Homework for 07.10.2004

Frank Stephan

Homework. The homework follows the lecture notes. What cannot be done as scheduled, will be done the week afterwards. This homework contains the left-overs from 30.09.2004.

In general, lecture is Mon 16.00h - 17.30h and Thu 16.00h - 16.45h. Tutorial is Thu 16.45h - 17.30h. On 14.10.2004 there are 90min of lecture. The room is S13#05-03.

http://www.comp.nus.edu.sg/~fstephan/homework.ps http://www.comp.nus.edu.sg/~fstephan/homework.pdf

Exercise 9.6. Let $A = \mathbb{N} - \{0, 1\} = \{2, 3, 4, ...\}$ and let \langle_{div} be given by $x \langle_{div} y \Leftrightarrow \exists z \in A \ (x \cdot z = y)$. That is, $x \langle_{div} y$ iff x is a proper divisor of y, so $2 \langle_{div} 8$ but $2 \not\leq_{div} 2$ and $2 \not\leq_{div} 5$. Prove that (A, \langle_{div}) is a partially ordered set.

Exercise 9.9. Prove that the following relations are partial orderings on $\mathbb{N}^{\mathbb{N}}$:

- $f \sqsubset_1 g \Leftrightarrow \exists n \forall m > n (f(m) < g(m));$
- $f \sqsubset_2 g \Leftrightarrow \forall n (f(n) \le g(n)) \land \exists m (f(m) < g(m));$
- $f \sqsubset_3 g \Leftrightarrow \forall n (f(n) \le g(n)) \land \exists n (f(n) < g(n)) \land \exists n \forall m > n (f(m) = g(m));$
- $f \sqsubset_4 g \Leftrightarrow f(0) < g(0)$.

Determine for every ordering a pair of incomparable elements f, g such that neither $f \sqsubset_m g$ nor $g \sqsubset_m f$ nor f = g. For which of these orderings is it possible to choose the f of this pair (f, g) of examples such that f(n) = 0 for all n?

Exercise 9.13. Let $A = \mathbb{N} - \{0, 1\}$ and \langle_{div} given by $x \langle_{div} y \Leftrightarrow \exists z \in A (x \cdot z = y)$ as in Exercise 9.6. Define a relation E on $A \times A$ by putting (x, y) into E iff there is a prime number z with $x \cdot z = y$. So $(2, 4) \in E$, $(2, 6) \in E$, $(2, 10) \in E$ but $(2, 7) \notin E$, $(2, 8) \notin E$ and $(2, 20) \notin E$. Show that (A, \langle_E) and (A, \langle_{div}) are identical partially ordered sets.

Exercise 10.6. Let (A, <) be a linearly ordered set and $B = A^{\mathbb{N}}$. Define

$$f <_{lex} g \Leftrightarrow (\exists k \in \mathbb{N}) \left[f \upharpoonright k = g \upharpoonright k \land f(k) < g(k) \right]$$

Furthermore, let $C = A^*$. The lexicographic ordering on A^* is defined such that either the smaller word is shorter than the longer one or that the first word has a member of A strictly before the second one at the first position where they differ. That is, if m is the domain of f and n the domain of g, then

$$f <_{lex} g \Leftrightarrow \exists k \in S(m) \cap n \left((f \upharpoonright k = g \upharpoonright k) \land (k = m \lor (k < m \land f(k) < g(k))) \right).$$

Show that $(B, <_{lex})$ and $(C, <_{lex})$ are linearly ordered sets. Assuming that $A = \{0, 1, 2, \ldots, 9\}$ with the usual ordering, put the following elements of C into lexicographic order: 120, 88, 512, 500, 5, 121, 900, 0, 76543210, 15, 7, 007, 00.

Exercise 10.10. Determine which of the following subsets of the real numbers \mathbb{R} have a lower and upper bound. If so, determine the infimum and supremum and check whether these are even the least and greatest element of these sets.

- 1. $A = \{a \in \mathbb{R} \mid \exists b \in \mathbb{R} (a^2 + b^2 = 1)\};$
- 2. $B = \{b \in \mathbb{R} \mid b^3 4 \cdot b < 0\};$
- 3. $C = \{c \in \mathbb{R} \mid \sin(c) > 0\};$
- 4. $D = \{ d \in \mathbb{R} \mid d^2 < \pi^3 \};$
- 5. $E = \{e \in \mathbb{R} \mid \sin(\frac{\pi}{2} \cdot e) = \frac{e}{101}\}.$

Exercise 10.13. Consider the ordering \Box given by

$$(m,n) \sqsubset (i,j) \iff (m < i)$$

$$\lor \quad (m = i \land m \text{ is even } \land n < j)$$

$$\lor \quad (m = i \land m \text{ is odd } \land n > j)$$

on $A = \{0, 1, 2, 3, 4, 5\} \times \mathbb{N}$. Construct an order-preserving mapping from $(\mathbb{Z}, <)$ into (A, \sqsubset) where < is the natural ordering of \mathbb{Z} .

The set $(\mathbb{Z}, <)$ there are nontrivial isomorphisms onto itself, that is, isomorphism different from the identity. For example, $z \mapsto z + 8$. Does (A, \Box) also have nontrivial isomorphisms onto itself? If so, is there any element which is always mapped to itself?

Exercise 10.22. Show that in a complete ordered set (A, <) every nonempty subset which is bounded from below has an infimum in A.