MA 3205 – Set Theory – Homework for Week 6

Frank Stephan, fstephan@comp.nus.edu.sg, 6516-2759, Room S14#04-13.

Homework. The homework follows the lecture notes. Below the list of the homeworks for the tutorials from 12.09.2006 onwards. It is not mandatory to hand in homework; but it is recommended to solve the questions by yourself before going to the tutorials. Homework can be corrected on request.

Exercise 7.4. Let X be finite. Prove that the set of all functions from X to X is finite.

Exercise 7.10. Prove that V_{ω} satisfies the following property: if $x \in V_{\omega}$ and $y \subseteq x$ or $y \in x$, then $y \in V_{\omega}$. Show that \mathbb{N} does not satisfy this property, but that some proper infinite subclass of V_{ω} does.

Exercise 7.11. Determine all $x_0 \in V$ which satisfy that there are no $x_1, x_2, x_3, x_4 \in V$ with $x_1 \in x_0, x_2 \in x_1, x_3 \in x_2, x_4 \in x_3$. The set $\{\{\emptyset\}\}$ is such an x_0 , although $x_1 = \{\emptyset\}$ and $x_2 = \emptyset$ exist, x_3 and x_4 do not exist. The set $\{\{\emptyset, \{\{\emptyset\}\}\}\}\}$ does not qualify.

Exercise 8.9. Let $D = \{f : \mathbb{N} \to \mathbb{N} \mid \forall n (f(S(n)) \leq f(n))\}$ be the set of all decreasing functions. Show that D is countable.

Exercise 8.12. Let the elements of A be ordered such that the symbol \emptyset comes first and the comma comes last. Let $<_{ll}$ be the length-lexicographic ordering on the set A^* of all strings over A. Now let $f: V_{\omega} \to A^*$ map every set x in V_{ω} to first expression describing x. Then $\emptyset <_{ll} \{\}$, thus the symbol " $\{\}$ " is never used to describe the empty set; this convention is also applied in this text. Check which of the following facts are true:

- 1. the length of f(x) is odd for every $x \in V_{\omega}$;
- 2. if $f(x) = \{y\}$ then $f(S(x)) = \{y, \{y\}\};$
- 3. $f(2) = \{\emptyset, \{\emptyset\}\}$.

Furthermore, find a formula giving the length of f(n) for every $n \in \mathbb{N}$ and determine which of the following numbers is the length of f(10): 42, 100, 1000, 1001, 1022, 1023, 1024, 2047, 4096, 256², 10¹⁰ - 1, 2²⁵⁶, 1023¹⁰²³.

If the length of f(x) is n and f(y) is m, what is the length of f((x, y)) for the ordered pair (x, y)?

Exercise 8.13. Let \mathbb{A} be the set of algebraic real numbers, that is, the set of all $r \in \mathbb{R}$ for which there are $n \in \mathbb{N}$ and $z_0, z_1, \ldots, z_n \in \mathbb{Z}$ such that $z_n \neq 0$ and $z_0 + z_1r + z_2r^2 + \ldots + z_nr^n = 0$. Note that such a polynomial of degree n can have up to n places r which are mapped to 0. Show that \mathbb{A} is countable by giving a one-to-one mapping from \mathbb{A} into \mathbb{N} .