
Midterm Examination 2
GEM 1501: Problem Solving for Computing

Thursday 27.03.2014, duration half an hour

Matriculation Number:

Rules
This test carries 10 marks and consists of 5 questions. Each questions carries 2 marks;
full marks for a correct solution; a partial solution can give a partial credit.

Question 1 [2 marks].
Explain how bubble sort works and write down its worst case time complexity.

1



Question 2 [2 marks].
Determine the worst case runtime complexity of the following program using the
parameter n being the number of array elements of a:

function findthree(a)

{ var n = a.length; var m = false;

var i; var j; var k;

for (i=0;i<n;i++)

{ for (j=i+1;j<n;j++)

{ for (k=j+1;k<n;k++)

{ if ((a[i] != a[j]) && (a[j] != a[k])

&& (a[i] != a[k])) { m = true; } } } }

return(m); }

Write down the worst case time complexity in Θ-notation and indicate whether a
better run time is possible with another algorithm. If so, give the program; if not,
say why it cannot be done.

2



Question 3 [2 marks].
Consider a non-deterministic finite automaton with the following state table:

q0start q1 q2 q3

0,1,2

0 1 1

2

Make an equivalent deterministic finite automaton.

3



Question 4 [2 marks].
Some function f satisfies f(n) > 0 for all n and f(n+m) = f(n) ·f(m). Furthermore,
let

g(n) = f(0) + f(1) + . . . + f(n)

for all n. The following algorithm uses a program for f as a subroutine and computes
g using a divide-and-conquer algorithm.

function f(n) { ... }

function g(n)

{ if (n < 1) { return(f(0)); }

if (n < 2) { return(f(0)+f(1)); }

if (n < 3) { return(f(0)+f(1)+f(2)); }

var m = Math.floor(n/2); var k = f(m+1);

return(g(m)+k*g(n-m-1)); }

When it computes g(n), this program uses Θ(n) many calls of f . Use dynamic pro-
gramming or a similar method, make a new program which computes g(n) using only
Θ(log(n)) many calls of f .

4



Question 5 [2 marks].
Let a graph be given by an array edge such that each entry in edge[k] is an array
[v,w] being equal to [edge[k][0],edge[k][1]] representing an edge going from
vertex v to vertex w. Make a function which has as input an array edge and a starting
vertex v and as outputs a vertex w such that w can be reached from v and either w

can also be reached from itself by a loop (perhaps going through other vertices) or w

is a sink, that is, a vertex without outgoing edge.
For example, consider the case where edge contains the three array elements [0,1],

[0,2] and [1,2]. If the algorithm is run with inputs edge and 0 then it has to return
2 as 2 is the sink.

function search(edge,v)

{ var w;

return(w); }

END OF EXAMINATION.

5


