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Homework 8.1
Let Ap(x) say “x is an apple”, Ba(x) say “x is a banana”, Cb(x) say “x is a cranberry”
and Cu(x) say “x is a currant”. Furthermore, let Y e(x) say “x is yellow”, Re(x) say
“x is red” and Bl(x) say “x is black”. Now translate the following English sentences
into logic:

1. There are yellow apples and red apples.

2. All bananas are yellow.

3. Cranberries are always red.

4. There are red currants and black currants and every currant has one of these
two colours.

Homework 8.2
Given the notation from homework 8.2, translate the following formulas into normal
English language sentences:

∀x [Ap(x)→ ¬Ba(x)];

∃x [Bl(x) ∧ ¬Ap(x) ∧ ¬Ba(x)];

∀x∀y [Re(x) ∧Bl(y)→ x 6= y];

∀x∃y [(Cu(x) ∧Re(x))→ (Cu(y) ∧Bl(y))].

Homework 8.3
Assume that there is a set X of five fruits satisfying the following formulas.

∀x [Ap(x) ∨Ba(x) ∨ Cu(x)];

∀x [(¬Ap(x) ∧ ¬Ba(x)) ∨ (¬Ap(x) ∧ ¬Cu(x)) ∨ (¬Ba(x) ∧ ¬Cu(x))];

∀x [Bl(x) ∨Re(x) ∨ Y e(x)];

∀x [(¬Bl(x) ∧ ¬Re(x)) ∨ (¬Bl(x) ∧ ¬Y e(x)) ∨ (¬Re(x) ∧ ¬Y e(x))];

∀x [Ap(x)→ ¬Bl(x)];

∀x [Ba(x)→ Y e(x)];

∀x [Cu(x)→ ¬Y e(x)];

∃u∃v ∃w ∃x ∃y [Re(u) ∧ v 6= w ∧ Y e(v) ∧ Y e(w) ∧ x 6= y ∧Bl(x) ∧Bl(y)].
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Calculate the number of models (up to isomorphism) which satisfy these formulas
with five elements.

Homework 8.4
Use the formulas from Homework 8.3, but assume that X has 6 elements. Calculate
the number of models (up to isomorphism) which satisfy these formulas with six
elements.

Homework 8.5
Use the formulas from Homework 8.3, but assume that X has at most 4 elements.
Calculate the number of models (up to isomorphism) which satisfy these formulas
with up to four elements.

Homework 8.6
Assume that equality is in the logical language, but no predicate or function. Make a
set S of formulas which says that the number of elements of a structure satisfying S
is either a prime number or infinite. This set S is infinite.

Homework 8.7
Assume that a structure X with one function symbol f satisfies

∀x [f(x) 6= x ∧ f(f(x)) = x].

What can be said about the number of elements in the base set X?

Homework 8.8
Make a formula using the language of natural numbers with addition and order which
says that there are infinitely many numbers which are not multiples of any of 2, 3 and
5. This formula should not use multiplication.

Homework 8.9
Consider the structure (N,+,−, ·, <,=, 0, 1, 2, . . .) and the corresponding first-order
logical language of arithmetic with constants for every natural number. Make formulas
which express the following:

1. Each number is either 0 or 1 or the multiple of a prime number;

2. There are infinitely many prime numbers of the form 5n+ 1.

Homework 8.10
Consider the structure (N,+,−, ·, <,=, 0, 1, 2, . . .) and the corresponding first-order
logical language of arithmetic with constants for every natural number. Make formulas
which express the following:

1. Every even number other than 0 and 2 is the sum of two prime numbers;

2. There are infinitely many numbers x such that x− 1 and x+ 1 are both prime
numbers.
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Homework 8.11
Consider the structure (Z,+,−, ·, <,=, 0,−1, 1,−2, 2, . . .) and the corresponding first-
order logical language of arithmetic with constants for every integer. Make formulas
which express the following:

1. The number 23 is not the sum of three squares;

2. A number is the sum of four squares if it is greater or equal 0.

Homework 8.12
For first-order logic, assume that the logical language has only equality and variables
and quantifiers and the logical connectives. The formula ∃x, y, z [x 6= y∧x 6= z∧y 6= z]
can only be satisfied by a structure with at least three elements. Is there, in this logical
language, a formula α which can only be satisfied by structures with infinitely many
elements? Is there a set S of formulas such that S is only satisfied by structures with
infinitely many elements?

Homework 8.13
Let (F,+,−, ·, f,=, 0, 1, 2) be the finite field with the three elements 0, 1, 2 and let
f : F → F be any function. Which of the following statements are true for this
structure (independently of how f is chosen)?

1. ∀x, y [(x+ y) · (x+ y) = (x · x) + (y · y)− (x · y)];

2. ∀x, y [(x+ y) · (x+ y) · (x+ y) = (x · x · x) + (y · y · y)];

3. ∀x, y [(x+ y) · (x+ y) · (x+ y) · (x+ y) = (x · x · x · x) + (y · y · y · y)];

4. ∃a, b, c ∀x [f(x) = a · x · (x− 1) + b · x · (x− 2) + c · (x− 1) · (x− 2)];

5. ∀x [x · x · x 6= 2].
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