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Π0
1 classes

Definition:
A Π0

1 class is a set P ⊆ 2ω for which there is a (primitive) recursive tree T with
[T ] = P.

I As primitive recursive trees can be effectively enumerated, we have an
effective enumeration of Π0

1 classes.

Examples:

I Consider A = {e : ϕe(0) ↓= 0} and A = {e : ϕe(0) ↓= 1}.
I A and B are disjoint r.e. sets, and cannot be recursively separated.
I The class of sets separating A and B

S(A,B) = {C : A ⊆ C & B ∩ C = ø}

is called the separating class of A and B.
I S(A,B) is a Π0

1 class and is perfect (hence uncountable).

I The class of complete consistent extension of Peano Arithmetic is a Π0
1

class.

I Zariski topology over recursive rings, where for any r.e. ideal I , the
collection of prime ideals containing I forms a Π0

1 class.

Basis Theorems for Π0
1 classes: old friend



Thin Π0
1 classes

Definition: Thin Classes
A Π0

1 class P is thin if every subclass of P is relatively clopen, i.e., if Q is a
subclass of P, then Q = P ∩ U for some clopen set U ⊆ 2ω.

We know that in all Π0
1 classes, isolated paths are computable.

Conversely, if a thin Π0
1 class P contains a computable element X , then {X} is

a subclass of P, and hence by the thinness of P, X is isolated.

FACT:
A thin Π0

1 class P has no computable members if and only if P is perfect.

So every countable thin Π0
1 class has a computable member.



Martin-Pour El theories

The notion of thinness comes from the work of Martin and Pour-El in 1970.
Let S be a consistent r.e. theory in the propositional language with

Martin and Pour-El, 1970
Let S be a consistent r.e. theory.

(1) S has few r.e. extensions if each r.e. extension T of S is a principal
extension, i.e., T is generated by S together with a single propositional
formula.

(2) S is essentially undecidable if S has no decidable complete consistent
extensions.

FACTS:
For a consistent r.e. theory S ,

I S has few r.e. extensions if and only if the corresponding Π0
1 class is thin.

I S is essentially undecidable if and only if the corresponding Π0
1 class has

no computable members.



Turing degrees of members of thin Π0
1 classes

Theorem (CDJS, 1993):

If X is in a thin Π0
1 class P, then X ′ ≤T X ⊕ ø′′.

Proof: Let P = [T ] is a thin class, where T is a recursive tree, and A ∈ P.

For a given e, we consider whether e ∈ A′ or not, i.e., whether ΦA
e (e) ↓ or not.

I If ΦA
e (e) ↓, we can recursive in A to find an initial segment σ of A with

{e}σ(e) ↓.

I If NOT, what shall we do?



Consider Qe = {C : ΦC
e (e) ↑}, a Π0

1 class

I P ∩ Qe is a subclass of P, and as P is thin, P ∩ Qe = P ∩ Ue for some
clopen set Ue .

I As we are assuming that A is in P ∩ Qe , A is in P ∩ Ue , and hence A has
an initial segment σ with all infinite extensions in Ue .

Thus, if B ∈ P extends σ, then B ∈ P ∩ Ue = P ∩ Qe , and ΦB
e (e) ↑.

I Define a binary relation R(e, σ) as

R(e, σ) ⇐⇒ (∀τ ⊇ σ)[τ ∈ T & {e}τ (e) ↓ → τ 6∈ Ext(T )].

R is a Π2 relation and is recursive in ø′′.

We do as following:

Find the least number n such the following is true for σ = A � n:

(a) {e}σ(e) ↓ −→ e ∈ A′

(b) R(e, σ) −→ e 6∈ A′

Exact one of these will appear.

If A computes ø′′, then A cannot be a member of any thin Π0
1 class.
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Spector’s construction

I In Spector’s construction of minimal degrees below 0′′, forcing notions are
recursive perfect trees, Te , e ∈ ω, pruned according to the black-white
rule.

That is, to see whether we can find a string σ ∈ Te such that there is no
e-splitting above σ in Te , or not.

I If we use only ‘half’ of each Te , i.e., keep the even part, and exclude the
odd part, the construction still works.

A great observation.
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Construct one thin-free degree below 0′′

Definition:
A Turing degree is thin-free, if no members in this degree is a member of thin
Π0

1 classes.

Note that all degrees above 0′′ are thin-free.

We will construct a set A of thin-free degree below 0′′, we shall ensure for any
e such that if ΦA

e is total and Turing equivalent to A, then one of the following
is guaranteed:

(1) ΦA
e /∈ [Pe ], or

(2) [Pe ] is not thin.

The construction is modified from Spector’s construction of minimal degrees.

Suppose that A is constructed on a given recursive perfect tree T .

I To meet (1), we try to find some string τ on T such that Φτe is not
extendible on Pe ,

I if such a τ exists, we force A to extend τ , which guarantees that ΦA
e /∈ [Pe ],

if ΦA
e is total.



Construct one thin-free degree below 0′′

Definition:
A Turing degree is thin-free, if no members in this degree is a member of thin
Π0

1 classes.

Note that all degrees above 0′′ are thin-free.

We will construct a set A of thin-free degree below 0′′, we shall ensure for any
e such that if ΦA

e is total and Turing equivalent to A, then one of the following
is guaranteed:

(1) ΦA
e /∈ [Pe ], or

(2) [Pe ] is not thin.

The construction is modified from Spector’s construction of minimal degrees.

Suppose that A is constructed on a given recursive perfect tree T .

I To meet (1), we try to find some string τ on T such that Φτe is not
extendible on Pe ,

I if such a τ exists, we force A to extend τ , which guarantees that ΦA
e /∈ [Pe ],

if ΦA
e is total.



Construct one thin-free degree below 0′′

Definition:
A Turing degree is thin-free, if no members in this degree is a member of thin
Π0

1 classes.

Note that all degrees above 0′′ are thin-free.

We will construct a set A of thin-free degree below 0′′, we shall ensure for any
e such that if ΦA

e is total and Turing equivalent to A, then one of the following
is guaranteed:

(1) ΦA
e /∈ [Pe ], or

(2) [Pe ] is not thin.

The construction is modified from Spector’s construction of minimal degrees.

Suppose that A is constructed on a given recursive perfect tree T .

I To meet (1), we try to find some string τ on T such that Φτe is not
extendible on Pe ,

I if such a τ exists, we force A to extend τ , which guarantees that ΦA
e /∈ [Pe ],

if ΦA
e is total.



If NOT, we will then try to
I find a Π0

1 subclass of [Pe ] which is not the intersection of [Pe ] with any
clopen set U.

We will construct a recursive subtree Se of Pe , such that ΦA
e lies on Se , and

for any length n, there exists some B ∈ [Se ] and C ∈ [Pe ]\[Se ] such that

B � n = C � n = ΦA
e � n.

This implies that ΦA
e ∈ [Pe ], and [Se ] witnesses that Pe is not thin.



Action under this case:
I Target: Force A on a total recursive subtree Te of T , such that for any
α ∈ Te , Φ

Te (α̂0)
e and Φ

Te (α̂1)
e are incompatible in Pe and there is a path on

Pe extending Φ
Te (α)
e , of course.

We are assuming that (1) fails, so both Φ
Te (α̂0)
e , Φ

Te (α̂1)
e are extendible on

Pe and thus there is at least one infinite path in Pe extending it.

Consider the e-splitting subtree of T , SP(T , e), if exists, and take the even part.

I White Side: SP(T , e) exists.

In this case, ΦA
e is total, then ΦA

e is on [Pe ], and E(SP(T , e)), the even

subtree of SP(T , e), is a total recursive subtree of T , and Φ
E(SP(T ,e))
e is a

total recursive subtree of Pe , witnessing that [Pe ] is not thin.

I Black Side: SP(T , e) does not exist.

In this case, there is a string T (α) such that above T (α), no string
e-splits, and hence, if A is on the full subtree of T above α, Full(T , α),
then ΦA

e is recursive, making A and ΦA
e not Turing equivalent, if we can

make A nonrecursive. We Can, as recursive sets are all in thin Π1 classes..



Oracle Construction:

We can now run a forcing argument to construct A with wanted property.

I 0′′ is used as oracle to make decision at every stage.

Yuan Bowen improved this in his thesis:

Theorem:
There exists a hyperimmune-free minimal degree below 0′′ which is also
thin-free.

Note that such degrees are not below 0′.



Working below 0′

I CDJS proved that 0′ contains a Π1 set A which is in a thin Π1 class P.

I CDJS proved the density of degrees containing sets (not necessarily r.e.)
in thin Π1 classes in r.e. degrees.

DWY strengthened this in 2018, showing that sets above can be r.e.

I Yuan Bowen proved in his thesis that all 1-generic degrees below 0′

contain members of thin Π1 classes.

I There are degrees below 0′ thin-free and then can be r.e., or minimal, by
CDJS.

The construction of a minimal thin-free degree was given by CDJS, modified
from Sacks forcing, where partial recursive trees are used.
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An r.e. thin-free degree

Construct an r.e. A satisfying the following requirements:

Re : if Φe(A) and Ψe(Φe(A)) are both total, then either
I A 6= Ψe(Φe(A)); or
I Φe(A) is not in [Pe ]; or
I [Pe ] is not thin.

In this construction, we cannot use the e-splitting tree as a help to construct a
subclass witness that [Pe ] is not thin.

We thus need to construct such a subclass, actually, a subtree, by infinitely
many substrategies, each of which tries to find an infinite path in [Pe ], and

I any substrategy fails to secure an infinite path, an enumeration of a
certain number into A, showing that either A 6= Ψe(Φe(A))
(diagonalization succeeds) or Φe(A) is not in [Pe ], a global win for Re .

DWY proved in 2018 that such r.e. degrees are dense in the r.e. degrees.



Other topics
In his thesis, Yuan proved that any nonrecursive set below a 2-generic set is
thin-free. In particular, 2-generic degrees are thin-free.

CDJS also consider minimal Π0
1 classes and Cantor-Bendixson rank of sets, a

topic originated from Cenzer, et al.’s work in 1986.

Our continuing work on this topic is in the direction of Ershov hierarchy, also
1-generic degrees not below 0′, pb-generic degrees, minimal degrees with full
approximations.
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