Members of thin Π^0_1 classes and their Turing degrees

Wu Guohua

School of Physical and Mathematical Sciences

Nanyang Technological University

8 April, 2020
Π^0_1 classes

Definition:
A Π^0_1 class is a set \(P \subseteq 2^\omega \) for which there is a (primitive) recursive tree \(T \) with \([T] = P\).

- As primitive recursive trees can be effectively enumerated, we have an effective enumeration of Π^0_1 classes.

Examples:

- Consider \(A = \{ e : \varphi_e(0) \downarrow = 0 \} \) and \(A = \{ e : \varphi_e(0) \downarrow = 1 \} \).
 - \(A \) and \(B \) are disjoint r.e. sets, and cannot be recursively separated.
 - The class of sets separating \(A \) and \(B \)
 \[S(A, B) = \{ C : A \subseteq C \& B \cap C = \emptyset \} \]
 is called the separating class of \(A \) and \(B \).
 - \(S(A, B) \) is a Π^0_1 class and is perfect (hence uncountable).

- The class of complete consistent extension of Peano Arithmetic is a Π^0_1 class.

- Zariski topology over recursive rings, where for any r.e. ideal \(I \), the collection of prime ideals containing \(I \) forms a Π^0_1 class.

Basis Theorems for Π^0_1 classes: old friend
Definition: Thin Classes

A Π^0_1 class P is thin if every subclass of P is relatively clopen, i.e., if Q is a subclass of P, then $Q = P \cap U$ for some clopen set $U \subseteq 2^\omega$.

We know that in all Π^0_1 classes, isolated paths are computable.

Conversely, if a thin Π^0_1 class P contains a computable element X, then $\{X\}$ is a subclass of P, and hence by the thinness of P, X is isolated.

FACT:

A thin Π^0_1 class P has no computable members if and only if P is perfect.

So every **countable thin Π^0_1 class** has a computable member.
Martin-Pour El theories

The notion of thinness comes from the work of Martin and Pour-El in 1970. Let S be a consistent r.e. theory in the propositional language with

Martin and Pour-El, 1970

Let S be a consistent r.e. theory.

1. S has few r.e. extensions if each r.e. extension T of S is a principal extension, i.e., T is generated by S together with a single propositional formula.

2. S is essentially undecidable if S has no decidable complete consistent extensions.

FACTS:

For a consistent r.e. theory S,

- S has few r.e. extensions if and only if the corresponding Π^0_1 class is thin.
- S is essentially undecidable if and only if the corresponding Π^0_1 class has no computable members.
Theorem (CDJS, 1993):
If X is in a thin Π^0_1 class P, then $X' \leq_T X \oplus \varnothing''$.

Proof: Let $P = [T]$ is a thin class, where T is a recursive tree, and $A \in P$.
For a given e, we consider whether $e \in A'$ or not, i.e., whether $\Phi^A_e(e) \downarrow$ or not.

- If $\Phi^A_e(e) \downarrow$, we can recursive in A to find an initial segment σ of A with $\{e\}^\sigma(e) \downarrow$.

- If NOT, what shall we do?
Consider $Q_e = \{ C : \Phi^C_e(e) \uparrow \}$, a Π^0_1 class

- $P \cap Q_e$ is a subclass of P, and as P is thin, $P \cap Q_e = P \cap U_e$ for some clopen set U_e.
- As we are assuming that A is in $P \cap Q_e$, A is in $P \cap U_e$, and hence A has an initial segment σ with all infinite extensions in U_e.

Thus, if $B \in P$ extends σ, then $B \in P \cap U_e = P \cap Q_e$, and $\Phi^B_e(e) \uparrow$.

- Define a binary relation $R(e, \sigma)$ as

$$R(e, \sigma) \iff (\forall \tau \supseteq \sigma)[\tau \in T & \{e\}^\tau(e) \downarrow \rightarrow \tau \notin \text{Ext}(T)].$$

R is a Π^2 relation and is recursive in ϕ''.

We do as following:
Find the least number n such the following is true for $\sigma = A \upharpoonright n$:

- (a) $\{e\}^\sigma(e) \downarrow \rightarrow e \in A'$
- (b) $R(e, \sigma) \rightarrow e \notin A'$

Exact one of these will appear.
Consider $Q_e = \{ C : \Phi^C_e(e) \uparrow \}$, a Π^0_1 class

- $P \cap Q_e$ is a subclass of P, and as P is thin, $P \cap Q_e = P \cap U_e$ for some clopen set U_e.
- As we are assuming that A is in $P \cap Q_e$, A is in $P \cap U_e$, and hence A has an initial segment σ with all infinite extensions in U_e.

Thus, if $B \in P$ extends σ, then $B \in P \cap U_e = P \cap Q_e$, and $\Phi^B_e(e) \uparrow$.

- Define a binary relation $R(e, \sigma)$ as

$$R(e, \sigma) \iff (\forall \tau \supseteq \sigma)[\tau \in T \& \{e\}^\tau(e) \downarrow \rightarrow \tau \notin \text{Ext}(T)].$$

R is a Π^2_2 relation and is recursive in ϕ''.

We do as following:

Find the least number n such the following is true for $\sigma = A \upharpoonright n$:

(a) $\{e\}^\sigma(e) \downarrow \rightarrow e \in A'$
(b) $R(e, \sigma) \rightarrow e \notin A'$

Exact one of these will appear.

If A computes ϕ'', then A cannot be a member of any thin Π^0_1 class.
In Spector’s construction of minimal degrees below $0''$, forcing notions are recursive perfect trees, $T_e, e \in \omega$, pruned according to the black-white rule.

That is, to see whether we can find a string $\sigma \in T_e$ such that there is no e-splitting above σ in T_e, or not.

If we use only ‘half’ of each T_e, i.e., keep the even part, and exclude the odd part, the construction still works.
In Spector’s construction of minimal degrees below $0''$, forcing notions are recursive perfect trees, $T_e, e \in \omega$, pruned according to the black-white rule.

That is, to see whether we can find a string $\sigma \in T_e$ such that there is no e-splitting above σ in T_e, or not.

If we use only ‘half’ of each T_e, i.e., keep the even part, and exclude the odd part, the construction still works.

A great observation.
Construct one thin-free degree below $0''$

Definition:
A Turing degree is thin-free, if no members in this degree is a member of thin \(\Pi^0_1 \) classes.

Note that all degrees above $0''$ are thin-free.

We will construct a set \(A \) of thin-free degree below $0''$, we shall ensure for any \(e \) such that if \(\Phi^A_e \) is total and Turing equivalent to \(A \), then one of the following is guaranteed:

1. \(\Phi^A_e \notin [P_e] \), or
2. \([P_e] \) is not thin.
Construct one thin-free degree below $0''$

Definition:
A Turing degree is thin-free, if no members in this degree is a member of thin Π^0_1 classes.

Note that all degrees above $0''$ are thin-free.

We will construct a set A of thin-free degree below $0''$, we shall ensure for any e such that if Φ^A_e is total and Turing equivalent to A, then one of the following is guaranteed:

1. $\Phi^A_e \not\in [P_e]$, or
2. $[P_e]$ is not thin.

The construction is modified from Spector’s construction of minimal degrees.

Construct one thin-free degree below $0''$

Definition:
A Turing degree is thin-free, if no members in this degree is a member of thin Π^0_1 classes.

Note that all degrees above $0''$ are thin-free.

We will construct a set A of thin-free degree below $0''$, we shall ensure for any e such that if Φ_e^A is total and Turing equivalent to A, then one of the following is guaranteed:

1. $\Phi_e^A \notin [P_e]$, or
2. $[P_e]$ is not thin.

The construction is modified from Spector’s construction of minimal degrees.

Suppose that A is constructed on a given recursive perfect tree T.

- To meet (1), we try to find some string τ on T such that Φ_e^τ is not extendible on P_e,
 - if such a τ exists, we force A to extend τ, which guarantees that $\Phi_e^A \notin [P_e]$, if Φ_e^A is total.
If NOT, we will then try to

- find a Π^0_1 subclass of $[P_e]$ which is not the intersection of $[P_e]$ with any clopen set U.

We will construct a recursive subtree S_e of P_e, such that Φ^A_e lies on S_e, and for any length n, there exists some $B \in [S_e]$ and $C \in [P_e] \setminus [S_e]$ such that

$$B \upharpoonright n = C \upharpoonright n = \Phi^A_e \upharpoonright n.$$

This implies that $\Phi^A_e \in [P_e]$, and $[S_e]$ witnesses that P_e is not thin.
Action under this case:

- **Target**: Force A on a total recursive subtree T_e of T, such that for any $\alpha \in T_e$, $\Phi_{T_e(\alpha_0)}^e$ and $\Phi_{T_e(\alpha_1)}^e$ are incompatible in P_e and there is a path on P_e extending $\Phi_{T_e(\alpha)}^e$, of course.

 We are assuming that (1) fails, so both $\Phi_{T_e(\alpha_0)}^e$, $\Phi_{T_e(\alpha_1)}^e$ are extendible on P_e and thus there is at least one infinite path in P_e extending it.

Consider the e-splitting subtree of T, $SP(T, e)$, if exists, and take the even part.

- **White Side**: $SP(T, e)$ exists.

 In this case, Φ_e^A is total, then Φ_e^A is on $[P_e]$, and $E(SP(T, e))$, the even subtree of $SP(T, e)$, is a total recursive subtree of T, and $\Phi_e^{E(SP(T, e))}$ is a total recursive subtree of P_e, witnessing that $[P_e]$ is not thin.

- **Black Side**: $SP(T, e)$ does not exist.

 In this case, there is a string $T(\alpha)$ such that above $T(\alpha)$, no string e-splits, and hence, if A is on the full subtree of T above α, $Full(T, \alpha)$, then Φ_e^A is recursive, making A and Φ_e^A not Turing equivalent, if we can make A nonrecursive. **We Can**, as recursive sets are all in thin Π_1 classes.
Oracle Construction:

We can now run a forcing argument to construct A with wanted property.
 - $0''$ is used as oracle to make decision at every stage.

Yuan Bowen improved this in his thesis:

Theorem:
There exists a hyperimmune-free minimal degree below $0''$ which is also thin-free.

Note that such degrees are not below $0'$.
Working below $0'$

- CDJS proved that $0'$ contains a Π_1 set A which is in a thin Π_1 class P.

- CDJS proved the density of degrees containing sets (not necessarily r.e.) in thin Π_1 classes in r.e. degrees.

 DWY strengthened this in 2018, showing that sets above can be r.e.

- Yuan Bowen proved in his thesis that all 1-generic degrees below $0'$ contain members of thin Π_1 classes.
Working below $0'$

- CDJS proved that $0'$ contains a Π_1 set A which is in a thin Π_1 class P.

- CDJS proved the density of degrees containing sets (not necessarily r.e.) in thin Π_1 classes in r.e. degrees.

 DWY strengthened this in 2018, showing that sets above can be r.e.

- Yuan Bowen proved in his thesis that all 1-generic degrees below $0'$ contain members of thin Π_1 classes.

- There are degrees below $0'$ thin-free and then can be r.e., or minimal, by CDJS.

 The construction of a minimal thin-free degree was given by CDJS, modified from Sacks forcing, where partial recursive trees are used.
An r.e. thin-free degree

Construct an r.e. \(A \) satisfying the following requirements:

\(\mathcal{R}_e \): if \(\Phi_e(A) \) and \(\Psi_e(\Phi_e(A)) \) are both total, then either

- \(A \neq \Psi_e(\Phi_e(A)) \); or
- \(\Phi_e(A) \) is not in \([P_e] \); or
- \([P_e] \) is not thin.

In this construction, we cannot use the e-splitting tree as a help to construct a subclass witness that \([P_e] \) is not thin.

We thus need to construct such a subclass, actually, a subtree, by infinitely many substrategies, each of which tries to find an infinite path in \([P_e] \), and

- any substrategy fails to secure an infinite path, an enumeration of a certain number into \(A \), showing that either \(A \neq \Psi_e(\Phi_e(A)) \) (diagonalization succeeds) or \(\Phi_e(A) \) is not in \([P_e] \), a global win for \(\mathcal{R}_e \).

DWY proved in 2018 that such r.e. degrees are dense in the r.e. degrees.
Other topics

In his thesis, Yuan proved that any nonrecursive set below a 2-generic set is thin-free. In particular, 2-generic degrees are thin-free.

CDJS also consider minimal Π^0_1 classes and Cantor-Bendixson rank of sets, a topic originated from Cenzer, et al.'s work in 1986.

Our continuing work on this topic is in the direction of Ershov hierarchy, also 1-generic degrees not below $0'$, pb-generic degrees, minimal degrees with full approximations.

References:

2. Cenzer, Downey, Jockusch and Shore, Countable thin Π^0_1 classes, Annals of Pure and Applied Logic 59 (1993), 79139.

4. Downey, Wu and Yang, Degrees containing members of thin Pi01 classes are dense and co-dense, Journal of Mathematical Logic, 18 (2018), DOI: 10.1142/S0219061318500010.

Thanks!
Thanks!

Take care and keep safe!