11.1* Substructures. Recall that for a logical language L and an L-structure A, the language LA is the language of all formulas which use besides constants from L also constants c_a for each a in the domain of A. The diagramme DA is the set of all true LA-formulas in A which do not contain any free or bound variable. The elementary diagramme $D_{el}A$ is the set of all true LA-sentences in A. Assume that the domain of A is a subset of the domain of B. Now A is a substructure of B iff $B \models DA$ and A is an elementary substructure of B iff $B \models D_{el}A$.

So assume that A is a 2-dimensional sub space of a given 3-dimensional vector space B over the finite field \mathbb{F}_3 with 3 elements. Is A a substructure or an elementary substructure of B? Note that the scalar multiplication with 0 is the function mapping all vectors to the zero vector, the scalar multiplication with 1 is the identity mapping and the scalar multiplication with 2 is the mapping $x \mapsto x + x$.

11.2* Categoricity. Assume that L contains infinitely many constants c_0, c_1, \ldots and that $X = \{c_i \neq c_j : i, j \in \mathbb{N} \land i \neq j\}$. Is T be the theory of all sentences logically implied by X? Is T \aleph_0-categorical? Is T \aleph_1-categorical? Justify both answers.

11.3* Decidability. Let L be the logical language with one unary function symbol f, let β be $\forall x [f(f(x)) = x]$, let γ be $\forall x, y [x = f(x) \land y = f(y) \rightarrow x = y]$ and let $T = \{\alpha : \alpha$ is a sentence and $\{\beta, \gamma\} \models \alpha\}$. Show that T is decidable.

11.4 Groups. Make a finitely axiomatisable theory T such that (a) every model of T is a group, (b) T has both finite and infinite models and (c) T is decidable.

11.5 Boolean Basis. Let L be a logical language with the extra symbols $<$ and P and consider the theory T of all sentences implied by the set Y consisting of $\forall x \forall y [x < y \lor x = y \lor y < x]$, $\forall x [\neg x < x]$, $\forall x \forall y \forall z [x < y \land y < z \rightarrow x < z]$, $\forall x \exists y \exists z [y < x \land x < z]$, $\forall x \forall y \exists z [x < y \rightarrow x < z \land z < y]$, $\forall x \forall y [P y \land x < y \rightarrow Px]$. Determine a finite set X of sentences which is a Boolean basis for T. That is, X has to satisfy that given any two structures \mathcal{A} and \mathcal{B} of T, either \mathcal{A} and \mathcal{B} are elementary equivalent or there is a sentence α in X such that exactly one of \mathcal{A} and \mathcal{B} makes α true.