MA 4207 - Mathematical Logic

Course-Webpage http://www.comp.nus.edu.sg/~fstephan/mathlogicug.html Homework

Frank Stephan. Departments of Mathematics and Computer Science,

10 Lower Kent Ridge Road, S17#07-04 and 13 Computing Drive, COM2#03-11, National University of Singapore, Singapore 119076.

Email fstephan@comp.nus.edu.sg

Telephone office 65162759 and 65164246

Office hours Thursday 14.00-15.00h at Mathematics S17#07-04

Homework 9.1

Let $(A, +, \cdot)$ and $(B, +, \cdot)$ be the remainder rings modulo a and b, respectively, $a, b \in \{2, 3, 4, 5, 6\}$. For which a, b is there a homomorphism f from $(A, +, \cdot)$ to $(B, +, \cdot)$ such that any two terms t_1, t_2 satisfy $(A, +, \cdot), s \models t_1 = t_2$ iff $(B, +, \cdot), s' \models f(t_1) = f(t_2)$, where $s'(v_k) = f(s(v_k))$ for all variables v_k .

Homework 9.2

Choose values for a, b from Homework 9.1 and a formula ϕ and a function f such that f is a homomorphism and the formula ϕ is true in $(A, +, \cdot)$ but not in $(B, +, \cdot)$.

Homework 9.3

Consider the model ($\{0, 1, ..., 9\}, +, \cdot$) with addition and multiplication modulo 10, so 5 + 7 = 2 and $5 \cdot 7 = 5$. Which are the sets defined by the following formulas:

- 1. $x \in A \Leftrightarrow \exists y [x = y \cdot y];$
- 2. $x \in B \Leftrightarrow \forall y [x \cdot y = 0 \lor x \cdot y = 3 \lor x \cdot y = 5];$
- 3. $x \in C \Leftrightarrow \forall y [x \neq y \cdot y \cdot y \cdot y]$.

Homework 9.4

Is the set $\{2, 4, 6, 8\}$ definable in the model of arithmetic modulo 10? Here the formula can use the operations +, \cdot and the constants 0, 1 and equality = and connectives and quantifiers.

Homework 9.5

Is every function in the model $\{0, 1, ..., 9\}$ with addition and multiplication and all constants explicitly definable by a term? If so, give a proof; if not, explain why.

Homework 9.6

Let $\mathbb{Z} \cdot \{i\} + \mathbb{Z}$ be the set of all complex integer numbers. Show that this set together with + and \cdot is a ring. Prove that the basis element i is not definable by using an isomorphism which maps i to some other element.

Homework 9.7

Recall that a structure (A, \circ, e) is a group iff it satisfies $\forall x, y, z \, [x \circ (y \circ z) = (x \circ y) \circ z]$, $\forall x \, [x \circ e = x \wedge e \circ x = x], \, \forall x \exists y \, [x \circ y = e \wedge y \circ x = e].$

Write down formally the axioms for an Abelian group, a ring with 1 and a commutative

ring with 1, respectively.

Homework 9.8

Assume that $(A, +, \cdot, 0, 1)$ is a finite ring with $0 \neq 1$. Consider the formulas

$$x = 0 \Leftrightarrow \forall y [x + y = y] \text{ and}$$

 $x = 1 \Leftrightarrow \forall y [x \cdot y = y \land y \cdot x = y].$

Are then all members of A definable with formulas like this? If yes then prove how this is done else provide a finite ring where some elements are not definable.

Homework 9.9

Let $(\mathbb{R}, +, \cdot, <, 0, 1)$ be the ordered field of the real numbers with the constants 0 and 1. Prove that all rational numbers and all real roots of polynomials are definable. Provide then examples of formulas $\phi_1, \phi_2, \phi_3, \phi_4$ such that x_k is the unique element satisfying ϕ_k where the formulas ϕ_k say the following:

- 1. $x_1 = 2/3$;
- 2. x_2 is the positive square-root of 3;
- 3. x_3 is the largest number satisfying $x_3^{10} 4x_3^5 + 2 = 0$;
- 4. x_4 is the smallest number satisfying $3x_4^6 6x_4^4 + 3x_4^2 = 0$.

Homework 9.10

Consider a structure (A, f, 0, 1, =) with $0, 1 \in A$ being constants and f a function from A to A. Make three formulas in the language of this structure which express the following conditions:

- 1. The first formula says that f has the range $\{0,1\}$;
- 2. The second formula says that f is the inverse of itself;
- 3. The third formula says that every value in the range of f is the image of exactly two values.

Homework 9.11

Let (A, P^A) , (B, P^B) be two structures with $A = \{0\}$ and $B = \{1, 2\}$. choose the predicate P^B such that there is no strong homomorphism from B to A (independently of what P^A is) while there is for each possible choice of P^A a strong homomorphism from (A, P^A) to (B, P^B) .

Homework 9.12

Let $(\mathbb{Z}, Succ, Even)$ be a structure with Even(x) being true iff x is even and Succ being the successor function. Let f be a function from the structure to itself. Prove that if f is a homomorphism then f is a strong homomorphism.

Homework 9.13

Consider the structure $(\mathbb{Z}, Neigh, Even)$ where Even(x) is true iff x is even and

Neigh(x,y) is true iff x=y+1 or x=y-1. Construct a function g from \mathbb{Z} to itself which is a homomorphism but not a strong homomorphism.

Homework 9.14

Assume that (A, +, a, b, c, d) is an n-dimensional vector space for some n over the field $(\{0, 1, 2\}, +, \cdot)$ with three elements; here for the skalar multiplication, $x \cdot 0 = x + x + x$, $x \cdot 1 = x$ and $x \cdot 2 = x + x$, so that the multiplication with each fixed skalar is definable. Find the largest dimension n so that all elements in the vector space (A, +, a, b, c, d) are definable when one chooses the right values for a, b, c, d and explain how the formulas to define the elements look like; note that an isomorphism of the structure itself has to map a to a, b to b, c to c and d to d.

Homework 9.15

Assume that a structure (X, +) satisfies the below axioms:

- 1. $\forall x \forall y \forall z [x + (y + z) = (x + y) + z];$
- 2. $\forall x \forall y [x + y = y + x];$
- 3. $\forall x \forall y [x + x = y + y];$
- 4. $\forall x [x + x + x = x]$.

Assume furthermore, that the structure has four elements 0, a, b, c and that 0 is the element with 0 = x + x for all $x \in X$. Prove (informally, not in the deductive calculus) that the structure satisfies a + b = c and show that a, b, c are not definable by constructing an isomorphism h with $h(a) \neq a$, $h(b) \neq b$ and $h(c) \neq c$.