MA 3205 – Set Theory – Homework for Week 11

Frank Stephan, fstephan@comp.nus.edu.sg, 6516-2759, Room S14#04-13.

Homework. The homework follows the lecture notes. Below the list of the homeworks for the tutorials from 31.10.2006 onwards. It is not mandatory to hand in homework; but it is recommended to solve the questions by yourself before going to the tutorials. Homework can be corrected on request.

Rank. The rank is a measure of how much a set is nested, of if there are elements of elements of elements in the set, then its rank is at least 3. Here some easy rules:

- The rank of an ordinal α is α . So $\rho(0) = 0, \rho(1) = 1, \rho(\omega) = \omega$.
- The rank of sets is determined by the rank of their elements. For example, $\rho(\{x, y, z\}) = \max\{\rho(x)+1, \rho(y)+1, \rho(z)+1\}$ and $\rho(\{\omega, \omega \cdot 2, \omega+5\}) = \omega \cdot 2+1$.
- In general, $\rho(X) = \sup\{\rho(Y) + 1 \mid Y \in X\}.$

The Cantor Normal Form. The Cantor Normal Form is a finite sum of powers of ω in decending order. Here an example:

$$\omega^5+\omega^2+\omega^2+\omega^2+\omega^1+\omega^0+\omega^0 \ = \ \omega^5+\omega^2\cdot 3+\omega+2.$$

Instead of repeating same ordinals, one can also multiply them with the corresponding natural number, instead of ω^1 , one can write just ω , instead of ω^0 just 1. This all is done on the right hand side of the equation. Also transfinite ordinals can be in the power:

$$\omega^{\omega^{2}} + \omega^{\omega \cdot 5 + 8} \cdot 7 + \omega^{\omega \cdot 5 + 7} \cdot 12345 + \omega^{22222} \cdot 33333 + \omega^{4} + \omega^{3} + \omega^{2} + \omega + 1.53333 + \omega^{4} + \omega^{3} + \omega^{2} + \omega^{2$$

If one adds ordinals $\omega^{\alpha} \cdot a + \omega^{\beta} \cdot b$ with $\alpha < \beta$, then $\omega^{\alpha} \cdot a$ can be omitted; if $\alpha = \beta$ the coefficients can be added giving $\omega^{\alpha} \cdot (a+b)$; if $\alpha > \beta$, no simplification is possible:

$$\begin{split} \omega^3 + \omega^5 &= \omega^5;\\ \omega^3 \cdot 5 + \omega^4 \cdot 8 + \omega^5 \cdot 0 &= \omega^4 \cdot 8;\\ \omega^3 \cdot 234 + \omega^3 \cdot 111 &= \omega^3 \cdot 345;\\ \omega^5 + \omega^3 + \omega^2 + \omega^3 + \omega^1 &= \omega^5 + \omega^3 \cdot 2 + \omega \end{split}$$

The last line has the application of two rules: first ω^2 is omitted as it is in front of a higher ω -power; second the two ω^3 -terms are unified to one; no further simplification is possible.

Exercise 14.4. For any ordinal α , consider the successor function S restricted to α , that is, consider the set

$$S \upharpoonright \alpha = \{ \{ \beta, \{ \beta, S(\beta) \} \mid \beta \in \alpha \}.$$

Determine $\rho(S \upharpoonright \alpha)$ for $\alpha = 42, 1905, 2004, \omega, \omega + 1, \omega + 131501, \omega^2 + \omega \cdot 2 + 1, \omega^{17} + \omega^4$.

Exercise 14.6. V_{ω} has been defined twice. Let A be the version of V_{ω} as defined in Definition 7.5, that is, let A consist of all hereditarily finite sets. Let $B = \bigcup \{V_n \mid n < \omega\} = \{x \in V \mid \rho(x) < \omega\}$ be the version defined here. Show that both definitions coincide, that is, show $A \subseteq B \land B \subseteq A$.

Show that B contains \emptyset , is closed under unions of two sets and is closed under the operation forming $\{v\}$ from v. Thus, by Theorem 7.9, $A \subseteq B$.

Show by induction that all members of V_n with $n < \omega$ are hereditarily finite. Thus $B \subseteq A$.

Exercise 15.6. Show the following properties of \oplus .

- 1. \oplus is commutative.
- 2. There are ordinals α, β such that $\alpha + \beta$ and $\beta + \alpha$ both differ from $\alpha \oplus \beta$.
- 3. There are ordinals α, β such that $\alpha < \beta$ and $\alpha \oplus \gamma \neq \beta$ for all ordinals γ .
- 4. In contrast to this, there is for each ordinals α, β with $\alpha < \beta$ an ordinal γ with $\alpha + \gamma = \beta$.
- 5. For all ordinals $\alpha, \beta, \alpha + \beta \leq \alpha \oplus \beta$.

Exercise 15.10. Determine the Cantor Normal Form of the following ordinals.

1. $\omega + \omega^2 + \omega^3 + \omega^4 + 2$, 2. $(\omega + 3)^5 + (\omega^2 + 17) \cdot (\omega + 8) + \omega^{12}$, 3. $\omega^2 + \omega + 1 + \omega^2 + \omega + 1 + \omega^2 + \omega + 1$, 4. $1 \oplus \omega \oplus \omega^2 \oplus \omega^3$, 5. $\omega^{\omega + 5} + \omega^{\omega + 2} \cdot \omega + \omega^2$, 6. $256^{256} + \omega \cdot 42$.

Exercise 15.11. Use the Cantor Normal Form to prove the following: Let α, β be ordinals such that $\gamma \geq \delta$ whenever $F_{\alpha}(\gamma) > 0 \wedge F_{\beta}(\delta) > 0$. In other words, $\gamma \geq \delta$ whenever the ω -power ω^{γ} occurs in the Cantor Normal Form of α and the ω -power ω^{δ} occurs in the Cantor Normal Form of β . Then $\alpha + \beta = \alpha \oplus \beta$.