Homework for 28.10.2004

Frank Stephan

Homework. The homework follows the lecture notes. What cannot be done as scheduled, will be done the week afterwards.

Lecture is Mon 16.00h - 17.30h and Thu 16.00h - 16.45h. Tutorial is Thu 16.45h - 17.30h. The room is S13#05-03.

http://www.comp.nus.edu.sg/~fstephan/homework.ps http://www.comp.nus.edu.sg/~fstephan/homework.pdf

Exercise 13.4. For any ordinal α , consider the successor function S restricted to α , that is, consider the set

$$S \upharpoonright \alpha = \{ \{ \beta, \{ \beta, S(\beta) \} \mid \beta \in \alpha \}.$$

Determine $\mathcal{H}(S \upharpoonright \alpha)$ for $\alpha = 42, 1905, 2004, \omega, \omega + 1, \omega + 131501, \omega^2 + \omega \cdot 2 + 1, \omega^{17} + \omega^4$.

Exercise 13.6. V_{ω} has been defined twice. Let A be the version of V_{ω} as defined in Definition 7.5, that is let A consist of all hereditarily finite sets. Let $B = \bigcup \{V_n \mid n < \omega\} = \{x \in V \mid \mathcal{H}(x) < \omega\}$ be the version defined here. Show that both definitions coincide, that is, show $A \subseteq B \land B \subseteq A$.

Show that B contains \emptyset , is closed under unions of two sets and is closed under the operation forming $\{v\}$ from v. Thus, by Theorem 7.8, $A \subseteq B$.

Show by induction that all members of V_n with $n < \omega$ are hereditarily finite. Thus $B \subseteq A$.