MA 4207 - Mathematical Logic
Homework due in Week 3.

Frank Stephan. Departments of Mathematics and Computer Science,
10 Lower Kent Ridge Road, S17#07-04 and 13 Computing Drive, COM2#03-11,
National University of Singapore, Singapore 119076.
Email fstephan@comp.nus.edu.sg
Telephone office 65162759 and 65164246
Office hours Monday 10.00-11.00h at Mathematics S17#07-04

Homework 3.1
Cantor’s function \(x, y \mapsto (x + y) \cdot (x + y + 1)/2 + y \) is a bijection from \(\mathbb{N} \times \mathbb{N} \) onto \(\mathbb{N} \).
Construct a bijection from \(\mathbb{Z} \times \mathbb{Z} \) onto \(\mathbb{Z} \).

Homework 3.2
Prove that there is no set \(X \) such that its powerset \(\{ Y : Y \subseteq X \} \) has 5 elements.

Homework 3.3
Show that a power set has always more elements than the given set, that is, fill out the missing details at the following proof-sketch. Recall that \(|A| \leq |B| \) iff there is a one-one function from \(A \) to \(B \) and show that \(|2^A| \nleq |A| \).

Proof-Sketch: The \(\emptyset \) has 0 and \(2^\emptyset \) has one element, namely \(\emptyset \), hence one cannot have a one-one mapping from \(2^\emptyset \) to \(\emptyset \). Now assume that \(A \) is not empty and \(f : A \rightarrow 2^A \) is a function. Show that there is a set \(B \subseteq A \) which is not in the range of \(f \). Then consider any function \(g : 2^A \rightarrow A \) and prove that this function cannot be one-one, as otherwise a surjective \(f \) from \(A \) to \(2^A \) would exist. Hence \(|2^A| \nleq |A| \).

Homework 3.4
Use Homework 3.3 to prove that there is no set \(X \) such that its powerset has as many elements as \(\mathbb{N} \). The fact that every set \(X \) is either finite or satisfies \(|\mathbb{N}| \leq |X| \) can be used in the proof.

Homework 3.5
Let \(f(n) \) be the maximum number of negation symbols in a well-formed formula which does not contain any subformula of the form \(\neg(\neg\alpha) \) and which contains at most \(n \) atoms. Here \(\neg(A_1 \lor (\neg(A_2 \lor (\neg(A_1)))) \) has 3 atoms and \(n \) is 3, as repeated atoms are counted again. Determine the value \(f(n) \) in dependence of \(n \).

Homework 3.6
Prove by induction that a well-formed formula of length \(n \) contains less than \(n/3 \) connectives and at most \((n + 3)/4 \) atoms.

Homework 3.7
Use the truth-table method to prove that the following formulas are equivalent:

- \(((\neg A_1) \lor (\neg A_2)) \);
- \((\neg(A_1 \land A_2)) \);
- \(((A_1 \lor A_2) \leftrightarrow (A_1 \oplus A_2)) \).
Homework 3.8
List out the truth-table for the formula \((A_1 \oplus A_2) \land (\neg A_3)\).

Homework 3.9
Consider the following formulas:

\[
\begin{align*}
\phi_1 & = (((A_1 \lor A_2) \lor A_3) \land ((A_4 \lor A_5) \lor A_6)); \\
\phi_2 & = (((A_1 \lor A_2) \land (A_3 \lor A_4)) \land (A_5 \lor A_6)); \\
\phi_3 & = (((((A_1 \oplus A_2) \oplus A_3) \oplus A_4) \oplus A_5) \oplus A_6).
\end{align*}
\]

There are \(2^6 = 64\) ways to assign the truth-values to the sentence symbols (or atoms) \(A_1, \ldots, A_6\). Determine for each of the formulas \(\phi_1, \phi_2, \phi_3\), how many of these assignments make the formula true and how many of these assignments make the formula false.

Homework 3.10
For the formulas from Homework 3.9, is the statement

\[
\{\phi_1, \phi_2, \phi_3\} \models (((A_1 \land A_2) \land A_3) \land A_4) \land A_5) \land A_6
\]

true or false? Prove your answer.

Homework 3.11
For the formulas from Homework 3.9, is the statement

\[
\{\phi_1, \phi_2, \phi_3\} \models ((((A_1 \lor A_2) \lor A_3) \lor A_4) \lor A_5) \lor A_6)
\]

true or false? Prove your answer.

Homework 3.12
Using the connectives \(\lor, \land, \rightarrow, \leftrightarrow, \oplus, \neg\), construct a formula using atoms \(A_1, A_2, A_3, A_4\) which says that at least two and at most three of these atoms are true.

Homework 3.13
Using the connectives \(\lor, \land, \rightarrow\), construct a formula using atoms \(A_1, A_2, A_3, A_4, A_5, A_6\) which says that at all six atoms are either false or all six atoms are true.