MA 4207 - Mathematical Logic

Course-Webpage http://www.comp.nus.edu.sg/~fstephan/mathlogicug.html Homework

Frank Stephan. Departments of Mathematics and Computer Science,
10 Lower Kent Ridge Road, S17#07-04 and 13 Computing Drive, COM2#03-11,
National University of Singapore, Singapore 119076.
Email fstephan@comp.nus.edu.sg
Telephone office 65162759 and 65164246
Office hours Thursday 14.00-15.00h at Mathematics S17#07-04

Homework 5.1

Consider six-valued logic with values $\{0.0, 0.2, 0.4, 0.6, 0.8, 1.0\}$ ordered in the same way as rational numbers and define that $x \wedge y$ is the minimum and $x \vee y$ is the maximum of the inputs; furthermore, $\neg x$ is 1.0 - x (with the usual numerical operation). Now, for any formula α , let min $(\alpha) = \min\{\overline{\nu}(\alpha) : \nu$ is a six-valued truth-assignment of the atoms}. Similarly one defines max (α) . Which are the possible values which min (α) and max (α) can take where α ranges over all formulas obtained by connecting atoms using \wedge, \vee, \neg ?

Homework 5.2

If one uses the connectives $\land, \lor, \neg, \oplus$ for the six-valued logic from Homework 5.1 with $x \oplus y$ being defined as $\min\{x + y, 2 - x - y\}$, what are the possible values of $\min(\alpha)$ and $\max(\alpha)$, which are defined as in Homework 5.1.

Homework 5.3

For the six-valued logic from Homework 5.1 and 5.2, say that two formulas α, β are equivalent iff they for all six-valued truth-assignments ν to the atoms satisfy $\overline{\nu}(\alpha) = \overline{\nu}(\beta)$. Check whether the following equivalences of formulas hold in the six-valued logic:

1.
$$(A_1 \wedge A_2) \equiv (A_2 \wedge A_1);$$

2.
$$(A_1 \land (A_2 \lor A_3)) \equiv ((A_1 \land A_2) \lor (A_1 \land A_3));$$

3.
$$(A_1 \land (A_2 \oplus A_3)) \equiv ((A_1 \land A_2) \oplus (A_1 \land A_3)).$$

Homework 5.4

For the six-valued logic from Homework 5.1 and 5.2, let $x \leftrightarrow y$ be calculated by $1 - \max\{x - y, y - x\}$. Using the equivalence definition from Homework 5.3, check whether the following formulas are equivalent:

1. $(A_1 \leftrightarrow A_2) \equiv \neg (A_1 \oplus A_2);$

2.
$$(A_1 \leftrightarrow A_2) \equiv (A_1 \oplus \neg A_2);$$

3.
$$\neg (A_1 \land A_2) \leftrightarrow (\neg A_1 \lor \neg A_2) \equiv 1.0;$$

4. $((A_1 \leftrightarrow A_2) \leftrightarrow A_3) \equiv (A_1 \leftrightarrow (A_2 \leftrightarrow A_3)).$

Homework 5.5

Construct a circuit for $A_1 \oplus A_2 \oplus A_3$ with the gates \land, \lor, \neg ; these gates can have multiple inputs.

Homework 5.6

Construct a circuit for $A_1 \oplus A_2 \oplus A_3$ using *nand* and *nor* and *not* gates, which can have multiple inputs.

Homework 5.7

Assume that a company uses only chips which output 0 when all inputs are 0 - as all-0-inputs and outputs are considered as an "error-information" and every useful information is coded by input-vectors which are not everywhere 0. Now a vendor offers to produce the chips as specified using only "exclusive-or-gates" (\oplus) and "inclusive-or-gates" (\vee) at a very competitive price. The company boss finds it suspicious and asks the company's technician: Can this work? Provide the correct answer and prove why it can work or why it cannot work.

Homework 5.8

Recall that maj(x, y, z) is 1 iff at least two of the inputs x, y, z are 1. Let C_8 consist of all formulas which are atoms or which are formed from other formulas $\alpha, \beta, \gamma \in C_8$ by taking $maj(\alpha, \beta, \gamma)$ or $\neg \alpha$. Prove by induction that each Boolean function B^n_{α} formed from an $\alpha \in C_8$ satisfies $B^n_{\alpha}(x_1, \ldots, x_n) = \neg B^n_{\alpha}(\neg x_1, \ldots, \neg x_n)$ for $x_1, \ldots, x_n \in \{0, 1\}$.

Homework 5.9

How many Boolean functions can be formed by using input variables x_1, \ldots, x_n and the constants and connectives from $\{0, 1, \wedge\}$.

Homework 5.10

How many Boolean functions can be formed using input variables x_1, \ldots, x_n and the constants and connectives from $\{0, 1, \neg, \oplus\}$.

Homework 5.11

Assume that α can use some of the atoms A_1, \ldots, A_5 , the truth-values 0 and 1 and up to two connectives \oplus . How many functions of the form B^5_{α} can be formed using such α ?

Homework 5.12

Assume that α can use some of the atoms A_1, \ldots, A_4 , the truth-values 0 and 1 and at most one connective \wedge and at most one connective \vee . How many functions of the form B^4_{α} can be formed using such α ?

Homework 5.13

Use as few of "and" (\wedge) and "inclusive or" (\vee) as possible in order to make a formula α with four atoms A_1, A_2, A_3, A_4 such that the following conditions hold:

- If at least three of the atoms A_1, A_2, A_3, A_4 are true then α is true;
- If at most one of the atoms A_1, A_2, A_3, A_4 are true then α is false;

• If exactly two of the atoms A_1, A_2, A_3, A_4 are true then there is no constraint on which value α takes.

Use the last condition in order to optimise the number of connectives in the formula.

Homework 5.14

Recall that maj(x, y, z) is 1 iff at least two of the inputs x, y, z are 1. Is there an $n \in \{1, 2, 3, 4\}$ for which the set $\{maj, B^n_{A_1 \oplus A_2 \oplus \ldots \oplus A_n}\}$ complete? For those n where it is incomplete, can it be made complete by adding the logical constants 0, 1 to the set of connectives? If so, which of these are needed?