1] bits rather
than the above methods with the binomial coefficients. Furthermore, show that the
memoryless winning-strateqy of the winner can then be computed with the same time
bound (the constant 20 is generous enough).

Open Problem 20.24. Is there a polynomial time algorithm (in the number n of
nodes of the parity game) to decide which player would win the parity game?

Exercise 20.25. Let A = {0}*- {1}*, B = {00}* - {11}* - {22}*; C = {00, 11,22}*;
D ={0,1}* — {1}*. How are the above sets A, B,C, D ordered by <,,? Provide the
reductions where they exist.

282

Exercise 20.26. For the sets A, B,C, D from Exercise 20.25, how are they ordered
by Str ?

Exercise 20.27. For the sets A, B,C from FExercise 20.25, determine reqular sets
A B, C" such that for all x, x € A & zx € A and v € B & zx € B’ and
reCsaxxrel.

Exercise 20.28. Provide a reqular set E such that there is a reqular E' satisfying
Ve [z € E < xx € E'] but this E' is neither E nor E - E.

Exercise 20.29. Let F = ({0}* - {1} - {0}* - {1})*. Determine for F the minimal
complete dfa and either determine its smallest synchronising word or show that it does
not exist.

Exercise 20.30. Let G = ({0}* - {1} -{0}* - {1})*. Determine for G the minimal
complete dfa and either determine its smallest synchronising word or show that it does
not exist.

Exercise 20.31. Let H = ({0}"-{1}-{0}*-{1})* U ({0, 1}*-{11}-{0,1}*-{00}) U
({1}-{0,1}*-{00}). Determine for H the minimal complete dfa and either determine
its smallest synchronising word or show that it does not exist.

283

Selftest 20.32. Construct a learning algorithm for the class of all reqular languages
which uses only equivalence queries such that the number of queries is linear in the
sum consisting of the number of states of a dfa for the target and the number of symbols
in the longest counter example seen.

Selftest 20.33. Let [= {0,1}* and for alle € I, L. = {x € {0,1}* : & <je €}. Is
this automatic family learnable from positive data?

If the answer above is “yes” then describe how the learner works; if the answer
above is “no” then explain why a learner does not exist.

Selftest 20.34. Assume that an automatic representation of the ordinals strictly
below w™ s given for some positive natural number n; here not only the order but
also the ordinal addition is fully automatic. Now consider the class of all sets L, g =
{v <w":a <~y < B}, where o and 5 are ordinals chosen such that the set L, g
is closed under ordinal addition, that is, when v,y € Lo so is v +~'. If this class
is learnable then provide an automatic an automatic learner (using some automatic
family representing the class as hypothesis space) else explain why the class is not
learnable.

Selftest 20.35. Assume that a dfa has states and alphabet {0,1,...,9} and the
successor of state a on symbol b is defined as follows: If a < b then the successor is
b—a—1 else the successor is a — b.

Determine whether this dfa has a synchronising word, that is, a word which maps
all states to the same state. If so then write-down a synchronising word which is as
short as possible else explain why there is no synchronising word.

284

Solution for Selftest 20.32. The idea is to “cheat” by forcing the teacher to
output long counterexamples. So one takes a list of all deterministic finite automata
dfay, dfa,, ... and computes for each dfa, and automaton dfa/, such that

e dfa;, has at least n states and there is no dfa with less states for the same
language;

e the language recognised by dfa, differs from the language recognised by dfa,, by
exactly one word of at least length n.

This can be achieved by searching for the first m > n such that the minimal automaton
for the language obtained by taking the symmetric difference of {0™} and the language
recognised by dfa, needs at least n states. The automata dfa;, can be computed from
dfa,, in polynomial time. Now the algorithm does the following:

Let n = 0;

Compute dfa,, and dfa,;

Ask if dfa;, is correct;

If answer is “yes” then conjecture dfa, and terminate;
Ask it dfa,, is correct;

If answer is “yes” then conjecture dfa,, and terminate;
Let n =n+ 1 and go to step 2.

N Ot W

Note that in this algorithm, if the language to be learnt turns out to be the one
generated by dfa;, then the number of states of the dfa is at least n and only 2n — 1
queries had been made until learning success; if the language to be learnt turns out
to be the one generated by dfa, then dfa;, had been asked before, differing from the
language of dfa, by exactly one word which has length n or more and at only 2n
queries had been made, again the complexity bound is kept.

Solution for Selftest 20.33. The answer is “no”. Assume by way of contradiction,
that there is a learner M. Then L; = {¢}U0-{0,1}*. By Angluin’s tell-tale condition,
there is a finite subset F' of L; such that there should be no set L, with F* C L, C L;.
Given such an F', let n be the length of the longest word in F' and consider Lgi». All
members of L; up to length n satisfy that they are lexicographically strictly before
01" and thus F' C Lgi» C Li. Thus, F' cannot be a tell-tale set for L; and the class
cannot be learnable by Angluin’s tell-tale criterion.

Solution for Selftest 20.34. If v € L, g then also v+, v+ v+ and so on are in
Lo g, furthermore, if w” < < w**! then all numbers between v and w**! (excluding
Wk itself) must be in L, g; in the case that v = 0, w™) = 1. Thus f is of the form

285

w™ for some m with 0 < m < n. So the learning algorithm does the following:

For each datum ~ the learner computes m(+y) to be the first w-power strictly above
7, that is, v < W™ < w™ for all m with v < w™. The learner conjectures () until
some datum v # # is observed. Then the learner let o« = v and 8 = w™). At every
further datum =, « is replaced by min{a,~} and f is replaced by max{s3,w™"}.

This learner is automatic, as one can choose an automatic structure representing
all ordinals up to w™ together with their order; there are only finitely many ordinals
of the form w™ with 0 < m < n, these can be archived and one can just define w™®
to be the least strict upper bound of v from this finite list. Furthermore, the learner
converges to a final hypothesis L, 3, as the minimum « of the language is seen after
finite time and as the strict upper bound [, by being from a finite list, can only be
updated a finite number of times to a larger number.

Solution for Selftest 20.35. The dfa has a synchronising word of length 4.

For getting a lower bound on the length, one can see that at most two states are
mapped to the same state by a symbol b. So the first symbol maps the given 10
states to at least 5 different states, the next symbol maps these 5 states to at least
3 different states, the third symbol maps these 3 states to at least 2 states and the
fourth symbol then might, perhaps, map the two states to one state. So the length of
each synchronising word is at least 4.

Now consider the word 5321. The symbol 5 maps the states {0, 1,2,3,4,5,6,7,8,9}
to {0,1,2,3,4}, the symbol 3 maps {0,1,2,3,4} to {0,1,2}, the symbol 2 maps
{0,1,2} to {0,1} and the symbol 1 maps {0,1} to {0}. Hence 5321 is a shortest
synchronising word.

286

References

1]

2]

3]

[4]

Wilhelm Ackermann (1928). Zum Hilbertschen Aufbau der reellen Zahlen.
Mathematische Annalen, 99:118-133, 1928.

Dana Angluin. Inductive inference of formal languages from positive data. In-
formation and Control, 45:117-135, 1980.

Dana Angluin. Learning regular sets from queries and counterexamples. Infor-
mation and Computation, 75:87-106, 1987.

Lenore Blum and Manuel Blum. Towards a mathematical theory of inductive
inference. Information and Control, 28:125-155, 1975.

Achim Blumensath and Erich Gradel. Automatic structures. 15th Annual IEEE
Symposium on Logic in Computer Science, LICS 2000, pages 51-62, 2000.

Henrik Bjorklund, Sven Sandberg and Sergei Vorobyov. On fixed-parameter
complezity of infinite games. Technical report 2003-038, Department of Infor-
mation Technology, Uppsala University, Box 337, SE-751 05 Uppsala, Sweden.

Henrik Bjorklund, Sven Sandberg and Sergei Vorobyov. Memoryless determi-
nacy of parity and mean payoff games: a simple proof. Theoretical Computer
Science, 310(1-3):365-378, 2004.

Janusz A. Brzozowski. Derivatives of regular expressions. Journal of the Asso-
ciation of Computing Machinery, 11:481-494, 1964.

J. Richard Biichi. On a decision method in restricted second order arithmetic.
Proceedings of the International Congress on Logic, Methodology and Philosophy
of Science, Stanford University Press, Stanford, California, 1960.

J. Richard Biichi and Lawrence H. Landweber. Definability in the monadic
second order theory of successor. The Journal of Symbolic Logic, 34:166-170,
1966.

Cristian Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li and Frank
Stephan. Deciding parity games in quasipolynomial time. Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017. Pages 252-263, ACM, 2017.

John Case, Sanjay Jain, Trong Dao Le, Yuh Shin Ong, Pavel Semukhin and
Frank Stephan. Automatic learning of subclasses of pattern languages. Infor-
mation and Computation, 218:17-35, 2012.

287

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

Christopher Chak, Rusinns Freivalds, Frank Stephan and Henrietta Tan. On
block pumpable languages. Theoretical Computer Science, 609:272-285, 2016.

Ashok K. Chandra, Dexter C. Kozen and Larry J. Stockmeyer. Alternation.
Journal of the ACM, 28(1):114-133, 1981.

Jan Cerny. Poznamka k homogénnym experimentom s koneénymi automatami.
Matematicko-fyzikdlny Casopis Slovenskej Akadémie Vied, 14:208-216, 1964. In
Slovak. See also http://en.wikipedia.org/wiki/Synchronizing_word.

Noam Chomsky. Three models for the description of language. IRE Transactions
on Information Theory, 2:113-124, 1956.

Alonzo Church. An unsolvable problem of elementary number theory. American
Journal of Mathematics, 58:345-363, 1936.

John Cocke and Jacob T. Schwartz. Programming languages and their compil-
ers: Preliminary notes. Technical Report, Courant Institute of Mathematical
Sciences, New York University, 1970.

Elias Dahlhaus and Manfred K. Warmuth. Membership for Growing Context-
Sensitive Grammars Is Polynomial. Journal of Computer and System Sciences,
33:456-472, 1986.

Christian Delhommé. Automaticité des ordinaux et des graphes homogenes.
Comptes Rendus Mathematique, 339(1):5-10, 2004.

Rodney G. Downey and Michael R. Fellows. Parameterised Complexity.
Springer, Heidelberg, 1999.

A. Ross Eckler. Leigh Mercer, Palindromist. Word Ways, 24(3):131-138, 1991.

Lawrence C. Eggan. Transition graphs and the star-height of regular events.
Michigan Mathematical Journal, 10(4):385-397, 1963.

Andrzej Ehrenfeucht, Rohit Parikh and Grzegorz Rozenberg. Pumping lemmas
for regular sets. STAM Journal on Computing, 10:536-541, 1981.

Andrzej Ehrenfeucht and Grzegorz Rozenberg. On the separating power of EOL
systems. RAIRO Informatique théorique 17(1): 13-22, 1983.

Andrzej Ehrenfeucht and H. Paul Zeiger. Complexity measures for regular ex-
pressions. Journal of Computer and System Sciences, 12(2):134-146, 1976.

288

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

David Epstein, James Cannon, Derek Holt, Silvio Levy, Michael Paterson and
William Thurston. Word Processing in Groups. Jones and Bartlett Publishers,
Boston, Massachusetts, 1992.

Robert W. Floyd and Donald E. Knuth. Addition machines. SIAM Journal on
Computing, 19(2):329-340, 1990.

Péter Frankl. An extremal problem for two families of sets. European Journal
of Combinatorics 3:125-127, 1982.

Dennis Fung. Automata Theory: The XM Problem. BComp Dissertation (Final
Year Project), School of Computing, National University of Singapore, 2014.

Jakub Gajarsky, Michael Lampis, Kazuhisa Makino, Valia Mitsou and Sebastian
Ordyniak. Parameterised algorithms for parity games. Mathematical Founda-
tions of Computer Science, MFCS 2015. Springer LNCS 9235:336-347, 2015.

William I. Gasarch. Guest Column: The second P =7 NP Poll. SIGACT News
Complexity Theory Column, 74, 2012.
http://www.cs.umd.edu/ gasarch/papers/poll2012.pdf

Wouter Gelade and Frank Neven. Succinctness of the complement and intersec-
tion of regular expressions. ACM Transactions in Computational Logic, 13(1):4,
2012.

Kurt Godel. Uber formal unentscheidbare Sétze der Principia Mathematica und
verwandter Systeme I, Monatshefte fir Mathematik und Physik, 38: 173-198,
1931.

Mark Gold. Language identification in the limit. Information and Control,
10:447-474, 1967.

Sheila Greibach. A new normal-form theorem for context-free phrase structure
grammars. Journal of the Association of Computing Machinery, 12(1):42-52,
1965.

Juris Hartmanis and Janos Simon. On the power of multiplication in random
access machines. Fifteenth Annual Symposium on Switching and Automata The-
ory, SWAT 1974, pages 13-23, IEEE, 1974.

Bernard R. Hodgson. Théories décidables par automate fini. Ph.D. thesis,
University of Montréal, 1976.

289

[39]

[40]

[41]

[42]

[43]

[44]

Bernard R. Hodgson. Décidabilité par automate fini. Annales des sciences
mathématiques du Québec, 7(1):39-57, 1983.

John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation. Third Edition, Addison-Wesley
Publishing, Reading Massachusetts, 2007.

Neil Immerman. Nondeterministic space is closed under complementation.
SIAM Journal on Computing, 17(5):935-938, 1988.

Jeffrey Jaffe. A necessary and sufficient pumping lemma for regular languages.

ACM SIGACT News, 10(2):48-49, 1978.

Sanjay Jain, Bakhadyr Khoussainov, Frank Stephan, Dan Teng and Siyuan
Zou. On semiautomatic structures. Computer Science — Theory and Applica-
tions — Ninth International Computer Science Symposium in Russia, CSR 2014,
Moscow, Russia, June 7-11, 2014. Proceedings. Springer LNCS 8476:204-217,
2014.

Sanjay Jain, Qinglong Luo and Frank Stephan. Learnability of automatic
classes. Language and Automata Theory and Applications, Fourth Interna-
tional Conference, LATA 2010, Trier, May 2010, Proceedings. Springer LNCS
6031:293-307, 2010.

Sanjay Jain, Yuh Shin Ong, Shi Pu and Frank Stephan. On automatic fami-
lies. Proceedings of the 11th Asian Logic Conference, ALC 2009, in Honour of
Professor Chong Chitat’s 60th birthday, pages 94-113. World Scientific, 2011.

Sanjay Jain, Yuh Shin Ong and Frank Stephan. Regular patterns, regular lan-
guages and context-free languages. Information Processing Letters 110:1114—
1119, 2010.

Marcin Jurdzinski. Deciding the winner in parity games is in UP N Co — UP.
Information Processing Letters, 68(3):119-124, 1998.

Marcin Jurdzinski, Mike Paterson and Uri Zwick. A deterministic subexpo-
nential algorithm for solving parity games. SIAM Journal on Computing,
38(4):1519-1532, 2008.

Tadao Kasami. An efficient recognition and syntax-analysis algorithm for
contezt-free languages. Technical Report, Air Force Cambridge Research Labo-
ratories, 1965.

290

[50]

[51]

[52]

[53]

[59]

[60]

[61]

Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of structures.
Logical and Computational Complezity, (International Workshop LCC 1994).
Springer LNCS 960:367-392, 1995.

Bakhadyr Khoussainov and Anil Nerode. Automata Theory and its Applications.
Birkhauser, 2001.

A.A. Klyachko, Igor K. Rostsov and M.A. Spivak. An extremal combinatorial
problem associated with the bound on the length of a synchronizing word in
an automaton. Cybernetics and Systems Analysis / Kibernetika, 23(2):165-171,
1987.

Lars Kristiansen and Juvenal Murwanashyaka. Decidable and undecidable frag-
ments of first-order concatenation theory. Fourteenth Conference on Com-
putability in Europe, CiE 2018, Kiel, Germany, Springer LNCS 10936:244-253,
2018. See also https://arxiv.org/abs/1804.06367.

Dietrich Kuske, Jiamou Liu and Markus Lohrey. The isomorphism problem on
classes of automatic structures with transitive relations. Transactions of the
American Mathematical Society, 365:5103-5151, 2013.

Roger Lyndon and Marcel-Paul Schiitzenberger. The equation a™ = b"cP in a

free group. Michigan Mathematical Journal, 9:289-298, 1962.

Yuri V. Matiyasevich. Diofantovost’ perechislimykh mnozhestv. Doklady
Akademii Nauk SSSR, 191:297-282, 1970 (Russian). English translation: Enu-
merable sets are Diophantine, Soviet Mathematics Doklady, 11:354-358, 1970.

Yuri Matiyasevich. Hilbert’s Tenth Problem. MIT Press, Cambridge, Mas-
sachusetts, 1993.

Robert McNaughton. Testing and generating infinite sequences by a finite au-
tomaton. Information and Control, 9:521-530, 1966.

Robert McNaughton. Infinite games played on finite graphs. Annals of Pure
and Applied Logic, 65(2):149-184, 1993.

George H. Mealy. A method to synthesizing sequential circuits. Bell Systems
Technical Journal, 34(5):1045-1079, 1955.

Albert R. Meyer and Michael J. Fischer. Economy of description by automata,
grammars, and formal systems. Twelfth Annual Symposium on Switching and
Automata Theory, SWAT 1971, pages 188-191, 1971.

291

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Edward F. Moore. Gedanken Experiments on sequential machines. Automata
Studies, edited by C.E. Shannon and John McCarthy, Princeton University
Press, Princeton, New Jersey, 1956.

Anil Nerode. Linear automaton transformations. Proceedings of the AMS, 9:541—
544, 1958.

Maurice Nivat. Transductions des langages de Chomsky. Annales de ['institut
Fourier, Grenoble, 18:339-455, 1968.

William Ogden. A helpful result for proving inherent ambiguity. Mathematical
Systems Theory, 2:191-194, 1968.

Viktor Petersson and Sergei G. Vorobyov. A randomized subexponential algo-
rithm for parity games. Nordic Journal of Computing, 8:324-345, 2001.

Jean-Eric Pin. On two combinatorial problems arising from automata theory.
Annals of Discrete Mathematics, 17:535-548, 1983.

Michael O. Rabin and Dana Scott. Finite Automata and their Decision Prob-
lems, IBM Journal of Research and Development, 3:115-125, 1959.

Frank P. Ramsey. On a problem of formal logic. Proceedings of the London
Mathematical Society, 30:264-286, 1930.

Henry Gordon Rice. Classes of enumerable sets and their decision problems.
Transactions of the American Mathematical Society T4:358-366, 1953.

Rockford Ross and Karl Winklmann. Repetitive strings are not context-free.
RAIRO Informatique théorique 16(3):191-199, 1982.

Shmuel Safra. On the complexity of w-automata. Proceedings twenty-ninth
IEEE Symposium on Foundations of Computer Science, pages 319-327, 1988.

Shmuel Safra. Exponential determinization for omega-Automata with a strong
fairness acceptance condition. SIAM Journal on Computing, 36(3):803-814,
2006.

Walter Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4(2):177-192, 1970.

Sven Schewe. Solving parity games in big steps. FCTTCS 2007: Founda-
tions of Software Technology and Theoretical Computer Science, Springer LNCS
4855:449-460, 2007.

292

[76]

[77]

[78]

[79]

[80]

[31]

[82]

[83]

[84]

[85]

[36]

[87]

Sven Schewe. Biichi Complementation Made Tight. Symposium on Theoretical
Aspects of Computer Science (STACS 2009), pages 661-672, 2009.

Sven Schewe. From parity and payoff games to linear programming. Mathemat-
ical Foundations of Computer Science 2009, Thirtyfourth International Sympo-
sium, MFCS 2009, Novy Smokovec, High Tatras, Slovakia, August 24-28, 2009.
Proceedings. Springer LNCS, 5734:675-686, 2009.

Thoralf Skolem. Begriindung der elementaren Arithmetik durch die rekur-
rierende Denkweise ohne Anwendung scheinbarer Veranderlichen mit unend-
lichem Anwendungsbereich. Videnskapsselskapets Skrifter I, Mathematisch-
Naturwissenschaftliche Klasse 6, 1923.

Rébert Szelepcsényi. The method of forcing for nondeterministic automata.
Bulletin of the European Association for Theoretical Computer Science, 96-100,
1987.

Wai Yean Tan. Reducibilities between reqular languages. Master Thesis, Depart-
ment of Mathematics, National University of Singapore, 2010.

Alfred Tarski. Der Wahrheitsbegriff in den formalisierten Sprachen. Studia
Philosophica, 1:261-405, 1936.

Axel Thue. Probleme tiber Verdnderungen von Zeichenreihen nach gegebenen
Regeln. Norske Videnskabers Selskabs Skrifter, I, Mathematisch-Naturwissen-
schaftliche Klasse (Kristiania), 10, 34 pages, 1914.

Alan M. Turing. On computable numbers with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42:230-265,
1936 and correction, 43:544-546, 1937.

William M. Waite and Gerhard Goos. Compiler Construction. Texts and Mono-
graphs in Computer Science. Springer, Heidelberg, 1984.

Daniel H. Younger. Recognition and parsing of context-free languages in time
n. Information and Control, 10:198-208, 1967.

Jiangwei Zhang. Regular and context-free languages and their closure properties
with respect to specific many-one reductions. Honours Year Project Thesis,
Department of Mathematics, National University of Singapore, 2013.

Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications
to automata on infinite trees. Theoretical Computer Science, 200:135-183, 1998.

293

