Homework for 09.09.2004

Frank Stephan

Homework. The homework follows the lecture notes. What cannot be done as scheduled, will be done the week afterwards. This homework contains the new tasks for 09.09.2004.

Lecture is Mon 16.00h - 17.30h and Thu 16.00h - 16.45h. Tutorial is Thu 16.45h - 17.30h. The room is S13#05-03.

http://www.comp.nus.edu.sg/~fstephan/homework.ps http://www.comp.nus.edu.sg/~fstephan/homework.pdf

Exercise 4.8. Which of the following sets is transitive and which is inductive?

- 1. $A = \{\emptyset, \{\emptyset\}\},\$
- 2. $B = \{\emptyset, \{\{\{\emptyset\}\}\}\}\},\$
- 3. $C = \{x \mid \forall y \in x \, \forall z \in y \, (z = \emptyset)\},\$
- 4. *D* is the closure of $\{\emptyset, \mathbb{N} \times \mathbb{N}\}$ under the successor operation $x \mapsto S(x)$,
- 5. E is the set of even numbers,
- 6. F is the set of all natural numbers which can be written down with at most 256 decimal digits,
- 7. G is the set of all finite subsets of \mathbb{N} ,
- 8. $H = \mathcal{P}(G)$.

Exercise 4.9. Show that the following statements are equivalent for any inductive set X.

1. $X = \mathbb{N};$

- 2. X has no proper inductive subset;
- 3. X is a subset of every inductive set;
- 4. $\forall x \in X (x = 0 \lor \exists y \in X (x = S(y)));$
- 5. X = N(Y) for every inductive set Y where N(Y) is the subset of those $y \in Y$ which are in every inductive subset of Y;
- 6. X = N(Y) for some inductive set Y where N(Y) is defined as in the previous item.

Exercise 4.11. Assume that a property p satisfies

$$p(1)$$
 and $\forall x (p(x) \Rightarrow p(S(S(x)))).$

Consider the following subsets of natural numbers:

- 1. the set of all numbers;
- 2. the set of even numbers;
- 3. the set of odd numbers;
- 4. the set of square numbers;
- 5. the set of all powers of 35, that is, $\{1, 35, 1225, 42875, 1500625, \ldots\}$.

For which of these sets it is guaranteed that all elements and for which it is guaranteed that some elements satisfy p? Consider the property

$$q(x) \Leftrightarrow \forall A \subseteq \mathbb{N} \left((1 \in A \land \forall y \in \mathbb{N} \left(y \in A \Rightarrow S(S(y)) \in A \right) \right) \Rightarrow x \in A).$$

Which of the above sets is equal to $\{x \in \mathbb{N} \mid q(x)\}$. That is, which set is the intersection of all sets A for which

$$1 \in A \land \forall y \in \mathbb{N} \left(y \in A \Rightarrow S(S(y)) \in A \right)$$

is true?