
MA 3205 – Set Theory – Homework for Week 13

Frank Stephan, fstephan@comp.nus.edu.sg, 6516-2759, Room S14#04-13.

Homework. The homework follows the lecture notes. Below the list of the home-
works for the tutorials from 14.11.2006 onwards. It is not mandatory to hand in
homework; but it is recommended to solve the questions by yourself before going to
the tutorials. Homework can be corrected on request.

Exercise 18.3. Show that the standard representation can be defined in set-theory:
First define a representation for the set A = Z∪ {sign}. Then look at the class of all
functions r : A→ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,+,−}, call it B; the decimal point could be
placed between r(0) and r(−1) and need not to be represented explicitly.

Define which elements of B represent real numbers and get R by comprehension,
state the property explicitly. For this and further definitions, integer constants, integer
addition and < on the integers can be used to in order to deal with positions of digits.
The selection should be made such that r represents

∑
z∈Z

r(z) · 10z in the case that
r(sign) is + and −

∑
z∈Z

r(z) ·10z in the case that r(sign) is −. Make sure that every
real occurs in the representation exactly once. For example, fix the sign of 0 to either
+ or −.

This representation has the disadvantage that N 6⊆ R. So one distinguishes as
in many programming languages like FORTRAN between the natural number 2 and
the real number 2.0. Nevertheless, there is a one-to-one mapping f : N → R which
maps every natural number to its representative in R. f can be defined inductively
using a g : R → R such that f(S(n)) = g(f(n)) for all natural numbers n. Give two
properties nat, succ such that nat(r) is true iff r is in the range of f and succ(r, q) is
true if nat(r) ∧ nat(q) ∧ q = g(r).

Exercise 18.4. In the early days of computing, integers were represented by bytes,
more precisely, they were limited to the numbers −128 up to 127. The negative
numbers started with a 1 and the positive (including 0) with a 0. So one had that
−128 = 10000000, −127 = 10000001, . . ., −2 = 11111110, −1 = 11111111, 0 =
00000000, 1 = 00000001, 2 = 00000010, . . ., 127 = 01111111. This exercise shows
how to transfer this idea to the representation of the reals. Consider the following set
WS representing the reals Without Sign:

WS = {r : Z → {0, 1} | ∀n ∈ Z∃m < n (r(m) = 0)

∧ ∃n ∈ Z∀m > n (r(m) = r(m− 1))}

One can define on WS an addition +. Let (r+ q)(n) = 1 if one of the following three
conditions holds:
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1. r(n) = q(n) and r(k) 6= q(k) for all k < n;

2. r(n) = q(n) and there is m < n such that r(m) = 1 and q(m) = 1 and
r(k) 6= q(k) for all k with m < k < n;

3. r(n) 6= q(n) and there is an m < n such that r(n) = 0 and q(n) = 0 and
r(k) 6= q(k) for all k with m < k < n.

Let (r + q)(n) = 0 otherwise. From + one can define an ordering < on WS by

r < q ⇔ ∃s ∈ WS (q = r + s ∧ ∃n ∈ Z∀m > n (s(m) = 0)).

Define an order-isomorphism F satisfying ∀r, q ∈WS (F (r + q) = F (r) + F (q)) from
(WS,+, <) to (R,+, <).

Exercise 18.9. Verify that Hausdorff’s axioms are true for the set R. That is, verify
that (R, {A ⊆ R | A is open}) is a Hausdorff space.

Exercise 18.10. Let α be any ordinal. Define a topology on α by saying that β is
open iff β is an ordinal and β ⊆ α. Verify that the first three axioms of Hausdorff are
satisfied, but not the last fourth one.

Exercise 18.11. Find a topology on the set of ordinals up to a given ordinal α which
satisfies the Axioms of Hausdorff and in which an ordinal β ∈ α is isolated iff it is
either a successor ordinal or 0.
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