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Martin-Löf randomness

A central algorithmic randomness notion for infinite bit sequences

is the one of Martin-Löf. There are several equivalent ways to

define it. Here is one.

Z ∈ 2N is Martin-Löf random ⇐⇒
for every computable sequence (σi)i∈N of binary strings with∑

i 2
−|σi| <∞, there are only finitely many i such that σi is

an initial segment of Z.

ML-random sequences satisfy properties one would intuitively

expect: e.g. noncomputable, law of large numbers, ...
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What does a ML-random compute?

I The Kučera-Gács theorem says that each set A ⊆ N is

Turing below some Martin-Löf random Z.

I If A is ∆0
2, we can take Chaitin’s Ω because Ω ≡T ∅′

Conversely, if we are given a ML-random, which sets are Turing

below it?

Theorem (Kučera 1985)

Each ∆0
2 ML-random has a noncomputable c.e. set Turing below it.
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The randomness enhancement principle (N. 2010)

The less a ML-random Z computes, the more random it gets.

Example: Z is called weakly 2-random if Z is in no null Π0
2 class.

This is stronger than ML-randomness.

Weak 2-random ⇐⇒ ML-random and forms a minimal pair with ∅′.

These results suggest a spectrum of randomness strength:

I from ML-random (including examples such as Ω that

computes all ∆0
2 sets)

I to weakly 2-random (computing none but the computable ∆0
2

sets).
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Enter the K-trivials

K is not the halting problem, but rather K(x) denotes the descriptive

complexity of a string x with respect to a universal prefix-free machine.

Recall the Schnorr-Levin theorem:

I Z ∈ 2N is ML-random if and only if K(Z � n) ≥+ n.

In the other extreme,

Definition (Chaitin, 1975)

A ∈ 2N is K-trivial if K(A� n) ≤+ K(n).

I computable ⇒ K-trivial

I Chaitin: all K-trivials are ∆0
2

I Solovay, ‘75: there is a noncomputable K-trivial set.

Letters A,B denote K-trivials. Letters Y, Z denote ML-randoms.
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Characterisations of K-trivials

Theorem (Nies-Hirschfeldt;Nies 2003)

The following are equivalent for A ∈ 2N:

I A is K-trivial.

I KA =+ K (A is low for K).

I MLRA = MLR (A is low for ML-randomness).

(MLR denotes the class of Martin-Löf-random infinite bit sequences.)

Theorem (Nies 2003)

I K-triviality is Turing-invariant.

I The K-trivial Turing degrees form an ideal contained in the

superlow sets.

I Every K-trivial set is Trump below a c.e. K-trivial set.
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Basis for randomness

Theorem (Hirschfeldt, Nies, Stephan, 2006)

A ∈ 2N is K-trivial if and only if A ≤T Z for some Z ∈ MLRA.

Left to right follows from the equivalence of K-triviality with

lowness for ML-randomness, and the Kučera-Gacs Theorem.

Proposition (Hirschfeldt, Nies, Stephan, 2006)

If A ≤T Z where A is c.e. and Z is ML-random with ∅′ 6≤T Z,

then Z ∈ MLRA. And hence A is K-trivial.

I In other words, if A is c.e. and NOT K-trivial, then any

ML-random Z ≥T A is above ∅′.
I So there is no version of Kučera-Gacs within the Turing

incomplete sets.
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Characterising the c.e. K-trivials in terms of plain

ML-randomness and computability notions

The converse was asked by Stephan (2006): is every (c.e.) K-trivial

below an incomplete ML-random?

Theorem (Bienvenu, Greenberg, Kucera, N., Turetsky ‘16

& Day, Miller, ’16)

The following are equivalent for a c.e. set:

I A is computable from some incomplete ML-random;

I A is K-trivial.

And in fact, there is a single incomplete ∆0
2 ML-random above all

the K-trivials!
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ML-reducibility
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By 2016 there were 17 or so characterisations of the class of

K-trivials, but only this was known about their internal structure:

They form an ideal in the Turing degrees that is contained in

superlow, generated by its c.e. members, and has no greatest

degree (i.e., it is nonprincipal).

It turns out that Turing reducibility ≤T is too fine to understand the

structure. A coarser “reducibility” is suggested by the results above.

Definition (main for this talk)

For sets A,B, we write B ≥ML A if

∀Z Martin-Löf-random [Z ≥T B ⇒ Z ≥T A].

(Any ML-random computing B also computes A.)
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Recall: B ≥ML A if ∀Z ∈ MLR[Z ≥T B ⇒ Z ≥T A].

I A common lowness paradigm: computational lowness means to be

not overly useful as an oracle.

I ≤LR and other weak reducibilities are based on this: quantify the

usefulness of the oracle. ≤SJT on the last three slides also is an

instance of this paradigm.

I ML-reducibility descends from an alternative lowness paradigm:

computational lowness means being computed by many oracles.

By HiNiSt 06, the ML-degree of ∅′ contains all the non-K-trivial

c.e. sets. So among the c.e. sets one can focus on K-trivials.

ML degrees are essentially c.e.

I Each K-trivial A is ML-equivalent to a c.e. K-trivial D ≥T A.

(GrMiNiTu, arXiv 1707.00258)
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Structure of the K-trivials w.r.t. ≤ML

I The least degree consists of the computable sets. This follows

from the low basis theorem with upper cone avoiding.

I There is a ML-complete K-trivial c.e. set S, called a “smart”

K-trivial. (BiGrKuNiTu, JEMS 2016)

I There is a dense hierarchy of principal ideals Bq, q ∈ (0, 1)Q.

E.g., B0.5 consists of the sets that are computed by both “halves”

of a ML-random Z, namely Zeven and Zodd (GrMiNi, JML 2019)

I several other interesting subclasses of the K-trivials are

downward closed under ≤ML.

I E.g. the strongly jump traceable sets, or equivalently, the sets

below all the ω-c.a. ML-randoms (by HiGrNi, Adv. Maths 2012,

along with GrMiNiTu). 12 / 27



Degree theory for ≤ML on the K-trivials
Recall: B ≥ML A if ∀Z ∈ MLR[Z ≥T B ⇒ Z ≥T A].

Results from GrMiNiTu, arxiv 1707.00258

(a) For each noncomputable c.e. K-trivial D there are c.e.

A,B ≤T D such that A |ML B.

(b) There are no ≤ML-minimal pairs among the c.e. K-trivials.

(c) For each c.e. A there is a c.e. B >T A such that B ≡ML A.

(a) is based on Kučera’s method. (b) and (c) use cost functions.

How many random sets are needed in the definition of ≥ML?

I Fix notation η for a computable ordinal. There’s a noncomputable

c.e. set D below all the η-c.a. randoms as they form a null Σ0
3 class.

I By (a), restricting Z in the definition of ≥ML to the η-c.a. sets

yields a weaker reducibility,
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Cost functions
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Definition

A cost function is a computable function c : N2 → R≥0 satisfying:

I monotonicity c(x, s) ≥ c(x+ 1, s) and c(x, s) ≤ c(x, s+ 1)

I c(x) := lims c(x, s) <∞ exists, and limx c(x) = 0.

Definition

Let 〈As〉 be a computable approximation of a ∆0
2 set A; let c be a

cost function. The total cost c(〈As〉) is∑
s

c(x, s)[[x is least s.t. As(x) 6= As−1(x)]].

A ∆0
2 set A obeys a cost function c if there is some computable

approximation 〈As〉 of A for which the total cost c(〈As〉) is finite.

Write A |= c for this. FACT: There is a noncomputable c.e. A |= c.
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Cost functions characterising ML-ideals
Recall: a ∆0

2 set obeys c if it can be computably approximated

obeying the “speed limit” given by c.

Let cΩ(x, s) = Ωs − Ωx (where 〈Ωs〉 is an increasing approximation

of Ω).

Theorem (N., Calculus of cost functions, 2017)

A ∆0
2 set is K-trivial if and only if it obeys cΩ.

Let cΩ,1/2(x, s) = (Ωs − Ωx)
1/2.

Theorem (GrMiNi, 2019)

The following are equivalent:

1. A is computed by both halves of a ML-random.

2. A obeys cΩ,1/2.
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Cost functions and computing from randoms

λ denotes the uniform product measure on {0, 1}N.

Definition

Let c be a cost function. A c-test is a sequence (Un) of uniformly

Σ0
1 subsets of {0, 1}N satisfying λ(Un) = O(c(n)).

Main Fact

If Z ∈ MLR fails a c-test, and A |= c, then A ≤T Z.

I Collect the oracles that may become invalid through A-change into

a Solovay test.

I If As−1(n) 6= As(n), then Un,s is listed as a component of the test.

Solovay because 〈As〉 obeys c.

I Z is outside almost all components, so Z computes A correctly a.e.
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Definition (ML-completeness for a cost function, GrMiNiTu)

Let c ≥ cΩ be a cost function. We say A is ML-complete for c if

A |= c, and B ≤ML A for each B |= c.

Theorem (GrMiNiTu, extending BiGrKuNiTu, 2016 result for cΩ)

For each c ≥ cΩ some c.e. set A is ML-complete for c.

Proof idea: Let Γ be the Turing functional such that Γ(0e1Z) = Φe(Z).

Build A |= c such that A = ΓY ⇒ Y fails some c-test. Hence B |= c

implies B ≤T Y . We may that assume c(k) ≥ 2−k for each k.

I During the construction, let

Gk,s = {Y : ΓYt � 2k+1 ≺ At for some k ≤ t ≤ s}.

I Error set Es: those Y such that ΓYs is to the left of As.

I Ensure λGk,s ≤ c(k, s) +λ(Es−Ek). If this threatens to fail, put the

next x ∈ [2k, 2k+1) into A. 〈Gk〉 is the required c-test: λGk ≤ c(k).
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ML-completeness for a cost function

Clearly the bigger a cost function, the harder it is to obey.

Theorem (GrMiNiTu)

For each K-trivial A there is a cost function c〈A〉 ≥ cΩ such that A

is ML-complete for c〈A〉.

This shows that there are no ML-minimal pairs: suppose K-trivial

sets A,B are noncomputable.

I There is a noncomputable c.e. D such that D |= c〈A〉 + c〈B〉.

I Then D ≤ML A,B.
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ML completeness for cost functions, and

half-bases

A is a half-base if A ≤T Ωeven,Ωodd.

Theorem (BiGrKuNiTu, 2016)

Not every K-trivial is a half-base.

Proof.

I Ωeven and Ωodd are low by van Lambalgen and [HiNiSt:06];

I If Y ∈ MLR fails a cΩ-test, then it is (super)high.

I So an ML-complete K-trivial has only high ML-randoms

above, and hence it is not a half-base.
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A reducibility dual to ≤ML

Definition

For Z, Y ∈ MLR, let Z ≤ML∗ Y if for every K-trivial A,

A ≤T Z ⇒ A ≤T Y .

I Top degree: all randoms failing a cΩ-test

(ie, the ML-random that are non Oberwolfach-random).

I Bottom degree: the weakly 2-randoms.

We say that Z ∈ MLR is feeble for c if Z fails a c-test, and has

least ML∗-degree among those.

For example: For rational p ∈ (0, 1), any appropriate “p-part” of Ω

is feeble for cΩ,p.
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Pieces of Ω w.r.t. ≤ML∗

I For any infinite computable R ⊆ N, let ΩR be the bits of Ω

with position in R.

I We can define a corresponding cost function cΩ,R similar

to cΩ,p: A obeys cΩ,R ⇐⇒ A ≤T ΩR.

I Thus, ΩR is feeble for cΩ,R.

For each R, let BR be a K-trivial that is ML-complete for cΩR
.

Theorem (GrMiNiTu, submitted)

The following are equivalent for infinite, computable R, S ⊆ N:

1. ΩS ≤ML∗ ΩR;

2. BS ≥ML BR;

3. |S ∩ n| ≤+ |R ∩ n|.

For instance, by (3), Ωeven and Ωodd compute the same K-trivials!
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Other weak reducibilities
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I Note that A ≤T B if JA = ΨB for some functional Ψ (where

JX = φXe (e) is the jump of X).

I Suppose that B instead can only make a small number of

guesses for JA(x):

Definition (N. 2009; related to Cole and Simpson 06)

We write A ≤SJT B if for each order function h, there is a uniform

list 〈Ψr〉 of functionals such that JA(x), if defined, equals ΨB
r (x)

for some r ≤ h(x).

I This relation is weaker than Turing, and transitive.

I A is strongly jump traceable (FiNiSt 05) if A ≤SJT ∅. These

sets are properly contained in the K-trivials.

I There is no ≤SJT -largest K-trivial, essentially by relativizing

this.
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Recall that Y is ω-c.a. if Y ≤wtt ∅′.
Let C be the class of the ω-c.a., superlow, or superhigh sets.

Theorem (with Greenberg and Turetsky)

The following are equivalent for K-trivial c.e. sets A,B.

(a) A ≤SJT B
(b) A ≤T B ⊕ Y for each Y ∈ C ∩MLR.

This generalises work of [GHN 2012] where B = ∅. As a corollary, all

the ideals Bq are downward closed under ≤SJT , because Bq consists of

the K-trivials below an appropriate piece ΩR of Ω, which is ω − c.a..
We have on the K-trivials that

≤T ⇒ ≤ML ⇒ ≤ω−c.a.−ML

≤T ⇒ ≤SJT ⇒ ≤ω−c.a.−ML

and none of ≤ML, ≤SJT implies the other.
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Questions

I Is being an ML-complete K-trivial an arithmetical property?

Stronger: is ≤ML an arithmetical relation?

I Are the ML-degrees of the (c.e.) K-trivials dense?

(Downward density is known.)

I Can a smart K-trivial be half of a minimal pair in the c.e.

Turing degrees?

I Can it obey a cost function stronger than cΩ?

I Is there an incomplete ω-c.a. ML-random above all the

K-trivials?
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