MA 4207 - Mathematical Logic
Homework

Frank Stephan. Departments of Mathematics and Computer Science,
10 Lower Kent Ridge Road, S17#07-04 and 13 Computing Drive, COM2#03-11,
National University of Singapore, Singapore 119076.
Email fstephan@comp.nus.edu.sg
Telephone office 65162759 and 65164246
Office hours Thursday 14.00-15.00h at Mathematics S17#07-04

Homework 11.1
Assume that α, β, γ are well-formed formulas. Give a formal proof of the statement
$$\{\beta, \gamma\} \models \alpha \rightarrow \beta$$
which only uses the formulas from Λ and the Modus Ponens.

Homework 11.2
Assume that $\{\alpha, \beta\}$ tautologically implies γ. The below derivation is incorrect. Say
what the fault is and replace it by a corrected one:

1. $\{\alpha, \beta\} \vdash \alpha \rightarrow \beta \rightarrow \gamma$ (Axiom Group 1)
2. $\{\alpha, \beta\} \vdash \beta$ (Copy)
3. $\{\alpha, \beta\} \vdash \beta \rightarrow \alpha \rightarrow \beta$ (Axiom Group 1)
4. $\{\alpha, \beta\} \vdash \alpha \rightarrow \beta$ (Modus Ponens)
5. $\{\alpha, \beta\} \vdash \gamma$ (Modus Ponens)

For the following exercises, P, Q are predicates and a, b, c are constants.

Homework 11.3
Make a formal proof for
$$\forall x [P(x) \rightarrow Q(c)], \forall x [\neg P(x) \rightarrow Q(c)] \vdash Q(c)$$

Homework 11.4
Make a formal proof for $\forall x [P(x)], \exists y [\neg P(y)] \vdash Q(z)$.

Homework 11.5
Make a formal proof for $\emptyset \vdash \forall x \forall y [P(x) \rightarrow Q(y)] \rightarrow P(a) \rightarrow Q(b)$.

Homework 11.6
Is the statement $\emptyset \vdash P(x) \rightarrow \forall y [P(y)]$ correct? Explain your answer.

Homework 11.7
Is the statement $\emptyset \vdash P(x) \rightarrow \forall y [P(x)]$ correct? Explain your answer.
Homework 11.8
Is the statement $\emptyset \vdash P(x) \rightarrow \exists y[P(y)]$ correct? Explain your answer.

Homework 11.9
Let (G, \circ, f, e) be a structure and Γ contain the following axioms:

- $\forall x, y, z \; [(x \circ y) \circ z = x \circ (y \circ z)];$
- $\forall x, y \; [x \circ y = y \circ x];$
- $\forall x \; [x \circ e = x];$
- $\forall x \; [x \circ f(x) = e];$
- $\forall x, y, z \; [x \circ y = x \circ z \rightarrow y = z];$

So (G, \circ) is an Abelian group with neutral element e and inversion f. Prove informally the following results:

- $\forall v, w \; [f(v) = f(w) \rightarrow v = w];$
- $\forall v, w \; [v \circ w = e \rightarrow f(v) = w];$
- $\forall v, w \; [f(v \circ w) = f(w) \circ f(v)].$

Homework 11.10
Consider all structures (A, \circ) where A has two elements and satisfies the axioms

$\forall x \; [x \circ x = x]$ and $\forall x \forall y \; [x \circ y = y \circ x].$

Show that all these structures are isomorphic.

Homework 11.11
Assume that $(\mathbb{N}, +, <, 0, 1, P)$ is a structure where \mathbb{N} is the set of natural numbers and $+, <, 0, 1$ have the usual meaning on \mathbb{N}. Let the powers of 2 be the set $\{1, 2, 4, 8, 16, \ldots\}$ and make a formula α such that $(\mathbb{N}, +, <, 0, 1, P) \models \alpha$ iff $\forall x \; [Px \leftrightarrow x \text{ is a power of } 2].$

Note that such a formula only implicitly defines the powers of 2 and not explicitly; therefore this formula α does not say that the powers are definable from addition and order in \mathbb{N}.

Homework 11.12
Make a formula α which says that $f : A \rightarrow A$ is a one-to-one function but not an onto function. Provide a model $(A, f, =)$ which satisfies α. Can A be finite?