MA 4207 - Mathematical Logic

Course-Webpage http://www.comp.nus.edu.sg/~fstephan/mathlogicug.html Homework due on Friday of Week 7 (and Tuesday subsequent week).

Frank Stephan. Departments of Mathematics and Computer Science, 10 Lower Kent Ridge Road, S17#07-04 and 13 Computing Drive, COM2#03-11, National University of Singapore, Singapore 119076.

Email fstephan@comp.nus.edu.sg

Telephone office 65162759 and 65164246

Office hours Monday 10.00-11.00h at Mathematics S17#07-04

Homework 7.1

Assume that there are infinitely many logical atoms. Is there a set S of formulas such that for all v mapping atoms to $\{0,1\}$, $v \models S$ iff there are exactly three atoms A, B, C with v(A) = 1, v(B) = 1, v(C) = 1?

Homework 7.2

Let Ap(x) say "x is an apple", Ba(x) say "x is a banana", Cb(x) say "x is a cranberry" and Cu(x) say "x is a currant". Furthermore, let Ye(x) say "x is yellow", Re(x) say "x is red" and Bl(x) say "x is black". Now translate the following English sentences into logic:

- 1. There are yellow apples and red apples.
- 2. All bananas are yellow.
- 3. Cranberries are always red.
- 4. There are red currants and black currants and every currant has one of these two colours.

Homework 7.3

Given the notation from homework 7.2, translate the following formulas into normal English language sentences:

$$\forall x \ [Ap(x) \to \neg Ba(x)];$$

$$\exists x \ [Bl(x) \land \neg Ap(x) \land \neg Ba(x)];$$

$$\forall x \forall y \ [Re(x) \land Bl(y) \to x \neq y];$$

$$\forall x \exists y \ [(Cu(x) \land Re(x)) \to (Cu(y) \land Bl(y))].$$

Homework 7.4

Make a formula using the language of natural numbers with addition and order which says that there are infinitely many numbers which are not multiples of any of 2, 3 and 5. This formula should not use multiplication.

Homework 7.5

Consider the structure $(\mathbb{N}, +, -, \cdot, <, =, 0, 1, 2, \ldots)$ and the corresponding first-order logical language of arithmetic with constants for every natural number. Make formulas which express the following:

- 1. Each number is either 0 or 1 or the multiple of a prime number;
- 2. There are infinitely many prime numbers of the form 5n + 1.

Homework 7.6

Consider the structure $(\mathbb{N}, +, -, \cdot, <, =, 0, 1, 2, \ldots)$ and the corresponding first-order logical language of arithmetic with constants for every natural number. Make formulas which express the following:

- 1. Every even number other than 0 and 2 is the sum of two prime numbers;
- 2. There are infinitely many numbers x such that x-1 and x+1 are both prime numbers.

Homework 7.7

Consider the structure $(\mathbb{Z}, +, -, \cdot, <, =, 0, -1, 1, -2, 2, ...)$ and the corresponding first-order logical language of arithmetic with constants for every integer. Make formulas which express the following:

- 1. The number 23 is not the sum of three squares;
- 2. A number is the sum of four squares if it is greater or equal 0.

Homework 7.8

For first-order logic, assume that the logical language has only equality and variables and quantifiers and the logical connectives. The formula $\exists x,y,z \, [x \neq y \land x \neq z \land y \neq z]$ can only be satisfied by a structure with at least three elements. Is there, in this logical language, a formula α which can only be satisfied by structures with infinitely many elements? Is there a set S of formulas such that S is only satisfied by structures with infinitely many elements?

Homework 7.9

Let $(F, +, -, \cdot, f, =, 0, 1, 2)$ be the finite field with the three elements 0, 1, 2 and let $f: F \to F$ be any function. Which of the following statements are true for this structure (independently of how f is chosen)?

- 1. $\forall x, y [(x+y) \cdot (x+y) = (x \cdot x) + (y \cdot y) (x \cdot y)];$
- 2. $\forall x, y [(x+y) \cdot (x+y) \cdot (x+y) = (x \cdot x \cdot x) + (y \cdot y \cdot y)];$
- 3. $\forall x, y [(x+y) \cdot (x+y) \cdot (x+y) \cdot (x+y) = (x \cdot x \cdot x \cdot x) + (y \cdot y \cdot y \cdot y)];$
- 4. $\exists a, b, c \forall x [f(x) = a \cdot x \cdot (x-1) + b \cdot x \cdot (x-2) + c \cdot (x-1) \cdot (x-2)];$
- 5. $\forall x [x \cdot x \cdot x \neq 2]$.