
Recursion Theory

Frank Stephan

January 9, 2025

Recursion theory deals with the fundamental concepts on what subsets of natural
numbers (or other famous countable domains) could be defined effectively and how
complex the so defined sets are. The basic concept are the recursive and recursively
enumerable sets, but the world of sets investigated in recursion theory goes beyond
these sets. The notions are linked to Diophantine sets, definability by functions via
recursion and Turing machines. Although some of the concepts are very old, it took
until Matiyasevich’s great result that Diophantine and r.e. sets are the same that the
picture was fully understood. This lecture gives an overview on the basic results and
proof methods in recursion theory.

Frank Stephan: Rooms S17#07-04 and COM1#03-11
Departments of Mathematics and Computer Science
National University of Singapore
10 Lower Kent Ridge Road,Singapore 119076
Republic of Singapore
Telephone 6516-2759 and 6516-4246
Email fstephan@comp.nus.edu.sg
Homepage http://www.comp.nus.edu.sg/˜fstephan/index.html

Thanks. The author wants to thank Chong Chi Tat and Yang Yue for discussions
on the lecture “Recursion Theory” and its syllabus. Furthermore, he wants to thank
Li Hongyang, Li Yanfang and Ye Nan for proofreading.

1

Contents

1 Foundations 3

2 Numberings of partial-recursive functions 14

3 Rice’s Theorem and the Arithmetical Hierarchy 25

4 Post’s Problem and Reducibilities 34

5 The Theorem of Post and Kleene 43

6 The Fixed-Point Theorem and DNR Degrees 49

7 A solution to Post’s Problem for r.e. sets 56

8 Maximal, r-maximal and semirecursive sets 62

9 Permitting and Infinite Injury Priority Methods 70

10 The Analytical Hierarchy 81

11 Algorithmic randomness 87

12 Inductive inference 105

2

1 Foundations

The historical roots of recursion theory date back more than 2000 years, but it was
not before 1930 that mathematicians started to formalize the notion of “algorithm”
precisely and defined the important concepts of recursive and recursively enumerable
sets. Diophantus, a mathematician from Alexandria in Egypt during the Ptolomy
dynasty studied equations on natural and integer numbers named by him: namely he
investigated polynomials in several variables with integer coefficients and wanted to
find solutions in the integers or natural numbers. A famous example is the question
whether the following equation has a solution in the natural numbers for any fixed n:

(x+ 1)n + (y + 1)n = (z + 1)n

There are easily found solutions for n = 1 and n = 2, for example 3 + 4 = 7 and
32+42 = 52. Pierre de Fermat stated in notes found after his death the given equation
has no solution for n > 2 and wrote that he would know an easy and nice proof, but
it was nowhere written down. It took more than 350 years and many intermediate
results until Andrew Wiles provided finally a proof that the equation above has no
solution for any n > 2. So Diophantine equations are quite complicated and the study
of this field needs a lot of imagination and intuition. Naturally mathematicians were
interested in finding good methods to solve such equations. Of course one can search
for zeroes by testing one possibility after the other. For example, Euler made in 1769
a conjecture which implied that

(v + 1)5 + (w + 1)5 + (x+ 1)5 + (y + 1)5 = (z + 1)5

has no solution. This conjecture was open until 1966 when Lander and Parkin found
the solution

275 + 845 + 1105 + 1335 = 1445.

Indeed, the age of computers and the ability to test one by one all possible solutions
solved a lot of open questions of this type. Although one can find solutions with a
computer, the disadvantage is that the computer would search forever in the case
that there is no solution. For this reason, mathematicians considered the exhaustive
search strategy never as satisfying and asked, already before the age of computers,
whether there would be a better method to determine the solvability of Diophantine
equations on the natural numbers. In a famous address to the International Congress
of Mathematicians in the year 1900, David Hilbert posed 23 fundamental mathemat-
ical problems which should be solved in the twentieth century. Among these was the
problem to develop a method to check whether a Diophantine equation has a solution.
One can easily define a parameterized version of this problem.

3

Definition 1.1. A set A ⊆ N is Diophantine iff there are a number n ∈ N and
polynomials f, g with coefficients in N such that

A = {x : ∃y1 . . . ∃yn [f(x, y1, . . . , yn) = g(x, y1, . . . , yn)]}.

Today it is known that one can fix without loss of generality n to the value 9.

In 1970, Matiyasevich [68, 69] showed that one cannot even solve the parameterized
version. It is easily seen that a computer can enumerate the members of such a
set A by exhaustive search (if one ignores the constraints of finite memory size and
computation time). Matiyasevich showed that also the converse is true: every set
given by such a enumeration procedure of an idealized computer can be represented
as a Diophantine set. Such sets are called recursively enumerable and Matiyasevich’s
Theorem gives the easiest way to characterize them. This characterization uses only
polynomials over N and avoids any formalization of machines or recursive functions.

Example 1.2. The sets of even numbers, of odd numbers, of square numbers, of
nonsquare numbers and of composite numbers are Diophantine:

Even = {x : ∃y1 [x = y1 + y1]};
Odd = {x : ∃y1 [x = y1 + y1 + 1]};

Square = {x : ∃y1 [x = y1 · y1]};
Nonsquare = {x : ∃y1, y2, y3 [(y21 + y2 + 1)2 + x2 + (1 + y2 + y3)

2 + 4y21
= 2x(y21 + y2 + 1) + 4y1(1 + y2 + y3)]};

Composite = {x : ∃y1, y2 [x = (y1 + 2) · (y2 + 2)]}.

The same holds for the set of prime numbers. A list of Diophantine equations for this
set can be found on http://en.wikipedia.org/wiki/Formula_for_primes and the
definition is much more complicated than those above.

As the characterization is so easy, Diophantine sets are an ideal way to introduce
recursively enumerable sets. But unfortunately it is a bit difficult to construct Dio-
phantine sets having desired properties. Indeed, it took approximately 40 years from
the initial definition of recursively enumerable sets until Matiyasevich discovered the
method how to convert a recursively enumerable set (given by some other description)
into the polynomials f, g over N (or the polynomial f−g which then also has negative
integers among its coefficients) to define the Diophantine set. The alternative ways
to define recursively enumerable sets provide easier constructions and will now be
presented in the upcoming paragraphs.

Recursive functions have this name because one can define them iteratively from

4

easier functions. So addition and multiplication can be defined in terms of the
successor-function mapping x to S(x) = x+ 1 as follows:

x+ 0 = x;

x+ S(y) = S(x+ y);

x · 0 = 0;

x · S(y) = (x · y) + x.

The recursive definition goes over the second parameter and now, together with com-
position of functions, one can define all polynomials. Indeed, the class of functions
which can be defined using recursion and certain basic concepts is the class of prim-
itive recursive functions. Dedekind [22], Gödel [38] and Skolem [102] introduced and
used this class for various purposes.

Definition 1.3. The class of primitive recursive functions is the smallest class PR
of functions from Nn (with parameter n ∈ N) to N such that the following conditions
are satisfied:

� The function mapping any input in Nn to some constant m is in PR.

� The successor-function S given by S(x) = x+ 1 is primitive recursive.

� For every n and every m ∈ {1, 2, . . . , n}, the function mapping (x1, x2, . . . , xn)
to xm is in PR.

� If f : Nn → N and g1, . . . , gn : Nm → N are all in PR, so is the function mapping
(x1, x2, . . . , xm) to f(g1(x1, x2, ..., xm), g2(x1, x2, ..., xm), . . . , gn(x1, x2, ..., xm)).

� If g : Nn+2 → N and h : Nn → N are functions in PR then there is also a
function f : Nn+1 → N in PR with f(x1, x2, . . . , xn, 0) = h(x1, x2, . . . , xn) and
f(x1, x2, . . . , xn, S(xn+1)) = g(x1, x2, . . . , xn, xn+1, f(x1, x2, . . . , xn, xn+1)),

The last step defining f from g, h is called primitive recursion.

An example of formal primitive recursion could be done as follows. Let n = 0,
h(x) = 0 and g(x, y) = x. Then the predecessor function P being the inverse to S is
given by P (0) = 0 and P (S(x)) = x. So P is exactly the function defined by primitive
recursion from g and h. Most functions used in everyday life are primitive recursive:
addition, multiplication, substraction (when suitably adapted to natural numbers),
exponentiation and, of course, also the Fibonacci numbers given by

F (0) = 0;

F (1) = 1;

F (n+ 2) = F (n) + F (n+ 1).

5

Note that primitive recursive functions are always total. But the primitive recursive
functions do not completely capture the class of functions which can be defined in-
ductively. The most prominent member outside this class is the Ackermann function
which is defined as follows:

A(0, n) = n+ 1;

A(m+ 1, 0) = A(m, 1);

A(m+ 1, n+ 1) = A(m,A(m+ 1, n)).

For this reason, one has to enrich the primitive recursive functions by permitting un-
bounded search. This was done by introducing the µ-minimalization which is defined
for partial functions f as follows.

Definition 1.4. µy(f(x1, . . . , xn, y) = 0) takes the value z if f(x1, . . . , xn, y) is defined
for all y ≤ z and f(x1, . . . , xn, y) > 0 for y < z and f(x1, . . . , xn, z) = 0. Furthermore,
µy(f(x1, . . . , xn, y) = 0) is undefined if there is no z satisfying these conditions.

This definition can also be adapted to other conditions on the value than “being
positive”; the basic principle would still be to test the condition for y = 0, 1, . . . until
it is found to be true for some y and one returns this y, in the case that no y is
found or the test incorporates some value f(x1, . . . , xn, y) where this is undefined, the
µ-minimalization becomes undefined as well. So µ-minimalization gives rise to partial
functions and can also be applied to partial functions.

Definition 1.5. The class of partial-recursive functions is the smallest class of partial
functions from Nn to N which satisfies the conditions given in Definition 1.3 and is in
addition closed under µ-minimization. A function is recursive iff it is defined on the
full domain Nn and partial-recursive.

A set A is recursively enumerable iff it is the range of a partial-recursive function.
A set A is recursive iff there is a recursive function f with f(x) = 1 for x ∈ A and
f(x) = 0 for x /∈ A.

As just said, Definition 1.5 permits now to state Matiyasevich’s result [68, 69] formally.
Let ⟨x, y⟩ denotes Cantor’s pairing function given by

⟨x, y⟩ = 1
2
(x+ y)(x+ y + 1) + y;

Cantor’s pairing function is a bijection from N2 to N and permits mainly to work with
partial functions from N to N instead of dealing with functions having a domain of
the form Nn. Note that ⟨x, y, z⟩ is written for ⟨⟨x, y⟩, z⟩, ⟨u, x, y, z⟩ for ⟨⟨⟨u, x⟩, y⟩, z⟩
and so on.

6

Theorem 1.6: Matiyasevich’s Theorem [68, 69]. A set A ⊆ N is recursively
enumerable iff it is Diophantine. A function ψ : N → N is partial-recursive iff the
set {⟨x, ψ(x)⟩ : x ∈ dom(ψ)} is Diophantine. A set A ⊆ N is recursive iff the set
{⟨x,A(x)⟩ : x ∈ N} is Diophantine.

Almost everyone has already dealt with a computer in his life. For that reason, it is
quite convenient to provide also the programming definition of the partial-recursive
functions. The earliest algorithm was that of Euclid to compute the greatest common
divisor of two natural numbers. It could be written down like this.

function gcd(x,y)

{ var v = x; var w = y;

if ((v==0) || (w==0))

{ return(0); }

while (v != w)

{ if (v<w) { w = w-v; }

if (w<v) { v = v-w; } }

return(v); }

See http://www.comp.nus.edu.sg/~gem1501/javascriptintroduction.html for
an introduction of the programming language Java Script used to write these functions.
The verbal explanation of the algorithm is the following: given two numbers, check
whether both are positive. If so, keep substracting the smaller from the larger number
until the remaining numbers are equal and then return this value. If not, just return
0. The following assumptions will be made from now on:

� all variables take as values natural numbers, advanced concepts like arrays are
not used;

� the basic operations allowed are addition and substraction with the operation
modified to x− y = 0 for y > x;

� furthermore, if-statements are permitted to do conditional operations;

� for-loops do not permit to modify the variable or bound in the body of the loop;

� while-loops can be executed as long as the corresponding condition is true.

With these restrictions, one is able to characterize the notions of primitive recursive
and recursive functions as well as recursively enumerable sets.

7

Theorem 1.7. Assume that a program consists of functions f1, . . . , fn. Then the
functions defined by these programs are partial-recursive. If every fi only calls func-
tions fj with j < i and no while-loops are used then all functions are primitive recur-
sive. Every partial-recursive function can defined using programs and every primitive
recursive function can be obtained by defining a sequence of functions by programs
without while-loops such that each function fi only calls functions fj with j < i.

In order to illustrate this characterization by examples, definitions for basic primitive
recursive functions and for a function h obtained from other functions g, h by primitive
recursive are given below. All these definitions respect the constraints given with the
exception that the functions are not numerated, instead those defined later just call
functions defined previously. Addition and substraction are denoted by + and −,
respectively. Only examples are given for function returning constants and projections
onto one variable out of a tuple of variables.

function null(x)

{ return(0); }

function succ(x)

{ return(x+1); }

function projecttwooffive(xone,xtwo,xthree,xfour,xfive)

{ return(xtwo); }

function mult(x,y)

{ var z; var r=0;

for (z=0;z<y;z=z+1)

{ r = r+x; }

return(r); }

function cube(x)

{ var r;

r = mult(mult(x,x),x);

return(r); }

function factorial(x)

{ var z; var r = 1;

for (z=0;z<x;z=z+1)

{ r = mult(r,z+1); }

return(r); }

8

function twopower(x)

{ var z; var r = 1;

for (z=0;z<x;z=z+1)

{ r = r+r; }

return(r); }

function g(xone,xtwo,xthree,y)

{ } // Parameter function g for primitive recursion

function h(xone,xtwo)

{ } // Parameter function h for primitive recursion

function f(xone,xtwo,xthree)

{ var z; var r = h(xone,xtwo);

for (z=0;z<xthree;z=z+1)

{ r = g(xone,xtwo,z,r); }

return(r); }

function k(xone,xtwo,xthree,xfour)

{ } // Next function makes mu-minimalization of this one

// Note that program does not return from calling

// k(....) if k is undefined for these values.

function muk(xone,xtwo,xthree)

{ var r = 0;

while (k(xone,xtwo,xthree,r)>0) { r = r+1; }

// loop can take forever or call of k can take forever

return(r); } // this is return(mu r(k(xone,xtwo,xthree,r)))

One can easily show by induction that every partial-recursive function can be defined
by Java Script programs, even with the here made restrictions to their syntax. On
the other hand, one can also show the reverse direction of Theorem 1.7; the proofs
are not difficult but lengthy.

An other model to define partial-recursive functions is that of a Turing machine,
named after its inventor Alan Turing [114]. This Turing machine has an infinite tape
which has cells such that every cell takes one of finitely many symbols. This tape can
be viewed as a function T : Z → F where F is a finite set of symbols. Furthermore,
the Turing machine has a finite set S of states. For every s ∈ S and every symbol
a ∈ F there is a unique 5-tuple (a, s, a′, s′, d) in a finite set R of rules where a, a′ ∈ F ,

9

s, s′ ∈ S and d ∈ {−1, 0, 1}. The Turing machine has two special members s0, sh ∈ S
which are the starting and the halting state. Now the following algorithm is run:

1. Let p = 0 be the initial position and c = s0 be the current state. The symbols
T [1], T [2], . . . , T [n] are the binary digits of the input x (where n is the number
of digits of the input x) and T [m] = # for m /∈ {1, 2, . . . , n}.

2. Find the 5-tuple (a, s, a′, s′, d) ∈ R with a = T [p] and c = s.

3. Update T [p] = a′.

4. Update c = s′.

5. Update p = p+ d.

6. If c ̸= sh then goto step 2.

7. If the symbols different from # are a binary representation of a natural number
y ∈ N then output y and halt.

Then the function f computed by the Turing machine is the output y computed from
input x. The value f(x) is undefined if either the Turing machine never halts or the
symbols on the tape (between the two infinite strings of # to the left and to the right)
do not represent a natural number in the binary format. One can show that also this
notion leads to the same concept.

Theorem 1.8. A function is partial-recursive iff it is computed by a Turing machine.

Also a further variety of equivalent formulations of the concept of a partial-recursive
function had been made. Church observed that these concepts all coincide with what
one might call “computable in the intuitive way”; based on this observation he for-
mulated his famous thesis.

Church’s Thesis. For any reasonable formalization XY of “computable” and any
partial function f , f is computable according the criterion XY iff f is partial-recursive.

It is called a thesis because “reasonable formalization” is a fuzzy and not well-defined
word. Many “reasonable formalizations” had been considered like Turing machines,
register machines, programming in C, programming in Java Script, programming in
Fortran 77 and so on. For all these notions, it had been shown that they coincide
with the framework of partial-recursive functions. The word “reasonable” is of course
necessary in order to exclude mechanisms which are too powerful or too weak: for
example, f is limit-recursive iff there is a two-ary primitive recursive function g such

10

that f(x) = y iff g(x, t) = y for almost all t. Such a mechanism which works in the
limit and can therefore do things which a Turing machine does not succeed to do in
finite time. Therefore, the word “reasonable” is used in order to exclude unreasonable
model, although those models might be studied in some other context (as computa-
tions relative to oracles). For example, Burgin’s “super-recursive” computations [13]
encorporated processes of computing in the limit and go therefore beyond reasonable
models of computation. Burgin thinks that his model refutes Church’s Thesis, most
other mathematicians just do not follow his approach to incorporate computations in
the limit into those basic operations which are permitted to define a reasonable model
of computation. The next results show that the notion of “recursively enumerable
set” and “recursive set” are quite natural and have many natural characterizations.

Theorem 1.9. A nonempty set A is recursively enumerable iff it is the range of a
partial-recursive function iff it is the domain of a partial-recursive function iff it is
the range of a recursive function iff it is the range of a primitive recursive function.

A set A is recursive iff A and N−A are both recursively enumerable iff its charac-
teristic function is recursive iff A is either finite or the range of a strictly monotonic
increasing recursive function.

Proof. In the proof, the corresponding algorithms are written down informally. They
are not worked out into the last detail in a programming language. Recall that by
Definition 1.5, a set is recursively enumerable iff it is the range of a partial-recursive
function.

Now it is shown that the other four formulations are equivalent. So assume that
A is not empty and let a be an element of A. Furthermore, assume that A is the
domain of the partial-recursive function f . This function f can be computed by some
computer program which can be simulated step by step. Hence there is a primitive-
recursive function g such that

g(x, t) =

{
0 if the computer program for f(x)

terminates within t steps;
1 otherwise.

Now one can define a function h such that

h(x, t) =

{
a if g(x, t) = 1;
x if g(x, t) = 0;

now the range of h is A ∪ {a} which, by assumption on a, is just A. As A is the
range of a primitive recursive function, it is also the range of a recursive and of a
partial-recursive function.

For the other way round, assume that A is the range of some partial-recursive

11

function h̃. Also h̃ has a computer program and one can simulate this to get the
following function g̃:

g̃(x, t) =

 h̃(x) if the computer program for h̃(x)
terminates within t steps;

a otherwise.

For the converse let π1(u) and π2(u) be the unique numbers with ⟨π1(u), π2(u)⟩ = u
for all u. Now one can modify g̃ to

f̃(y) = µu(g(π1(u), π2(u)) = y).

The resulting function h̃ has exactly the domain A and this completes the proof for
the characterization of the r.e. sets.

Again it is a definition that A is recursive iff its characteristic function with
A(x) = 1 for x ∈ A and A(x) = 0 for x /∈ A is recursive. Clearly one can intro-
duce functions f0, f1 such that fa(x) is defined iff f(x) = a for a ∈ {0, 1}. Hence one
obtains that A and N − A are the domains of partial-recursive functions and recur-
sively enumerable.

For the converse direction assume that A and N−A are both recursively enumer-
able. If A = ∅ or A = N then A is clearly recursive. Otherwise there are recursive
functions f0, f1 with range N− A and A, respectively. Now let

g(x) = µy(f0(y) = x ∨ f1(y) = x).

Then one can build the characteristic function of A by case-distinction:

A(x) =

{
0 if f0(g(x)) = x;
1 if f1(g(x)) = x.

As the range of f0, f1 is disjoint, the two conditions cannot contradict each other.
Given A, define recursively a function h by h(0) = µy(A(y) = 1) and h(S(x)) =

µy(y > h(x) ∧ A(y) = 1). If A is infinite then h is a recursive function with range
A. For the converse direction, note that A is clearly recursive if A is finite; one could
build the function by looking up in a table. So assume again that A is infinite and
the range of an strictly increasing recursive function h. As h(x) ≥ x for all x, the set
A is recursive by the condition

x ∈ A⇔ x ∈ {h(0), h(1), . . . , h(x)}

which can be checked effectively.

12

Exercise 1.10. For the ease of notation, it is advantageous to permit integer coeffi-
cients and values for the polynomials defining Diophantine sets, but the variables still
range over natural numbers. Given two disjoint Diophantine sets A and B, construct
a Diophantine set C such that

C = {⟨x, 0⟩ : x ∈ A} ∪ {⟨x, 1⟩ : x ∈ B}

by describing how the polynomial fC with C = {x : ∃y1, ..., yn [fC(x, y1, . . . , yn) = 0]}
is constructed from the polynomials fA for A and fB for B; it is possible to introduce
new variables.

Exercise 1.11. Prove that a function f is partial-recursive iff its graph {⟨x, f(x)⟩ :
x ∈ dom(f)} is recursively enumerable.

Exercise 1.12. Which of the following sets B,C,D,E, F derived from a set A are
recursively enumerable whenever A is:

B = {x : ∃y [⟨x, y⟩ ∈ A]};
C = {x : ∀y [⟨x, y⟩ ∈ A]};
D = {x : ∃y [⟨x, y⟩ /∈ A]};
E = {x : ∀y [⟨x, y⟩ /∈ A]};
F = {x : ∃y, z [y < z ∧ ⟨x, y⟩, ⟨x, z⟩ ∈ A]}.

Exercise 1.13. Match the following Diophantine sets to the below verbal descrip-
tions.

G = {x : ∃y1, y2, y3 [x = (y1 + 2) · (y2 + 2) · (y3 + 2)]};
H = {x : ∃y1 [x+ x = y1 · (y1 + 1)]};
I = {x : ∃y1, y2 [y1 · y1 + y2 · y2 = x]};
J = {x : ∃y1, y2 [(y1 + y1 + 3) · (y2 + y2 + 3) = x]};
K = {x : ∃y1 [x = y1 + y1 + 4]}.

The descriptions are:

� the set of all sums of two squares;

� the set of all odd non-prime numbers;

� the set of all even non-prime numbers;

� the set of all sums of the form 0 + 1 + 2 + . . .+ y;

� the set of all numbers with at least three prime factors.

13

2 Numberings of partial-recursive functions

One fundamental result of recursion-theory is that there are effective numberings of
all recursively enumerable sets as well as of all partial-recursive functions. Here a
numbering is defined as follows.

Definition 2.1. A numbering is (depending on the context) either a list of subsets
L0, L1, L2, . . . of N such that {⟨e, x⟩ : x ∈ Le} is recursively enumerable or a list
of partial functions ϕ0, ϕ1, ϕ2, . . . from N to N such that ⟨e, x⟩ 7→ ϕe(x) is partial-
recursive. A numbering is universal iff it lists all r.e. sets or partial-recursive functions,
respectively.

The existence of universal numberings of all r.e. sets and all partial-recursive functions
are based on the following observations.

� There is a quite straight-forward enumeration of all possible program-texts; for
example, each program is represented by a file in a computer consisting of bytes
(numbers 0 to 255) where without loss of generality the first byte is different
from 0. So one could interpret each file as a number in the system with base
256, so the file consisting of the bytes (35, 38, 66, 32) would give the number
35 · 2563 + 38 · 2562 + 66 · 256 + 32. Conversely one could reverse the mapping
to assign to every number a content of a file which could then be interpreted as
a program text. Let Te be the text assigned to number e.

� One can check programs for syntactic correctness and also check whether they
satisfy the constraints before and in Theorem 1.7 and as well check whether the
function defined in the program has exactly one input variable. If this is true
for program Te, let φe(x) take as value the output y produced by the program
on input x. If the program does not halt and the simulation therefore also does
not halt then φe(x) is undefined. Furthermore, φe(x) is undefined whenever Te
is not of the adequate form (as described above).

� Note that all these operations can be done effectively in e and x. That is, the
function ⟨e, x⟩ 7→ φe(x) is a partial-recursive function and φ0, φ1, φ2, . . . is a
numbering of all partial-recursive functions.

� One can also simulate the computations for a number s of computation steps.
Then the function φe,s(x) is defined iff the computation halts in s steps, other-
wise φe,s(x) is undefined. Note that this can be checked effectively, that is, the
set {⟨e, x, s⟩ : φe,s(x) is defined} is primitive-recursive.

14

� The set We can be defined from φe. Following a common convention, We is the
domain of φe.

� One can define approximations We,s to We; without loss of generality, We,s ⊆
{0, 1, . . . , s} for all s. The set {⟨e, x, s⟩ : x ∈ We,s} is primitive recursive.

Furthermore, numberings of subclasses of the r.e. sets or partial-recursive functions are
also considered. Note that notions like “number of steps” depend on the underlying
machine model. In the case that one does not like this unprecise definition, one
can take Matiyasevich’s characterization and use the following alternative but more
precise definition.

Remark 2.2. Let φe and We as above. The set A = {⟨e, x, y⟩ : φe(x) = y} is
recursively enumerable and thus Diophantine. So there are polynomials f, g in n+ 1
variables with coefficients in N such that

A = {u : ∃z1 . . . ∃zn [f(u, z1, . . . , zn) = g(u, z1, . . . , zn)]}

and this set is the union of all sets As defined as

As = {u : u < s ∧ ∃z1 < s . . .∃zn < s [f(u, z1, . . . , zn) = g(u, z1, . . . , zn)]}.

Now φe,s = y iff ⟨e, x, y⟩ ∈ As. Similarly We,s is the set of all x such that there is an
y < s with ⟨e, x, y⟩ ∈ As.

Besides Diophantine sets, also Turing machines are popular because for them
things like the space and time used can also be defined in a very natural way. So each
update-cycle just corresponds to one time step and the computation-space used by a
Turing machine is just the number of different fields it has accessed from the begin of
the computation until it reaches the halting state.

Blum [9] introduced an abstract concept of complexity measure. So Φe(x) would
be the complexity assigned to the computation of φe(x) and the complexity measure
has to follow the following axioms:

� Φe(x) < ∞ if φe(x) is defined and Φe(x) = ∞ if φe(x) is undefined. So
Φe(x) = ∞ means that either program Te with input x either runs forever
or Te is syntactically incorrect.

� The set {⟨e, x, s⟩ : Φe(x) ≤ s} is recursive.

A possible choice for Φe(x) would be the time the program Te with input x is running.
But this is not the only choice which can be made. Another famous measure is the
space complexity used by a Turing machine.

15

An important property of programs is that one can systematically change and trans-
late them. For example, one can make a program which translates Te into a new text
Te′ such that φe′(x) = φe(x)+1 whenever φe(x) is defined. This leads to the following
properties of φ, recall that ⟨x1, . . . , xn⟩ is formed by iteratively making pairs. The
result is known as “s-m-n Theorem” or “Substitution-Theorem”.

Theorem 2.3. For all m,n, a partial function f(e1, . . . , em, x1, . . . , xn) is partial-
recursive iff there is a recursive function g such that

∀e1, . . . , em, x1, . . . , xn [f(e1, . . . , em, x1, . . . , xn) = φg(e1,...,em)(⟨x1, . . . , xn⟩)].

Here “=” means that either both sides are defined and equal or both sides are undefined.

The programming environment can be used to show one direction. Given a program
for f , one can easily construct a function g which appends a further function h to the
program such that the resulting program g(e1, e2, . . . , em) does the required job. In
this example, m = 3 and n = 2 and the given function is this one.

function f(eone, etwo, ethree, xone, xtwo)

{ return(312+eone+etwo+ethree+xone+xone+xtwo+xtwo)}

Now the function g copies the program function f and then adds a new part which is
called function h and computes φg(e1,e2,e3)(⟨x1, x2⟩). Note that this part encodes the
values of e1, e2, e3 and has to decode the pair xpair which is the given input instead
of x1, x2 themselves. In this example, e1 = 17, e2 = 4 and e3 = 42.

function f(eone, etwo, ethree, xone, xtwo)

{ return(312+eone+etwo+ethree+xone+xone+xtwo+xtwo)}

function h(xpair)

{ var eone = 17; var etwo = 4; var ethree = 42;

var xone = 0; var xtwo = 0;

var search = 0;

// search represents (xone+xtwo)*(xone+xtwo+1)/2+xtwo

while (search != xpair)

{ search = search+1;

if (xone > 0)

{ xtwo = xtwo+1; xone = xone-1; }

else

{ xone = xtwo+1; xtwo = 0; } }

return(f(eone,etwo,ethree,xone,xtwo)); }

16

Note that only the initialization of the variables eone, etwo and ethree depends on
the inputs of g, the remaining parts are always the same. Thus it is easy to write a
program for the function g which produces programs for f and h such that in h the
initial values for eone, etwo and ethree are taken according to the input variables
of g.

A consequence of this is that every further numbering of partial-recursive functions
can be translated into the numbering φ. This property of a numbering is called
“acceptable”.

Definition 2.4. A numbering ψ is called an acceptable numbering or a Gödel num-
bering iff for every further numbering ϑ there is a recursive function f with ϑe = ψf(e)
for all e. Here ϑe = ψf(e) means that for all x either both ϑe(x) and ψf(e)(x) are
undefined or both ϑe(x) and ψf(e)(x) are defined and take the same value.

One can show that the numbering φ is acceptable. Furthermore, the question is
whether every numbering is acceptable. The answer is that some numberings are not
acceptable.

Theorem 2.5. The numbering φ is acceptable. There is a further numbering ψ such
that ψ is not acceptable.

Proof. To see that φ is acceptable, consider any numbering ϑ and the partial-recursive
function f given as f(e, x) = ϑe(x) for all e, x. By Theorem 2.3, there exists a function
g with φg(e)(x) = ϑe(x) for all e, x. It follows that φg(e) = ϑe for all e. Thus φ is
acceptable.

For the construction of ψ, let A = {⟨i, j⟩ : ∃d, e ≤ i [φe(d) = ⟨i, j⟩]}. The set A
recursively enumerable and let As be the se of elements enumerated into A by step s.
Note that for each i there are only finitely many j with ⟨i, j⟩ ∈ A. Now define ψ as
follows:

ψ⟨i,j⟩(x) =

{
φi(x) if ⟨i, j⟩ /∈ Ax;
↑ if ⟨i, j⟩ ∈ Ax.

Here ↑ means that ψ⟨i,j⟩(x) remains undefined. The numbering ψ covers all functions
as for each i there are infinitely many j with ⟨i, j⟩ /∈ A; for these j it then holds that
ψ⟨i,j⟩ = φi. Now assume by way of contradiction that there is a recursive function φe
with ψφe(d) = φd for all d. Then choose d to be the least index such that φd is total
and φd ̸= φ0, φd ̸= φ1, . . . , φd ̸= φe. Let i, j be the numbers with ⟨i, j⟩ = φe(d).

If i ≥ d then ⟨i, j⟩ ∈ A and φd ̸= ψ⟨i,j⟩ as the latter function is almost everywhere
undefined. If i < d and ψ⟨i,j⟩ is total then ψ⟨i,j⟩ = φi and φi ̸= φd by choice of d;
hence ψ⟨i,j⟩ ̸= φd. If i < d and ψ⟨i,j⟩ is partial then φd ̸= ψ⟨i,j⟩ again. This contradicts
the assumption on φe and therefore ψ is not an acceptable numbering.

17

One might ask which other classes of functions have numberings. As undefined places
are unpleasant, one would like to find a numbering of all recursive functions. Somehow,
this does not exist. As Turing put it: “If a machine is infallible then it cannot also
be intelligent.” In other words, if a numbering (produced by some Turing machine)
contains only total functions then it is not intelligent enough to contain all total
recursive functions. The argument to prove this is diagonalization which can be
traced back to Cantor [16]. The idea is the following: Given a numbering ψ of total
recursive functions, consider the function f with f(x) = ψx(x) + 1 for all x; this
function f is recursive, total and different from the functions in the numbering ψ.

Theorem 2.6. There is no numbering of all total recursive functions.

This result has an important application: it shows that there is a recursively enumer-
able set which is not recursive. Namely this set is diagonal halting problem.

Theorem 2.7. The set K = {x : φx(x) is defined} is recursively enumerable but not
recursive.

The set is recursively enumerable because it is the domain of the partial-recursive
function γ mapping x to φx(x). But K cannot be recursive as the following function
f differs from all functions φe and is hence not recursive:

f(x) =

{
0 if γ(x) is undefined;
γ(x) + 1 if γ(x) is defined.

This is most easily seen in the programming-paradigm, so assume that gamma is a
program for γ and domgamma is a program for the domain K of γ. Then the program
for f would be the following.

function gamma(x)

{ var y;; return(y); }

function domgamma(x)

{ var y;; return(y); }

function f(x)

{ if (domgamma(x)==1)

{ return(gamma(x)+1); }

else

{ return(0); } }

18

The most important thing is that this program clearly does not run the subprogram
for γ(x) in the case that γ(x) is undefined. Hence the function f is total.

Mathematicians have identified many other sets which are not recursive but re-
cursively enumerable. Here some examples:

� The set of all x such that Wx ̸= ∅;

� The set of all x such that 8 ∈ Wx;

� The set of all x such that |Wx| > x, here |Wx| is the cardinality of Wx;

� The set of all x such that φx(0) halts and outputs 256;

� The set of all x such that there are e, d <
√
x− 2 with φe(d) = x.

One can also formulate such sets with other notions of mathematics, for example the
set of all x such that the x-th Diophantine equation has a solution (for a suitable
coding of the Diophantine equations). This list is now not extended here as it would
need to introduce the concepts which were used to define them; these concepts might
need more explanations than the list gives insight.

One topic studied in recursion theory is the question on whether a given class of r.e.
sets has a numbering (with exactly the sets of this class in the numbering) and whether
it has a one-one numbering (in which every set occurs once). Clearly there are classes
without a numbering, the reason is that there are countably many numberings but
uncountably many classes of r.e. sets. Furthermore, one can consider the following
numbering:

L2x =

{
{2x} if x /∈ K;
{2x, 2x+ 1} if x ∈ K;

L2x+1 =

{
{2x+ 1} if x /∈ K;
{2x, 2x+ 1} if x ∈ K.

The numbering L0, L1, L2, . . . is not one-one as for every set {2x, 2x+ 1} with x ∈ K
there are two indices. If H0, H1, H2, . . . would be a one-one numbering of this class,
then K would be recursive, a contradiction: Let f be the recursive function finding
the unique index e with y ∈ He; now it holds that x ∈ K ⇔ f(2x) = f(2x + 1).
Kummer [56, 57] showed the following theorem which permits to construct Friedberg
numberings for many classes.

Theorem 2.8. Let L0, L1, L2, . . . and H0, H1, H2, . . . be two numberings such that

� La ̸= Hb for all a, b (that is, the numberings are disjoint);

19

� Ha ̸= Hb whenever a ̸= b (that is, H0, H1, H2, . . . is a one-one numbering);

� ∀a∀ finite D ⊆ La ∃∞b [D ⊆ Hb].

Then there is a one-one numbering F0, F1, F2, . . . for the class {L0, L1, L2, . . .} ∪
{H0, H1, H2, . . .}.

Proof. The construction uses two auxiliary sets A and B, A is defined before and
B during the construction of the sets. The set A mainly stores information on which
indices in the numbering L0, L1, L2, . . . are minimal indices and which not; the set
Bs stores all the b for which at stage s already an index in the new enumeration
F0, F1, F2, . . . has been found. Let La,s be the set of elements enumerated into La
within s steps, similarly one defines Hb,s. Now one defines

⟨a, x⟩ ∈ A⇔ ∃b < a∃s > x [La,s ∩ {0, 1, . . . , x} = Lb,s ∩ {0, 1, . . . , x}].

It is easy to see that {x : ⟨a, x⟩ ∈ A} = N if there is a b < a with Lb = La.
Furthermore, assume now the case that Lb ̸= La for all b < a. Then there is for each
b < a a number yb with Lb(yb) ̸= La(yb). Furthermore, there is a number t such that
t > yb and Lb,t(yb) = L(yb) ̸= La(yb) = La,t(yb) for all b < a. Then, for all x > t, for
all s > x and all b < a it holds that x > yb and Lb,s(yb) ̸= La,s(yb). Hence, ⟨a, x⟩ /∈ A
for all x > t. So the set {x : ⟨a, x⟩ ∈ A} is finite. There is a one-one enumeration
⟨a0, x0⟩, ⟨a1, x1⟩, ⟨a2, x2⟩, . . . of the set

{⟨a, x⟩ : ∀y < x [⟨a, y⟩ ∈ A]}.

Now one constructs now together with the desired numbering F0, F1, F2, . . . using the
set B for book-keeping purposes. The idea of the construction is the following: F2c

becomes Lac if ⟨ac, xc⟩ /∈ A; in the case that ⟨ac, xc⟩ is enumerated into A, one stops
the enumeration of F2c and searches a set Hdc not yet assigned to some Fc′ which
contains the data enumerated so far into F2c and redefines F2c = Hdc . The sets F2c+1

are always taken to be the first member of H0, H1, H2, . . . not already covered by
the enumeration F0, F1, F2, . . . at stage where this set is defined. The set B is used
to do the bookkeeping for this algorithm and contains at stage s the indices of all
H0, H1, H2, . . . which have already been assigned a partner in the enumeration of the
F0, F1, F2, . . . and which will therefore not be used again.

More formally, the construction is done in stages s and in each stage s, finitely
many elements (perhaps none) are put into some set Fa. B0 = ∅ and Fc,0 = ∅ for all
c. In stage s, the versions with index s+ 1 are built.

� Stage s = ⟨c, 0⟩.
Let bc = min(N−Bs).

20

Let F2c,s+1 = Lac,0.
Let F2c+1,s+1 = Hbc,0.
Let Bs+1 = Bs ∪ {bc}.

� Stage s = ⟨c, t⟩ with t > 0. Let F2c+1,s = Hbc,t.
Now check whether ⟨ac, xc⟩ ∈ At.
There are three cases.

– Case ⟨ac, xc⟩ /∈ At.
Let F2c,s+1 = Lac,t.
Let Bs+1 = Bs.

– Case t = min{t′ : ⟨ac, xc⟩ ∈ At′}.
Let ⟨dc, uc⟩ be the first pair such that dc /∈ Bs and F2c,s ⊆ Hdc,uc .
Let F2c,s+1 = Hdc,max({uc,t}).
Let Bs+1 = Bs ∪ {dc}.

– Case t > min{t′ : ⟨ac, xc⟩ ∈ At′}.
Let dc, uc as defined in some previous step.
Let F2c,s+1 = Hdc,max({uc,t}).
Let Bs+1 = Bs.

Let Fc′,s+1 = Fc′,s for all c
′ /∈ {2c, 2c+ 1}.

Now it is verified that the construction succeeds. This is done by verifying the fol-
lowing facts.

Every set Hb occurs in the numbering exactly once. More precisely, all b ∈ B are
indices of sets Hb occurring in the numbering F0, F1, F2, . . .; at each stage s = ⟨c, 0⟩
the lowest number outside Bs is moved inside Bs+1; a set Fe is made equal to Hb

exactly in that stage s where b goes into B, hence this happens for every b exactly
once.

Let a be any index. Then there is a smallest number a′ with La′ = La. Further-
more, there is a maximal x′ with ⟨a′, x′⟩ = ⟨ac, xc⟩ for some c.

⟨ac, xc⟩ /∈ A for this c and hence F2c = La. Furthermore, for all c′ ̸= c with ac′ = ac
it holds that ⟨ac′ , xc′⟩ ∈ A. There is a first t with ⟨ac′ , xc′⟩ ∈ At and the set F2c′,s

with s = ⟨c′, t⟩ is a finite subset of La. By the third condition in the statement of the
theorem, the search for dc′ terminates and Fac′ ,xc′ = Hdc′

, so Fac′ ,xc′ /∈ {L0, L1, L2, . . .}.
So La has exactly one index in the numbering F0, F1, F2, . . ., namely F2c = La.

From these considerations, it follows that F0, F1, F2, . . . is a one-one numbering of
the class {L0, L1, L2, . . .} ∪ {H0, H1, H2, . . .}. This completes the proof.

Friedberg [35] discovered that the class of all r.e. sets has a one-one numbering.

21

Theorem 2.9: Friedberg Numberings [35]. There is a one-one numbering of all
r.e. sets.

Proof. Note that there is a one-one numbering H0, H1, H2, . . . of all finite sets with
odd cardinality. The idea would be to determine for every e the binary representation
e = 2x1 +2x2 + . . .+2xn with x1, x2, . . . , xn being different natural numbers and to let

He =

{
{x1 + 1, x2 + 1, . . . , xn + 1} if n is odd;
{0, x1 + 1, x2 + 1, . . . , xn + 1} if n is even.

Then H0 = {0}, H1 = {1}, H37 = {1, 3, 6} and H39 = {0, 1, 2, 3, 6} as 1 = 20,
37 = 20+22+25 and 39 = 20+21+22+25. So H0, H1, H2, . . . is a one-one enumeration
of all finite sets of odd cardinality.

Without loss of generality, assume that |We,s+1 −We,s| ≤ 1 and We,0 = ∅ for all
e, s. Now let Le,0 = ∅ and Le,s+1 = We,s+1 if We,s+1 has an even number of elements
and Le,s+1 = Le,s otherwise. One can easily prove by induction that Le,s has always
an even number of elements and that |We,s − Le,s| ≤ 1 for all e, s. Let Le = ∪sLe,s.
The numbering L0, L1, L2, . . . contains all r.e. finite sets of even cardinality and all
r.e. infinite sets. Hence {H0, H1, H2, . . .} ∩ {L0, L1, L2, . . .} = ∅.

As Le,s has at every stage an finite and even number of elements, each set Le,s ∪
{max(Le,s)+1+d} occurs in the list H0, H1, H2, . . .; hence every finite subset of a set
La has infinitely many supersets Hb.

So these two classes satisfy the three conditions of Theorem 2.8 and that the union
of these two classes is the class of all r.e. sets. Hence, the class of all r.e. sets has a
one-one numbering.

Exercise 2.10. Adapt the above proof to show that there is a one-one numbering of
all partial-recursive functions.

Comprehensive Exercise 2.11. As seen, some classes of r.e. sets have one-one
numberings and others do not. The task of this exercise is to show that there is a
class where every set occurs infinitely often in each numbering of the class. The proof
should use the following steps.

� Define the mapping f : ⟨x, y⟩ → x+1
y+1

from N into the positive rational numbers.
Show that this function is onto.

� Define a family of r.e. sets as follows: For parameter e, search for two numbers
x, y such that f(x) < f(y) < f(x) + 2−e and φe(x), φe(y) are both defined and
different; if x, y are found then let Ve = {z : f(x) ≤ f(z) ≤ f(y)} else let Ve = ∅.
Prove that {⟨e, z⟩ : z ∈ Ve} is recursively enumerable.

22

� Let x ∼0 y if there is an e with x, y ∈ Ve and x ∼n+1 y iff ∃z [x ∼n z ∧ z ∼n y].
Define Lx = {y : ∃n [x ∼n y]} for each set. Prove that L0, L1, L2, . . . is a
numbering of r.e. sets.

� Prove that no Lx is recursive. To see this, first fix x. Then prove that Lx
contains x but Lx ̸= N. Furthermore, prove that either Lx = Ly or Lx ∩Ly = ∅
for all y ̸= x. Then show that no φe is the characteristic function of Lx.

� Assume that H0, H1, H2, . . . is some numbering for the class {L0, L1, L2, . . .}.
Furthermore, assume that some Lx occurs in the numbering H0, H1, H2, . . . only
finitely often. Show that then this set Lx is recursive in contradiction to what
has been shown previously.

Exercise 2.12. Let A be a co-infinite recursively enumerable set, Lx = A for x ∈ A
and Lx = {x} for x /∈ A. Show that the class {L0, L1, L2, . . .} has a one-one numbering
iff A is recursive.

Theorem 2.13. No Friedberg numbering is a Gödel numbering.

Proof. Assume that H0, H1, H2, . . . is a Friedberg numbering, that is, a one-one
numbering of all r.e. sets. Consider the numbering L0, L1, L2, . . . from Exercise 2.12
with A = K; that is, let Lx = K for x ∈ K and let Lx = {x} for x /∈ K. If
H0, H1, H2, . . . would be an acceptable numbering then there would be a recursive
function f with Lx = Hf(x) for all x. As H0, H1, H2, . . . is repetition-free, there is a
unique index e with He = K. Then it would follow that x ∈ K ⇒ Lx = K ⇒ f(x) = e
and x /∈ K ⇒ Lx = {x} ⇒ f(x) ̸= e, a contradiction to K not being recursive.

Exercise 2.14. Prove that there is no numbering of all infinite r.e. sets. To see this,
assume by way of contradiction that L0, L1, L2, . . . would be such a numbering and
define inductively a recursive function f such that f(x) > f(y)+ 1 and f(x)+ 1 ∈ Lx
for all x and all y < x. Show how such a function can be defined and use a uniform
enumeration Lx,s of all elements in Lx enumerated into this set within s steps for the
search. Note that {⟨x, y, s⟩ : y ∈ Lx,s} is uniformly recursive. Once having defined f ,
show that the range of f is infinite and different from all sets Lx.

Exercise 2.15. Let φ be an acceptable numbering and define ψ from φ using the
following equation:

ψ⟨i,j⟩(x) =

φi(x) if x > 0;
j − 1 if j > 0 and x = 0;
↑ if j = 0 and x = 0.

23

Show that ψ is a universal numbering in the sense that every partial-recursive function
is equal to some ψ⟨i,j⟩. After that, prove that ψ is not a Gödel numbering by first
showing that there is a recursive function g satisfying φg(e)(x) = φe(e) for all e. Then
consider any function h such that ψh(d) = φd for all d. Let f be the function which
assigns to e the second component j of the pair ⟨i, j⟩ defined as ⟨i, j⟩ = h(g(e)). Show
that f(e) ̸= φe(e) and hence f ̸= φe for all e. So f cannot be recursive. As g and the
projection on the second component of the pair are both recursive, conclude that the
function h cannot be recursive and hence ψ is not a Gödel numbering.

Exercise 2.16. Let Le = {e, e+ 1, e+ 2, . . .}. Construct a numbering containing all
sets Le plus all sets Le −We where We is finite. If We is infinite, Le −We should not
be added into the family.

Exercise 2.17. Show that the class {{x} : x /∈ K} has no numbering but that
the class {N} ∪ {{x} : x /∈ K} has a numbering. Show that in the latter case this
numbering cannot be one-one.

Exercise 2.18. Construct a family L0, L1, L2, . . . such that

� for every i there are at most two other indices j, k with Li = Lj = Lk;

� for every numbering H0, H1, H2, . . . of the same family there are three different
indices i, j, k such that Hi = Hj = Hk.

The construction can be carried out by carefully selecting some finite sets.

Exercise 2.19. Construct a numbering L0, L1, L2, . . . of all recursive sets. Note that
it is only required that {⟨e, x⟩ : x ∈ Le} is recursively enumerable; it is impossible to
make a uniformly recursive numbering of all recursive sets.

Exercise 2.20. Construct a numbering L0, L1, L2, . . . of sets such that the following
conditions hold for all x and y:

� Lx is not empty;

� if y = min(Lx) and |Wy| <∞ then |{y, y + 1, y + 2, . . .} − Lx| = |Wy|;

� if H ⊆ {y, y + 1, y + 2, . . .} is a nonempty r.e. set with minimum y, |Wy| < ∞
and |{y, y + 1, y + 2, . . .} −H| = |Wy| then there is an x with Lx = H;

� if y = min(Lx) and |Wy| = ∞ then Lx = {y, y + 1, y + 2, . . .}.

24

3 Rice’s Theorem and the Arithmetical Hierarchy

One central question of recursion theory is whether two sets have the same difficulty
or whether one is more complicated than the other. This of course needs ways to
express that “A is at most as complicated as B” formally. The idea is to say that “A
can be translated into B” or “A can be reduced to B” which is the more technical
way to express it. The first reducibility considered is many-one reduction.

Definition 3.1. A set A is many-one reducible to B iff there is a recursive function f
with A(x) = B(f(x)) for all x, that is, with x ∈ A⇔ f(x) ∈ B. One writes A ≤m B
for A is many-one reducible to B.

Furthermore, A ≡m B iff A ≤m B and B ≤m A. The class {B : B ≡m A} is called
the many-one degree of A.

The recursive function f in the definition of A ≤m B is called a many-one reduction
from A to B. Note that ≤m is a transitive partial preordering on the subsets of N
and that ≡m is an equivalence relation. Furthermore, ≤m induces a partial ordering
on the class of many-one degrees.

The next result shows that K is the most complicated recursively enumerable set
which exists.

Theorem 3.2. A set A is many-one reducible to K iff A is recursively enumerable.

Proof. As K is recursively enumerable, it is the domain of a partial-recursive function
g. In the case that A ≤m K via a recursive function f , then A is the domain of the
partial-recursive function x 7→ g(f(x)). So A is recursively enumerable.

If A is recursively enumerable then one can define the following two-place partial-
recursive function f :

f(e, x) =

{
1 if e ∈ A;
↑ if e /∈ A.

By Theorem 2.3 there is a recursive function g such that φg(e)(x) = f(e, x) for all e, x.
It follows that φg(e)(g(e)) is defined iff e ∈ A. Hence e ∈ A ⇔ g(e) ∈ K and A ≤m K
via the many-one reduction g.

So the recursively enumerable sets are just the sets in the many-one degrees below
K. Besides the many-one degree of K itself, there are some further many-one degrees.
Those of ∅ and N consist only of these sets, all further recursive sets form a third
recursive many-one degree: if a ∈ A and b ∈ N − A then every further recursive set
B is many-one reducible to A via a recursive function which sends every element of
B to a and every non-element of B to b. On the other hand, nonrecursive sets are

25

not many-one reducible to recursive ones, hence the many-one degree of K does not
contain any recursive set.

The question is whether the sets in the many-one degree of K can be characterised.
The notion “creative” was introduced by Post [84] in 1944 and the characterization
was obtained by Myhill [75] eleven years later. Only the direction “many-one complete
⇒ creative” is shown here, the direction “creative ⇒ many-one complete” is given
in Theorem 6.6 as the proof makes use of Kleene’s fixed-point theorem which will be
introduced in Section 6.

Definition 3.3 [75]. A set A is called creative if it is recursively enumerable and
there is a recursive function f such that for all e, We ⊆ N−A⇒ f(e) ∈ N−A−We.

Theorem 3.4: Myhill’s Characterization of Many-One Complete sets [75].
A set A is creative iff A ≡m K.

Proof of one direction. Let A be given such that A ≡m K. Hence there is a
recursive function g witnessing that K ≤m A; that is, x ∈ K ⇔ g(x) ∈ A for all x.
There is a recursive function h such that

Wh(x) = {y : g(y) ∈ Wx}

for all x; so Wh(x) is the preimage of Wx under g. Now consider two cases:
Case h(x) ∈ Wh(x). Then h(x) ∈ K, g(h(x)) ∈ A by the definition of g and

g(h(x)) ∈ Wx by the definition of h.
Case h(x) /∈ Wh(x). Then h(x) /∈ K, g(h(x)) /∈ A by the definition of g and

g(h(x)) /∈ Wx by the definition of h.
Assume now that Wx is disjoint from A. Then the first case does not hold as

g(h(x)) cannot be a member ofWx∩A. So the second case holds and g(h(x)) /∈ A∪Wx.
Hence A is creative.

Remark 3.5: Productive Sets, Recursively Inseparable Pairs and the Padd-
ing Lemma. Dekker [27, 28] has generalized the property of being creative as follows:
A set A is productive if there is a recursive function f such that f(x) ∈ A − Wx

whenever Wx ⊆ A. In particular, productive sets are not recursively enumerable.
Myhill [75] shows that A is productive iff N − K ≤m A. There are sets A such that
both, A and N− A, are productive. An example is the set {e : We is finite}.

Two disjoint r.e. sets A,B are called recursively inseparable iff there is no recursive
function f with f(x) = 0 for all x ∈ A and f(x) = 1 for all x ∈ B. An example would
be A = {e : φe(e)↓> 0} and B = {e : φe(e)↓= 0}. Now let f be any total function
with f(x) = 0 for x ∈ A and f(x) = 1 for x ∈ B; in order to show that A,B are
recursively inseparable one has to show that f is not recursive. So consider any e. If

26

φe(e) is undefined then φe ̸= f . If φe(e)↓> 0 then e ∈ A and f(e) = 0, again φe ̸= f .
If φe(e) ↓= 0 then e ∈ B and f(e) = 1, again φe ̸= f . Hence f is not recursive and
A,B are a recursively inseparable pair; keep this pair fixed from now on.

The padding lemma says that there is a recursive function pad satisfying φpad(e) =
φe and pad(e) > e for all e. One can use the inseparable pair A,B to show this lemma.
To do this, consider the following numbering:

ψ⟨i,j⟩(x) =

{
j if j ∈ A;
φi(x) if j ∈ B;
↑ if j /∈ A ∪B.

As φ0, φ1, φ2, . . . is an acceptable numbering, there is a recursive function f with
φf(⟨i,j⟩) = ψ⟨i,j⟩ for all i, j and the sets

Ei = {f(⟨i, j⟩) : j ∈ B}

are uniformly recursively enumerable. In order to see that all sets Ei are infinite,
consider a fixed but arbitrary i. Let

Fi = {j : f(⟨i, j⟩) ∈ Ei}.

Note that this set consists only of numbers j with ψ⟨i,j⟩ = φi. As all functions ψ⟨i,j⟩
with j ∈ A are pairwise different, there is at most one number k ∈ A with ψ⟨i,k⟩ = φi;
if such a k does not exist in A, let k just be any number outside A ∪ B. Now all
j ∈ A−{k} satisfy ψ⟨i,j⟩ ̸= φi and f(⟨i, j⟩) /∈ Ei. Hence the characteristic function of
Fi − {k} separates A from B. As A,B is a recursively inseparable pair, the set Fi is
not recursive. It follows that the set Ei is infinite.

Now let pad(i) to be the first element enumerated into Ei which is larger than i.
As the Ei are infinite and uniformly recursively enumerable, pad is a total recursive
function. Furthermore, pad(i) > i for all i and φpad(i) = φi as pad(i) ∈ Ei for all i.

Definition 3.6. Let C be a class of recursively enumerable sets. C is called non-trivial
iff it contains some but not all r.e. sets. The index-set of C is the set I = {e : We ∈ C}.

Note that the index set is taken with respect to a Gödel numbering. The following
result would fail for Friedberg numberings. Rice [85] showed that all non-trivial index
sets are more or less as hard as the halting problem; of course they can be much
harder.

Theorem 3.7: Theorem of Rice [85]. Let C be a non-trivial class, I be the index
set of C and J = N − I be the index set of the complement of C. Then K ≤m I or
K ≤m J .

27

Proof. In the case that ∅ /∈ C, there is some other set A ∈ C. Now define a numbering
L0, L1, L2, . . . by

Lx =
{ ∅ if x /∈ K;
A if x ∈ K.

As W0,W1,W2, . . . is an acceptable numbering, there is a recursive function f with
Wf(x) = Lx. It follows that Wf(x) ∈ C ⇔ x ∈ K. As a consequence, f is a many-one
reduction from K to I.

In the case that ∅ ∈ C, one chooses a set A /∈ C and defines L0, L1, L2, . . . and f
in the same way. Then f is a many-one reduction from K to J .

The Theorem of Rice and Shapiro settles the question when an index set is recursively
enumerable. Note that r.e. index sets of non-trivial classes are many-one complete for
the halting problem. Odifreddi [79, Proposition II.5.19] states that this theorem had
also been discovered by Myhill and Shepherdson [76] and by McNaughton. For this
result, one uses the following canonical indices of finite sets which are defined here
formally for later use.

Definition 3.8. The canonical indexing of the finite sets is given byD2x1+2x2+...+2xn =
{x1, x2, . . . , xn} for any pairwise distinct numbers x1, x2, . . . , xn with D0 = ∅ for the
case that n = 0.

Theorem 3.9: Theorem of Rice and Shapiro [76]. An index set of a class C is
recursively enumerable iff the following three conditions are satisfied:

� {x : Dx ∈ C} is recursively enumerable;

� for any r.e. set A, A ∈ C iff there is a finite subset D of A with D ∈ C;

� if A,B are r.e. sets with A ∈ C and A ⊆ B then B ∈ C.

Note that the third condition is implied by the second.

Proof. Assume that I is r.e.; now the first two properties are shown. The third
follows from the second as whenever A ∈ C then some finite subset of A is in C which
is also a finite subset of B.

First, there is a recursive function f with Wf(x) = Dx. Hence {x : Dx ∈ C} = {x :
f(x) ∈ I} and the set {x : Dx ∈ C} is recursively enumerable.

Second, on one hand it has to be shown that every set in C has a finite subset also
in C. So, let A ∈ C and let As be the finitely many elements of A enumerated within
time s. Similarly Ks is an approximation to K. Now let

Lx =

{
A if x /∈ K;
As if s is the first stage with x ∈ Ks.

28

As there is a recursive function g with Wg(x) = Lx, the set of all x with Lx ∈ C
is recursively enumerable. Furthermore, x /∈ K ⇒ Lx = A ⇒ Lx ∈ C. As the
complement of K is not recursively enumerable there is a x ∈ K with Lx ∈ C. This
Lx is finite and so A has a finite subset in C.

On the other hand, if D is a finite set and A a superset of D then let

Hx =
{
D if x /∈ K;
A if x ∈ K.

Again one sees that the set {x : Hx ∈ C} is recursively enumerable as I is. As N−K
is not recursively enumerable, it follows that all Hx must be in C, thus A ∈ C.

For the converse direction, assume that all three conditions are satisfied. Then
consider the following formula:

We ∈ C ⇔ ∃s∃x [Dx ∈ C ∧Dx ⊆ We,s].

This formula witnesses that I = {e : We ∈ C} is also recursively enumerable: it is just
the domain of a partial-recursive function which searches for the first triple ⟨x, s, t⟩
such that Dx ⊆ We,s and x is enumerated within t steps into the set {x : Dx ∈ C}
which by assumption is recursively enumerable.

Example 3.10. The set A = {x : |Wx| > x} is not an index set.

Proof. Note that A is an r.e. set as one can simulate the enumeration of Wx until
at least x + 1 elements are enumerated into Wx and then enumerate x into A. Now
there are two cases to consider.

(a) A constains an x with Wx being finite. Then, by the padding lemma, there is
an y > |Wx| with Wy = Wx. But y /∈ A as |Wy| < y and hence A is not an index set.

(b) A contains only indices x withWx being infinite. Then A = {x : Wx is infinite}
as |Wx| > x for all infinite setsWx. As A is recursively enumerable, there is a recursive
function f with range A. Now Wf(0),Wf(1),Wf(2), . . . is a numbering of all infinite r.e.
sets which, as shown in Exercise 2.14, does not exist. Hence case (b) does not occur
and A is not an index-set by case (a).

Exercise 3.11. Define index-sets for partial-recursive functions and transfer the
Theorems of Rice and their proofs to this case.

Definition 3.12. A formula is in normal form if quantified variables are all before
the body of the formula and the body of the formula is a recursive predicate, that
is, a recursive {0, 1}-valued function with 0 interperted as “false” and 1 as “true”.
A formula without quantified variables is at the same time a Σ0

1-formula and Π0
1-

formula. Furthermore, for every formula ϕ(x1, . . . , xn) with free variables x1, . . . , xn
the following holds:

29

� if ϕ(x1, . . . , xn) is Σ
0
n and k ∈ {1, . . . , n} then ∃xk ϕ(x1, . . . , xn) is a Σ0

n-formula
and ∀xk ϕ(x1, . . . , xn) is a Π0

n+1-formula;

� if ϕ(x1, . . . , xn) is Π
0
n and k ∈ {1, . . . , n} then ∃xk ϕ(x1, . . . , xn) is a Σ0

n+1-formula
and ∀xk ϕ(x1, . . . , xn) is a Π0

n-formula.

Furthermore, usually one always takes the best possible level to describe a formula,
so if a formula is at the same time a Σ0

3-formula and Π0
4-formula then one just calls

it a Σ0
3-formula. A set is Σ0

n iff it is defined with a Σ0
n-formula; so if P is a recursive

predicate then
A = {x : ∃y1∀y2∃y3∀y4 [P (x, y1, y2, y3, y4)]}

would be a Σ0
4-set. A set is Σ0

n-complete iff it is Σ0
n and every Σ0

n-set is m-reducible
to it. Similarly one defines Π0

n-sets and Π0
n-complete sets. A set is ∆0

n iff it is Σ0
n and

Π0
n.

Exercise 3.13. Show that a set is Σ0
1 iff it is recursively enumerable.

Examples 3.14. Here some examples of Σ0
n-complete and Π0

n-complete index-sets:

� {e : We is not empty} is Σ0
1-complete;

� {e : |We| ≤ 32} is Π0
1-complete;

� {e : We is finite} is Σ0
2-complete;

� {e : We = N} is Π0
2-complete;

� {e : We is recursive} is Σ0
3-complete;

� {e : We is cofinite} is Σ0
3-complete;

� {e : We is coinfinite} is Π0
3-complete;

� {e : We is infinite and coinfinite} is Π0
3-complete;

� {e : |We| ∈ {2, 5, 8}} is ∆0
2 but neither Σ0

1 nor Π0
1;

� {e : We has finitely many even and infinitely many odd numbers} is ∆0
3 but

neither Σ0
2 nor Π0

2.

A sample proof will be given for the class of cofinite sets:

{e : We is cofinite} = {e : ∃x∀y∃z [(x+ y) ∈ We,z]}.

30

Hence the index-set of the cofinite sets is Σ0
3. Now let any Σ0

3-set A be given and
assume that it is of the following form:

A = {e : ∃x∀y∃z [P (e, x, y, z) = 1]}.

The following sets Ge and He are uniformly recursively enumerable:

G⟨e,x⟩ = {y : ∀v ≤ y∃w [P (e, x, v, w) = 1]};
H⟨e,x⟩ = {y : ∀v < y [v ∈ G⟨e,x⟩]}.

Note that all sets H⟨e,x⟩ have at least the element 0. There is a recursive uniform one-
one enumeration of these sets, this is given as a one-one sequence of triples ⟨ec, xc, yc⟩
such that H⟨e,x⟩ = {yc : ec = e ∧ xc = x} for all e and x. Now let

Le = {c : ec ̸= e ∨ ∃d [ed = e ∧ xd ≤ xc ∧ yd > (xc − xd) + yc]}

It will be shown that Le is coinfinite iff e ∈ A.
First assume that e ∈ A. Note that for every pair ⟨e, x⟩ there is at most one

c with xc = x and c /∈ Le. This c can only exist if G⟨e,x⟩ is finite. Then it is the
unique c with ec = e ∧ xc = x ∧ |G⟨e,x⟩| = yc. Furthermore, there is an x such that
∀y∃z [P (e, x, y, z) = 1]. Fix this x. It is easy to see that G⟨e,x⟩ = N. Now every c
with xc ≥ x is in Le by the way Le is defined. Hence Le is cofinite.

Second assume that e /∈ A. Then all sets G⟨e,x⟩ are finite. There are infinitely
many x such that |G⟨e,x⟩| + x ≥ |G⟨e,z⟩| + z for all z < x. For these x, the c with
ec = e ∧ xc = x ∧ yc = |G⟨x,e⟩| satisfies c /∈ Le. Hence Le is coinfinite.

So it holds that e ∈ A iff Le is cofinite. Furthermore, there is a recursive function
f with Wf(e) = Le for all e. It follows that e ∈ A iff Wf(e) is cofinite. Thus {e : We is
cofinite} is Σ0

3-complete.

Comprehensive Exercise 3.15. Prove that {e : We is finite} is Σ0
2-complete, that

{e : We = N} is Π0
2-complete and that {e : We is recursive} is Σ0

3-complete.

Remark 3.16. Every Σ0
n-set is also Σ0

m and Π0
m for all m > n; similarly every Π0

n-
set is also Σ0

m and Π0
m for all m > n. To see that Σ0

n-sets are Π0
n+1, one just has

to introduce one unused additional variable and to quantify it universally before the
other quantifiers; as this variable occurs nowhere in the formula, it has no influence
on the set defined. An example is that K is not only Σ0

1 but also Π0
2 as the following

formula shows:
K = {e : ∀x∃y [e ∈ We,y]}.

Furthermore, introducing an unused variable at the last and not the first position
gives the inclusion from Σ0

n-sets to Σ0
n+1-sets as well as from Π0

n-sets to Π0
n+1-sets.

31

The arithmetical hierarchy is strongly linked with the concept of relativized recur-
siveness [115]. One can define computer programs which call other subprograms.
Normally the subprogram is written down explicitly, but sometimes one just assumes
that a given set A is used as a database in the following sense: the database stores
for every x ∈ N the information whether x ∈ A or x /∈ A. No one cares how A goes
into the database, but assuming that it is there, one can - using the programming
paradigm - define A-recursive sets, functions and even A-r.e. sets, that is, sets which
are recursively enumerable relative to A. In this context, the used database is called
an “oracle” – in the time where the concept was introduced, there were no computers
or databases and so scientists referred to oracles who, according to Greek mythol-
ogy, answered questions presented to them using some knowledge not available to the
other people. Characterizations which depend heavily on non-relativizable concepts
are lost, what, for example, would be an A-Diophantine set or an A-recursive poly-
nomial? But concepts which can naturally be defined relative to the given oracle A
carry over: for example, a set B is A-recursive iff both sets B and N − B are A-r.e.
sets. Here an example with programs.

// Assume that A = {a0,a1,a2,...} is infinite;

// B = {n: an+1 notin A} is A-recursive;

// C = {n: exists m,k (am+n=ak)} is A-r.e.;

// D = {n: n*n+1 in A} is A-recursive.

function aoracle(x) // oracle for set A

{ if ("x is in A")

{ return(1); }

else

{ return(0); } }

// The test whether x is in A does not have a program,

// it is just looked up in a database or figured out

// by some other way. In order to make this usable by

// other functions, this oracle-call is implemented

// as a function "aoracle". Calling the function "aoracle"

// is the only way other functions can retrieve information

// about A.

function b(x) // function b computes characteristic function of B

{ var y = x+1;

var z = 0;

while (y>0)

{ if (aoracle(z)==1) { y = y-1; }

32

z = z+1; }

return(1-aoracle(z)); }

function c(x) // domain of function c is set C

{ var y=0;

while ((aoracle(y)==0) || (aoracle(y+x)==0)) { y = y+1; }

return(y); }

function d(x) // function d computes characteristic function of D

{ return(aoracle(x*x+1)); }

The relation “B is A-recursive” is also called “B is Turing reducible to A” as the
fact that one can define B with a computer program using the oracle A is like saying
that B is at most as complicated as A. This reduction is named after Alan Turing, a
mathematician who was a pioneer of both, theoretical and practical computer science.
Note that A ≤m B implies A ≤T B but not vice versa, for example, K ≤T N − K
but K ̸≤m N−K. In the following, φAe denotes the e-th partial-A-recursive function;
furthermore, WA

e is the domain of this function.

Remark 3.17. The set A′ = {e : e ∈ WA
e } = {e : φAe (e) is defined} is called the jump

of A or the diagonal halting problem relative to A. The following facts are known:

� A′ ̸≤T A but A ≤m A′;

� if A is a ∆0
n-set then A

′ is a Σ0
n-set;

� if A ≡T B for a Σ0
n-complete set B then A′ is Σ0

n+1-complete;

� for every n, the Σ0
n-complete sets form one many-one degree.

Exercise 3.18. Let A = {e : We is finite} and B = {e : We is cofinite}. Give a
direct proof (without using the characterizations through Σ0

n-completeness) that B is
an A-r.e. set.

Exercise 3.19. Assume that A = {a0, a1, a2, . . .}, a0 = 1 and ak+1 ∈ {2ak, 2ak + 1}
for all k. Let n be any number. Show that A is a Σ0

n-set iff A is a Π0
n-set.

Exercise 3.20. Show that the set {x : |Wx| > x} is many-one complete. First show
that this set is r.e. and then make a many-one reduction from K onto this set.

Show {x : |Wx| = 0 ∨ |Wx| = 2 ∨ |Wx| = 4 ∨ |Wx| = 6 ∨ |Wx| = 8} ≤m {x : |Wx| =
1∨|Wx| = 3∨|Wx| = 5∨|Wx| = 7∨|Wx| = 9}; that is, construct a many-one reduction
from the first set to the second set. Is there also a reverse many-one reduction? Give
some ideas to justify your answer, no full proof required.

33

4 Post’s Problem and Reducibilities

Complete r.e. sets are the most natural examples for sets which are r.e. but not
recursive. They are all creative and many-one equivalent; hence they are also Turing
equivalent. Because of this fact, Post [84] was interested in the question whether
all nonrecursive r.e. sets are Turing equivalent to the halting problem, that is, Turing
complete. Post studied this question with respect to two aspects: are there incomplete
and nonrecursive r.e. sets for other reducibilities and are there structural properties
which enforce incompleteness? One necessary condition for many-one completeness is
the following.

Proposition 4.1 [84]. If A is many-one complete then there is an infinite recursively
enumerable set B which is disjoint to A.

Proof. As a many-one complete set is creative, there is a recursive function g with
g(x) /∈ A∪Wx whenever Wx is disjoint to A. By Theorem 2.3 there is also a function
h such that for all x, Wh(x) = Wx ∪ {g(x)}. Now let e0 be an index for the empty set,
en+1 = h(en) and B =

⋃
nWen = {g(en) : n ∈ N}. By induction one can show that

Wen has n elements and is disjoint to A: assuming that Wen consists of n numbers
not in A, g(en) is outside A ∪Wen and Wen+1 has the n elements from Wn plus the
element g(en). The union B of all sets Wen is disjoint from A as well. Furthermore,
B is recursively enumerable and infinite.

This motivated Post to construct a nonrecursive m-incomplete r.e. set by exploiting
this method. This set is coinfinite and intersects every infinite r.e. set. Post [84] called
such sets simple.

Theorem 4.2: Post’s Simple Sets [84]. Call a set simple if it is recursively
enumerable, coinfinite and intersects every infinite r.e. set. Then there is a simple set;
in particular there is a nonrecursive and m-incomplete r.e. set.

Proof. Let I0, I1, I2, . . . be a recursive partition of the natural numbers into intervals
such that In contains more than n elements, for example, In = {2n− 1, 2n, . . . , 2n+1−
2}. Now define ψ(⟨e, n⟩) by the following algorithm:

If e < n then search the first s such that We,s ∩ In ̸= ∅ and let ψ(⟨e, n⟩) =
min(We,s ∩ In). If e ≥ n or the previous search for s does not terminate then let
ψ(⟨e, n⟩) be undefined.

Note that, for each n, ψ(⟨e, n⟩) is defined only for at most n numbers e which are
below n and ψ(⟨e, n⟩) ∈ In whenever ψ(⟨e, n⟩) is defined. Now let A be the range of
ψ. A has the following properties:

34

� A is recursively enumerable as A is the range of a partial-recursive function;

� A is coinfinite as for every n, |A ∩ In| ≤ n < |In|;

� A has with every infinite r.e. set We an infinite intersection as every In with
n > e satisfies either We ∩ In = ∅ or ψ(⟨e, n⟩)↓∈ A ∩We ∩ In.

Thus A is a simple set, it follows from Theorem 4.1 that A is not m-complete.

Exercise 4.3. Uspenskii [116] called an r.e. set A pseudocreative iff for every r.e. set
B disjoint to A there is an infinite r.e. set C disjoint to A∪B. Furthermore, Uspenskii
called an r.e. set A pseudosimple iff A is not recursive and there is an infinite r.e. set
B such that B is disjoint to A and A ∪ B is simple. Bulitko [12] investigated the
completeness of pseudosimple sets.

Given a simple setD, show that the set {2x : x ∈ D} is pseudosimple. Given an r.e.
set E which is neither recursive nor creative, show that the set {⟨x, y⟩ : x ∈ E∧y ∈ N}
is pseudocreative but not creative. Show that every r.e. set is either recursive or
simple or pseudosimple or pseudocreative but that no r.e. set satisfies two of these
properties. Show that every r.e. many-one degree contains either a recursive set or a
pseudocreative set.

Note that the terminology is inconsistent: simple sets are never pseudosimple
but creative sets are pseudocreative. Dekker [27] called a set mezoic if it is either
pseudosimple or pseudocreative but not creative. So the above two sets are two
different type of examples of mezoic sets.

Exercise 4.4. Show that if A is simple and We infinite then A ∩We is also infinite.
Furthermore, define θ(e) to be the first element enumerated into We−

⋃
n≤e In when-

ever such an element exists; θ(e) is undefined otherwise. Show that the range of θ is
a simple set.

For Post this was the starting point of further investigations. Post [84] introduced
the truth-table reducibility and showed that certain r.e. sets are neither recursive
nor truth-table complete. Motivated by this result, researchers started to study also
further reducibilities: Bulitko [11] introduced linear reducibility and Jockusch [44]
conjunctive, disjunctive and positive reducibility.

A truth-table reduction reduces a set A to a set B as follows: Given an x, it
produces a truth-condition involving B at finitely many places such that x ∈ A iff
that truth-condition is true. Such a condition is called a “truth-table”. An example
of such a truth-table is

16 ∈ A⇔ 2 ∈ B ∨ (5 ∈ B ∧ 6 /∈ B) ∨ (256 /∈ B).

35

This condition is build up by using and (∧), or (∨) and not (implicitly by /∈) on atomic
formulas of the form “c ∈ B” for various constants c which depend on x. While the
truth-table reduction permits any formula which can be built this way, the others are
more restrictive: positive reducibility does not permit negation, conjunctive uses only
“and”, disjunctive uses only “or” and linear uses only “exclusive or”. One can also
define these reductions using canonical indices as defined in Definition 3.8 in order to
get a more compact definition.

Definition 4.5. A set A is truth-table reducible to B iff there are two recursive
functions f, g such that A(x) = g(⟨x, a⟩) where a is the canonical index of the set
Df(x) ∩ B. Here f decides which elements are queried and g evaluates the resulting
truth-table condition.

A set A is positive reducible to B iff there are two recursive functions f, g such
that A(x) = g(⟨x, a⟩) where a is the canonical index of the set Df(x) ∩ B with the
additional constraint that for all x, b, c, whenever Db ⊆ Dc then g(⟨x, b⟩) ≤ g(⟨x, c⟩).
This monotonicity condition reflects the absence of negation in the positive truth-
table condition.

A set A is conjunctive reducible to B iff there is a recursive function f such that
x ∈ A iff Df(x) ⊆ B. This condition is equivalent to taking the “and” of all conditions
y ∈ B with y ∈ Df(x).

A set A is disjunctive reducible to B iff there is a recursive function f such that
x ∈ A iffDf(x)∩B ̸= ∅. This condition is equivalent to taking the “or” of all conditions
y ∈ B with y ∈ Df(x).

A set A is linear reducible to B iff there is a recursive function f such that x ∈ A
iff the cardinality of Df(x) ∩ B is odd. This condition is equivalent to taking the
“exclusive or” of all conditions y ∈ B with y ∈ Df(x).

One writes A ≤tt B, A ≤p B, A ≤c B, A ≤d B and A ≤l B for A being
truth-table, positive, conjunctive, disjunctive and linear reducible to B. Similarly one
defines tt-complete, p-complete, c-complete, d-complete and l-complete sets.

Exercise 4.6. Let A,B be sets of natural numbers. Show the following:

� if A ≤m B, A ≤c B, A ≤d B or A ≤p B and B is recursively enumerable, so is
A;

� the set N−K is not recursively enumerable but N−K ≤l K and N−K ≤tt K;

� if A ≤tt B, A ≤p B, A ≤c B, A ≤d B, A ≤l B or A ≤m B and B is recursive,
so is A.

Which of these reducibilities preserve that a set is co-r.e., that is, given a co-r.e. set
B then every set reducible to B is also a co-r.e. set?

36

Exercise 4.7. Show the following facts:

� A ≤c B iff N− A ≤d N−B;

� A ≤p B iff N− A ≤p N−B;

� A ≤tt B iff A ≤p {2x : x ∈ B} ∪ {2x+ 1 : x /∈ B}.

Can a similar connection be shown for many-one reducibility?

Note that whenever A is reducible by one of these reductions to B then A is truth-table
reducible to B. Friedberg and Rogers [36] observed that the notion of reducibilities
can also be weakened. For a weak reducibility, convergence relative to all oracles is
no longer required.

Definition 4.8 [36]. A set A is weakly truth-table reducible to B iff there is a total
recursive function f and a partial-recursive function g such that g(⟨x, a⟩) is defined
and equal to A(x) whenever a is the canonical index of the set Df(x) ∩ B. Here f
decides which elements are queried and g evaluates the outcoming weak truth-table
condition; g(⟨x, a⟩) can be undefined if Da ̸= Df(x) ∩ B. One writes A ≤wtt B for A
being weak truth-table reducible to B and an r.e. set B is wtt-complete iff K ≤wtt B.

Post defined hypersimple sets which are neither complete for any strong reducibility
[84] nor for weak truth-table reducibility [36]. Post hoped that hyperhypersimple sets
(which form a subclass of the hypersimple sets) would always be incomplete for Turing
reducibility, but it turned later out that this is not the case.

Definition 4.9. A set A is hyperimmune iff A is infinite and there is for every
recursive function f a number x such that no y with x ≤ y ≤ f(x) is in A. A set A
is hypersimple iff A is recursively enumerable and its complement is hyperimmune. A
set A is bihyperimmune iff both A and its complement are hyperimmune.

A set A is hyperhyperimmune iff A is infinite and there is no recursive function f
such that

� Wf(x) is finite for all x;

� Wf(x) ∩Wf(y) = ∅ for all different x, y;

� Wf(x) ∩ A ̸= ∅ for all x.

A set A is hyperhypersimple iff A is recursively enumerable and its complement is
hyperhyperimmune.

A set A is strongly hyperhyperimmune iff A is infinite and there is no recursive
function f such that

37

� Wf(x) ∩Wf(y) = ∅ for all different x, y;

� Wf(x) ∩ A ̸= ∅ for all x.

The strongly hyperhypersimple sets coincide with the hyperhypersimple ones, hence
there is no need to define “strongly hyperhypersimple”.

The main reason for Post to introduce these sets was that he could prove that hyper-
simple sets are not tt-complete; Friedberg and Rogers [36] extended the result and
showed that hypersimple sets are also not wtt-complete.

Theorem 4.10: Incompleteness of Hypersimple Sets [36, 84]. There is a
hypersimple set E. Hypersimple sets are not weak truth-table complete and hence also
not complete for any strong reducibility.

Proof. Let Φe(z) be a Blum complexity measure such that Φe(z) is defined iff φe(z)
is defined and φe(z) ≤ Φe(z) for all pairs (e, z) where φe(z) is defined. Let

E = {⟨x, y⟩ : y ̸= x+max{Φe(z) : e, z ≤ x ∧ φe(z) is defined} }

and note that the set E is recursively enumerable. A pair ⟨x, y⟩ is enumerated into E
if one of the two following conditions are satisfied:

� there are no e, z ≤ x with y = x+ Φe(z);

� there are e, z ≤ x with y < x+ Φe(z).

The first condition can be checked by bounded search as {(e, z, t) : Φe(z) = t} is
decidable and the second condition is a Σ0

1-condition. Let h(x) be the unique y such
that ⟨x, y⟩ /∈ E. Now x < x′ implies h(x) < h(x′). From the monotonicity of ⟨·, ·⟩ can
also be concluded that x < x′ implies ⟨x, h(x)⟩ < ⟨x′, h(x′)⟩.

Now assume by way of contradiction that E is not hypersimple. Then there is a
recursive function f such that

f(⟨x, h(x)⟩+ 1) ≥ ⟨x+ 1, h(x+ 1)⟩

for all x; this property must hold as ⟨x + 1, h(x + 1)⟩ is the smallest nonelement
of E which is strictly larger than ⟨x, h(x)⟩. Without loss of generality f is strictly
monotonic increasing. Now let g(0) = h(0) and g(x + 1) = f(⟨x, g(x)⟩). Then a
straightforward induction shows that h(x) ≤ g(x) for all x. As f is recursive, so is g.
Hence there is an index e with g = φe. For x > e,

h(x) ≥ x+ Φe(x) ≥ x+ φe(x) > g(x)

38

in contradiction to h(x) ≤ g(x), hence f and g cannot exist. Thus E is against the
assumption hypersimple.

For the second part, assume by way of contradiction that F is a wtt-complete
hypersimple set. Let A be Post’s simple set as given in Theorem 4.2, not as given in
Exercise 4.4. Let I0, I1, I2, . . . be the intervals from the construction in Theorem 4.2.
Let B = {min(In−A) : n ∈ N}; note that for every n the interval In is not a subset of
A and hence min(In−A) exists. The set B is truth-table reducible to A and hence also
weak truth-table reducible to K. The assumption K ≤wtt F implies that B ≤wtt F .
Let f, g be the functions of the wtt-reduction from B to F as in Definition 4.8. Let

h(x) = max{max(Df(z)) : ∃b [Db ⊆ {0, 1, 2, . . . , x} ∧ z ∈ Ib]}.

There is an r.e. set We = {x : ψ(x)↓= 1} for the partial-recursive function ψ which is
defined on input u as follows:

� Let b be the index of the interval with u ∈ Ib;

� Let a be the canonical index of Df(u) −Db;

� If g(⟨u, a⟩) = 0 then ψ(u)↓= 0;

� If g(⟨u, a⟩) = 1 and ψ(u′)↓= 0 for all u′ ∈ Ib ∩ {0, 1, . . . , u− 1} then ψ(u)↓= 1;

� Otherwise ψ(u)↑.

Note that |We ∩ Ib| ≤ 1 for all b. The basic idea is to choose We such that using the
assumption that f, g describe a wtt-reduction from B to F it holds that for some b > e
that Db contains all elements queried which are outside F and hence We∩Ib = B∩Ib.

As F is hypersimple, there are infinitely many x such that y ∈ F for all y ∈
{x, x + 1, . . . , h(x)}; as F is co-infinite one can choose such an x to be so large such
that in addition the canonical index b of Db = {0, 1, 2, . . . , x} − F satisfies b > e. Let
u be the unique element of B ∩ Ib. Note that for any u′ ∈ Ib and any a′ satisfying
Da′ = Df(u′) − Db it holds that B(u′) = g(⟨u′, a′⟩) as f, g are a wtt-reduction from
B to F and Da′ = F ∩ Df(u′). It follows that We ∩ Ib = {u}. Hence u ∈ A by the
construction of A in Theorem 4.2 and u /∈ B by the choice of B. This contradicts that
g(⟨u, a⟩) = 1 for the a with Da = Df(u) −Db = Df(u) ∩ F . Hence the wtt-reduction
f, g from B to F cannot exist and F is not wtt-complete.

Remark 4.11. The hypersimple set E constructed in Theorem 4.10 is Turing com-
plete: To check whether e ∈ K one has to check whether φe(e) is defined. This can be
done by computing h(e) relative to E which is the unique e′ with ⟨e, e′⟩ /∈ E. Then
φe(e) is defined iff Φe(e) ≤ h(e); the latter can be checked explicitly as Φ is a Blum
complexity measure and {⟨c, d, x⟩ : Φd(x) ≤ c} is recursive. So K ≤T E.

39

Exercise 4.12. Assume that A is r.e. and assume that there is a recursive function
f such that

� Wf(x) ̸⊆ A for all x;

� Wf(x) ∩Wf(y) = ∅ for all different x, y.

Show that A is not hyperhypersimple. That is, there is a recursive function g such
that

� Wg(x) is finite for all x;

� Wg(x) ̸⊆ A for all x;

� Wg(x) ∩Wg(y) = ∅ for all different x, y.

Hence the notions of hyperhypersimple and strongly hyperhypersimple coincide.

Exercise 4.13. The set A ⊕ B = {2x : x ∈ A} ∪ {2y + 1 : y ∈ B} is called the
join of A and B. Then A ⊕ B is the least upper bound of A and B with respect to
m-reducibility: First A is m-reducible to A ⊕ B via the mapping x 7→ 2x and B is
m-reducible to A ⊕ B via the mapping y 7→ 2y + 1. Second assume that A ≤m D
via f and B ≤m D via g. Now let h(2x) = f(x) and h(2x + 1) = g(x). It follows
that (A ⊕ B)(2x) = A(x) = D(f(x)) = D(h(2x)) and (A ⊕ B)(2x + 1) = B(x) =
D(g(x)) = D(h(2x+ 1)), hence (A⊕B)(y) = D(h(y)) for all y and A⊕B ≤m D via
h. Hence A⊕B is the least upper bound for m-reducibility.

Furthermore, if A ≤m B via f and B ≤m C via g then A ≤m C via x 7→ g(f(x)):
x ∈ A⇔ f(x) ∈ B ⇔ g(f(x)) ∈ C. Hence m-reducibility is transitive.

Select one of the other reducibilities (conjunctive, disjunctive, linear, truth-table,
weak truth-table and Turing) and transfer the proofs given above to that reducibility.

Theorem 4.14. A ≤tt B iff there is a Turing machine M such that MB computes A
and MC is total for every oracle C.

Remark 4.15. One says that a reducibility from A to B is bounded iff there is
a constant c such that for every x ∈ A there are c numbers y1, . . . , yc such that
A(x) depends only on the values B(y1), . . . , B(yc) and not on any value B(z) with
z /∈ {y1, y2, . . . , yc}.

For the reducibilities in Definition 4.5 the additional requirement would be that
Df(x) contains at most c elements for all x. Similarly one can define bounded weak
truth-table reducibility which, depending on the authors, is either abbreviated as
bwtt-reducibility or just bw-reducibility. Furthermore, one can define that A is

40

bounded Turing reducible to B (A ≤bT B) iff there is a program which defines how to
compute A relative to B such that there is a constant c so that for every input x the
program makes at most c oracle queries about the value of B at some place y [8, 40].
Note that these oracle queries can depend on the outcome of previous queries.

Comprehensive Exercise 4.16. Construct sets A and B such that A ≤bT B but
A ̸≤wtt B. Let a0, a1, a2, . . . be a recursive one-one enumeration of K. The proof would
be based on the following steps.

� Let A depend on B as follows: ⟨x, y⟩ ∈ A iff y ∈ K and ⟨x, s + 1⟩ ∈ B for the
unique number s with y = as; show that this guarantees that A ≤bT B with two
queries.

� Let ⟨x, 0⟩ ∈ B iff x ∈ K; this is to code K into B.

� Consider a recursive enumeration (fx, gx) of wtt-reductions; let ⟨x, s + 1⟩ ∈ B
iff fx(⟨x, as⟩) is defined, max(Dfx(⟨x,as⟩)) < ⟨x, s+ 1⟩ and gx(⟨x, b⟩)↓= 0 for the
b satisfying Db = B ∩Dfx(⟨x,as⟩); show that this provides an inductive definition
of B.

� Analyze the previous conditions to conclude that A ̸≤wtt B.

Exercise 4.17. Let A,B be recursively enumerable sets. Show that A ≤bT B iff
there is a constant c and a recursive function f such that for every x,

� Wf(x) has at most c elements;

� Du has at most c elements for all u ∈ Wf(x);

� x /∈ A iff there is an u ∈ Wf(x) with Du ∩B = ∅.

This characterization of bounded Turing reducibility restricted to r.e. sets was found
by Odifreddi [79, page 340], although the second condition was missing due to a
typing-error [81].

Exercise 4.18. Show that one can formalize tt-reducibility and wtt-reducibility
also as follows: A is tt-reducible (wtt-reducible) to B via f, g iff there is a recursive
function f and a further recursive function (partial recursive function) g such that
g(x,B(0)B(1) . . . B(f(x))) is defined and equal to A(x) for all x. Here the binary
string B(0)B(1) . . . B(y) contains the first y + 1 values of the characteristic function
of B.

41

Remark 4.19. One can generalize conjunctive and disjunctive reducibility by consid-
ering r.e. indices of sets instead of canonical indices of finite sets: A set A isQ-reducible
to B iff there is a recursive function f such that x ∈ A ⇔ Wf(x) ⊆ B for all x; A is
s-reducible to B iff there is a recursive function f such that x ∈ A ⇔ Wf(x) ∩ B ̸= ∅
for all x. Note that A ≤Q B ⇔ N − A ≤s N − B. These reducibilities do in general
not imply Turing reducibility; for example, K is s-reducible to every non-empty r.e.
set and similarly N − K is Q-reducible to every non-empty co-r.e. set. Nevertheless,
Q-complete r.e. sets are also Turing complete.

Remark 4.20. Odifreddi [79, Section III.9] gives an overview of the complete sets.
He showed that for many-one, bounded truth-table, disjunctive, conjunctive, positive,
truth-table, weak truth-table, Q and Turing reducibilities one can deduce all inclusions
from the following rules:

� m-complete sets are c-complete and btt-complete;

� btt-complete sets are d-complete;

� c-complete sets are Q-complete and p-complete;

� p-complete sets are tt-complete;

� tt-complete sets are wtt-complete;

� Q-complete sets are T-complete;

� wtt-complete sets are T-complete.

For example, by applying the second, fourth and fifth rule, one gets that every btt-
complete set is wtt-complete. On the other hand, some c-complete set is not d-
complete as this cannot be deduced from the above rules. Indeed, Post’s simple set
has a superset which is c-complete but not but not for m-complete. Given the set A
from Theorem 4.2, the c-complete set B is given as the union of A and all In with
n ∈ K. Then n ∈ K ⇔ In ⊆ B.

Exercise 4.21. Show that no simple set A is d-complete. Consider a creative set B
and a recursive function f such that f(x) /∈ A ∪Wx whenever A ∩Wx = ∅. Assume
that B ≤d A as witnessed by a recursive function g: x ∈ B ⇔ Dg(x) ∩ A ̸= ∅. Now
prove that there is a recursive function h such that Wh(0) = {x : Dg(x) = ∅} and
Wh(n+1) = {x : Dg(x) ⊆ ∪y∈Wh(n)∪{f(h(n))}Dg(y)}. Show that the union E of all Wh(n) is
r.e. and that ∪y∈EDg(y) is an infinite set disjoint to A; hence A is not simple.

42

5 The Theorem of Post and Kleene

Ten years after Post published his problem, Kleene and Post [52] published a partial
solution: there is a set A such that ∅ <T A <T K; unfortunately this set A was
not recursively enumerable. Today there is a wide variety to build such sets. Two
methods will be presented: a direct construction of a pair of Turing incomparable sets
below K and a construction of a 1-generic set G with jump K.

Remark 5.1. It is convenient to fix a canonical enumeration η0, η1, η2, . . . of all binary
strings. Now let φηae (x) be defined whenever during the computation of φηae (x) the
oracle is only asked at positions inside the domain of ηa and answered according to
the values of the string ηa. One can show the following two connections:

� if φηae (x) is defined then φBe (x) is defined for all sets B which extend ηa;

� if φBe (x) is defined then the oracle B is queried only at finitely many places
during this computation and thus there is a string ηa extended by B such that
φηae (x) is defined.

Furthermore, there is a recursive function jump such that

Wjump(e) = {a : φηae (e) ↓}

and φBe (e) is defined iff there are a, n with ηa = B(0)B(1) . . . B(n) and a ∈ Wjump(e).

Theorem 5.2: Kleene’s and Post’s Turing-Incomplete Sets [52]. There are
two sets A,B ≤T K such that A ̸≤T B and B ̸≤T A.

Proof. The sets A,B are build by finite extension. Let α0, β0 be both the string 0.
Now the following is done in stages 2s+ 1 and 2s+ 2:

� Stage 2s + 1: Let x be the least number outside the domain of α2s. If there
is an ηa extending β2s such that φηas (x) is defined then choose the least such a
and the least y ∈ {0, 1} − {φηas (x)} and let α2s+1 = α2sy, β2s+1 = ηa0 else let
α2s+1 = α2s0, β2s+1 = β2s0.

� Stage 2s+2: Let x be the least number outside the domain of β2s+1. If there is
an ηa extending α2s+1 such that φηas (x) is defined then choose the least such a
and the least y ∈ {0, 1} − {φηas (x)} and let α2s+2 = ηa0, β2s+2 = β2s+10 else let
α2s+2 = α2s+10, β2s+2 = β2s+10.

43

Now the set A is defined as the limit of all αs; the construction guarantees that αs(x)
is defined for all s ≥ x and so one can take A(x) = αx(x) for all x. Furthermore, each
stage of the construction can be carried out with oracle K; this oracle is also needed
for checking whether an ηa with the given property exists or not. Hence A ≤T K.
Similarly one can define B as the limit of all βs and verify that B ≤T K.

To see that A ̸≤T B, consider any e such that φBe is total and consider stage 2e+1:
Then there is an extension ηa of β2e such that φηae (x) is defined for the least x outside
the domain of α2e. Furthermore, B extends ηa for the least such a. The value A(x) is
the least value y different from φηae (x) and hence A ̸= φBe . So there is no e such that
A = φBe and therefore A ̸≤T B. Similarly one shows that B ̸≤T A.

This is the direct construction. The next construction is a bit more indirect; it shows
that there is a nonrecursive set G whose jump is K; hence ∅ <T G <T K and G has
intermediate Turing degree. The construction does even something more general: it
shows that there is for every A ≥T K a set G such that G′ ≡T A. Friedberg [34] found
this jump inversion theorem in 1957. The set G constructed has a special property
which is known as “1-generic”.

Definition 5.3. A set G is 1-generic iff for every r.e. set W of strings there is a
number n such that either G(0)G(1)G(2) . . . G(n) ∈ W or no string in W extends
G(0)G(1)G(2) . . . G(n).

Theorem 5.4: Friedberg’s Jump Inversion [34]. For every set A ≥T K there
is a 1-generic set G such that G′ ≡T A. Such a set G is always nonrecursive. In
particular there is a set G such that ∅ <T G <T K.

Proof. Recall that the jump G′ of G is the halting problem relative to G. The proof
that the halting problem is unsolvable relativizes, that is, G <T G

′ for all sets G. The
construction of G is done by finite extension, that is, in each stage a string γe+1 is
constructed which extends the previous string γe.

The construction starts with γ0 = A(0). In stage e+1 it is checked whether there
is a ∈ We such that ηa extends γe. This can be done with oracle A as A ≥T K. If so,
γe+1 = ηaA(e+ 1) for the least such a; if not, γe+1 = γeA(e+ 1).

Let G be the unique set whose characteristic function extends all strings γe. As
every x is in the domain of γx, one can also define G by letting G(x) = γx(x) for all
x. Now the desired properties of G are verified.

The set G is 1-generic: Consider any given r.e. set {ηa : a ∈ We} of strings.
If there is an extension ηa of γe with a ∈ We, then there is a least such a. Then
γe+1 = ηaA(e+ 1) and ηa = G(0)G(1) . . . G(n) for some n; so G(0)G(1) . . . G(n) is in
the given r.e. set of strings. If there is no extension ηa of γe with a ∈ We then let

44

n be the number with γe = G(0)G(1) . . . G(n) and note that G(0)G(1) . . . G(n) has
no extension in the given r.e. set of strings. This case distinction proves that G is
1-generic.

The set G is nonrecursive: For every recursive set R there is a set We such that
a ∈ We iff ηa(k) ̸= R(k) for some k in the domain of ηa. The set {ηa : a ∈ We}
consists of all strings which are incompatible with R and each string is extended by
some string in {ηa : a ∈ We}. Thus γe+1 satisfies that there is some k in the domain
of γe+1 such that R(k) ̸= γe+1(k). Hence G ̸= R.

A ≤T G⊕K: The main idea is that one can use G and K to trace the construction
of the strings γ0, γ1, γ2, . . . successively. The set K is used to decide whether one takes
γe+1 to be of the form ηaA(e+1) or γeA(e+1) and also to determine which string ηa is
used in the first case. The set G is needed to determine the last bit of the string γe+1

as that cannot be retrieved using K and the previously constructed bits. Furthermore,
A can then be recovered from the sequence γ0, γ1, γ2, . . . as A(x) is the last bit of γx
for all x. So one can reconstruct A from G and K.

A ≤T G
′: This follows from G ≤T G

′, K ≤T G
′ and the previous paragraph.

G′ ≤T A: For given e one can compute γjump(e)+1 using A and determine the a
with ηaA(jump(e) + 1) = γjump(e)+1. By construction, either a ∈ Wjump(e) and e ∈ G′

or b /∈ Wjump(e) for all extensions ηb of ηa and e /∈ G′. The test whether a ∈ Wjump(e)

can be carried out with oracle K and hence also with oracle A. So G′ ≤T A. Together
with the previous paragraph one even has that G′ ≡T A.

Exercise 5.5. Assume that G is 1-generic. Let Ge = {x : ⟨e, x⟩ ∈ G} and show that
Gd ̸≤T Ge whenever d ̸= e. Conclude that there are infinitely many Turing degrees
below K.

Exercise 5.6. Define that a set A is limit-recursive iff there a sequence A0, A1, A2, . . .
of sets such that

� {⟨t, x⟩ : x ∈ At} is recursive;

� ∀x∃t∀s > t [As(x) = A(x)].

Show that a set is limit-recursive iff it is Turing reducible to K. Note that the second
condition is also often written as ∀x∀∞s [As(x) = A(x)] and that As is called the s-th
approximation to A.

Exercise 5.7. Assume that A is limit-recursive and recursively approximated by
A0, A1, A2, . . . and let

cA(x) = min{s ≥ x : As(0)As(1)As(2) . . . As(x) = A(0)A(1)A(2) . . . A(x)}.

45

The function cA is called the convergence module of A. Let B be any set. Show that
A ≤T B iff there is a B-recursive function f which majorizes cA, that is, if there is a
B-recursive f such that cA(x) ≤ f(x) for all x.

Exercise 5.8. Let A be an r.e. and G be a 1-generic set such that A ≤T G. Show
that A is recursive.

As A is r.e., there is a recursive enumeration A0, A1, A2, . . . of A in the sense that
A =

⋃
sAs, A0 ⊆ A1 ⊆ A2 ⊆ . . . and {⟨x, s⟩ : x ∈ As} is recursive. Based on

this enumeration, one can define cA as in Exercise 5.7. Now the task is to show the
following:

� If A ≤T G then cA = φGe for some index e;

� If cA = φGe then actually cA is recursive.

The conclusion that with cA also A is recursive is then straightforward as x ∈ A iff
x ∈ AcA(x); the difficulty in Exercise 5.7 comes from the case where A is not r.e. but
only limit-recursive.

Remark 5.9. A set A has hyperimmune Turing degree iff there is a hyperimmune
set B ≤T A. Otherwise A has a hyperimmune-free Turing degree. One can show
that there are uncountably many sets of hyperimmune-free Turing degree. A set A of
hyperimmune-free degree has several interesting properties:

� The Turing degree and tt-degree of A coincide; that is, for all sets B, A ≡T B
iff A ≡tt B.

� Every function f ≤T A is majorized by a recursive function g.

� A ≤T K iff A is recursive; this can be proven by using Exercise 5.7.

� There is no 1-generic set G ≤T A.

The first two conditions are a characterization, that is, if a set A satisfies one of them
then the Turing degree of A is hyperimmune-free.

Sets of hyperimmune-free degree were first constructed by Martin and Miller [73].
If A has hyperimmune degree then there is a bi-immune set B ≡T A; that is, a set
B such that both, B and N− B, are immune. The same is true for some but not all
sets A of hyperimmune-free degree. Indeed, there are still uncountably many sets of
hyperimmune-free degree such that their Turing degree does not contain a bi-immune
set.

Exercise 5.10. A binary recursive tree T is a recursive subset of {0, 1}∗ such that
for all binary strings σ, τ ∈ {0, 1}∗, if the concatenation στ ∈ T then also σ ∈ T . An

46

infinite branch of T is a set A ⊆ N such that A(0)A(1)A(2) . . . A(n) ∈ T for all n.
Show König’s Lemma: If a binary tree T is infinite then it also has an infinite

branch.
Show that there is an infinite binary recursive tree T without an infinite recursive

branch. The idea is to let T contain all strings σ such that there is no x in the domain
of σ with φx,|σ|(x) ↓= σ(x); here φx,|σ|(x) ↓ iff the computation of φx(x) halts within
|σ| steps.

Theorem 5.11 [73]. There is a set A ≤T K′ of hyperimmune-free Turing degree.

Proof. The central idea is to construct a descending sequence T0, T1, T2, . . . of infinite
recursive binary trees. For each tree Te and each x the following set Qe,x can be defined
which is a recursive subtree of Te:

Qe,x = {σ ∈ Te : φ
σ
e,|σ|(x) ↑}.

The tree would only be co-r.e. and not recursive if the bound |σ| on the computation
time of φσe,|σ| would not be there; hence this bound is necessary. One can check with
oracle K with Qe,x is infinite for some e, x and one check with oracle K′ whether
∃x [Qe,x is infinite]. The exact test would be whether

∃x∀t [Qe,x ∩ {0, 1}t ̸= ∅]

holds; this Σ0
2 formula can be checked with oracle K′. Let T0 be the recursive infinite

tree without recursive branches from Exercise 5.10. Now the following construction
is run for e = 0, 1, 2, . . . using oracle K′:

� Check whether there is an x such that Qe,x is infinite.

� If so, let Se = Qe,x else let Se = Te.

� Determine a value A(e) such that {σ ∈ Se : σ(e)↑ or σ(e)↓= A(e)} is infinite.

� Let Te+1 = {σ : σ(e)↑ or σ(e)↓= A(e)}.

It is easy to see by induction that every tree Te is infinite. Furthermore, one can show
by induction that A(0)A(1)A(2) . . . A(e) is a string in tree Te+1. From this it can be
concluded that for all n ≤ e and d ≤ e also the string A(0)A(1)A(2) . . . A(n) is on the
tree Te+1 and its supertree Td. Hence A is an infinite branch of every tree Te. As T0
has no recursive infinite branch, A is nonrecursive.

Now consider any index e. If Se = Qe,x for some x then φAe (x) is undefined as A is
an infinite branch of Te+1 and Qe,x. If Se = Te then there are for every x only finitely

47

many strings σ ∈ Te such that φσe,|σ|(x) is undefined; hence one can find for every x

a level ℓ(x) such that φσx,|σ|(x) is defined for all σ ∈ {0, 1}ℓ(x)+1 ∩ Te. The function f
given as

f(x) = max{φσx,|σ|(x) : σ ∈ {0, 1}ℓ(x)+1 ∩ Te}

is recursive and majorizes φAe as A(0)A(1)A(2) . . . A(ℓ(x)) is among the strings σ
considered in the maximum taken to compute f(x). Hence φAe is either partial or
majorized by a recursive function. Therefore the Turing degree of A is hyperimmune-
free.

Remark 5.12. A set A has a minimal Turing degree if for every set B ≤T A, either
B is recursive or B ≡T A. So there is no set B with ∅ <T B <T A. As seen before,
the Turing degree of K is not minimal. Minimal Turing degrees exist and the first was
constructed by Spector [107]. One might ask whether there are maximal degrees: the
answer is “no” as above every degree there is the jump of this degree. So one might
ask whether there is a set A of maximal degree in the sense that A <T K and no
set B satisfies A <T B <T K; the answer is “no” again. Hence only minimal Turing
degrees are interesting.

Exercise 5.13. Trakhtenbrot [113] defined that a set is autoreducible iff there is an
index e such that

∀x [A(x) = φA∪{x}e (x)].

In other words, a set is autoreducible iff A(x) can be computed relative to A without
querying A at x. In above definition, queries to A at x were made superfluous by using
the oracle A∪{x}. Given any A, the set B = {2x, 2x+1 : x ∈ A} is autoreducible as
one has B(2x) = B(2x+1) for all x. Thus any Turing degree contains an autoreducible
set. Show that no 1-generic set is autoreducible; hence there are many Turing degrees
containing sets which are not autoreducible.

Remark 5.14. One can generalize the notion of 1-generic set to n-generic sets by
defining that G is n-generic iff for every Σ0

n set W there is an m such that either
G(0)G(1)G(2) . . . G(m) = ηa for some a ∈ W or G(0)G(1)G(2) . . . G(m) is not ex-
tended by any ηa with a ∈ W . There are n-generic sets for every n, but not every
n-generic set is also n+1-generic. For example, all the 1-generic sets below K are not
2-generic. Furthermore, there are 2-generic but not 3-generic sets below K′.

Downey and Yu [30] constructed a set of hyperimmune-free degree below a 1-
generic set (with some additional other properties). But this cannot be done below a
2-generic set: If G is 2-generic and A ≤T G is nonrecursive then A has hyperimmune
Turing degree.

48

6 The Fixed-Point Theorem and DNR Degrees

A recursive operator is an algorithm to translate functions into functions. An example
of such an operator is relative computation: φAe could be viewed as an operator
translating a characteristic function of an oracle into some other function. In general,
one can define an operator as follows.

Definition 6.1. An operator Ψ maps partial functions ϑ to partial functions Ψ(ϑ).
An operator Ψ is a recursive operator iff there is an r.e. set A such that, for all partial
functions ϑ and all x, y, Ψ(ϑ)(x) ↓= y iff there is a z such that ⟨x, y, z⟩ ∈ A and
ϑ(v) ↓= w for all ⟨v, w⟩ ∈ Dz. Defining graph(ϑ) = {⟨v, w⟩ : ϑ(v) ↓= w}, the latter
condition can be simplified to Ψ(ϑ)(x)↓= y ⇔ ∃z [⟨x, y, z⟩ ∈ A ∧Dz ⊆ graph(ϑ)].

Exercise 6.2. Which of the following mappings are recursive operators?

� Ψ1(ϑ)(x) = ϑ(x) + 1 if ϑ(x) is defined and Ψ1(ϑ)(x) = 0 otherwise.

� Ψ2(ϑ)(x) = x2.

� Ψ3(ϑ)(x) = ϑ(x) + 1 if ϑ(x) is defined and Ψ3(x) is undefined otherwise.

� Ψ4(ϑ)(x) = ϑ(2x)+ϑ(2x+1) if both values are defined and Ψ4(ϑ)(x) is undefined
otherwise.

If Ψk is a recursive operator then give also the corresponding r.e. set Ak of strings
defining Ψk else say why Ψk is not a recursive operator.

Remark 6.3. A recursive operator translated partial functions into partial functions;
an operator is called a general recursive operator if the image of a total function is
always a total function. One can show that whenever Ψ is a recursive operator then
there is a recursive function f with Ψ(φe) = φf(e) for all e.

Kleene [51] proved the following result which is known as the first recursion theorem
or fixed-point theorem.

Theorem 6.4: Kleene’s Fixed-Point Theorem [51]. Given a recursive operator
Ψ there is a partial-recursive function ϑ such that

� Ψ(ϑ) = ϑ;

� if Ψ(θ) = θ for some partial function θ then θ extends ϑ.

49

Here “θ extends ϑ” means that graph(ϑ) ⊆ graph(θ).

Proof. Let A be the r.e. set belonging to Ψ as defined in Definition 6.1. One defines
partial functions γ0, γ1, . . . such that γ0 is everywhere undefined and γn+1 = Ψ(γn).
Then

ϑ(x)↓= y ⇔ ∃n [γn(x) = y]

is the desired fixed-point.
For the verification, it is first shown by induction that γn+1 extends γn for all

n. This is clear for n = 0. For the inductive step, one assumes that γn+1 extends
γn. Then, whenever Ψ(γn)(x) is defined and takes a value y then there is a triple
⟨x, y, z⟩ ∈ A with Dz ⊆ graph(γn). As graph(γn) ⊆ graph(γn+1), Dz ⊆ graph(γn+1)
and Ψ(γn+1)(x) ↓= y. Hence graph(γn+1) ⊆ graph(γn+2). Thus ϑ is the ascending
limit of partial-recursive functions and well-defined.

Next it is shown that ϑ is partial-recursive. Given any input x, one can in parallel
compute the indices of γ0, γ1, γ2, . . . and simulate the computations of the γn(x) until
some computation converges with an output y; once this output is found, let ϑ(x) =
y. If these simulations and searches do not produce any output then ϑ(x) remains
undefined.

Now it is shown that ϑ is a fixed-point. Whenever Ψ(ϑ)(x) = y then there is
a z with ⟨x, y, z⟩ ∈ A and Dz ⊆ graph(ϑ). As graph(ϑ) is the ascending union of
the sets graph(γn) and Dz is finite, there is an n such that Dz ⊆ graph(γn). Then
Ψ(γn)(x) ↓= y and γn+1(x) ↓= y. So ϑ(x) ↓= y and ϑ extends Ψ(ϑ). Furthermore,
whenever ϑ(x) ↓= y then γn(x) ↓= y and Ψ(γn)(x) ↓= y, hence Ψ(ϑ)(x) ↓= y. Thus
Ψ(ϑ) extends ϑ as well and Ψ(ϑ) = ϑ.

The last part is to show that every further fixed-point θ extends ϑ. So assume
that Ψ(θ) = θ. Now one can show by induction that θ extends every γn: θ extends 0
and whenever θ extends γn, then Ψ(θ) extends Ψ(γn) = γn+1. As Ψ(θ) = θ, θ extends
γn+1 as well. Thus θ extends the union of all γn; that is, θ extends ϑ.

The second recursion theorem (or fixed-point theorem) deals with indices of partial-
recursive functions.

Theorem 6.5: Kleene’s Second Fixed-Point Theorem [51]. Let f be a recursive
function. Then there is an e with φf(e) = φe.

Proof. The proof is quite short (but hard to memorize): Let f be the given func-
tion and let g be a recursive function satisfying φg(c) = φφc(c); the function φg(c) is
everywhere undefined if φc(c) is undefined. Let d be an index of the composition
c 7→ f(g(c)). Then φφd(d) = φg(d) by the choice of g. Furthermore, φf(g(d)) = φφd(d) as

50

d is an index of the mapping c 7→ f(g(c)). It follows that φg(d) = φf(g(d)). Now taking
e = g(d), the equation φe = φf(e) follows.

An application of this theorem is to prove the missing direction of Theorem 3.4.

Theorem 6.6 [75]. Every creative set is many-one complete.

Proof. Given a creative set A, let f be the recursive function witnessing this fact,
that is, f satisfies f(x) /∈ Wx ∪A whenever Wx ∩A = ∅. There is a recursive function
g such that

Wφg(e)(x) =

{
{f(φe(x))} if x ∈ K and φe(x)↓;
∅ otherwise.

Note that g can be chosen such that both g and φg(e)(x) are total functions as one
can make Wφg(e)(x) to be the domain of the following partial-recursive function he,x:
on input y, simulate φe(x); if this halts, check whether y = f(φe(x)); if this is also
true then he,x(y) = y else he,x(y) is undefined. Although he,x itself is partial, φg(e)(x)
produces an index for he,x and therefore φg(e) is total.

By Kleene’s recursion theorem, there is an e such that φg(e) = φe; as the function
φg(e) is total, so is the function φe. The remaining part is to show that the function
x 7→ f(φe(x)) is a many-one reduction from K to A. To see this, the following two
cases are considered.

If x /∈ K then Wφg(e)(x) = ∅ and thus Wφe(x) = ∅ by the choice of e as a fixed-point
for g. As f witnesses that A is creative, f(φe(x)) /∈ A.

If x ∈ K then Wφg(e)(x) = Wφe(x) = {f(φe(x))} and f(φe(x)) ∈ Wφe(x). Hence
Wφe(x) must intersect A as otherwise f would not witness that A is creative. This
implies that f(φe(x)) ∈ A.

This completes the case-distinction and the verification that K(x) = A(f(φe(x))).
So x 7→ f(φe(x)) is a many-one reduction from K to A. As A is creative, A is an r.e.
set. These two properties give that A is a many-one complete set.

Remark 6.7. There are two further results related to Kleene’s recursion theorem.

� A function is called fixed-point free if Wf(e) ̸= We for all e. The “set vari-
ant” of Kleene’s fixed-point theorem says that all fixed-point free functions are
nonrecursive.

� A function is called diagonally nonrecursive or just dnr if f(e) ̸= φe(e) for all
e ∈ K. The dnr functions are, as the name suggests, nonrecursive.

The second result that dnr functions are nonrecursive is trivial and does not seem to be
that related to the fixed-point theorems; but when looking at A-recursive functions

51

instead of recursive functions, Jockusch, Lerman, Soare and Solovay [49] found a
striking connection.

Theorem 6.8 [49]. For every set A, there is an A-recursive dnr function f iff there
is an A-recursive fixed-point free function g.

Proof. Let an A-recursive dnr function f be given. Now consider a recursive function
h such that φh(e)(x) is defined iff We ̸= ∅ and φh(e)(x) ∈ We whenever φh(e)(x) is
defined. Such a function exists as one can choose h(e) to be a program which searches
inside the set We for an element; this program outputs the first of these elements
which is found. Now define an A-recursive function g such that Wg(e) = {f(h(e))}. If
We = {y} then φh(e)(h(e)) = y and f(h(e)) ̸= y and Wg(e) ̸= We. If We has 0 or at
least 2 elements then Wg(e) ̸= We as well. Hence g is fixed-point free.

Let an A-recursive fixed-point free function g be given. Now consider a recursive
function h with Wh(e) = Wφe(e) and let f(e) = g(h(e)). For e ∈ K, Wf(e) = Wg(h(e)) ̸=
Wh(e) = Wφe(e) and hence f(e) ̸= φe(e). So f is an A-recursive dnr function.

Remark 6.9. One says that a set A has dnr Turing degree iff there is an A-recursive
dnr function. Jockusch [47] showed that whenever there is a {0, 1, 2, . . . , c}-valued dnr
function f ≤T A then there is also a {0, 1}-valued dnr function g ≤T A. But there
are sets of dnr Turing degree such that none of the dnr functions Turing reducible to
these sets are bounded by a constant.

Arslanov [4] showed that among the r.e. sets, only the Turing complete ones can
compute fixed-point free functions and thus only those sets have dnr Turing degree.
Although Martin [65] and Lachlan [62] observed the same fact, the completeness
criterion is named after Arslanov as he showed it also for other reducibilities like
weak truth-table and many-one. For example, Arslanov showed that an r.e. set A is
wtt-complete iff there is a function g ≤wtt A such that We ̸= Wg(e) for all e.

Theorem 6.10: Arslanov’s Completeness Criterion [4]. Given an r.e. set A
there is an A-recursive fixed-point free function iff K ≤T A.

Proof. By Theorem 6.8 it is enough to show that an r.e. set has dnr Turing degree
iff it is Turing complete. In the case that K ≤T A, the following dnr function is
A-recursive so that A has dnr Turing degree:

x 7→
{
φx(x) + 1 if φx(x) is defined, that is, x ∈ K;
0 otherwise.

So assume for the other direction that A is r.e. and that there is an A-recursive dnr
function φAe . Let use(x) be the maximum of the numbers z satisfying one of the
following two conditions:

52

� z is the number of steps to compute φAe (y) for some y ≤ x;

� it was queried whether z ∈ A during the computation of φAe (y) for some y ≤ x.

Note that use is also A-recursive and use(x) can be computed while knowing the oracle
A only at the places 0, 1, . . . , use(x). Furthermore, let As be the set of all elements
enumerated into A within s steps and let cA be the corresponding convergence module
as defined in Exercise 5.7. There is a recursive function f such that

φf(x)(y) =

{
φAs
e (y) for the first s where x ∈ Ks and φ

As
e,s(y)↓;

↑ if there is no such s; that is, if x /∈ K.

Let x ∈ K and s be the minimal number with x ∈ Ks. As φAe (f(x)) ̸= φf(x)(f(x))
there must be an y ≤ use(f(x)) with y ∈ A− As. Hence s < cA(use(f(x))). Thus

∀x [x ∈ K ⇔ x ∈ KcA(use(f(x)))].

As cA and use are A-recursive and f is a recursive function, it follows that K ≤T A.

Exercise 6.11. Show that a 1-generic set G does not have dnr Turing degree. Con-
sider any function φGe which is total. Recall that η0, η1, η2, . . . is a recursive enumera-
tion of all binary strings. There is a recursive function f such that φf(a)(x) = φσe (x)
for the first extension σ of ηa found such that φσe (x) is defined; if such a σ does not
exist then φf(a)(x) is undefined. Use the fact that G is 1-generic to prove that there
is an a with φf(a)(f(a))↓= φGe (f(a)); hence G does not have dnr Turing degree.

Remark 6.12. The infinite branches of the binary tree constructed in Exercise 5.10
and used as starting point T0 in Theorem 5.11 consists of all {0, 1}-valued dnr func-
tions; hence the characteristic function of the set of hyperimmune-free degree con-
structed in Theorem 5.11 is dnr and the set has dnr Turing degree. Sets of hyper-
immune-free degree are not above the halting problem, so Arslanov’s completeness
criterion does not generalize to non-r.e. sets.

A further example of incomplete degrees are low degrees. Here a set A has low
Turing degree if A′ ≡T K and high Turing degree if A′ ≥T K′. The high Turing degrees
have also a further convenient characterization: A has high Turing degree iff there is
a function f ≤T A which dominates every recursive function, that is, which satisfies
∀∞x [f(x) > g(x)] for every recursive function g [66]. As there are uncountably many
sets of high but only countably many sets of low degree, one has tried to generalize the
notion “low” to “generalized low” which is defined as follows: A set A is generalized
low iff A′ ≤T A⊕K. For example, all 1-generic sets are generalized low. Now a set is
low iff it is generalized low and limit-recursive.

Note that although no high set is low, there are some high sets which are general-
ized low. Such sets can be obtained by Friedberg’s Jump Inversion Theory: One takes

53

a 1-generic set G with G′ ≡T K′. Then this set G is high as G′ ≥T K′. Furthermore
it is generalized low since it is 1-generic.

Jockusch and Soare [50] showed the “Low Basis Theorem” which states that every
infinite binary tree has an infinite branch which is low; they furthermore showed the
“Hyperimmune-free Basis Theorem” which says that every infinite binary tree has
an infinite branch of hyperimmune-free Turing degree. Taking the tree T0 in the
construction in Theorem 5.11 as the given tree, one can directly take over the proof of
Theorem 5.11 to get this result. Also the proof of the Low Basis Theorem is a variant
of this result.

Theorem 6.13: Jockusch’s and Soare’s Low Basis Theorem [50]. Let T be an
infinite recursive binary tree. Then T has an infinite branch A of low Turing degree.

Proof. Recall from Remark 5.1 that the trees

Qe = {σ : φσe,|σ|(e)↑}

are uniformly recursive. Furthermore, one can test with oracle K whether a recursive
tree R is infinite or finite by using the formula

R is finite ⇔ ∃t [{0, 1}t ∩R = ∅].

The proof starts with the construction of a descending sequence T0, T1, T2, . . . of infinite
recursive binary trees such that T0 = T and Te+1 is the first of the following four trees
which is infinite:

� {σ ∈ Te ∩Qe : σ(e)↑ or σ(e)↓= 0};

� {σ ∈ Te ∩Qe : σ(e)↑ or σ(e)↓= 1};

� {σ ∈ Te : σ(e)↑ or σ(e)↓= 0};

� {σ ∈ Te : σ(e)↑ or σ(e)↓= 1}.

Note that one tree of these is always infinite, thus the algorithm finds for each Te an
infinite subtree Te+1. Furthermore, let A(e) = 0 if Te+1 is selected by the first or third
choice and let A(e) = 1 if Te+1 is selected by the second or fourth choice.

Recall that η0, η1, η2, . . . was a list of all binary strings as defined in Exercise 5.10.
The above construction also shows that there is a K-recursive function f such that
φf(e)(a) = 1 if ηa ∈ Te and φf(e)(a) = 0 if ηa /∈ Te.

It is easy to see by induction that every tree Te is infinite. Furthermore, one can
show by induction that A(0)A(1)A(2) . . . A(e) is a string in tree Te+1. From this it

54

can be concluded that for all n ≤ e and d ≤ e also the string A(0)A(1)A(2) . . . A(n) is
on the tree Te+1 and its supertree Td. Hence A is an infinite branch of every tree Te.

If Qe ∩ Te is infinite then all strings in Te+1 are also in Qe and hence φσe,|σ|(e) is

undefined for all σ ∈ Te+1. It follows that φ
A
e (e) is undefined and e /∈ A′.

If Qe ∩ Te is finite then almost all strings in Te+1 are outside Qe. Hence there is
an n such that A(0)A(1)A(2) . . . A(n) ∈ Te+1 −Qe and φ

A
e (e) is defined. Now e ∈ A′

and there is a σ ∈ Te+1 with φσe,|σ|(e) being defined.

So it holds that e ∈ A′ iff there is an a such that φf(e+1)(a) = 1 and φηae,|ηa|(e) is

defined. This condition can be checked using K as an oracle. Hence A′ ≤T K and A
has low Turing degree. Note that A can be recursive in the case that T0 has recursive
infinite branches.

Exercise 6.14. One might ask whether the “Low Basis Theorem” has a counterpart
called “High Basis Theorem” such that every recursive infinite tree has an infinite
branch of high Turing degree. This is already wrong for the tree {0}∗ as this tree has
exactly one infinite branch which is recursive. Hence the counterpart has to be stated
as follows: An infinite recursive binary tree has either a recursive infinite branch or an
infinite branch of high Turing degree. To prove this, do the following: Assume that
T is an infinite recursive binary tree without infinite recursive branch. Construct a
K-recursive function F : {0, 1}∗ → T such that F (σ) extends F (τ) iff σ extends τ .
Show that there is an unique infinite branch A of T extending all nodes of the form
F (K′(0)K′(1)K′(2) . . .K′(n)). Furthermore, show that K′ ≡T A⊕K; hence A has high
Turing degree.

Exercise 6.15. It follows from Remark 6.12 that every 1-generic set G ≤T K is low.
Prove this fact directly.

For this, use the limit-lemma to prove that there is a uniformly recursive sequence
G0, G1, G2, . . . of recursive sets such that for all x there is an t with Gs(x) = G(x)
for all s > t. Now use the property of 1-genericity to show the following: If φGe (e) is
defined then, for almost all s, φGs

e,s(e) is defined. If φ
G
e (e) is undefined then, for almost

all s, φGs
e,s(e) is undefined. Conclude that this proves that G′ is Turing reducible to

the graph of f .

Exercise 6.16. Jockusch and Soare considered binary recursive trees. Show that
this condition is necessary by constructing a recursive tree T ⊆ N∗ which has infinite
branches but no low infinite branches. The idea would be to build the tree such that
whenever a function f is an infinite branch and whenever x ∈ K then x ∈ Kf(x). This
would immediately show that K is Turing reducible to the graph of f and thus T has
no infinite branch of low Turing degree.

55

7 A solution to Post’s Problem for r.e. sets

Post problem was after 12 to 13 years solved independently by Friedberg [33] and
Muchnik [74]. They showed that there is a pair of Turing incomparable r.e. sets.
The method to construct them is called priority method and became one of the most
successful proof-methods in recursion theory. The idea is that one wants to satisfy
in a construction various requirements; each requirement has some priority and when
satisfying a requirement R it is permitted to do changes which destroy goals obtained
by requirements of lower priority but one is not permitted to do changes which destroy
goals of requirements of higher priority. Furthermore, each goal has to be such that it
can be satisfied with finitely many actions without destroying properties protected by
requirements of higher priority. As there are for each requirement only finitely many
requirements of higher priority, one can prove by induction along the priorities that
each goal is eventually satisfied: first the goal of highest priority is satisfied within
finitely many steps; then once any activity related to it stops, the goal of second-
highest priority is satisfied in finitely many steps without making the goal of highest
priority to become unsatisfied again; from then on the goal of third-highest priority
will be satisfied in finitely many steps without making the two higher goals to be
unsatisfied again; similarly for the further goals.

Theorem 7.1: Friedberg’s and Muchnik’s Solution of Post’s Problem [33, 74].
There are two r.e. sets of incomparable Turing degree. In particular there are r.e. sets
which are neither recursive nor Turing complete.

Proof. The sets are constructed by defining subsets As, Bs of A,B in each step s
such that A =

⋃
sAs and B =

⋃
sBs. The requirements are the following:

� Requirement R2e: There is a number x2e such that either φBe (x2e)↑ or φBe (x2e)↓≠
A(x2e);

� Requirement R2e+1: There is a number x2e+1 such that either φAe (x2e+1) ↑ or
φAe (x2e+1)↓̸= B(x2e).

The priority of Rc is greater than the one of Rd iff c < d. So “higher priority”
corresponds to “lower index”. Without loss of generality it is assumed that for an
index d, input x and an oracle E the approximation φEd,s(x) is defined only if the
computation needs at most s steps and does not query the oracle E beyond s.

In stage 0 it is decided to initialize A0, B0 as the empty set and to let xd = d for
all d; the values of xd might change during the construction; xd,s denotes the value
of xd after stage s and before stage s + 1. In stage s + 1 one modifies As, Bs to
As+1, Bs+1 in such a way that the requirement of highest priority which is currently

56

not satisfied (with As, Bs used in place of A,B) becomes satisfied after the step. For
the construction, the following notions are defined for requirements of the form R2e:

� Requirement R2e needs attention when entering stage s+1 iff φBs
e,s(x2e,s) is defined

and x2e,s ≤ s.

� Requirement R2e is satisfied when entering stage s + 1 iff there is a t ≤ s such
that x2e,s ≤ t, φBs

e,t (x2e,s)↓≠ As(x2e,s) and xd,s > t for all d > 2e.

� Requirement R2e acts at stage s+1 iff the following is done: R2e needs attention
when entering stage s+ 1 and changes are done such that R2e is satisfied when
leaving stage s+ 1 (which equals entering stage s+ 2).

The definitions for requirements of odd index are parallel, only the roles of A and B
are interchanged.

� Requirement R2e+1 needs attention when entering stage s + 1 iff φAs
e,s(x2e+1,s) is

defined and x2e+1,s ≤ s.

� Requirement R2e+1 is satisfied when entering stage s+1 iff there is a t ≤ s such
that x2e+1,s ≤ t, φAs

e,t (x2e+1,s)↓≠ Bs(x2e+1,s) and xd,s > t for all d > 2e+ 1.

� Requirement R2e+1 acts at stage s + 1 iff the following is done: R2e+1 needs
attention when entering stage s + 1 and changes are done such that R2e+1 is
satisfied when leaving stage s+ 1 (which equals entering stage s+ 2).

The overall algorithm does the activities for stages 0, 1, 2, . . . which are specified as
follows.

� At stage 0, A0 and B0 are set to be the empty sets and every value xd,s equals
d.

� At stage s+ 1, it is checked whether some requirement Rd needs attention but
is not satisfied.

� If so, the least d is identified for which Rd needs attention and Rd is not satisfied.
Then Rd acts and the following activities are carried out where the first part
depends on whether d is even or odd.

– Case d = 2e:
If φBs

e,s(xd,s)↓= 0 then As+1 = As ∪ {xd,s} else As+1 = As;
Bs+1 = Bs.

57

– Case d = 2e+ 1:
If φAs

e,s(xd,s)↓= 0 then Bs+1 = Bs ∪ {xd,s} else Bs+1 = Bs;
As+1 = As.

For all c, if c ≤ d then xc,s+1 = xc,s else xc,s+1 = c+ s+ 1.

� If there is no requirement Rd which needs attention and is not satisfied, then no
change is done, that is, As+1 = As, Bs+1 = Bs and xc,s+1 = xc,s for all c.

For the verification, one shows the following properties (in italic font).
If R2e acts at stage s+ 1 and As(x2e,s) = 0 then R2e is satisfied at entering stage

s + 2: Depending on the outcome of the computation of φBs
e,s(x2e,s) the element x2e,s

is enumerated or not enumerated into As+1 such that As+1(x2e,s) differs from the
outcome of the computation. Furthermore, xc,s+1 = xc,s for c ≤ 2e in order to keep
requirements Rc satisfied whenever they are; xc,s+1 = c+ s+ 1 for c > 2e so that the
second condition for requirement R2e to be satisfied is met.

If R2e+1 acts at stage s+ 1 and Bs(x2e+1,s) = 0 then R2e+1 is satisfied at entering
stage s+ 2: This is parallel to the previous proof.

If Rd is satisfied at entering stage s+ 1 and no requirement Rc with c < d acts at
stage s+ 1 then Rd is satisfied at entering stage s+ 2 as well: Let E = B if d is even
and E = A if d is odd. Let t, e be the parameters satisfying that d ∈ {2e, 2e + 1}
and φEs

e,t(xd,t) is defined and xc,s > t for all c > d; this t exists by the definition of
being satisfied. Now in stage s+ 1, Rd does not act as Rd is satisfied at entering the
stage s + 1. Hence either a requirement Rc with c > d might act at stage s + 1 or
no requirement acts. Hence xd,s+1 = xd,s and As+1(u) = As(u), Bs+1(u) = Bs(u) for
all u ≤ max{t, xd,s}. Furthermore, xc,s+1 ≥ xc,s for all c and so the requirement Rd is
also satisfied at entering stage s+ 2.

Each requirement Rd acts at most 2d times: Note that whenever a requirement Rd

acts at stage s + 1 and later at stage s′ + 1 then there must be a stage s′′ + 1 with
s < s′′ < s′ such that requirement Rd is satisfied at entering stage s′′ + 1 but not at
entering stage s′′+2. Hence some requirement Rc with c < d must act at stage s′′+1.
Thus Rd can act at most once more than the number of times the requirements Rc with
c < d act. This permits to show the bound by induction: assume that all requirements
Rc with c < d act at most 2c times; then these requirements act altogether at most
20 + 21 + 22 + . . . + 2d−1 = 2d − 1 times and hence requirement Rd acts at most 2d

times.
For every d there is a value xd such that xd = xd,s for almost all s: This follows

from the fact that xd,s+1 ̸= xd,s only if some requirement Rc with c < d acts at stage
s+ 1; this happens at most 2d − 1 times and thus almost all values xd,s are the same
value xd.

If φBe (x2e) is defined then it differs from A(x2e): Assume that φBe (x2e) is defined

58

as otherwise there is nothing to prove. Let s be the first stage with x2e,s = x2e. Then
As(x2e,s) = 0 and no requirement Rc with c < d acts at any stage t > s. For almost
all t > s it holds that φBt

e,t(x2e,t) is defined and x2e,t < t, hence R2e needs attention at
almost all stages. If R2e does not act at any stage s′+1 with s′ ≥ s then R2e becomes
satisfied without having to act and hence φBe (x2e) differs from A(x2e). If R2e acts at
some stage s′ + 1 with s′ ≥ s then this is the unique of these stages where R2e acts.
Thus As′(x2e,s′) = 0 and R2e is satisfied at stage s′ + 2 by the first property shown.
Then R2e remains satisfied for all further stages and again φBe (x2e) differs from A(x2e).

If φAe (x2e+1) is defined then it differs from B(x2e+1): This is parallel to the previous
condition.

A ̸≤T B and B ̸≤T A: As there is no e such that φBe (x2e)↓= A(x2e), the set A is
not Turing reducible to B. Similarly B is not Turing reducible to A.

A and B are both recursively enumerable: This can directly be seen from the
algorithm. For every s, As ⊆ As+1 and Bs ⊆ Bs+1. Hence x ∈ A ⇔ ∃s [x ∈ As] and
x ∈ B ⇔ ∃s [x ∈ Bs]. So A,B are Σ0

1 and hence r.e. sets.

Comprehensive Exercise 7.2. Trakhtenbrot [113] constructed an r.e. set which is
not autoreducible. So one has to satisfy in the limit the following requirements:

� Requirement Re: ∃x [φA∪{x}e (x) is either undefined or different from A(x)].

Work out a construction which satisfies these requirements in the limit and shows that
some r.e. set is not autoreducible. The idea is to use movable markers xe,s and each

time s where φ
As∪{xe,s}
e (xe,s) converges one enumerates xe,s into As+1 iff this spoils the

outcome of the computation. The markers have to be moved in the case that markers
of higher priority move as well.

Comprehensive Exercise 7.3. Soare [103] proved the existence of an intermediate
r.e. Turing degree by constructing a nonrecursive and low r.e. set A. The basic idea
is the following.

� Requirement Ne to make A nonrecursive: There is a number xe with A(xe) ̸=
φe(xe).

� Requirement Le to make A low: If there are infinitely many stages s with φAs
e,s(e)

being defined then φAe (e) is defined.

The number xe is approximated with xe,s being the value of the approximation after
stage s.

� Ne needs attention at entering stage s+ 1 if φe,s(xe,s) is defined and xe,s ≤ s.

� Ne is satisfied at entering stage s+ 1 if φe,s(xe,s)↓≠ As(xe,s).

59

� Ne acts at stage s+ 1 if As+1 = As ∪ {xe,s} and φe,s(xe,s)↓= 0.

� Le needs attention at entering stage s+ 1 if φAs
e,s(e) is defined.

� Le is satisfied at entering stage s + 1 if there is a t such that φAs
e,t (e) is defined

and xd,s > t for all d > e.

� Le acts at stage s+ 1 if xd,s+1 = xd,s for all d ≤ s and xd,s+1 = d+ s+ 1 for all
d > s.

Now at stage 0 the initialization is done by letting A0 = ∅ and xe,s = e for all s. At
stage s+1, one determines all requirements which need attention and are not satisfied.
If no such requirement is found then no change occurs and one goes to s+ 1. If such
requirements are found then the requirement of highest priority among these acts and
one goes afterwards to stage s+ 1.

Formalize the construction and verify that the resulting set A is indeed a low and
nonrecursive r.e. set.

Theorem 7.4. K is the disjoint union of two low r.e. sets.

Proof. Let f be a one-one recursive function with range K. In each stage s, ψ(f(s))
will be defined such that afterwards Ak = {f(t) : ψ(f(t)) = k} for k = 0, 1. The goal
is to preserve a converging computation of the form

φ{f(t):t<s∧ψ(f(t))=k}
e,s (e)

whenever possible. Here the set {f(t) : t < s∧ψ(f(t)) = k} is the s-th approximation
of Ak. Now one says that the e-th diagonal computation on Ak is injured iff

φ{f(t):t<s∧ψ(f(t))=k}
e,s (e)↓ ∧φ{f(t):t<s∧ψ(f(t))=k}

e,f(s)−1 (e)↑ .

Let r(s) be the least number 2e + k such that the e-th diagonal computation on Ak
is injured at stage s; more formally, let

r(s) = min{2e+ k : e ∈ N ∧ k ∈ {0, 1} ∧
φ{f(t):t<s∧ψ(f(t))=k}
e,s (e)↓ ∧φ{f(t):t<s∧ψ(f(t))=k}

e,f(s)−1 (e)↑}.

Now one defines ψ(f(s)) such that one preserves the diagonal computation of highest
priority which is injured by one choice; note that no diagonal computation is injured
by both choices:

ψ(f(s)) =

{
0 if r(s) is odd;
1 if r(s) is even.

60

The resulting function ψ is a partial-recursive function with domain K and thus A0, A1

are r.e. sets. It remains to show that both sets are low.
One shows by induction that for every number 2e + k (e ∈ N, k ∈ {0, 1}) the

equivalences

e ∈ A′
k ⇔ ∀∞s [φ{f(t):t<s∧ψ(f(t))=k}

e,s (e)↓] ⇔ ∃∞s [φ{f(t):t<s∧ψ(f(t))=k}
e,s (e)↓]

hold. So assume by way of contradiction that 2e+k would be the least number where
above equivalences fail. If e ∈ A′

k then the computation accesses only finitely many
members of Ak and so there is an upper bound q on the convergence time of the
computation and all f(t) such that ψ(f(t)) = k and f(t) had been queried by the
computation. Hence, for all s > q,

φ{f(t):t<s∧ψ(f(t))=k}
e,s (e)↓

and so the two other conditions hold as well. For the other implication assume that

∃∞s [φ{f(t):t<s∧ψ(f(t))=k}
e,s (e)↓].

By induction hypothesis one can take q so large such that there exists a q′ satisfying
for all 2d′+k′ < 2e+k the following conditions: first, max{t : f(t) ≤ q′} < q; second,
whenever there is an s > q with

φ
{f(t):t<s∧ψ(f(t))=k′}
e′,s (e′)↓

then φ
Ak′
e′,q′(e) converges. For that reason, r(s) ≥ 2e + d for all s > q. By assumption

there is a is a stage s > q with

φ{f(t):t<s∧ψ(f(t))=k}
e,s (e)↓;

this computation will never be destroyed by any assignment to ψ and so φAk
e (e)↓; that

is, e ∈ A′
k. Hence all three conditions are equivalent. Hence A′

0 ≤T K and A′
1 ≤T K

and A0, A1 are both low.

Comprehensive Exercise 7.5. Sacks’ splitting theorem [89] states that every non-
recursive r.e. set A is the disjoint union of two low r.e. sets A0, A1 of incomparable
Turing degree. As K is not low, A0 and A1 as constructed above must be Turing
incomparable. Expand the proof of Theorem 7.4 to a full proof of Sacks’ splitting
theorem.

61

8 Maximal, r-maximal and semirecursive sets

This section deal with r.e. sets of a special form. Certain sets had already been
introduced: simple sets which are co-infinite r.e. sets having a nonempty intersection
with every infinite r.e. set and hypersimple sets where A is hypersimple iff A is co-
infinite and for every recursive function f there is an n with {x : n ≤ x ≤ f(n)} ⊆ A.
Alternatively one can also say that an r.e. coinfinite set A is hypersimple iff there
is no recursive function f such that Df(i) ∩ Df(j) = ∅ and Df(i) ̸⊆ A for all distinct
i, j. Hyperhypersimple sets satisfy the same with “r.e. indices” in place of canonical
indices: A is hyperhypersimple iff A is r.e., coinfinite and there is no recursive function
such thatWf(i)∩Wf(j) = ∅ andWf(i) ̸⊆ A for all distinct i, j. In the following, further
interesting properties of sets will be investigated. Recall that A ⊆∗ B means that all
but finitely many elements of A are in B.

Definition 8.1. Let A be an r.e. coinfinite set. A is called maximal iff for all r.e. sets
B, either B −A or N−B −A is finite; A is called r-maximal iff for all recursive sets
B, either B−A or N−B−A is finite. A is called dense simple iff for every recursive
function f there is a constant c such that for all n the set {0, 1, 2, . . . , f(n)} − A has
at most n+ c elements.

An infinite set A is called regressive iff there is a partial-recursive function f and
a (not necessarily recursive) enumeration a0, a1, a2, . . . such that f(an+1) ↓= an; A
is called retraceable iff there is an enumeration and f as before with the additional
property that an < an+1 for all n.

Jockusch [45] called a set A is called semirecursive iff there is a recursive function f
with two inputs such that f(x, y) ∈ A∩{x, y} whenever x ∈ A∨y ∈ A. Alternatively,
one can say that A is semirecursive iff there is a recursive function g such that, for all
k, either g(k) ∈ Dg(k) ∩ A or Dg(k) is disjoint to A.

A set A is called (m,n)-recursive if there is a recursive function f : Nn → {0, 1}n
such that for all inputs of n different natural numbers x1, x2, . . . , xn the output
(y1, y2, . . . , yn) = f(x1, x2, . . . , xn) satisfies for at least m coordinates k that A(xk) =
yk.

Trakhtenbrot [113] called a set A autoreducible iff there is an index e such that

φ
A∪{x}
e (x) = A(x) for all x; that is, φe can compute A(x) using the oracle A without

querying A at x.

Exercise 8.2. Let A be an infinite r.e. set. Show that A is regressive. Show that A
is retraceable iff A is recursive. Show that every infinite retraceable set B is autore-
ducible.

Exercise 8.3. Show that every r.e. set with infinite retraceable complement is semire-
cursive. Show that for every semirecursive set A there is a recursive linear ordering

62

⊏ such that A is an initial segment of ⊏, that is, ∀x ∈ A ∀y ⊏ x [y ∈ A].

Exercise 8.4. Consider a set A = {a0, a1, a2, . . .} with an < an+1 for all n. Show
that if A is retraceable via a total function f then A is (1, 2)-recursive. But show that
one can choose A also such that A is only retraceable via a partial-recursive function
and is not (1, n)-recursive for every n.

Theorem 8.5 [111]. If 2m > n and A is (m,n)-recursive then A is recursive.

Proof. Assume that f witnesses that A is (m,n)-recursive. Let T be the tree of all
σ such that for all distinct x1, x2, . . . , xn ∈ dom(σ) it holds that m of the n bits in
f(x1, x2, . . . , xn) and (σ(x1), σ(x2), . . . , σ(xn)) coincide. Then A is an infinite branch
of T .

Let B be a further infinite branch of T . Then for every n numbers x1, x2, . . . , xn
the function f(x1, x2, . . . , xn) differs from A on at most n−m places and from B on
at most n−m places; as there are n inputs and 2(n−m) < n there is an index k such
that A(xk) and B(xk) coincide both with the k-th bit of f(x1, x2, . . . , xn). It follows
that there are at most n−1 numbers on which A and B differ. So all infinite branches
of T are finite variants and T has at most countably many infinite branches.

As T is a recursive tree and as T has at most countably many infinite branches
there is an infinite branch B which is an isolated infinite branch of T . Hence there is
a node σ such that B is the only infinite branch of T which contains σ. Note that

B(x) = a⇔ ∃t > x+ |σ| ∀τ ∈ {0, 1}t [τ ∈ T ∧ τ extends σ ⇒ τ(x) = a]

and that this definition provides a method to compute B and that hence B is recursive.
As A is a finite variant of B, A is recursive as well.

Exercise 8.6. Let B be a nonrecursive set and let a 7→ ηa be the bijection from
natural numbers into strings which was defined in Remark 5.1. Now define

A = {a : ∃x [ηa = B(0)B(1)B(2) . . . B(x)]}

and show that A is (m,n)-recursive iff 2m ≤ n. This shows that Theorem 8.5 cannot
be improved.

Dëgtev [25] showed that there is a proper hierarchy of (1, n)-recursive sets and that
the differences in the hierarchy can be witnessed by r.e. sets.

Theorem 8.7 [25]. For every n there is an r.e. set A such that A is (1, n + 1)-re-
cursive but not (1, n)-recursive.

63

Proof. This is another finite injury priority construction which diagonalizes against
the e-th function to (1, n)-compute A on the interval Ie which might be moved during
the construction. The goal of the construction is to satisfy the following requirement:

Re: The function φe fails to compute on Ie a vector of n bits such that at least one
component coincides with A on these n inputs.

P : The resulting set A is (1, n+ 1)-recursive.

The construction is the following one:

� One uses intervals Ie of length n which can be moved, the algorithm to move
them is the initialization Ie,0 = {ne, ne + 1, ne + 2, . . . , ne + n − 1} and which
might be moved upwards. The value of A0 is ∅.

� One searches at stage s+1 for the least e for which Re needs attention and is not
satisfied. This is the least e for which there is are a, b0, b1, b2, . . . , bn−1 such that
Ie,s = {na+ k : k < n} ⊆ {0, 1, 2, . . . , sn− 1}, φe,s(na, na+ 1, na+ 2, . . . , na+
n − 1) = (b0, b1, b2, . . . , bn−1) and either (b0, b1, b2, . . . , bn−1) ̸= (1, 1, 1, . . . , 1) or
Ie,s ∩ As = ∅.

� If e is found then let Id,s+1 = {(s+d)n+k : k < n} for all d > e, let Id,s+1 = Id,s
for all d ≤ e and let

As+1 = As ∪ {na+ k : k < n ∧ bk = 0} ∪ {x < sn : ∀d [x /∈ Id,s+1]}

else let Id,s+1 = Id,s for all d and let

As+1 = As ∪ {x < sn : ∀d [x /∈ Id,s+1]}.

The set A is recursively enumerable: This follows from the fact that the algorithm to
compute As+1 from As is recursive, that A0 = ∅ and that As ⊆ As+1 for all s.

The set A is not (1, n)-recursive: To see this, note that whenever Id,s+1 ̸= Id,s
then min(Id,s+1) ≥ sn. Hence it does not happen that elements are enumerated into
Ie,s+1 ∩ A and later into Id,t+1 such that Id,t+1 = Ie,s+1 and s < t. Thus, for the final
value Ie of the interval Ie,s it holds that either φe does not output an n-bit vector
on the inputs of this interval or φe is ultimately diagonalized by enumerating the
corresponding elements into A. Thus each Re is satisfied and A is not (1, n)-recursive.

The set A is (1, n+1)-recursive: To see this, consider inputs x0, x1, x2, . . . , xn with
maximum xk and s = xk + 2. Now let

f(x0, x1, x2, . . . , xn) =

{
1n+1 if As ∩ {x0, x1, x2, . . . , xn} ≠ ∅;
0k10n−k otherwise.

64

In the case that As contains already some of the inputs the answer 1n+1 is certainly
correct on one component. Otherwise either one of the zeroes is correct or there is a
stage t + 1 where the min{x0, x1, x2, . . . , xn} is enumerated into At+1. This happens
either because the interval containing this minimum at stage t is moved away or the
interval containing this minimum at stage t gets some elements enumerated at stage
t + 1. As xk ≥ min{x0, x1, x2, . . . , xn} + n, it happens in both cases that xk does
not belong to any interval in stage t + 1 and that xk ≤ tn; hence xk ∈ At+1 as well
and the value 0k10n−k coincides with (A(x0), A(x1), A(x2), . . . , A(xn)) in at least one
component.

Exercise 8.8. Show by induction over n that every (1, n)-recursive set is autore-
ducible. This is obviously true for n = 1. Assuming that it is true for n, consider
any set A which is (1, n + 1)-recursive but not (1, n)-recursive. Taking a function f
witnessing that A is (1, n+ 1)-recursive, show that for every x there are y1, y2, . . . , yn
such that f(x, y1, y2, . . . , yn) = (a, b1, b2, . . . , bn) with bk ̸= A(yk) for k = 1, 2, . . . , n.
Conclude that then A(x) = a and use this property to construct an autoreduction.

Remark 8.9. Every (1, 2)-recursive r.e. set is semirecursive but there is a (2, 4)-
recursive r.e. set which is not semirecursive. Every (m + 1, n + 1)-recursive set is
(m,n)-recursive but the converse does not hold as one can construct for every k an
r.e. set Ak such that Ak is (m,n)-recursive iff 2m + k ≤ n. A well-studied problem
is the set {(m,n, h, k) : every (m,n)-recursive set is (h, k)-recursive} and its variant
{(m,n, h, k) : every (m,n)-recursive r.e. set is (h, k)-recursive}. McNicholl [70] showed
that these sets are recursive.

Friedberg [35] constructed a maximal set. Maximal sets are the standard example
of hyperhypersimple sets. If one orders the r.e. sets by A ⊆∗ B which says that all
but finitely many elements of A are in B then the maximal sets do not have any set
properly above them besides the cofinite ones. So they form a maximal point in the
lattice of coinfinite r.e. sets ordered by ⊆∗ and this explains their name.

Theorem 8.10 [35]. There is a maximal set.

Proof. The basic idea is to assign to every position y an evaluation evale(y) (called
the “e-state of y”) defined as

evale(y) =
∑

d∈{0,1,...,e}

2−dWd(y)

with the corresponding approximation

evale,s(y) =
∑

d∈{0,1,...,e}

2−dWd,s(y)

65

at stage s. The idea is now to build a set A with complement {x0, x1, x2, . . .} given
in ascending order such that

∀e, i, j [e ≤ i ≤ j ⇒ evale(xi) ≥ evale(xj)].

This condition is satisfied as follows: At stage 0 let A0 = ∅ and xe,0 = e for all e.
At stage s + 1 the updates have the goal that on the one hand for every e there are
only finitely many s with xe,s+1 ̸= xe,s and on the other hand the goal that evale is
nonincreasing on xe, xe+1, xe+2, . . . is met in the limit.

� For e = 0, 1, . . . , s check whether there is de such that

– e < de;

– xe,s < xde,s ≤ s;

– evale,s(xe,s) < evale,s(xde,s).

� If de exists for some e then take the least e for which de exists and update the
markers accordingly:

– xc,s+1 = xc,s for all c < e;

– xe,s+1 = xde,s;

– xc,s+1 = s+ c for all c > e.

� If de does not exist for any e then let xc,s+1 = xc,s for all s.

� In both cases let As+1 = {0, 1, 2, . . . , s} − {x0,s+1, x1,s+1, . . . , xs,s+1}.

Now the various properties of the construction are verified.
The set A is recursively enumerable: One can easily see that whenever s > y and

y = xe,s but y /∈ {xc,s+1 : c ∈ N} then y ̸= xd,t for all d and all t > s. Furthermore,
xe,s ≥ e for all e. It follows that

A = {y : ∃s > y [y /∈ {x0,s, x1,s, . . . , xy,s}]}

and so A is a Σ0
1-set; that is, recursively enumerable.

For each e there are only finitely many s with xe,s ̸= xe,s+1: This can be proven
by induction. So given e, let s be so large that xd,u = xd,s for all u > s and d < e.
So, if u > s and xe,u+1 ̸= xe,u the change is not imposed by any d < e and so evale,s
goes up: evale,u+1(xe,u+1) > evale,u(xe,u). The rate of going up is at least 2−e by the
way how evale is defined; as the minimal value is 0 and the maximal value below
1 + 1

2
+ 1

4
+ . . . = 2, this going up can only happen finitely often and there is a stage

66

t > s with evale,t(xe,t) = evale,u(xe,u) for all u > t. Hence xe,t = xe,u for all u > t.
This completes the inductive step. In particular there is for every e a limit xe of all
xe,s.

If e < d then evale(xe) ≥ evale(xd): If this would be false then there would e, d, s
with e < d, xe,s = xe < xd = xd,s and evale,s(xe,s) < evale,s(xd,s). As a consequence
either xe,s+1 = xd,s or xc,s+1 ̸= xc,s for some c < e which imposes that xe,s+1 ̸= xe,s as
well. So the update rules for the xe,s contradict that it can happen in the limit that
e < d ∧ evale(xe) < evale(xd).

The condition ∀e, i, j [e ≤ i ≤ j ⇒ evale(xi) ≥ evale(xj)] is satisfied: Assume by
way of contradiction that evale(xi) < evale(xj). Now this implies that evali(xi) <
evali(xj) as the additional parts of the sum cannot compensate a difference which is
at least 2−e. This resulting statement contradicts the property found in the previous
paragraph.

Either We − A or N−We − A is finite, hence A maximal: Note that evale(xe) ≥
evale(xe+1) ≥ evale(xe+2) ≥ . . . and that all these are members of a finite set of
rational numbers. Hence there is a d such that evale(xc) = evale(xd) for all c ≥ d. It
follows that We(xc) = We(xd) for all c ≥ d. If We(xd) = 1 then N−We − A is finite;
if We(xd) = 0 then We − A is finite. Thus A is a maximal set.

Exercise 8.11. Show that the maximal set constructed in Theorem 8.10 is (1, 3)-re-
cursive.

Exercise 8.12. Show that every maximal set A is dense simple. Given any recursive
and strictly increasing function f , let

B = {x : ∃n [f(n) < x ∧ {y : f(n) ≤ y < x} ⊆ A]}

and show that A ∪B is cofinite. Then conclude

∀∞n [|{x : f(n) ≤ x < f(n+ 1) ∧ x /∈ A}| ≤ 1]

and use this property to show that A is dense simple.

Obviously every maximal set is r-maximal. So one might ask whether the converse is
also true. Lachlan [63] and Robinson [86] constructed r-maximal sets which do not
have a maximal superset. The following result follows essentially this construction,
but is formulated slightly more general.

Theorem 8.13 [62, 86]. There is an r-maximal set which has no dense simple
superset.

67

Proof. The construction goes in two stages: First a set B will be constructed such
that no r.e. superset of B is dense simple. B will be defined in parallel on intervals
In of length 2n · 2n. Then, given a maximal set A, one considers the set

E = {x : x ∈ B ∨ ∃n [x ∈ In ∧ n ∈ A]}

and shows that this set is r-maximal.
The set B is constructed in stages in parallel on each In. At stage 0, In ∩B0 = ∅.

At stage s+ 1, let

es = min{e : e = n ∨ [In ̸⊆ We,s ∪Bs ∧ 2 · |In −Bs −We,s| ≤ |In −Bs|]}

and define

Bs+1 ∩ In =

{
(Bs ∩ In) ∪ (In −We,s) if es < n;
Bs ∩ In if es = n.

Now it is verified that B and E have the desired properties.
B and E are recursively enumerable: In the case of B the algorithm how to enu-

merate elements into B on an interval In is clearly listed; the set E is constructed from
A and B using existential quantification and union, hence E is recursively enumerable
as well.

B and E are co-infinite r.e. sets: As A is coinfinite, it is sufficient to consider the
infinitely many n /∈ A. For each n /∈ A, there are m stages s where Bs+1 ∩ In is a
proper superset of Bs ∩ In; in each of these stages, |In − Bs+1| > 0.5 · |In − Bs| and
hence there are at least 2n · 2n−m elements in In − B; as for each e < n there is at
most one such stage, one knows that m ≤ n and |In −B| ≥ 2n.

B and E have no dense simple superset: Assume thatWe is a dense simple set and
let f(n) = max(In) for all n. Then, for almost all n, |{0, 1, 2, . . . , f(n)} −We| ≤ 2n.
Hence, for almost all n there is a stage s such that |In − We,s| ≤ 2n and so there
is by the construction of B a stage s with Bs+1 ⊇ In −We,s. Hence all sufficiently
large elements in the complement of We are also in B and We; as We is coinfinite,
B contains elements outside We and We is not a superset of B. So B has no dense
simple superset. The same is true for the coinfinite superset E of B.

If Wi ∪Wj = N and n > i+ j then either In −Wi ⊆ B or In −Wj ⊆ B: Let s be
so large that Bs ∩ In = B ∩ In and Wi ∩ In = Wi,s ∩ In and Wj ∩ In = Wj,s ∩ In. Note
that In ⊆ Wi,s ∪Wj,s, hence there is e ∈ {i, j} such that at least half of the elements
in In − Bs are in We,s; that is, |In − Bs −We,s| ≤ 0.5 · |In − Bs|. As e < n it follows
that either In −We,s ⊆ Bs or Bs+1 ∩ In ⊃ Bs ∩ In. But the latter does not occur
according to the choice of s, so the former holds and In −We ⊆ B as well.

E is r-maximal: Let Wi,Wj be a recursive partition of N and consider the sets
Wi′ = {n : In ⊆ E ∪ Wi}, Wj′ = {n : In ⊆ E ∪ Wj}. By the previous property,

68

every n > i + j is either in Wi′ or Wj′ . Furthermore, A ⊆ Wi′ and A ⊆ Wj′ . But if
In ̸⊆ E then n /∈ Wi′ ∩Wj′ ; hence one of these sets has to be coinfinite and a finite
variant of A while the other one is cofinite. It follows that almost all elements of the
complement of E are either in Wi or in Wj; thus E is r-maximal. This completes the
proof.

Exercise 8.14. Show that the following sets are always hypersimple: maximal sets,
r-maximal sets, hyperhypersimple sets and dense simple sets.

Exercise 8.15. Let a simple and semirecursive set A be given. Show that A is
hypersimple. Show that B = {y : ∃x ∈ A [x2 ≤ y < (x + 1)2]} is also simple and
semirecursive but not dense simple.

Exercise 8.16. Recall from Exercise 8.3 that every semirecursive set is an initial
segment of a recursive partial ordering ⊏. Use this characterization to show that
every semirecursive simple set A has a dense simple superset.

Here an outline of a possible proof for the second fact: Call an equivalence relation
∼ is called positive iff the set {⟨x, y⟩ : x ∼ y} is recursively enumerable. Given a
maximal set B, show that the equivalence relation ∼ given by

x ∼ y ⇔ ∀z [min{x, y} ≤ z < max{x, y} ⇒ z ∈ B]

is a positive equivalence relation where each equivalence class is finite. Consider
E = {x : ∃y ∼ x [x ⊏ y]} ∪ A and show that E is a dense simple superset of A.

Proposition 8.17. The complement of an r-maximal set is not regressive.

Proof. Assume that A is r.e. and has a regressive complement. Then N − A can
be (nonrecursively) enumerated as a0, a1, a2, . . . such that there is a partial-recursive
function f with f(an+1) = an for all n. Let the partial-recursive function g be the
least fixed-point of the operator which maps every partial recursive function θ to the
function θ′ such that θ′(x) = 0 if x = a0 and θ′(x) = θ(f(x)) + 1 if x ̸= a0 and both,
f(x) and θ(f(x)), are defined. It is easy to see that g(an) = n for all n; g might
also be defined on some members of A. Now one can define a recursive set B by the
following case-distinction where, in the case that both cases apply, that case is taken
which is proven to hold first:

B(x) =

{
1 if x ∈ A or g(x) is defined and odd;
0 if g(x) is defined and even.

Clearly B(x) is defined for all members of A. Furthermore, every x /∈ A is equal to
some an and then B(x) = 1 if n is odd and B(x) = 0 if n is even. So B is a recursive
set such that N−A has an infinite intersection with both, B and N−B. Hence A is
not r-maximal. In other words, no r-maximal set has a regressive complement.

69

9 Permitting and Infinite Injury Priority Methods

The topic of this section are more advanced techniques to construct recursively enu-
merable sets with certain properties. The first method to be presented is permitting
and the proof given is that for every non-recursive r.e. set bounds a simple but not
hypersimple set. Note that permitting gives normally not only a Turing reduction
but even a wtt-reduction.

Theorem 9.1. For every nonrecursive r.e. set A there is a simple but not hypersimple
set B with B ≤wtt A.

Proof. Let I0, I1, I2, . . . be a recursive partition of the natural numbers into intervals
such that |In| ≥ n + 1 for every number n. Recall the definition of the convergence
module cA of A:

cA(n) = min{s ≥ n : As(0)As(1)As(2) . . . As(n) = A(0)A(1)A(2) . . . A(n)}.

Now define a partial-recursive function ψ as follows:

ψ(⟨n, e⟩) =

min(We,t ∩ In) if t is the first number with
We,t ∩ In ̸= ∅ and t ≤ cA(n);

↑ if there is no such t.

Furthermore, let B = {ψ(⟨n, e⟩) : n ∈ N ∧ e < n ∧ ψ(⟨n, e⟩) ↓ }. Clearly the set
B is r.e.; furthermore, B is coinfinite as for every n the intersection B ∩ In equals
{ψ(⟨n, e⟩) : e < n ∧ ψ(⟨n, e⟩) ↓ } and has at most n elements although |In| > n.
Furthermore, as n ≤ min(In) for all n, B has a nonelement between n and max(In)
and is not hypersimple.

Now assume by way of contradiction that there is an infinite setWe withWe∩B =
∅. There is a recursive function g such that for every n, max(We,g(n)) ≥ min(In). Now
g(n) > cA(n) for all n > e as otherwise there is an n > e and an m ≥ n with
Im ∩We,g(n) ̸= ∅, cA(m) ≥ cA(n) ≥ g(n) and ψ(⟨m, e⟩)↓∈ A ∩We. But the condition
cA(n) < g(n) implies that n ∈ A ⇔ n ∈ Ag(n) for all n > e giving that A is recursive
in contradiction to the assumption. Hence B intersects every infinite r.e. set and B
is simple.

The next two results are parallel. If A ≤T K then A′ ≥T K and A′ is r.e. relative
to K. The next two results show that this result can be inverted: First, if B ≥T K
and B is r.e. relative to K then there is an A ≤T K with A′ ≡T B. Second, this A
can be taken to have r.e. Turing degree. The first result will be proven by a direct
construction while the second result needs an infinite injury priority construction. For
the first result, one needs a definition.

70

Definition 9.2. Call a function F growth-generic iff for every r.e. set W ⊆ N∗ of
strings either there is an n with F (0)F (1) . . . F (n) ∈ W or it holds for almost all m
that F (0)F (1) . . . F (m) · {F (m), F (m) + 1, F (m) + 2, . . .}∗ is disjoint from W .

If one calls a number m with ∀k ≥ m [F (m) ≤ F (k)] a “true stage” then one can also
reformulate the definition as follows: F is growth-generic iff for every r.e. set W ⊆ N∗

of strings either there is an n with F (0)F (1) . . . F (n) ∈ W or there is a true stage
m with F (0)F (1) . . . F (m) · {F (m), F (m) + 1, F (m) + 2, . . .}∗ being disjoint from W .
In the following, one uses also the function F as an oracle which return F (m) when
queried at m. The definitions of an F -recursive function and the jump F ′ of F are
parallel to the corresponding definitions for sets.

Theorem 9.3: Shoenfield’s Jump Inversion [97]. Let B ≥T K and B be r.e.
relative to K. Then there is a growth-generic function F ≤T K with F ′ ≡T B.

Proof. Let G be a K-recursive one-one enumeration of B. Now the goal is to make
a function F such that

� F takes every value only finitely often;

� For all n there is m ≥ n with F (m) = G(n);

� F ′ ≤T B.

Then B can be approximated in the limit relative to F as follows: Let Gs be an
approximation to G at stage s and let x ∈ Bs iff there are n,m with n ≤ m ≤ s,
Gs(n) = x and F (m) = x ∨m = 0. Clearly the Bs are uniformly recursive relative to
F . Furthermore, if s is sufficiently large, then the parameter m in this condition is
the maximal m where F (m) = x and Gs(n) = G(n) for all n ≤ m; hence Bs(x) = 1
iff there is an n ≤ m with Gs(n) = x iff there is an n ≤ m with G(n) = x iff x ∈ B.
Thus B ≤T F ′. Thus this fourth condition is not postulated explicitly as it follows
from the other three conditions on F .

Now, for the construction of F , one chooses a finite-extension method. That is, one
constructs a sequence of strings σn,m such that σn,m+1 is always an extension of σn,m
and σn+1,0 is an extension of σn,n. This construction uses G and is thus K-recursive.
LetW0,W1,W2, . . . be an enumeration of all r.e. sets of strings. Now define the strings
used in the construction inductively according to the first case which applies.

� σ0,0 = G(0);

� σn+1,0 = σn,nG(n+ 1);

71

� σn+1,m+1 with m < n is τ for the first string τ found in

Wm ∩ σn+1,m · {G(n+ 1), G(n+ 1) + 1, G(n+ 1) + 2, . . .}∗

and σn+1,m+1 = σn+1,m if such a τ does not exist.

Let F be the limit of all σn,0. It is easy to see that the string σn,0 has at least length
n+ 1 and ends with G(n), hence the second condition holds.

Note that the enumeration G takes every value at most once. Given now any
x, there is a k such that G(n) > x for all n ≥ k. It follows for all n ≥ k that
the extensions σn+1,0 of σn,n and σn+1,m+1 of σn+1,m only append values to the given
construction which are larger than x, hence F (y) ̸= x for all y > |σk,k|. So the first
condition holds.

The third condition follows from the construction. The main ingredient is that
can determine the true stages of F using B: One can find using B all the n such that
G(n) < G(k) for all k > n; these are just the n such that when enumerating G(n)
into B then all the values of B below G(n) are already there. Now, for each set Wm

and each true stage n > m of G, one has that the extension σn,m+1 of σn,m either is
an element of

Wm ∩ σn,m · {G(n), G(n) + 1, G(n) + 2, . . .}∗

or this intersection is empty. As F does not take any value below G(n) beyong |σn,m|,
it follows that either some prefix of F is in Wm or

Wm ∩ F (0)F (1) . . . F (k) · {F (k), F (k) + 1, F (k) + 2, . . .}∗

is empty for all k > |σn,m|. As F ≤T B, one can compute from B whether there is an
k such that F (0)F (1) . . . F (k) ∈ Wm. Furthermore, for each e one can compute an
index m with

Wm = {σ : φσe,|σ|(e)↓ }
and then check relative to B whether Wm contains a prefix of F . In other words, one
can decide relative to B whether e ∈ F ′. Hence F ′ ≤T B. Note that this verification
of the third condition included the proof that F is growth-generic.

The next theorem is due to Sacks. Sacks’ Jump Inversion Theorem states that the
jumps of sets below K are already the jumps of r.e. sets. The main modification to
the proof above is to make the function F to be approximable from below, that is,
to obtain that {(x, y) : y ≤ F (x)} is an r.e. set. F is of course Turing equivalent
to this set. For the result, the following notion of approximations to a K-recursive
enumeration is essential.

Exercise 9.4. Let G be a K-recursive one-one numbering of a set. Then one can
define an approximation γ0, γ1, γ2, . . . by strings such that

72

� γ0 is the empty string;

� either γs+1 = γsa for some a or γs+1 is a prefix of γs;

� for all n there is an s such that γt(n)↓= G(n) for all t ≥ s.

A stage s is called a true stage for the approximation γ0, γ1, γ2, . . . iff γt(n)↓= G(n)
for all t ≥ s and all n ∈ dom(γs).

Given a traditional approximation Gs to G, construct the above approximation
γ0, γ1, γ2, . . . from G and show that the three properties are satisfied. Show further-
more that the three conditions enforce that there are infinitely many true stages.

Theorem 9.5: Sacks’ Jump Inversion [88]. Let B ≥T K and B be r.e. relative to
K. Then there is a function F which is approximable from below such that F ′ ≡T B.

Proof. The idea is to build F meeting the following requirements. Again the con-
struction uses a K-recursive one-one numbering G of B.

� Pe (preserve e-th computation): if φFs
e (e) converges and satisfies some addi-

tional condition specified later then F (m) = Fs(m) for all m queried in the
computation.

� Ce (coding of G): if G(m) = e then there is n ≥ m with F (n) ≤ e.

� Me (mimimal value e): for almost all n, F (n) > e.

Among these requirements, Me is the one which is violated infinitely often and there-
fore needs to act infinitely often. A further problem in the construction is that G is
not available as in the previous theorem. Instead one has to use an approximation
to G. The most suitable way is to approximate G by strings γs. According to Exer-
cise 9.4 one can choose an approximation which satisfies the constraint that γs+1 is
either γsa for some a or is a prefix of γs and γ0 is the empty string. Then s will be
called a true stage for this approximation iff it holds for all n ∈ dom(γs) and all t ≥ s
that γt(n) ↓= G(n). As shown in the exercise, the approximation γ0, γ1, γ2, . . . has
infinitely many true stages in which longer and longer pieces of G get defined perma-
nently. The requirements Pe and Ce can set restraints which have to be observed by
Me. The restraints are adjusted in every step.

Let Fs(n) be the value of F at n before step s and Fs+1(n) be the value of F at
n after step s. F0(n) = 0 for all n. Now in step s of the construction, the following
activities are carried out.

� Clear all old restraints from previous steps.

73

� For each n ∈ dom(γs), put on the least m ≥ n with Fs(m) ≤ γ(n) the restraint
Cγs(n).

� For e = 0, 1, 2, . . . , s, if φFs
e,s(e) converges and all queries for a value Fs(y) at

some y satisfy that either Fs(y) = y or Fs(y) ≥ e or y carries the restraint CFs(y)

or y carries a restraint Pd with d < e then put the restraint Pe on all m where
Fs(m) had been queried during this computation.

� For each m ≤ s, let Fs+1(m) be the maximum of {Fs(m)} ∪ {n+1 : n < m and
m does not carry any of the restraints C0, C1, C2, . . . , Cn and P0, P1, . . . , Pn}.
For each m > s, Fs+1(m) = 0.

Note that the update of Fs to Fs+1 makes sure that Fs(m) ≤ m for all m, hence F is
on every value defined and takes never the value ∞.

Consider now any true stage s. If γs(n) is defined, then by the definition of the true
stage, γt(n) = G(n) for all t ≥ s. Then there is a least m ≥ n with Fs(m) ≤ G(n).
One can now see that for all t ≥ s the restraint Pγs(n) will be placed on m and hence
Ft(m) ≤ G(n) for all t ≥ s. It follows that F (m) ≤ G(n). Hence the coding condition
Cn is met eventually. A restraint Pe does only protect Fs(m) if Fs(m) ≥ e; otherwise
the requirements Md with d < e have higher priority than Pe. But one can show by
induction over e = 0, 1, 2, . . . , s that whenever a restraint Pe is set, then it protects
a computation which queries F at values Fs(m) if either Fs(m) ≥ e or if Fs(m) has
to be kept at the current value due to another restraint of higher priority or due to
Fs(m) = m. Therefore, one can show by induction for t = s, s+ 1, s+ 2, . . . that the
restraints Pe will be placed at each of these stages and the values will be preserved
when making Ft+1 from Ft.

Now it is verified that each requirement Me is met in the limit. Let s be any true
stage which is so large that every restraint Pd with d ≤ e which will be placed at some
true stage (and then remain forever) is already placed at s and that m ∈ dom(γs)
whenever G(m) ≤ e. Recall that for each m ∈ dom(γs) it holds that γs(m) = G(m)
and that the restraint CG(m) is placed on s or below as Fs(s) = 0. If d is in the range of
G then the restraint Cd will be set by stage s on some value up to s and never change
again; if d is not in the range of G then the restraint Cd will not be set at any true
stage, although it might temporarily be set at other stages. Hence, for all true stages
t > s, no number m with s < m < t will carry any of the restraints C0, C1, C2, . . . , Ce,
P0, P1, P2, . . . , Pe and therefore Ft+1(m) > e. Hence F (m) > e for all m > s and the
requirement Me will be met in the limit.

Next one has to show that F ′ ≤T B. This is shown by giving an inductive B-
recursive decision procedure for F ′. So assume that F ′(d) had already been determined
for all d < e and that s is a true stage in the construction so large that G(n) ≤ e ⇒
γs(n)↓= G(n) for the finitely many n involved and that all restraints Pd which are set

74

to protect the converging computation φFd (d) are already set and that Fs(m) = F (m)
for all the m queried. The restraints Cd with d ≤ e are, if they will ever be set
permanently, already set at the true stage s.

Now e ∈ F ′ iff there is a stage t ≥ s such that the computation φFt
e,t(e) is protected

by Pe and the m carrying restraints Pd with d < e or Cd with d ≤ e are the same as
the m carrying these restraints at stage s.

One uses B to compute s and K to check for the existence of t. As K ≤T B, it
follows that the condition can be checked using the oracle B.

The reason for the condition on the Pd and Cd to be the same as at stage s is
that one is searching for true stages t with the property that φFt

e,t(e) converges and
is protected by Pe. But as one cannot search over all true stages relative to B,
this approximation is used instead. It mainly enforces that no stages t with false
protected computations qualify which will be erased later. Indeed, in the case that
a computation halts and becomes protected, then all those Ft(m) queried which are
below e are protected by some other restraint of higher priority which already preexists
and is verified by the algorithm; hence the computation will be preserved at all future
stages and survive. So whenever the algorithm says e ∈ F ′ then this is also true. For
the other way round, assume that φFe (e) converges and let t be a true stage above s
where the computation has already converged and all m queried by the computation
satisfy m ∈ dom(γt) and Ft(m) = F (m). Those m with Ft(m) < min{m, e} have to
be protected by a restraint of higher priority as otherwise Ft+1(m) > Ft(m); as t is a
true stage these restraints must be some of the restraints Cd with d ≤ e or Pd with
d < e already placed at stage s. Hence the stage t would qualify in the search and
the B-recursive algorithm also says that e ∈ F ′. Hence the algorithm is correct and
F ′ ≤T B.

The property that B ≤T F
′ is very similar to the one proven in Theorem 9.3. An

F -recursive approximation to B is defined as follows: x ∈ Bs iff there are n,m with
n ≤ m ≤ s, γs(n)↓= x and F (m) ≤ x∨m = 0. The main difference is the use of γs in
place of Gs and of F (m) ≤ x instead of F (m) = x. One can verify that both changes
still lead to a valid F -recursive approximation of B which proves that B ≤T F

′.

The previous result shows that the r.e. sets can realize all jumps which can be obtained
by a set below K. But the result does not yet give that a set of high Turing degree
(where the jump is K′) is also Turing incomplete. This is obtained by the next result
of Sacks [90] who constructed a maximal set with this property.

Theorem 9.6 [90]. For every r.e. and nonrecursive set A there is a maximal set B
such that A ̸≤T B.

Proof. Let A be given and let cA be the convergence module of A. The goal is to
build a set B with movable markers which on one hand want to optimize their e-state

75

and on the other hand are restrained by attempts to preserve computations giving
the wrong value for the convergence module cA. On the one hand, for each function
φBe restraints try to protect more and more of computations relative to Bs until the
computation turns out to be different from cA below the current value which should
be restrained; on the other hand, the goal to make the e-state as large as possible
tries to move the markers more and more out. The compromise between these two
requirements will depend on the quantity the marker is moved. Recall the definition
of the e-state and its approximation as

evale(y) =
∑

d=0,1,...,e

Wd(y) and evale,s(y) =
∑

d=0,1,...,e

Wd,s(y).

At stage 0, xe,0 = e for all e. Requirements Xe try to make the e-state eval(xe,s) as
large as possible by moving xe from xe,s to a larger value xe,s+1, whenever needed and
possible.

Instead of one requirement to deal with a potential equation A = φBa one has
infinitely many requirements R⟨a,b,c⟩ attacking this reduction. Each of these require-
ments has an assumption on the outcome of other ingredients of the construction,
namely R⟨a,b,c⟩ acts only infinitely often if for all d ≥ a + b, evala(xd) = c · 2−a. The
name “outcome” for this assumption stems for the fact that in many similar con-
structions the assumption deals with the behaviour of the strategies to satisfy higher
priority requirements and an outcome is the behaviour of these strategies in the limit.
The requirement R⟨a,b,c⟩ requires attention if a sufficiently large computation should
be secured and the xd,s+1 where Bs+1(xd,s+1) is queried in this computation satisfy
evala,s+1(xd,s+1) = c ·2−a and the old part of the computation is consistent with cA,s+1.
The action of R⟨a,b,c⟩ is to increase its restraint to the number s of the current stage.

The initialization of the restraints is re,0 = 0. Requirement Re tries to prevent
markers xe from moving in order to preserve certain computations whenever it is
needed. At stage s+ 1 the following updates are done.

� Requirement Xe tries to make e-states as large as possible and it needs attention
if

∃i ≤ e ∃j > e∀⟨a, b, c⟩ < e [xj,s < s ∧ evali,s(xe,s) < evali,s(xj,s)

∧ (r⟨a,b,c⟩,s < xe,s ∨ a ≥ i)].

� Find the least e such that Xe needs attention with parameters i, j as above and
update

xd,s+1 =

{
xd,s if d < e;
xj,s if d = e;
d+ s+ 1 if d > e.

76

� In the following let Bs+1 = {0, 1, 2, . . . , s} − {xe,s+1 : e ≤ s} and

cA,s+1(x) = min{t : t = s+ 1 ∨ [t ≥ x ∧
At(0)At(1) . . . At(x) = As+1(0)As+1(1) . . . As+1(x)]};

note that cA,s+1(x) = s+ 1 for s < x.

� Requirement Re needs attention iff e < s and there are numbers a, b, c, x, u such
that

– ⟨a, b, c⟩ = e, re,s < x < u < s and xa+b+u,s < s,

– φBs+1
a,u (y) is defined for all y ≤ x,

– evala,s(xd,s+1) = c · 2−a for all d ∈ {a+ b, a+ b+ 1, . . . , a+ b+ u},
– there is no y < x such that φBs+1

a,re,s(y)↓< cA,s+1(y).

� For each e, if Re needs attention then update re,s+1 = s else keep re,s+1 = re,s.

Now it is verified by induction that the construction does what it is required. The
following facts are verified:

1. For every e the limit xe of the xe,s exists and B = N− {x0, x1, x2, . . .} is recur-
sively enumerable.

2. For all i and almost all e there is no j > e such that evali(xe) < evali(xj). Hence
N−B ⊆∗ Wi or N−B ⊆∗ N−Wi.

3. For all e the limit re = re,s exists and re <∞.

4. For all a where φBa is total there is an y with φBa (y) < cA(y).

It is easy to see that these four conditions together give that A ̸≤T B and that B is
maximal. Now these four properties are verified.

First, the xe = lims xe,s exist by the same inductive argument as in the construction
of a maximal set: for every e there is an s such that xd,s = xd,t for all d < e and t > s.
Hence any t ≥ s with xe,s+1 ̸= xe,s implies that evale,s(xe,s)+2−e ≤ evale,s(xe,s+1). One
combines this with the facts that evale,t(y) ≤ evale,t+1(y) and that 0 ≤ evale,t(y) ≤ 2
for all y, t and obtains then that there are only finitely many t > s with xe,t+1 ̸= xe,t.
Thus xe = limt xe,t exists.

The further property that B is recursively enumerable follows from the fact that
the sets Bs = {y < s : ∀e ≤ s [y ̸= xe,s]} are uniformly recursive and that whenever
there is for some y a stage s > y with y ∈ Bs then at no future stage t there will
be any marker xe,t with xe,t ̸= y and xe,t = y: the marker would either move to the

77

position of another marker and none of them sits on y at stage t or it would move to
a place beyond t and t ≥ s. Hence

B = {y : ∃s > y ∀e ≤ s [y ̸= xe,s]}

and this set is given by an existential quantifier followed by a bounded quantifier, so
it is recursively enumerable.

Second, assume by way of contradiction that i is the least number such that the
second condition fails with parameter i and the third condition does not fail with any
parameter d < i.

By assumption rd = lims rd,s exists and is in N for all d < i. Now consider any e
such that e ≥ i and e > rd for all d < i; almost all e satisfy this property. Furthermore
let j > e. If evali(xe) < evali(xj) and s is sufficiently large then xi,s = xi, xj,s = xj < s
and evali,s(xe,s) < evali,s(xj,s). It would follow that requirement Xe needs attention
from stage s onward and there would be t > s with xi,t = xj,s which is a contradiction
to the assumptions. Hence, for almost all e, the values evali(xe) are the same and
either almost all xe are in Wi or almost all xe are outside Wi. So it follows that
N−B ⊆∗ Wi or N−B ⊆∗ N−Wi.

Third, assume by way of contradiction that e is the least number such that the
third condition fails with parameter e and that the second condition does not fail with
parameter i ≤ e.

Let a, b, c be the components of e, that is, e = ⟨a, b, c⟩. Note that a ≤ e. If there
is d ≥ a + b with evala(xd) ̸= c · 2−a then all sufficiently large stages s satisfy that
either re,s ≤ xd or re,s > xd ∧ xd,s = xd ∧ evala,s(xd,s) = evala(xd) ̸= c · 2−a; so either
re,s ≤ xd for almost all s or the second condition holds for all sufficiently large s and
implies that Re does not request attention anymore.

Thus assume the case that the outcome required by Re on evala(xd) for d ≥ a+ b
is correctly guessed. Let s0 be so large that s0 > xa+b+e, xd,s0 = xd and evala,s0(xd) =
evala(xd) for all d ≤ a + b + e. Note that no requirement Xd with d ≤ e acts after
stage s0 by the choice of that stage. Now define inductively sx+1 to be the first stage
such that there is an ux for which the following three conditions hold:

� sx+1 > ux, sx+1 > sx and re,sx+1 > ux;

� evala,sx+1(xd,sx+1) = c · 2−a for all d ≥ a+ b with xd,sx+1 ≤ ux;

� φ
Bsx+1
a,ux (y)↓ for all y ≤ x.

If this inductive definition would go through for all x then the mapping x 7→ sx
is recursive and furthermore no requirement Xd with d > a + b + e will move any
xd,s with xd,s ≤ ux to a new value xd,s+1 > xd,s at a stage s ≥ sx as this would

78

require evala,s(xd,s) > evala,s(xd,s) = evala(xd,s) and result in some xd′ with d′ ∈
{a+b+e+1, a+b+e+2, . . . , d} having evala(xd′) > c·a in contradiction the assumption.

Hence φ
Bsx+1
a,sx+1(x) = φBa (x) for all x and φBa would be recursive. Furthermore, it would

follow from the fact that requirement Re acts infinitely often that ∀y [cA(y) ≤ φBe (y)],
a contradiction to A being not recursive.

This contradiction enforces that there is a maximal x where sx is defined. As
the second condition comes eventually true by the assumption on the outcome, it is
the lack of the first or third condition that sx+1 cannot be defined. If there is an s
with re,s+1 > re,s = re,sx then the way the update is done implies that there is an ux
such that the third condition is satisfied and sx+1 could be taken as that s+1, hence
re = re,sx in that case and the induction hypothesis is transferred from all d < e to e.

Note that “Second” and “Third” above cover all possible cases. To see this let i be
the minimum of all k such that either the second condition fails for k or k = ∞; let
e be the minimum of all k such that either the third conditions fails for k or k = ∞.
If i < ∞∧ i ≤ e then the argumentation in “Second” shows that this case does not
occur; if e <∞∧ e < i then the argumentation in “Third” shows that this case does
not occur. Hence i = ∞∧ i = ∞ and both conditions are satisfied.

Fourth, consider now any a where φBa is total. Furthermore let c be the unique
number such that evala(xd) = c·2−a for almost all d. Let b be so large that evala(xd) =
c · 2−a for all d ≥ a+ b. Then one can conclude that there is a y with φBa (y) < cA(y)
as otherwise there would be infinitely many stages s with r⟨a,b,c⟩,s+1 > r⟨a,b,c⟩,s.

Recall the definition of low and of high degrees in Remark 6.12. By Exercise 8.12,
the maximal set B constructed in the previous theorem is dense simple; so for every
recursive function f and almost all e, x2e > f(e). The function x 7→ x2e is B-recursive
and dominates all recursive functions. Hence B has high Turing degree by one of
the characterizations given in Remark 6.12. So the maximal set B from the previous
theorem has high Turing degree and is not Turing above the given r.e. set A. Hence
B <T K and it is shown that several high r.e. Turing degrees exist. The following
corollary is the counterpart of Exercise 7.3.

Corollary 9.7. There is a set B of high Turing degree such that B <T K.

Comprehensive Exercise 9.8. The construction of the maximal set B not Turing
above a given r.e. set A can be combined with permitting. So assume that E is a
dense simple set and modify the permitting such that a marker xe is permitted by E
to move from xe,s to a new position xe,s+1 iff there is an element y ∈ Es+1 − Es such
that |{0, 1, 2, . . . , y} − Es+1| ≤ xe,s. Using this modified permitting, build a maximal
set B such that B ≤T E and A ̸≤T B.

79

Remark 9.9. The structure of the Turing degrees of r.e. sets is well-studied. Here
some basic facts are given: Sacks [91] showed that whenever A,B are r.e. Turing
degrees with A <T B then there are further incomparable r.e. sets E1, E2 with A <T

Ek <T B for k = 1, 2. So there are no minimal r.e. Turing degrees. But Lachlan
[61] and Yates [118] constructed minimal pairs of r.e. Turing degrees, that is, they
constructed r.e. and nonrecursive sets A,B such that every set E with E ≤T A∧E ≤T

B is already recursive. The sets A,B can even be chosen to have high Turing degree.
A famous result is Lachlan’s Non-Diamond Theorem [61] which shows that for every
minimal pair A,B of r.e. sets, K ̸≤T A⊕B. So either the join of two r.e. sets is Turing
incomplete or they bound a nonrecursive set or both.

The Theorem of Friedberg and Muchnik can be proven by showing that there is
a low r.e. set L which is not recurisive. The preceding result showed the existence of
a high r.e. set which is not Turing complete (as all maximal sets have high Turing
degree). Sacks [88] showed that there are much more jump-classes: every set which is
r.e. relative K and above K is the jump of a (non-relativized) r.e. set. On the other
hand, the jump of every set below K is r.e. relative to K.

One can show that the structure of sets which are above K and r.e. relative to K is
similarly rich as the structure of the (non-relativized) r.e. sets. Therefore one looked
at r.e. sets A such that A′ is low relative to K, that is, A′′ ≡T K′. Such sets are called
low2. High and low2 r.e. Turing degrees have many characterizations. For any given
r.e. set A the following conditions hold:

� A has high Turing degree iff A is Turing equivalent to a maximal set;

� A has high Turing degree iff A is Turing equivalent to an r-maximal set;

� A has high Turing degree iff some A-recursive function dominates all recursive
functions;

� A has low2 Turing degree iff every coinfinite r.e. set B ≤T A has a maximal
superset;

� A is low2 iff some K-recursive function dominates all A-recursive functions.

For this reason, the low2 degrees are considered as a natural counterpart to the high
degrees. One can generalize and has that a set A has lown Turing degree iff the n-fold
jumps of A and ∅ satisfy A(n) ≡T ∅(n) and A has highn Turing degree iff A(n) ≥T K(n).
No set has lown and highn Turing degree at the same time. There are r.e. sets which
have neither lown nor highn Turing degree for every n; furthermore, for every n there
are r.e. sets A,B such that A has highn+1 but not highn Turing degree and B has
lown+1 but not lown Turing degree.

80

10 The Analytical Hierarchy

Up to now sets had been defined by quantifying over numbers only. In this section, one
asks what happens if one quantifies over functions from N to N. Here one can define
a Σ1

n formula inductively: Formulas with only existential quantifiers over functions
are called Σ1

1-formulas and with only universal quantifiers over functions are called
Π1

1-formulas. For example, giving a recursive enumeration As of A, let c̃A(x) be the
first s with As(x) = A(x). The following formula ϕc̃A(f) defines when a function f
equals c̃A:

ϕc̃A(f) ⇔ ∀y ∀s [f(y) > 0 ⇒ y ∈ Af(y) − Af(y)−1 ∧ f(y) = 0 ⇒ y /∈ As].

Hence one can also define A via both, a Σ1
1-formula and a Π1

1-formula:

x ∈ A⇔ ∃f [ϕc̃A(f) ∧ f(x) > 0] ⇔ ∀f [ϕc̃A(f) ⇒ f(x) > 0].

Recursively enumerable sets share the property of being in Σ1
1 ∩ Π1

1 with many other
sets. A typical situation for these sets is that they are computed relative to a unique
infinite branch of a suitable r.e. tree. This has to be formalized in the next exercise.

Exercise 10.1. Given an r.e. set A, define a recursive tree T ⊆ N∗ such that
c̃A is the only infinite branch of T ; that is, c̃A is the only function f such that
∀x [f(0)f(1)f(2) . . . f(x) ∈ T].

Remark 10.2. There is an enumeration T0, T1, T2, . . . of all r.e. unbounded trees.
Here “unbounded” means that every node can σ can have arbitrary many successors
and not only σ0 and σ1. Hence Te ⊆ N∗ and not Te ⊆ {0, 1}∗. Recall that a subset
of N∗ is a tree iff for all σ, τ ∈ N∗ the implication στ ∈ Te ⇒ σ ∈ Te holds. A
function f is an infinite branch of Te iff f(0)f(1)f(2) . . . f(n) ∈ Te for all n. A tree
is called well-founded iff it has no infinite branches. If σ, τ nodes on a tree then the
Kleene-Brouwer ordering <KB is defined by σ <KB τ iff either σ extends τ as a string
or the first x where σ(x), τ(x) differ satisfies σ(x)↓< τ(x)↓. The importance of this
ordering stems from the fact that the nodes of a tree Tx are well-ordered by <KB

iff Tx is well-founded. Here <KB is an well-ordering means that there is no infinite
descending chain of nodes, that is, no σ0, σ1, . . . ∈ Tx with σk+1 <KB σk for all k.

Obervation 10.3: Suslin-Kleene-Classes and ∆1
1-sets [53, 110]. For every r.e.

tree Te define

SKe =

{
W

{⟨1,f(1)⟩,⟨2,f(2)⟩,...}
f(0) if f is the only infinite branch of Te;

N if Te has 0 or at least 2 infinite branches.

81

Now observe that the class of all SKe has the following properties:
First: There is a recursive function g1 such that SKg1(x) = {x} for all x; that is,

indices for the singleton sets can be effectively generated.
Second: There is a recursive function g2 such that for all e, SKg2(e) =

⋃
a∈We

SKa;
that is, the class {SK0, SK1, SK2, . . .} is closed under effective union. The idea is
to build a tree Tg2(e) and to compute a decoding-programme d from e such that
Tg2(e) has exactly one infinite branch f iff for every a ∈ We the tree Ta has exactly one
infinite branch; furthermore, one can compute from e a recursive one-one enumeration
⟨a0, b0⟩, ⟨a1, b1⟩, ⟨a2, b2⟩, . . . of (We ∪ {u}) × N and then define Tg2(e) such that the
following conditions hold:

� SKu = ∅ and Tu has exactly one infinite branch fu;

� Tg2(e) has a unique infinite branch f iff for every a ∈ We the tree Ta has a unique
infinite branch fa then Tg2(e) has exactly one infinite branch f and the branches
f and fa with a ∈ We satisfy the equation f(k + 1) = fak(bk) for all k and f(0)
is a canonical index which enumerates the union of all sets which have the form

W
{⟨bℓ,f(ℓ+1)⟩:aℓ=ak∧bℓ>0}
f(k+1)

for some k with bk = 0. Here “canonical index” means an index produced by
some fixed procedure to translate the above algorithm into an index.

� If some Ta with a ∈ We has no infinite branch then Tg2(e) has also no infinite
branch.

� If every Ta with a ∈ We has an infinite branch and some Ta with a ∈ We has
several infinite branches then SKg2(e) has also several infinite branches.

� The resulting set is defined as

SKg2(e) =

{
W

{⟨1,f(1)⟩,⟨2,f(2)⟩,...}
f(0) if f is the unique infinite branch of Tg2(e);

N otherwise.

This is an outline how to construct Tg2(e), the missing part is to give the details when a
node is in Tg2(e). This is roughly done by constructing for every k from σ the projected
string σak from which the entry σ(0) and every entry σ(ℓ+ 1) with aℓ ̸= ak is deleted
and the remaining nodes are put into the order induced from the components bℓ; then
σ ∈ Tg2(e) iff σak ∈ Tak for all k where σak is not the empty string.

Third: If SKe = N then SKu is its complement. If SKe ̸= N then one can compute
via a recursive function g3 an index such that SKg3(e) = N− SKe. Given the unique
infinite branch f of Te the tree Tg3(e) is constructed such that it has a unique infinite
branch f ′ satisfying that

82

� f ′(2m+ 1) = f(m);

� f ′(2m+2) = 0 if m /∈ W
{⟨k,f(k)⟩:k>0}
f(0) and f ′(2m+2) = s+1 for s being the first

stage with m ∈ W
{⟨k,f(k)⟩:k>0}
f(0),s otherwise;

� f ′(0) is a fixed index such that for all functions f ′′ W
{⟨k,f ′′(k)⟩:k>0}
f ′(0) is the set of

all m not in W
{⟨k,f ′′(2k+1)⟩:k>0}
f ′′(1),f ′(2m) .

Then W
{⟨k,f ′(k)⟩:k>0}
f ′(0) = ZKg3(e) is the complement of ZKe.

This can be summarized as follows: SK is a class of sets together with some
indexing such that SK contains an effective indexing of the singleton sets, is closed
under complements and is closed under effective union. Based on work of Suslin
[110], Kleene [53] showed that SK is indeed the smallest such class which exists.
Furthermore, this class coincides with the intersection ∆1

1 of Σ1
1 and Π1

1. This class
SK or ∆1

1 is also called the class of hyperarithmetic sets.

In the following, Kleene’s O will be introduced which is the standard set of notations
of recursive ordinals. Such notations represent the ordinals and it is unfortunately
impossible to get unique representations for all sufficiently large ordinals. Therefore
one has to work with notations in place of the ordinals themselves.

Definition 10.4. Kleene’s set O of Notations of Ordinals is a subset of N given
together with a partial ordering <o such that there is a recursive set limit, a recursive
function succ and a recursive function embed satisfying the following for all x: if
x ∈ O then {y : y <o x} is well-ordered and thus isomorphic to the order-type of an
at most countable ordinal; if x ∈ O then {y : y <o x} is isomorphic to a limit ordinal
iff x ∈ limit; if x ∈ O then x <o succ(x) and every y <o succ(x) satisfies y ≤o x,
hence succ(x) represents the successor ordinal of x; if φe computes a well-ordering on
N then the function φembed(e) is an order-preserving mappping from (N, φe) into some
well-ordered set of the form {y : y <o x} for some x ∈ O.

Exercise 10.5. Let ⊏ be a universal partial ordering on N with the following prop-
erties: (a) There is an acceptable enumeration of partial orderings <e on N such that
every r.e. partial ordering is captured by one ordering <e and x <e y iff ⟨e, x⟩ ⊏ ⟨e, y⟩.
(b) ⟨d, x⟩ ⊏ ⟨e, y⟩ implies d = e ∨ d = 0. (c) ⟨0, 0⟩ ⊏ ⟨0, 1⟩ ⊏ . . . and ⟨0, x⟩ ⊏ ⟨e, y⟩
for all x, y and e > 0.

Furthermore let |x| denote the ordinal isomorphic to {y : y ⊏ x} whenever this
set is well-ordered. Let E0, E1, E2, . . . be a canonical listing of all multisets of natural
numbers. Whenever for each xk occurring in Ee the set {z : z ⊏ xk} is well-ordered

83

then let |xk| be the corresponding ordinal and whenever all xi, xj occurring in Ee are
comparable with respect to ⊏ then let e ∈ O and let it represent the ordinal

ω|x1| · y1 + ω|x2| · y2 + . . .+ ω|xn| · yn

in Cantor Normal Form where yk is the multiplicity with which xk occurs in Ee and
x1, x2, . . . , xn are ordered such that xn ⊏ . . . ⊏ x2 ⊏ x1. Otherwise let e /∈ O.

Show that the functions succ and embed and the set limit exist as postulated in
Definition 10.4. Show that furthermore all polynomials in ω (like ω3 · 2 + ω2) have a
unique representation in this variant of O. Show that there is also a recursive set P
such that for all x ∈ O [x ∈ P iff x is an ω-power]. Furthermore let f be the recursive
function which satisfies Ef(x,y) = Ex+Ey; that is, f makes a union of multisets which
adds the multiplicities of the elements of the multisets Ex and Ey. So if 3 is 2 times
in Ex and 5 times in Ey then 3 is 7 times in Ef(x,y). Show that

∀x, y ∈ O [x ≤o y ∨ y ≤o x⇒ f(x, y) ∈ O ∧ x ≤o f(x, y) ∧ y ≤o f(x, y)].

That is, f realizes the ordinal addition, provided that the notations for the ordinals
are compatible.

Note that this is not Kleene’s original coding as Kleene’s original O does not
permit to recover ω-powers in all cases. Kleene coded successors and limits of other
ordinals explicitly using as indices powers of 2, 3 and 5.

Remark 10.6. For every notation x of a recursive ordinal α, that is, for every
x such that {y : y <o x} is a set of the same order type as the well-ordered set
{β : β < α}, there is a tree T such that T has exactly one infinite branch with the
following property:

f(⟨e, y⟩) =
{
s+ 1 if y <o x and s = min{t : e ∈ W

{⟨d,z,f(⟨d,z⟩)⟩:z<oy}
e,t };

0 otherwise.

This set is called the α-jump (of the empty set). Although the notations are not
unique, one can show that the α-jump is unique in the sense that if one uses different
notations of ordinals x, x̃ then the resulting jumps based on x and x̃ are Turing
equivalent. It can furthermore be shown that a set is hyperarithmetic iff it can be
computed relative some α-jump of the empty set. One can generalize the construction
in order to define the α-jump A(α) of a set A.

A set A is hyperarithmetic relative to B iff there is a B-recursive ordinal α such
that A ≤T B

α. The degrees induced by this reduction are called hyperdegrees and are
a bit different from Turing degrees.

84

Exercise 10.7. Show that ∅(ω) ̸≤ ∅(n) for any n < ω and conclude that there is
a hyperarithmetic set which is not arithmetic, that is, which is not defined by a
Σ0
n-formula for some n.

Remark 10.8. The sets O, {e : <e is a well-ordering on N} and {x : Tx is well-
founded} are many-one complete for Π1

1.
It is easy to see that these sets are all Π1

1-sets. For example, Tx is well-founded iff
∀f ∃x∀s [f(0)f(1)f(2) . . . f(x) /∈ Tx,s] where Tx,s is the number of nodes enumerated
into Tx within s steps.

One can also check whether <e is a well-ordering: <e must be irreflexive, that is,
∀x [¬(x <e x)]; <e must be transitive, that is, ∀x, y, z [x <e y ∧ y <e z ⇒ x <e z]; <e

must not have infinite descending chains, that is, ∀f ∃n [¬(f(n+ 1) <e f(n))].
A sample reduction is that from the index-set of well-founded trees to that of

well-orders: Given Tx one can easily define an enumeration σ0, σ1, σ2, . . . of the union
of Tx with all nodes of height 0 or 1; these nodes are added in order to avoid problems
when Tx is finite. Now one can define an ordering <g(e) as

i <g(e) j ⇔ σi <KB σj

and the resulting ordering is a well-ordering iff Tx is well-founded, that is, has no
infinite branch.

Remark 10.9. A Σ1
n-formula is a formula with quantification over number-variables

and function-variables and with a recursive predicate such that either there is a first
existentially quantified function-variable with n− 1 alternations of quantifiers follow-
ing or there are less than n − 1 alternations of quantifiers over function-variables or
there are no function-quantifiers at all. Similarly one defines a Π1

n-formula with re-
quiring “universal quantification” in place of “existential quantification”. Here are
some examples of Σ1

3-formulas:

ϕ1(f, g, x) ⇔ ∃h1 ∀h2 ∀h3 ∃h4 [f(h1(h2(x))) = g(h3(h4(x)))];

ϕ2(f, g, x) ⇔ ∃y1∀y2 ∃y3 ∀y4 ∃y5 ∀h [f(y1 + y2 + y3 + y4 + y5) = g(h(x+ y1))];

ϕ3(f, g, x) ⇔ ∀y [f(y) = g(x)].

Note that Σ1
3-formulas do not say anything about the number-variables occurring and

also do not require that there are functional quantifiers; 3 is just an upper bound but
not a lower bound on the number of blocks of the same type of function-quantifiers.

Furthermore one can also define classes of functions. A class S is a Σ1
n-class of

functions iff there is a Σ1
n-formula ϕ with one free variable f such that S = {f : ϕ(f)}.

Analogously one defines Π1
n-classes. These definitions can be relativized to an oracle

85

A so that one obtains Σ1,A
n -classes and Π1,A

n -classes.
There is a close connection to the classical theory of Borel classes: A class S is Borel

iff there is an oracle A and a Σ1
1-formula ∃g [ϕA(f, g)] and a Π1

1-formula ∀g [ψA(f, g)]
such that

S = {f : ∃g [ϕA(f, g)]} = {f : ∀g [ψA(f, g)]}.

To understand this characterization, recall the Borel classes are the smallest collection
of classes such that all classes of the form Sm,n = {f : f(n) = m} are Borel classes,
with every class S also the complement of S is a Borel class and with every countable
list S0, S1, . . . of Borel classes also their union S0 ∪ S1 ∪ . . . is a Borel class.

On every level of the analytical hierarchy they are many-one complete sets. The
Σ1
n-complete and Π1

n-complete sets have the same Turing degree but different many-
one degrees; but they are all many-one reducible to the Σ1

n+1-complete and Π1
n+1-

complete sets.

Remark 10.10. Shoenfield [99] considered the reducibility given as A ≤∆1
n
B iff A is

a Σ1,B
n -set and Π1,B

n -set. He showed that this reducibility is transitive for every fixed
parameter n. It should be noted that the statement A ≤∆1

1
B is equivalent to A being

hyperarithmetic relative to B.

Exercise 10.11. Let <0, <1, <2, . . . be a numbering of all r.e. partial orderings where
x <e y which are given by r.e. sets V0, V1, V2, . . . such that x <e y ⇔ ⟨x, y⟩ ∈ Ve. Here
the sets Ve are obtained from We as follows: Ve is the transitive closure of the union
of all sets We,s where the transitive closure of the pairs enumerated into We,s does not
cause that some element x is below itself; thus x ̸<e x remains guaranteed.

It had been mentioned above that {e : <e is a well-ordering} is Π1
1-complete. What

about {e : <e does not have an infinite descending chain}, {e : <e has no infinite
ascending chain}, {e : <e has no infinite antichain}, {e : <e is a linear ordering}?
Recall that an ordering is linear if each two elements are either equal or one is strictly
below the other. An antichain is a set A such that for all x, y ∈ A neither x <e y nor
y <e x.

Exercise 10.12. There is a first ordinal ωCK which cannot be represented by any
recursive well-ordering or notation of ordinals. Assume now that A is an oracle such
that ωCK is A-recursive; that is, that there is some A-recursive well-ordering which
is order-isomorphic to the well-ordered set {α : α < ωCK}. Now show that the
Π1

1-complete set
{e : <e is a well-ordering}

is ∆1
1-reducible to A.

86

11 Algorithmic randomness

The central question of Algorithmic Randomness is “What is random?” The answer
to this will depend first on the object under investigation: is it a number (= finite
string) or is it an infinite binary sequence? There are two approaches: the classical
one and the algorithmic one. The classical approach considers the way distributions
are generated and how likely a number is chosen in a distribution; the algorithmic
way more looks at the probability that one can extract nontrivial information from
a sequence or that one describe it in a nontrivial way. The first could be most
easily be explained using the example of gambling: if the sequence of numbers drawn
by a gambling automaton can be predicted so often that some gambler will make
more and more profits than the sequence is not random; so the casino relies on the
fact that its gambling machines use sequences of random numbers which guarantee
that the casino and not the gambler will win on the long term. The second could
be most easily explained as follows: the number 18446744073709551616 would be
nonrandom as one could describe this number as 2^64 while for a random number
like 56913576862312945 there would be no accepted short description. It will turn
out later that both concepts are connected with each other and investigating these
connections is part of the field of Algorithmic Randomness or Kolmogorov complexity.
Although this field has several founders including Gregory Chaitin [20], Per Martin-
Löf [67], Claus-Peter Schnorr [94] and Ray Solomonoff [105], it is named after Andrei
N. Kolmogorov [54] who is known for his outstanding contributions to the theories of
probability and description complexity.

Convention. Recall that ηa is the a-th binary string which is obtained by taking the
digits after the leading 1 of the binary representation of a + 1. So η0 is the empty
string and η37 is 00110 as 38 has the binary representation 100110. Within this section
there occur many sets of pairs ⟨e, ηa⟩ which formally should be written as sets of pairs
⟨e, a⟩ with a representing ηa. In other words, often an r.e. set of numbers is identified
with the set

{⟨e, ηa⟩ : ⟨e, a⟩ ∈ E}
which is more convenient to handle.

Definition 11.1. A betting strategy or martingale is a function mg from binary
strings into the nonnegative real numbers such that

∀σ ∈ {0, 1}∗ [mg(σ) = 1
2
(mg(σ0) + mg(σ1))].

The martingale mg is recursive iff the set

{⟨e, σ⟩ : mg(σ) > qe}

87

is recursive and the martingale mg is r.e. if this set is r.e.; here q⟨i,j⟩ =
i

j+1
.

Note that qb is the b-th positive rational number in some straight-forward numbering
of the non-negative rational numbers. Other conventions to number the non-negative
rational numbers are possible.

The intuitive idea behind a martingale is that mg(σ) denotes the amount of money
owned by a gambler after having bet on the first |σ| bits such that the outcome is
σ. The underlying betting system is fair and does not take any provisions. So the
gambler can be any real number r with 0 ≤ r ≤ mg(σ) on the next bit being 1 and
the martingale is then updated as follows:

� mg(σ1) = mg(σ) + r;

� mg(σ0) = mg(σ)− r.

Here a bet on 0 instead of 1 could just be realized by using a value r with −mg(σ) ≤
r ≤ 0 and then applying the same update rules. The update rules then guarantee the
main martingale equality:

∀σ ∈ {0, 1}∗ [mg(σ) = 1
2
· (mg(σ0) + mg(σ1))].

Being successful means that during his (infinite) life the gambler becomes richer and
richer (although he might be poor inbetween); a set A is random iff no “algorithmic
gambler” can succeed with betting on A’s characteristic sequence. This is formalized
in the next definition.

Definition 11.2. A martingale mg succeeds on a set A iff

∀e ∃n [mg(A(0)A(1) . . . A(n)) > qe];

a set A is recursively random iff no recursive martingale succeeds on A and Martin-Löf
random iff no r.e. martingale succeeds on A.

Note that the money can be broken down to arbitrary small units and that there
are gambling strategies which exploit this. For example there is a gambling strategy
succeeding on all finite sets by letting mg(σ) = 2−|σ| · 3|{x:σ(x)↓=1}|. The next exercise
shows that for recursive martingales, one can enforce that the martingale takes rational
values although one cannot enforce that the martingale takes natural numbers as
values; hence it is essential to break money down to arbitrary small units.

Exercise 11.3. Let mg be a given recursive martingale. Show that there is a recursive
function f and a martingale mg′ such that

88

� ∀a [qf(a) = mg′(ηa)], that is, f codes mg′ and mg′ takes rational values;

� ∀A [if mg succeeds on A then mg′ succeeds on A].

Show furthermore that no N-valued recursive martingale succeeding on any 2-generic
set. Note that Proposition 11.10 below shows that there is a recursive martingale
succeeding on all 1-generic and thus 2-generic sets. Hence one cannot enforce that a
martingale is N-valued.

Remark 11.4. Martin-Löf [67] introduced randomness not with martingales but with
tests. Here a randomness test is an r.e. set RT such that for all e,

µ{A : ∃n [⟨e, A(0)A(1)A(2) . . . A(n)⟩ ∈ RT]} ≤ 2−e

where µ is the standard measure on the Cantor space {0, 1}∞; this measure satisfies
for all partial {0, 1}-valued functions θ that

µ{A : ∀x ∈ dom(θ) [θ(x) = A(x)]} = 2−|dom(θ)|.

One can show that for every randomness test RT the class of sets which are covered
by the randomness test has measure 0: For every e the measure of the class of sets
A such that there are d > e and n with ⟨d,A(0)A(1)A(2) . . . A(n)⟩ ∈ RT is at most
2−e−1+2−e−2+ . . . = 2−e; hence for every e the measure of the class of all sets covered
by RT is at most 2−e. In contrast to this, the whole Cantor space has measure 1. So
every randomness test covers only a tiny fraction of the Cantor space.

Exercise 11.5. For a given randomness test, one can construct a further test RT
such that the following four conditions hold:

� RT and the given test cover exactly the same sets;

� For every set A and every d, e with d < e, if ⟨e, A(0)A(1)A(2) . . . A(n)⟩ ∈ RT
for some n then ⟨d,A(0)A(1)A(2) . . . A(m)⟩ ∈ RT for some m as well;

� For every A and every e there is at most one n with ⟨e, A(0)A(1)A(2) . . . A(n)⟩ ∈
RT ;

� For every e,
∑

σ:⟨e,σ⟩∈RT 2
−|σ| ≤ 2−e.

Note that the fourth condition is a consequence of the third, so one has to make sure
in the construction that the first three conditions are satisfied and then to show that
the fourth condition follows from the third. The second condition enforces that the
component number e+1 of the test contains only sets which are also in the component

89

number e of the test. Hence RT covers a set A iff for all e there exists an n such that
⟨e, A(0)A(1)A(2) . . . A(n)⟩ ∈ RT .

Theorem 11.6. Let C be a class of sets. Then there is a randomness test RT covering
every A ∈ C iff there is an r.e. martingale succeeding on every A ∈ C.

Proof. Assume that mg is an r.e. martingale which succeeds on every set in C. Now
one can define a randomness test RT based on mg by letting

RT = {⟨e, σ⟩ : mg(σ) > 2e · r}

where r is a fixed rational number with mg(η0) ≤ r. One can easily see the following:
RT is an r.e. set and a set A is covered by RT iff the martingale mg succeeds on A.
Hence RT covers every set in C.

For the converse direction assume that some randomness which covers every set
in C. There is by Exercise 11.5 a further randomness test RT such that

� RT covers every set in C;

� For every A and every e there is at most one n with ⟨e, A(0)A(1)A(2) . . . A(n)⟩ ∈
RT ;

� For every e,
∑

σ:⟨e,σ⟩∈RT 2
−|σ| ≤ 2−e.

Now define for every a the martingale mga by taking on each input the first case which
applies:

mga(σ) =

{
2|σ|−|ηa| if ηa extends σ;
1 if σ extends ηa;
0 otherwise.

The martingale mg is the sum of those mga selected by RT as follows:

mg(σ) =
∑

⟨e,ηa⟩∈RT∧e>0

mga(σ).

Now it is shown that for every σ this sum converges and satisfies the bound

mg(σ) ≤ 2|σ|.

To see this, note that for each e > 0,∑
a:⟨e,τ⟩∈RT

2|σ|−|τ | ≤ 2|σ| ·
∑

a:⟨e,τ⟩∈RT

2−|τ | ≤ 2|σ|−e

90

by the choice of RT as above. Hence mg(σ) is bounded by the sum of 2|σ|−e over all
positive e which is 2|σ|. The main equation of martingales holds for all mga, that is,

∀a ∈ N ∀σ ∈ {0, 1}∗ [mga(σ) =
1
2
(mga(σ0) + mga(σ1))].

Hence it also holds for the sum of these mga, that is,

∀σ ∈ {0, 1}∗ [mg(σ) = 1
2
(mg(σ0) + mg(σ1))].

To see that {⟨e, σ⟩ : mg(σ) > qe} is r.e., note that mg(σ) > qe iff there is a finite
subset D of RT with

∑
⟨e,ηa⟩∈Dmga(σ) > qe. For each finite set D, this condition can

be checked effectively.
It remains to be shown that mg succeeds on every set covered by RT . So let A

be a set covered by RT . For each c ∈ N there is an n ∈ N such that there are at
least c different pairs ⟨e1, ηa1⟩, ⟨e2, ηa2⟩, . . . , ⟨ec, ηac⟩ ∈ RT with A(0)A(1)A(2) . . . A(n)
extending ηa1 , ηa2 , . . . , ηac and e1, e2, . . . , ec > 0. It follows that

mg(A(0)A(1)A(2) . . . A(n)) ≥
∑

d=1,2,...,c

mgad(A(0)A(1) . . . A(n)) = c.

Hence mg converges on A to ∞ and so mg succeeds on A.

Exercise 11.7. Martin-Löf [67] showed that there is a universal randomness test.
Prove his result by doing the following steps:

� Show that there is a recursive function f such that Wf(e) is a randomness test
for each e and that Wf(e) = We whenever already We is a randomness test;

� Let URT = {⟨d, σ⟩ : ∃e [⟨d+ e+ 1, σ⟩ ∈ Wf(e)]};

� Show that URT is a randomness test which covers every set covered by any
randomness test. This property is called universal.

Conclude that the measure of all sets covered by some randomness test is 0. Conclude
furthermore that there is a universal r.e. martingale which succeeds on every set on
which some r.e. martingale succeeds.

Remark 11.8. Given the universal randomness test URT , one can define a recursive
binary tree T such that A is an infinite branch of T iff there is no e, σ such that A
extends σ, e > 1 and ⟨e, σ⟩ ∈ URT . So T could be defined as

T = {σ ∈ {0, 1}∗ : ∀e ∈ {2, 3, 4, . . . , |σ|} ∀k < |σ| [⟨e, σ(0)σ(1) . . . σ(k)⟩ /∈ URT|σ|]}

where URTs is the set of all pairs enumerated into the r.e. set URT within s steps.

91

Remark 11.9. An important question is which set is random and which not. Some
easy facts are the following: For every recursive martingale mg there is a recursive
set R such that mg does not succeed on R; the idea is to choose R inductively in an
adversary manner such that

R(n+ 1) =

{
0 if mg(R(0)R(1)R(2) . . . R(n)0) < mg(R(0)R(1)R(2) . . . R(n)1);
1 if mg(R(0)R(1)R(2) . . . R(n)0) ≥ mg(R(0)R(1)R(2) . . . R(n)1).

Then mg does not increase on R and thus mg does not succeed on R. On the other
hand, for every recursive set A there following martingale mgA succeeds on A and no
other set:

mgA(σ) =

{
2|σ| if A extends σ;
0 otherwise.

Let mg′ be the universal r.e. martingale mg′ from Exercise 11.7. Then mg′ succeeds
on every recursive set. But there is a K-recursive set on which mg′ does not succeed,
this set is defined from mg′ in the same way as the recursive counterexample R above
was defined from the recursive martingale mg.

Proposition 11.10. No 1-generic set is recursively random.

Proof. Let mg(σ) = 2−|σ| · 3|{x:σ(x)↓=1}| and define the recursive set W of all strings
σ such that at least two thirds of the bits in σ are 1. Note that W is dense, that
is, every string τ has an extension in W , namely τ12|τ |. For every σ ∈ W , mg(σ) ≥
1.125|σ|/3, hence mg succeeds on every set G where there are infinitely many n with
G(0)G(1)G(2) . . . G(n) ∈ W . A 1-generic set G satisfies this property as for every
m the set W − {σ : G(0)G(1)G(2) . . . G(m) extends σ} is a recursive and dense set
of strings and thus there is an n > m with G(0)G(1)G(2) . . . G(n) ∈ W . Hence mg
succeeds on all 1-generic sets.

Exercise 11.11. Extend this result to the following: If G is 1-generic and A ≤T G
then A is not Martin-Löf random. So assume that A = φGe and consider the following
set RT : Let W be the r.e. set of all pairs ⟨d, τ⟩ such that there is a σ ∈ {0, 1}d
for which τ is the first extension found such that 0, 1, 2, . . . , 2d ∈ dom(φτe). Now let
RT = ⟨d, φτe(0)φτe(1)φτe(2) . . . φτe(2d)⟩ : ⟨d, τ⟩ ∈ W . Show that RT is a randomness
test, that W is r.e. and that G does not strongly avoid W . Conclude that G meets
W infinitely often and that hence A is covered by RT .

One can relativize the definition of randomness: A is Martin-Löf random relative to
B iff there is no B-r.e. martingale mgB which succeeds on A. Van Lambalgen proved
the following famous theorem, which is stated without proof.

92

Theorem 11.12. Given two sets A,B, the join A ⊕ B is Martin-Löf random iff A
is Martin-Löf random relative to B and B is Martin-Löf random iff A is Martin-Löf
random and B is Martin-Löf random relative to A.

Besides randomness of infinite objects (sets of natural numbers) one considers also
the randomness of finite objects or strings. The problem is that one cannot really
say whether a particular string or natural number is random as this depends on the
system used to measure randomness. But one can introduce a function C mapping
each string σ to its complexity such that any further measure differs from C only by
a constant. The measure C is based on a universal function UC by

C(σ) = min{|τ | : UC(τ) = σ}

where UC is a partial-recursive function from {0, 1}∗ to {0, 1}∗. Here UC is universal
if for every further partial-recursive function V : {0, 1}∗ → {0, 1}∗ there is a constant
c such that

∀τ ∈ dom(V) [C(V (τ)) ≤ |τ |+ c],

in other words, using V instead of UC would improve the complexity of each string at
most by the constant c. The value C(σ) is called the Kolmogorov complexity of σ.

Besides the plain Kolmogorov complexity C one also considers the prefix-free com-
plexity H which was in particular studied by Chaitin and Levin. This is based on a
machine UH which is a universal prefix-free function. Here “prefix-free” means that
there are no τ, τ ′ ∈ dom(UH) such that τ ′ properly extends τ . Again

H(σ) = min{|τ | : UH(τ) = σ}

and UH is universal means that for every prefix-free partial-recursive function V :
{0, 1}∗ → {0, 1}∗ there is a constant c such that

∀τ ∈ dom(V) [H(V (τ)) ≤ |τ |+ c],

Note that Chaitin uses the letter K for the plain complexity C in several papers;
Downey, Hirschfeldt and Nies use K for the prefix-free complexity H in several recent
papers. The preferences are not the same in all papers of the same author as different
co-authors impose different constraints.

The complexities can also be defined for numbers by simply defining C(a) = C(ηa)
and H(a) = H(ηa). This permits to iterate them and to interpret expressions like
C(C(H(x))). Furthermore, one defines |a| = |ηa| in order to extend the length-
function to numbers as well. Note that |a| = max{n : 2n − 1 ≤ a} and therefore |a|
and log(a) differ for positive natural numbers at most by 1.

93

Exercise 11.13. To see that a universal function UC exists, consider a recursive
enumeration φ̃e of all partial-recursive functions from {0, 1}∗ → {0, 1}∗; if φe(a) is
defined then φ̃e(ηa) = ηφe(a) else φ̃e(ηa) is undefined. Now one can define a universal
function U by letting U(0e1σ) = φ̃e(σ). Given any V , it equals to some function φ̃e;
so V (σ) = U(0e1σ) and C(V (σ)) ≤ e+1+ |σ| for all σ ∈ dom(V). Transfer this proof
from C to H to show that UH exists. When transferring the proof, take care of that
the underlying enumeration replacing φ̃0, φ̃1, φ̃2, . . . consists of prefix-free functions
only.

Exercise 11.14. Show that there is a constant c with C(σ) ≤ |σ| + c for all σ ∈
{0, 1}∗ and that for every n there is a σ ∈ {0, 1}n with C(σ) ≥ n. Furthermore
find a recursive function f such that for infinitely many n the value f(n) differs from
max{H(σ) : σ ∈ {0, 1}n} by at most log log(n). Note that one cannot find a recursive
f such that this difference is bounded by a constant.

Theorem 11.15. Let f be a partial-recursive function with one and g a partial-
recursive function with n inputs. Then there is a constant c such that for all inputs
x, y1, y2, . . . , yn,

C(f(x)) ≤ C(x) + c;

H(g(y1, y2, . . . , yn)) ≤ H(y1) +H(y2) + . . .+H(yn) + c.

It is not possible to extend the formula for C to n-ary functions as there will be some
logarithmic term which is impossible to avoid.

Proof. The more involved result for H is proven. Let

V (τ) =

 g(UH(τ1), UH(τ2), . . . , UH(τn)) if τ = τ1τ2 . . . τn and
τ1, τ2, . . . , τn ∈ dom(UH);

↑ if there are no such τ1, τ2, . . . , τn.

Note that for any τ there is at most one n-tuple (τ1, τ2, . . . , τn) of n strings in the
domain of UH such that τ = τ1τ2 . . . τn. The reason is that τ1 is the unique prefix of
τ1τ2 . . . τn = τ such that UH(τ1) is defined; then τ2 . . . τn is the remaining part and τ2
is the unique prefix of this remaining string such that UH(τ2) is defined; so with this
method one can determine all n parts of the full input τ1τ2 . . . τn. This method makes
V also to be prefix-free. Hence there is a constant c such that

H(V (τ1τ2 . . . τn)) ≤ |τ1τ2 . . . τn|+ c = |τ1|+ |τ2|+ . . .+ |τn|+ c.

for all strings τ1, τ2, . . . , τn ∈ dom(UH). Considering now any inputs y1, y2, . . . , yn for
g, let τk be the shortest string with UH(τk) = yk. Then it follows that

H(g(y1, y2, . . . , yn)) ≤ H(y1) +H(y2) + . . .+H(yn) + c

94

which gives the desired inequality. The result for C is proven correspondingly.

Exercise 11.16. Consider the following two-place function: f(σ, τ) = η|σ|στ . Show
that there is a constant c such that there are infinitely many pairs (σ, τ) with C(σ, τ) ≥
C(σ)+C(τ)+log(|σ|+ |τ |)−c. Note that C(σ) and C(η|σ|σ) differ only by a constant;
is it possible to formulate a similar result for the string-concatenation function?

Proposition 11.17. There is no recursive function g with C(g(x)) ≥ x for all x.
The same holds with “H” in place of “C”.

Proof. If g would exist then there would be a constant c with C(g(2x)) ≤ x+ c while
C(g(2x)) ≥ 2x as well. This could work out only for finitely many x, a contradiction.

Theorem 11.18. The overgraphs {⟨e, σ⟩ : C(σ) ≤ e} of C and {⟨e, σ⟩ : H(σ) ≤ e}
of H are recursively enumerable; that is, C and H can be approximated from above.

Proof. The proof is given for C; the one for H is similar. As UC is partial-recursive,
there is a recursive enumeration p0, p1, p2, . . . of the domain of UC . Furthermore, it
follows from the universality of UC that for every x there is an n with UC(pn) = x.
Thus one can define an approximation Cs to C from above using an auxiliary function
fC and derive that the overgraph is recursively enumerable:

fC(σ) = min{n : UC(pn) = σ};
Cs(σ) = min{|pm| : m ≤ fC(σ) + s ∧ UC(pm) = σ};

{⟨e, σ⟩ : C(σ) ≤ e} = {⟨e, σ⟩ : ∃s [Cs(σ) ≤ e]}.

Taking a recursive enumeration of the domain of UH , these definitions can be done in
parallel to the case for C:

fH(σ) = min{n : UH(qn) = σ};
Hs(σ) = min{|qm| : m ≤ fH(σ) + s ∧ UH(qm) = σ};

{⟨e, σ⟩ : H(σ) ≤ e} = {⟨e, σ⟩ : ∃s [Hs(σ) ≤ e]}.

This shows that both overgraphs are recursively enumerable.

Future references to approximations Cs and Hs of C and H, respectively, from above
will be defined as in the proof of Theorem 11.18.

Exercise 11.19. Prove the Kraft-Chaitin Theorem which says that whenever there
is an r.e. set E of pairs such that

∑
⟨e,σ⟩∈E 2−e < ∞ then there is a constant c such

that H(σ) ≤ e + c for all pairs ⟨e, σ⟩ ∈ E. These pairs ⟨σ, e⟩ in E are often called

95

axioms. For a given set E, let
∑

⟨e,σ⟩∈E 2−e be the Kraft-Chaitin sum. The set E
is called a Kraft-Chaitin set iff E is r.e. and the Kraft-Chaitin sum is finite, that is,∑

⟨e,σ⟩∈E 2−e < ∞. Kraft-Chaitin sets are a useful tool to get uniform upper bounds

on H(σ) for an infinite number of strings σ.

Exercise 11.20. The following sets are called the sets of compressible strings or sets
of nonrandom numbers. The definitions are parallel for C and H:

NRC = {x : C(x) < |x|};
NRH = {x : H(x) < |x|}.

Show that NRC (nonrandom numbers for C) and NRH (nonrandom numbers for H)
are both simple, not hypersimple and do not have a maximal superset. For further
information (which is not part of the exercise) note that there is one difference between
NRC and NRH: NRH has r-maximal supersets but NRC has not.

There is a close connection between Martin-Löf randomness of a set A on one side
and the function mapping n to the Kolmogorov complexity of A(0)A(1)A(2) . . . A(n)
on the other side. The second and third characterization were obtained independently
by Levin [64] and Schnorr [94, 95], the fourth and fifth characterization are due to
Miller and Yu [72].

Theorem 11.21: Characterizing Randomness [64, 72, 94, 95]. The following
conditions are equivalent for a set A:

1. A is Martin-Löf random;

2. H(A(0)A(1)A(2) . . . A(n)) ≥ n for almost all n;

3. There is a constant c such that H(A(0)A(1)A(2) . . . A(n)) ≥ n− c for all n;

4.
∑

n∈N 2
n−H(A(0)A(1)A(2)...A(n)) <∞;

5. For every recursive function g satisfying the condition
∑

n 2
−g(n) < ∞ it holds

that ∀∞n [C(A(0)A(1)A(2) . . . A(n)) ≥ n− g(n)].

Proof. Assume that A is random, that is, that Condition 1 holds. Now modify the
definition of mga to the following definition of mgp for p ∈ dom(UH):

mgp(σ) =

{
2|σ|−|p| if UH(p) extends σ;
2|UH(p)|−|p| if σ extends UH(p);
0 otherwise.

96

Now let
mg(σ) =

∑
p∈dom(UH)

mgp(σ).

Recall that
∑

p∈dom(UH) 2
−|p| ≤ 1. This gives directly that mg(σ) ≤ 2|σ| for all σ.

Hence mg(σ) <∞ for all σ ∈ {0, 1}∗ and mg is a martingale as seen in similar proofs
before.

Now let P = {p ∈ dom(UH) : A extends UH(p)}. There is a constant c such that
mg does on A never go above this constant c. It is easy to see that for every finite
subset Q of P and all sufficiently large n,

c ≥ mg(A(0)A(1)A(2) . . . A(n))

≥
∑
p∈Q

mgp(A(0)A(1)A(2) . . . A(n)) =
∑
p∈Q

2|UH(p)|−|p|.

Thus it follows that ∑
p∈Q

2|UH(p)|−|p| ≤ c.

As this holds for all finite subsets Q of P ,∑
p∈P

2|UH(p)|−|p| ≤ c.

For every n there is a shortest program pn ∈ dom(UH) such that

� |pn| = H(A(0)A(1)A(2) . . . A(n)) and

� UH(pn) = A(0)A(1)A(2) . . . A(n).

Note that pn ̸= pm if n ̸= m. Each program pn is in P . Hence∑
n∈N

2|UH(pn)|−|pn| =
∑
n∈N

2n+1−H(A(0)A(1)A(2)...A(n)) ≤ c

which gives that c/2 is a finite upper bound for the sum in Condition 4. So Condition 4
is satisfied and Conditions 2 and 3 follow from Condition 4. To see Condition 5,
consider for given g the martingale

mgg(σ) =
∑

a:UC(ηa)<|ηa|−g(|ηa|)

mga(σ)

and note that mg(σ) ≤ 2|σ| ·
∑

n∈N 2
−g(n) as for each length n there are at most 2n−g(n)

strings ηa ∈ {0, 1}n with C(ηa) < n − g(n) and the mga of these ηa contribute to

97

the sum mgg(σ) not more than 2|σ| · 2−g(n). Hence mgg is a martingale. If there are
infinitely many a such that A extends ηa and C(ηa) < |ηa| − g(|ηa|) then for each
such a the martingale mga is part of the sum contributing to mgg and mgg goes on
A to ∞ as for each such a and almost all n, mga(A(0)A(1)A(2) . . . A(n)) = 1. This
contradicts A being Martin-Löf random and Condition 5 holds.

For the other way round, assume that A is not Martin-Löf random and that RT
is a randomness test covering A as defined in Exercise 11.5. Now let

E = {⟨|σ| − e/2, σ⟩ : ⟨e, σ⟩ ∈ RT}

and note that ∑
⟨d,σ⟩∈E

2−d ≤
∑

⟨e,σ⟩∈RT

2e/2−|σ| ≤
∑
e∈N

2e/2−e ≤ 1 +
√
2

2

so that by Exercise 11.19 there is a constant d with

∀⟨e, σ⟩ ∈ RT [H(σ) ≤ |σ|+ d− e/2].

As RT covers A one can conclude that for infinitely many numbers e there is a prefix
of A of length n+ 1 and complexity below n+ 1 + d− e/2; in other words,

sup{n−H(A(0)A(1)A(2) . . . A(n)) : n ∈ N} = ∞

and thus Condition 2, Condition 3 and Condition 4 do not hold. It remains to show
that Condition 5 fails as well. For this recall that H(a) is recursively approximable
from above with Hs(a) being the s-th approximation as defined in the proof of The-
orem 11.18. One chooses g of the following special form:

g(⟨a, s⟩) =
{
Hs(a) if Hs(a) < a and ∀t < s [Hs(a) < Ht(a)];
⟨a, s⟩ otherwise.

Note that due to the case-distinction in the definition of g, one knows that either
g(⟨a, s⟩) = ⟨a, s⟩ or g(⟨a, s⟩) = H(a) + b where for each b there is at most one s with
g(⟨a, s⟩) = H(a) + b. It follows that∑

n∈N

2−g(n) ≤
∑
n∈N

2−n +
∑
a,b∈N

2−H(a)−b ≤ 2 +
∑
a∈N

21−H(a) ≤ 4.

Furthermore there is a constant d′ such that

C(A(0)A(1)A(2) . . . A(⟨a, s⟩)) ≤ H(A(0)A(1)A(2) . . . A(a)) + (⟨a, s⟩ − a) + d′

98

for all a, s. As seen before, there is for every e some a such that

H(A(0)A(1)A(2) . . . A(a)) ≤ a− e

and taking s to be the first value such that Hs(a) = H(a) it follows that

C(A(0)A(1)A(2) . . . A(⟨a, s⟩)) ≤ a− e+ (⟨a, s⟩ − a) + d′

= ⟨a, s⟩+ d′ − e = ⟨a, s⟩+ d′ − g(⟨a, s⟩).

One can replace the function g by the function g′ : n 7→ g(n) + d′ + 1 in order to get
that

∃∞n [C(A(0)A(1)A(2) . . . A(n)) < n− g′(n)]

and use that
∑

n 2
−g′(n) <∞ as well. This shows then that also Condition 5 fails.

Exercise 11.22. Solovay [106] gave an alternative definition of a test. A Solovay test
is an r.e. set E of strings such that

∑
σ∈E 2−|σ| < ∞. E covers a set A iff there are

infinitely many n such that A(0)A(1)A(2) . . . A(n) ∈ E. Show that a set is Martin-Löf
random iff it is not covered by any Solovay test.

Remark 11.23. Chaitin [14, 20] introduced the halting probability Ω which is the
unique set of natural numbers such that∑

n∈Ω

2−n−1 =
∑

p∈dom(UH)

2−|p|.

The name halting-probability refers to the fact that one could by random draw a
sequence B of bits and say that UH halts on B iff B extends some string p in the do-
main of UH . The probability that this happens is exactly the real number

∑
n∈Ω 2−n−1.

Theorem 11.25 below shows that Ω is Martin-Löf random.

Exercise 11.24. One might ask whether there is an easier characterization of the
Martin-Löf random sets using C. The most natural candidate would be to request
that there is a constant c with C(A(0)A(1)A(2) . . . A(n)) ≥ n − c for all n. Show
that this characterization does not work out and that in fact no set A satisfies this
property.

One might therefore look at the sets A for which there is a constant c such that
C(A(0)A(1)A(2) . . . A(n)) ≥ n − c for infinitely many n; such sets are called Kol-
mogorov random. Show that every Kolmogorov random set is Martin-Löf random
and show that the converse direction does not hold as Ω is not Kolmogorov random.
Note, but this is not part of this exercise, that a set is Kolmogorov random iff it is
Martin-Löf random relative to the oracle K [71, 78].

99

Theorem 11.25. Chaitin’s Ω is Martin-Löf random.

Proof. Let A <lex B mean that either A = B or the minimum x of the set {y :
A(y) ̸= B(y)} satisfies A(x) < B(x), in other words, x ∈ B −A. Note that the set Ω
is left-r.e., that is, that

{σ : σ0∞ <lex Ω}

is a recursively enumerable set. Fix a recursive one-one enumeration p0, p1, p2, . . . of
the domain of UH . Now one can define for every s the approximation Ωs to Ω such
that ∑

m∈Ωs

2−m−1 = 2−|p0| + 2−|p1| + 2−|p2| + . . .+ 2−|ps|.

This sequences approximates Ω “from the left”, that is, Ω0 <lex Ω1 <lex Ω2 <lex

. . . <lex Ω. Now one defines the following partial-recursive function V :
V (p) simulates UH(p) until UH(p) halts with some output σ. Then V (p) searches

for the first s such that Ωs extends the string σ. Then V (p) determines the set

D = {τ : |σ| = |τ | ∧ ∀m ≤ s [|pm| ≥ |σ| ∨ UH(pm) ̸= τ]}.

If all these simulations and searches terminate then V (p) takes as value the lexico-
graphic least string in D else V (p) is undefined.

Obviously V is a prefix-free partial-recursive function. Hence there is a constant
d such that H(V (p)) ≤ |p|+ d for all p in the domain of V .

Given n, let p be the shortest program such that UH(p) = Ω(0)Ω(1)Ω(2) . . .Ω(n)
and let s be the first stage such that UH(p) = Ωs(0)Ωs(1)Ωs(2) . . .Ωs(n). This s is used
in the construction of V (p) and thus there is no r ≤ s with |pr| ≤ n∧UH(pr) = V (p).
Furthermore, there is no r > s with 2−|pr| ≥ 2−n as otherwise Ωs and Ω would differ on
the domain 0, 1, 2, . . . , n; hence |pr| ≥ n for all r > s. Therefore, n ≤ H(V (p)) ≤ |p|+d
and H(Ω(0)Ω(1)Ω(2) . . .Ω(n)) ≥ n−d. This constant d is independent of n and Con-
dition 3 from Theorem 11.21 is satisfied. Hence Ω is Martin-Löf random.

Remark 11.26. The Turing degree of Ω and K is the same and one can even get
stronger reductions than Turing reducibility.

The direction Ω ≤tt K follows from the fact that Ω is left-r.e. and one knows Ω(n)
iff one knows which of the strings {0, 1}n+1 are enumerated into the set {σ ∈ {0, 1}∗ :
σ0∞ <lex Ω}. The other relation K ≤wtt Ω is implicit already in a modification
previous proof, one just shows that there is a function V such that V (0e1) takes some
string σ of length 2e with Hs(σ) ≥ 2e at the stage s where e is enumerated into K
and then one can conclude that for all sufficiently large e, e ∈ Ks iff e ∈ K for the
least s with Ω(0)Ω(1)Ω(2) . . .Ω(3e) = Ωs(0)Ωs(1)Ωs(2) . . .Ωs(3e).

So Ω is a natural example for a left-r.e. Martin-Löf random set. Kučera and

100

Slaman [55] showed that all such sets are the halting-probability of a universal prefix-
free machine: so a left-r.e. set is Martin-Löf random iff there is a prefix-free machine
V such that the prefix-free complexity based on V and the given complexity H do not
differ more than some constant. In other words, every left-r.e. Martin-Löf random set
is the halting probability of a machine which generates some legitimite variant of H.

Ω permits to produce natural examples for the Theorem of Kleene and Post: Let
Ωev = {x : 2x ∈ Ω} and Ωod = {x : 2x + 1 ∈ Ω}. Then Ω = Ωev ⊕ Ωod and by the
Theorem of Van Lambalgen, Ωev is Martin-Löf random relative to Ωod and vice versa.
Hence Ωev and Ωod are Turing incomparable and Turing reducible to Ω and K.

Furthermore, the set {a : ηa0
∞ <lex Ω} is a natural example of an r.e. set which is

wtt-complete but not tt-complete; it is tt-equivalent to Ω and the tt-incompleteness
of Ω was found by Calude and Nies [15].

In the following, the notions of C and H are used to compare the amount of ran-
domness or nonrandomness of sets. This is done by defining C-reducibility and H-
reducibility as follows.

Definition 11.27. For given sets A and B, say that A is C-reducible to B (A is
H-reducible to B) iff the following corresponding definition is satisfied:

A ≤C B ⇔ ∃k ∀n [C(A(0)A(1)A(2) . . . A(n)) ≤ C(B(0)B(1)B(2) . . . B(n)) + k];

A ≤H B ⇔ ∃k ∀n [H(A(0)A(1)A(2) . . . A(n)) ≤ H(B(0)B(1)B(2) . . . B(n)) + k].

Furthermore a set is C-trivial iff it is C-reducible to every set and H-trivial iff it is
H-reducible to every set.

Remark 11.28. Every C-trivial set is recursive. Furthermore, for every sets A,B,
if {22n : n ∈ A} ≤C {22n : n ∈ B} then A ≤T B. One can also show that there
are minimal C-degrees, pairs of r.e. sets which form minimal pairs in the C-degrees
as well as in the Turing degrees and C-degrees which coincides with Turing degrees.
On the other hand, the Turing degree of K contains infinitely many C-degrees. And
some C-degrees intersect with uncountably many Turing degrees although they do
not contain any of these degrees completely, an example is

{A : ∃c ∀n [n−c
2

≤ C(A(0)A(1)A(2) . . . A(n)) ≤ n+c
2
]}

which is the C-degree of all sets where the C-complexity of A grows approximately
with the factor of 1

2
.

The situation of H-reducibility and H-degrees is more complex as the following results
show.

101

Theorem 11.29. There is an r.e. H-trivial set which is not recursive.

Proof. The set A is the range of a partial-recursive function ψ. A and ψ are build
in stages with ψ0 being undefined everywhere and As = {ψs(e) : e ≤ s ∧ ψs(e) ↓}.
For the construction, let Hs(y) be an approximation from above to H. In stage
s + 1, the definition of ψs is updated as follows and three Kraft-Chaitin sets E,F,G
are enumerated in parallel to ψ,A in order to make sure that H will be H-trivial.
E0, F0, G0 are all the empty set.

� For all x ≤ s define the weight w(x, s) of x at s using the formula

w(x, s) =
∑

y=x,x+1,...,s

2−Hs+1(y).

� For all e ≤ s with ψs(e)↑ check whether there is an x ∈ We,s such that

x > 2e ∧ w(x, s) < 2−e.

If so then ψs+1(e) is the least such x else ψs+1(e) remains undefined.

� Update the sets A,E, F,G as follows:

As+1 = {ψs+1(e) : e ≤ s ∧ ψs+1(e)↓};
Es+1 = Es ∪ {⟨Hs+1(x), As+1(0)As+1(1)As+1(2) . . . As+1(x)⟩ :

x < s ∧ ∃y ≤ x [y ∈ As+1 − As]};
Fs+1 = Fs ∪ {⟨Hs+1(x), As+1(0)As+1(1)As+1(2) . . . As+1(x)⟩ :

x < s ∧Hs+1(x) < Hs(x)};
Gs+1 = Gs ∪ {⟨Hs+1(s), As+1(0)As+1(1)As+1(2) . . . As+1(s)⟩}.

Now it is verified that A is a simple and H-trivial set.
First, A is simple. Assume that We is infinite. As the sum

∑
x∈N 2

−H(x) converges,
there is an z such that

∑
x≥z 2

−H(x) < 2−e and there is an x ≥ z + 2e and a stage s
with x ∈ We,s. Now

w(x, s) =
∑

y=x,x+1,...,s

2−Hs+1(y) < 2−e

and ψs+1(e) is defined. So ψ(e) ↓∈ We ∩ A for all indices e of infinite r.e. sets We.
The set A is the range of the partial-recursive function ψ and recursively enumerable.
Furthermore, A ∩ {0, 1, 2, . . . , 2d} ⊆ {ψ(e) : e ≤ d ∧ ψ(e) ↓} for all d, hence A has d
non-elements below 2d and is co-infinite. It follows that A is simple.

Second, E is a Kraft-Chaitin set. Consider any s and any pair ⟨d, a0a1 . . . an⟩ ∈

102

Es+1 − Es. Then there is an index e such that ψs+1(e) but not ψs(e) is defined,
ψs+1(e) ≤ n ≤ s, As+1(m) = am for m = 0, 1, 2, . . . , n and d = Hs+1(a0a1a2 . . . an).
It follows that 2−Hs+1(n) is part of the sum w(e, s) and that the pair ⟨d, a0a1 . . . an⟩ is
the only pair to which this part of the sum is linked. Hence∑

⟨d,σ⟩∈E

2−d ≤
∑

⟨e,s⟩:ψs+1(e)↓∧ψs(e)↑

w(ψs+1(e), s) ≤
∑
e∈N

2−e ≤ 2.

As the Kraft-Chaitin sum is finite and E r.e., E is a Kraft-Chaitin set.
Third, F is a Kraft-Chaitin set. Every pair going into F is of the form ⟨Hs+1(x), σ⟩

for some σ and each time such a pair goes in, Hs+1(x) < Hs(x). So there is for each
x and each d ≥ H(x) at most one s and σ with Hs+1(x) = d, |σ| = x + 1 and ⟨d, σ⟩
going into F at stage s+ 1. It follows that∑

⟨d,σ⟩∈F

2−d ≤
∑
x∈N

∑
d≥H(x)

2−d ≤
∑
x∈N

21−H(x) ≤ 2.

As the Kraft-Chaitin sum is finite and F r.e., F is a Kraft-Chaitin set.
Fourth, G is a Kraft-Chaitin set. This follows from the fact as in each stage exactly

one pair of the form ⟨Hs+1(s), σ⟩ is put into G and
∑

s∈N 2
−Hs+1(s) ≤

∑
s∈N 2

−H(s) ≤ 1.
As the Kraft-Chaitin sum is finite and G is r.e., G is a Kraft-Chaitin set.

Fifth, ⟨H(x), A(0)A(1)A(2) . . . A(x)⟩ ∈ E ∪ F ∪ G for all x. Now let a number x
be given and let σ = A(0)A(1)A(2) . . . A(x). Let s be the first stage such that As+1

extends σ and let t be the first stage such that Ht+1(x) = H(x). If x < s and t ≤ s
then ⟨H(x), σ⟩ ∈ Es+1. If x < t and s ≤ t then ⟨H(x), σ⟩ ∈ Ft+1. If x ≥ s and x ≥ t
then ⟨H(x), σ⟩ ∈ Gx+1. Hence ⟨x, σ⟩ ∈ E ∪ F ∪G as desired.

Sixth, A is H-trivial. As E,F,G are Kraft-Chaitin sets, so is their union E∪F ∪G.
Hence there is a constant c withH(σ) ≤ c+e whenever ⟨e, σ⟩ ∈ E∪F∪G. For every x,
⟨H(x), A(0)A(1)A(2) . . . A(x)⟩ ∈ E∪F∪G andH(A(0)A(1)A(2) . . . A(x)) ≤ H(x)+c.
Hence A is H-trivial.

Comprehensive Exercise 11.30. Modify above construction such that a set A is
produced such that there is a constant c with H(σ) ≤ HA(σ) + c for all σ. In other
words, the prefix-free Kolmogorov complexity relative to H is up to the constant c the
same as the unrelativized one. The idea is construct a prefix-free partial B-recursive
function UB

H such that UB
H is universal for the prefix-free Kolmogorov complexity for

any oracle B. Then A is constructed as above with two adaptations:

� The weight w(x, s) is the sum over all 2−|p| such that UAs
s (p)↓ ∧UAs

x (p)↑ where
it is assumed that the computation of UB

z (p) queries the oracle B only at places
y < z.

103

� Instead of pairs of the form ⟨d,As+1(0)As+1(1)As+1(2) . . . As+1(x)⟩, the Kraft-

Chaitin sets E,F,G contain now pairs of the form ⟨|p|, UAs+1

H,s+1(p)⟩ whenever the
second component is defined. The goal of this construction is to get ⟨HA(σ), σ⟩
into E ∪ F ∪G for all strings σ and then to apply the Kraft-Chaitin theorem.

This construction was first carried out by Muchnik.

Nies [77] showed that the class of H-trivial sets is a natural class where many notions
coincide. For a proof, please see at the paper of Nies [77] and the references cited in
it.

Theorem 11.31: Nies’ Characterization of H-Trivial Sets [77]. The following
conditions are equivalent for any set A.

� A is H-trivial, that is, ∃c∀n [H(A(0)A(1)A(2) . . . A(n)) ≤ H(n) + c];

� A is low for Martin-Löf random, that is, ∀R [R is Martin-Löf random relative
to A iff R is Martin-Löf random (unrelativized)];

� A is low for prefix-free Kolmogorov complexity, that is, ∃c∀σ ∈ {0, 1}∗ [H(σ) ≤
HA(σ) + c];

� A is a basis for Martin-Löf randomness, that is, ∃R ≥T A [R is Martin-Löf
random relative to A];

� A ≤T K and A is low for Ω, that is, Ω is Martin-Löf random relative to A;

� ∃B [A ≤T B and B is r.e. and B is low for Ω].

The last characterizations implies that every H-trivial set is Turing reducible to an
r.e. H-trivial set.

Remark 11.32. Miller showed a characterization for “low is Ω” which is a weak
counterpart of being “low for prefix-free Kolmogorov complexity”. He showed that a
set A is low for Ω iff ∃c ∃∞σ ∈ {0, 1}∗ [H(σ) ≤ HA(σ) + c]. Furthermore, he showed
that every infinite recursive binary tree T has an infinite branch which is low for Ω;
thus the sets which are low for Ω satisfy some basis theorem, similar to the low sets
and the sets of hyperimmune-free Turing degree. Another important result is that
every set which is low for Ω is either recursive or of hyperimmune Turing degree.

104

12 Inductive inference

Inductive inference is a general framework of learning. Learning means that a learner
has to identify a given set within the a class of possible choices. For example, if a
child grows up, it observes more and more sentences from the parent’s languages and
finds eventually a concept, that is a grammar, of all syntactically correct sentences in
this language. As the child has no preknowledge of the man-made language, the only
thing the child might use is that the language must follow some rules which could be
formalized in a certain way which is normally called a grammar. In inductive inference,
this concept had been formalized within Chomsky’s theory of formal languages. So
the general task is the following, where “learner” is used instead of “child”.

Learning Activity. The learner reads more and more data from an unknown lan-
guage and modifies its hypotheses from time to time. The learner might also interact
with additional sources of information like oracles and teachers.

Texts. In inductive inference, one represents the language Lmostly as the set {a ∈ N :
ηa ∈ L} and therefore one works with sets of numbers. A text is then an enumeration
of a set L and one permits besides the numbers in the text also the pause symbol #
for the case that no (new) data is available. Texts need not to be recursive, but every
r.e. set has a primitive-recursive text.

Classes. The learner is not required to learn all possible recursively enumerable
languages but has only to deal with those from a reasonable class S. Indeed, this
phenomenon is already found in the real world: In Chinese or Japanese, the writing
system is so difficult that it takes up to the age of 12 or 15 (various people asked gave
quite different ages) until a child can read a newspaper. In English speaking countries
this age might be 8. So some languages are more and other less difficult although
languages a human cannot learn in lifetime just do not exist. So the child has only
to deal with a small choice among all theoretically possible languages; S denotes this
class. One of the major topics is “which classes S are learnable” and — as there
are various formalizations of learning — whether there is a class S learnable under
formalization (A) but not under the formalization (B). Often it is convenient to have
classes which are described in a uniform way. There are three types of such classes:

� Uniformly recursive classes. The class is a list L0, L1, . . . of sets such that {⟨e, x⟩ :
x ∈ Le} is recursive.

� Uniformly recursively enumerable classes. The class is a list L0, L1, . . . of sets
such that {⟨e, x⟩ : x ∈ Le} is recursively enumerable.

105

� General classes. The class is a list L0, L1, . . . of sets such that each Le is recur-
sively enumerable.

The listing L0, L1, . . . of the sets in the class is normally not viewed upon as a part
of the class, one only asks whether there is such a listing. If it exists, it might be
exploited by the learner as one asks normally only whether a learner exists, not how
to construct the learner.

Learners. Learners are recursive functions from (N∪{#})∗ to N. It is assumed that
all data and all hypotheses are coded as natural numbers. A learner can be partial,
but for most purposes it is possible to extend the learner such that it is total.

In certain settings, learners are augmented with an oracle [1]. Indeed, a lot of
literature is dealing with the question how much additional learning power certain
oracles give. That an oracle can be helpful can be seen from the fact, that it can be
used to check whether the data seen so far is contained in a setWe for some hypothesis
e or not. So a learner with access to the halting-problem as an oracle can make sure
that all its hypotheses are consistent with the data seen so far.

The Major Learning Criteria. A learning criterion refers to the sequence of
hypothesis output by the learner in relation to the input seen so far. Here is a choice
of some criteria, the literature knows much more. The first one is the most common
one.

� Learning in the Limit (Lim) or Explanatory learning (Ex): The learner outputs
only finitely often a new hypothesis and the last one is correct [39].

� Behaviourally Correct learning (BC): The learner outputs an infinite sequence
e0, e1, . . . of hypotheses such that Wen equals to the set to be learnt for almost
all n [6, 18].

� Finite learning (Fin): The learner outputs only one hypothesis and this one
is correct; the learner outputs a special symbol “?” before it conjectures the
correct hypothesis which then is never revised [7].

� Confident learning: This is learning combined with the constraint that the
learner converges syntactically on every text [82]; so a confident Ex-learner
converges syntactically on all texts and a confident BC-learner converges se-
mantically on all texts; although, on some texts for sets outside the class to be
learnt, these learners have to converge to a wrong hypothesis. Reasons for that
are: (a) there are uncountably many sets while there are only countably many
indices; (b) the class of all r.e. languages is not learnable.

106

� Consistent learning: This is learning in the limit combined with the additional
constraint that whenever the learner outputs a hypothesis e after seeing data σ,
every number x occurring in σ is covered by the hypothesis: x ∈ We [10].

� Conservative learning: This is learning in the limit combined with the additional
constraint that whenever the learner outputs at some time i and later j then it
has seen some number x prior to conjecturing j with x ∈ Wj −Wi [2].

The next results present the basics of inductive inference and give some overview on
the main connections between the above mentioned criteria.

The class of all r.e. languages is not learnable in the limit, it is even not be-
haviourally correctly learnable. The next example gives some natural classes of sets
which are learnable.

Example 12.1. The class {We : We ̸= ∅ ∧ e = min(We)} of self-describing languages
is not empty and Ex-learnable.

Proof. There is a recursive function f such that Wf(e) = {x ≥ e : x = e ∨ x ∈ We}.
By the Fixed-Point Theorem there are infinitely many e such that We = Wf(e); hence
the class of self-describing languages is not empty but infinite.

A learner which outputs the minimal number seen so far (and 0 if no number
has been seen so far) is a learner which converges on every text of a self-describing
language L to min(L); by choice of the class this minimum is an index for the language
and hence this algorithm learns the class.

An important property of learners is the following locking sequence criterion from
Blum and Blum [10].

Theorem 12.2: Existence of Locking Sequences [10]. Let M be a recursive
learner and L be an r.e. set learned by M . Then there is σ ∈ (L ∪ {#})∗ such that

WM(σ) = L ∧ ∀τ ∈ (L ∪ {#})∗ [M(στ) =M(σ)].

This σ is called a locking sequence for L.

Proof. Let a0, a1, a2, . . . be a recursive enumeration of L. Now assume by way of
contradiction that every string of elements from L ∪ {#}∗ has an extension στ with
τ ∈ (L ∪ {#})∗ with M(στ) ̸=M(σ). Now one can build inductively a recursive text

T = a0τ0a1τ1a2τ2a3τ3 . . .

such that τn is the first string in (L ∪ {#})∗ found by exhaustive search such that

M(a0τ0a1τ1a2τ2 . . . anτn) ̸=M(a0τ0a1τ1a2τ2 . . . an).

107

But then M would diverge on T and thus not Ex-learn L, even not from recursive
texts. Hence there is a sequence σ = a0τ0a1τ1a2τ2 . . . an such that the corresponding
extension τn cannot be found. It follows that M(σan+1an+2 . . . an+m) = M(σ) for all
m. As M Ex-learns L one has that WM(σ) = L. Thus σ is a locking sequence.

The result does show even something stronger: for every recursive learnerM and every
r.e. set L there is either a sequence σ ∈ (L ∪ {#})∗ with M(στ) = M(σ) for all τ ∈
(L∪{#})∗ or there is a recursive text on whichM makes infinitely many mind changes.
Although one can show that there is an equivalent of locking-sequences for BC-learning
and a corresponding result, one can no longer search for these mind changes and
therefore the texts on which a BC-learner converges might be nonrecursive. Indeed
there are unlearnable classes such that some BC-learner still learns them from all
recursive texts; this explains the necessity to consider nonrecursive texts in the case
of BC-learning.

Based on the concept of locking-sequences, Angluin [2] was able to give a criterion
when a uniformly recursive class is learnable from positive data.

Theorem 12.3: Angluin’s Tell-Tale-Sets [2]. Let {L0, L1, L2, . . .} be a uniformly
recursive class. This class is then learnable in the limit iff there is uniformly recursively
enumerable list H0, H1, H2, . . . of finite sets such that for every i, j,

� Hi ⊆ Li;

� if Hi ⊆ Lj ⊆ Li then Lj = Li.

Proof. IfM is an explantory learner for the uniformly recursive class {L0, L1, L2, . . .}
then one can enumerate for each e all strings σ0, σ1, σ2, . . . ∈ (Le ∪ {#})∗ and let

He = {x : ∃y ∀z < y ∃τ ∈ (Le ∪ {#})∗ [x occurs in σy ∧M(σzτ) ̸=M(σz)].

It is easy to see that the sets He are uniformly recursively enumerable. Furthermore,
as for He some string σy in the list of all strings over (Le∪{#})∗ is a locking-sequence
and then only the finitely many x occurring in any of the strings σ0, σ1, . . . , σy can
show up in He. So Angluin’s criterion is necessary even if the underlying class in only
uniformly recursively enumerable.

Now consider that such a family H0, H1, H2, . . . is given and that the under-
lying class is uniformly recursive. The learner N for the class outputs on input
a0, a1, a2, . . . , an the least d ≤ n such that i = n or

Hd,n ⊆ {a0, a1, . . . , an} ⊆ Ld ∪ {#}.

108

Clearly N is total. Assume now that N has to learn Le with e being the minimal
index of the set to be learnt; that is, there is no d < e with Ld = Le. Given a
text a0 a1 a2 . . . for Le there is an n so large that Hd,n = Hd for all d ≤ e and
{a0, a1, a2, . . . , an} ̸⊆ Ld∪{#} for all d < e where Le ̸⊆ Ld. Note that for those d < e
with Le ⊂ Ld it holds that Hd = Hd,n ̸⊆ Le and hence Hd,n ̸⊆ {a0, a1, a2, . . . , am} for
all m. Thus, for all m ≥ n, e is the first index such that

He,n ⊆ {a0, a1, . . . , am} ⊆ Le ∪ {#}.

Hence N(a0 a1 a2 . . . am) = e for all m ≥ n. It follows that N learns Le and N is an
Ex-learner for {L0, L1, L2, . . .}.

Examples 12.4 [2, 39]. Angluin’s criterion permits to decide the learnability of the
following uniformly recursive classes.

� The class of all finite sets plus one infinite set L is unlearnable as any finite
tell-tale-subset H of L has to be learned itself as well.

� The class of all cofinite sets is unlearnable as if H is the finite tell-tale-subset of
N then there is a cofinite L with H ⊂ L ⊂ N; so Angluin’s criterion cannot be
satisfied.

� Every finite class S of languages is learnable as one can consider for every L ∈ S
the tell-tale-set HL = {min(L− L′) : L′ ∈ S ∧ L ̸⊆ L′} and the learner outputs
always an index for that L where HL is contained in the data seen so far and
for which there is no L′ ⊃ L such that HL′ is contained in the data seen so far
as well. As there are only finitely many sets involved, all sets HL are finite and
this learning algorithm can even be carried out of some of these sets are not
recursive.

� The (infinite) class of all finite languages is learnable. This is witnessed by
taking He = Le for every e-th member of an underlying listing L0, L1, L2, . . . of
all finite sets.

� The class of all graphs of primitive-recursive functions is learnable. There is
a uniformly recursive one-one numbering L0, L1, L2, . . . of these graphs and as
Li ̸⊆ Lj for any distinct i, j one can take He = ∅ for all e.

A further result is that the class REC of all graphs of recursive functions is not
Ex-learnable. This result is not obtained by applying Angluin’s theorem; instead
one considers any given recursive learner. The learner has to learn all functions which
almsot everywhere 0 and hence one can find an infinite recursive sequence σ0, σ1, σ2, . . .
of functions such that

109

� σn ∈ N∗;

� σn+1 extends σn1;

� M conjectures after seeing the data for σn that the next value is 0 and not 1
and is thus not consistent with the extension σn+1 of σn.

Then the graph of the recursive function f = limn σn is not learned by M .

Exercise 12.5. Which of the following classes is Ex-learnable?

� S1 = {K ∪ {x} : x /∈ K};

� S2 = {N− {x, y} : x, y ∈ N};

� S3 = {L : ∀i, j ∈ L [i = j ∨Wi = L ∨Wj = L]};

� S4 = {D × N : D is finite}.

The next theorem gives an example how to separate the learning criteria Ex and BC.

Example 12.6. Let A be a nonrecursive but r.e. set. Then the class {A∪{x} : x ∈ N}
is BC-learnable but not Ex-learnable from text.

Proof. It is easy to make a BC-learner for the class. This BC-learner can always
update the hypothesis and thus code the input into the output. That is, the BC-
learner M is given by the equation

WM(a0 a1 a2 ... an) = A ∪ {a0, a1, a2, . . . , an} − {#}.

If a0 a1 a2 . . . is a text forA∪{x}, then there is anm with am = x andWM(a0 a1 a2 ... an) =
A ∪ {x} for all n ≥ m. Hence M BC-learns the class.

Note that Lx = A ∪ {x} would be a recursively enumerable indexing of the class
to be learnt; but a uniformly recursive indexing cannot exist as A is not recursive.

Assume now thatM is an explanatory learner which at least learns A. Then there
is a locking sequence σ for A and a recursive text a0 a1 a2 . . . for A. Now consider the
set

B = {x : ∃n [M(σ x a0 a1 a2 . . . an) ̸=M(σ)]}

which is r.e. and disjoint to A. As A is not recursive, B cannot be the complement of
A; hence there is an x /∈ A∪B such thatM(σ x a0 a1 a2 . . . an) =M(σ) for all n; that
is, M converges on a text for A ∪ {x} to an index for A and does not learn A ∪ {x}.
It follows that the given class is not Ex-learnable.

110

Note that one can extend the previous result to show that the class {A ∪ D : D is
finite} is also BC-learnable but not Ex-learnable. Now a further natural example for
this separation is given.

Example 12.7. The classes {L0, L1, L2, . . .} and {H0, H1, H2, . . .} given by

Le = {e+ x : x ≤ |We|} and He = {e+ x : x ∈ N}

are both Ex-learnable but their union {L0, H0, L1, H1, L2, H2, . . .} is only BC-learnable
and not Ex-learnable.

Proof. The classes {L0, L1, L2, . . .} and {H0, H1, H2, . . .} can both be Ex-learned by
finding in the limit the smallest element e in the input and outputting a canonical
index of the corresponding set Le or He, respectively. Furthermore, one can BC-learn
{L0, H0, L1, H1, L2, H2, . . .} as follows: On input with minimum e, maximum e + a
and length s one checks if |We,s| ≤ a. If so then one outputs Le else one outputs He.
If Le ̸= He then it will turn out in the limit whether the text is for Le or for He and
the convergence will even be syntactic. If Le = He then the learner might on a text
for the set alternate infinitely often between an index for He and for Le.

Now assume by way of contradiction that there is a recursive Ex-learner for the
class {L0, H0, L1, H1, L2, H2, . . .}. By the necessity of Angluin’s criterion in the case
of uniformly r.e. classes, one can enumerate uniformly in e finite subsets Oe ⊆ He

such that Oe ̸⊆ Le whenever Le ̸= He.
So, whenever |We| = ∞ then Le = He and max(Oe) ≤ |We| and whenever |We| <

∞ then Le ̸= He, max(Oe) /∈ Le and max(Oe) > |We|. Hence one can decide in the
limit whetherWe is infinite: first one finds in the limit the value max(Oe) and then one
checks in the limit whether We has at least max(Oe) many elements. But it is well-
known that this cannot be done as the set {e : |We| = ∞} has the same Turing degree
as K′. From this contradiction one knows that the class {L0, H0, L1, H1, L2, H2, . . .}
is not Ex-learnable.

Exercise 12.8: Vacillatory Learning [17]. A class is vacillatorily learnable iff there
is a BC-learner M for the class which outputs on every text for every language in the
class only finitely many different indices. So the class {L0, H0, L1, H1, L2, H2, . . .} from
Example 12.7 is vacillatorily learnable as the learner finds in the limit the correct pa-
rameter e and then either converges to an index for Le or He or vacillates infinitely
often between the two canonical indices for Le and He.

Show that a class S is vacillatorily learnable iff there exists a learner which con-
verges for every L ∈ S and every text T for L to a hypothesis d such that there is an
e ≤ d with We = L.

Show that for every r.e. but not recursive set A the class {A ∪ {x} : x ∈ N} is

111

behaviourally correct but not vacillatorily learnable. Show that the class

S = {L : L ̸= ∅ ⇒ ∃e < min(L)∀x > min(L) [L(x) = We(x)]}

is vacillatorily learnable but not explanatorily learnable. For the negative result, one
can define a recursive function f such that f(e) > e+ i+ j where i is an index for Le
and j an index for He from the classes in Example 12.7. Having this, one shows that
Le − {x : x < f(e)} and He − {x : x < f(e)} are both in S. Then one shows that if
S would be Ex-learnable then {L0, H0, L1, H1, L2, H2, . . .} would be Ex-learnable as
well in contradiction to the Example 12.7.

Learning in the limit is more powerful than finite learning since the class of all finite
sets is learnable in the limit but not finitely learnable. This class is even conservative
Ex-learnable but the next example shows that not every class which is learnable in
the limit is also conservatively Ex-learnable.

Exercise 12.9 [82]. Show that the class of all finite sets is not confidently Ex-learn-
able.

Exercise 12.10 [2]. Show that the class of all sets {e, e+1, e+2, . . .} with e ∈ N and
{e, e+1, e+2, . . . , e+d} with e ∈ K−Kd is consistently and confidently Ex-learnable
but not conservatively BC-learnable.

Exercise 12.11 [10]. Show that the class {K,N} is conservatively and confidently
Ex-learnable but not consistently Ex-learnable.

Remark 12.12. There are unions of Ex-learnable classes which are not BC-learnable:
for example the union of the class of all finite sets and the class {N} [39]. Also,
there are confidently Ex-learnable classes such that their union is not confidently
Ex-learnable; an example are the classes {L0, L1, L2, . . .} and {H0, H1, H2, . . .} from
Example 12.7.

Nevertheless, one can show that the union of two finitely many confidently vac-
illatorily learnable classes is again confidently vacillatorily learnable: Assume that
M1,M2, . . . ,Mk converge on all texts and that there are classes S1, S2, . . . , Sk such
that each learner Mh converges on every text T for a language L ∈ Sh to a number
d such that there is e ≤ d with We = L. Then the learner N given by the equation
N(σ) =M1(σ) +M2(σ) + . . .+Mk(σ) has the same property for S1 ∪ S2 ∪ . . . ∪ Sk.

Confident behaviourally correct learning is also closed under union: if the learners
M1,M2, . . . ,Mk are fed with a text T , the learner N can switch between them and
outputs at each stage that one it is currently tracing. It makes its n-th switch from
the learner Mi to a learner Mj at some stage s iff there is an m such that

112

� n < m < s;

� WMi(τ),s ∩ {0, 1, 2, . . . ,m} ≠ {T (0), T (1), T (2), . . . , T (m)} ∩ {0, 1, 2, . . . ,m} −
{#};

� WMj(τ),s ∩ {0, 1, 2, . . . ,m} = {T (0), T (1), T (2), . . . , T (m)} ∩ {0, 1, 2, . . . ,m} −
{#}.

One can verify that the learner always semantically converges to the correct hypothesis
if at least one of the machines M1,M2, . . . ,Mk does so; furthermore, in the case that
all machines fail to identify the correct language, there are only finitely many switches
as from some time on the values of n and s are so large that

WMj(τ),s ∩ {0, 1, 2, . . . ,m} = {T (0), T (1), T (2), . . . , T (m)} ∩ {0, 1, 2, . . . ,m}

is no longer true when N thinks about changing from i to j.

Remark 12.13. For BC-learning, consistency is not restrictive. The reason is that
one can modify a given BC-learner M to a new BC-learner N such that

WN(a0a1a2...an) = WM(a0a1a2...an) ∪ {a0, a1, a2, . . . , an} − {#}.

This is always possible as the learner needs only to converge semantically, not syn-
tactically. Hence, every two subsequent indices of N will be different. But as long as
the hypotheses of M are correct, so are those of N as N adds only observed elements
to these hypotheses. Furthermore, N is obviously consistent. Hence, whenever M
BC-learns a set L on a text T for L, then N consistently BC-learns L on T .

Alternative Models of Data Presentation. Besides text, there are also other
sources of data which might be considered for learning.

An informant supplies the sequence L(0), L(1), L(2), . . . informing over the char-
acteristic function of L instead of a text for L.

Queries permit to the learner to ask questions to a teacher which the teacher has
to answer. The queries might be used to retrieve information going much beyond what
can be observed; for example equivalence queries answer whether a given hypothesis
is equivalent to the concept to be learnt. Queries to teachers are in particular used to
study the complexity of learning in settings where there is potentially exponentially
many data-items but only polynomial time to learn is permitted.

One can also consider learning with additional information. In this scenario, the
learner recieves, besides a text, also an upper bound on the size of some index of the
set to be learnt. Such additional information increases the learning-performance quite

113

a bit [32] although the class of all r.e. sets remains unlearnable in this setting [42].
An oracle can be used in addition to a text or informant. Note that an oracle is

independent on the language L to be learned, but an orcale might nevertheless give
information over the class S from which L is taken or permit to decide which r.e. sets
contain the data seen so far and which not.

Remark 12.14: Oracles [1, 31, 59]. It has been investigated to which extent oracles
are helpful during the learning process. That is, one considers instead of a recursive
learner M an A-recursive learner MA.

Such oracles can overcome the difference between explanatory and behaviourally
correct learning: Every BC[A]-learnable class is Ex[A ⊕ K]-learnable and the class
{K ∪ {x} : x ∈ N} needs an oracle above K, that is, this class is Ex[B]-learnable iff
B ≥T K.

Jain and Sharma [43] showed that for every set A there is a set B >T A such that
some class is learnable Ex[B]-learnable but not BC[A]-learnable. Adleman and Blum
[1] showed that a the class REC of all graphs of recursive functions is Ex[A]-learnable
iff A is high; Kummer and Stephan [31, 59] showed that REC is already BC[B]-
learnable for some low oracle B; so the characterization of the oracles permitting to
learn REC does not carry over from Ex to BC.

Remark 12.15: Teachers and Learners [3]. Queries permit to the learner to
ask questions to a teacher which the teacher has to answer and which relate to the
concept to be learnt. In general, the answers to the queries provide more information
about the concept to be learnt than the observation of texts. There are always two
modes: One is just giving “Yes” or “No” but the second is justifying a “No” by a
counterexample. So when the learner asks “Is L the set of all even numbers?” and
the teacher answers “No” then the teacher also supplies some odd number contained
in L back to the learner. Queries have always to be from query languages and the
following languages are common:

� Equivalence queries: “Is We = L?”;

� Subset queries: “Is We ⊆ L?”;

� Superset queries: “Is We ⊇ L?”;

� Disjointness queries: “Is We ∩ L = ∅?”;

� Membership queries: “Is a ∈ We?” for some a.

Membership queries are rare in inductive inference since one can either derive them (in
the limit) from the text or one can simulate them by subset queries, superset queries
or disjointness queries, the following is equivalent to the question whether a ∈ We:

114

� “Is {a} ⊆ L?”;

� “Is L ⊆ N− {a}?”;

� “Is {a} ∩ L = ∅?”.

There is a finite learner for the class of all r.e. languages which uses equivalence
queries: It just asks “Is W0 = L?”, “Is W1 = L?”, . . . until the answer is “Yes” and
then it outputs the index of the corresponding language.

For this reason, many people working on query learning have turned to investigate
the number of queries needed. One important class considered is that of the regular
languages. Here a set is regular iff a deterministic finite automaton accepts it. A
deterministic finite automaton consists of a finite set {q0, q1, q2, . . . , qn} of states with
starting state q0, a set A ⊆ {q0, q1, q2, . . . , qn} which says which of the states are
accepting and a transition function f which assigns to every state qi and input symbol
a a new state qj = f(qi, a) which is taken after processing a. One can easily extend
this to a function f̃ on words by letting f̃(η0) = q0 and f̃(ηba) = f(f(ηb), a) for
all a ∈ {0, 1} and b ∈ N. Now the language accepted by the determinisitc finite
automaton is {ηa : f̃(ηa) ∈ A} and this is, as usual, identified with the corresponding
subset {a : f̃(ηa) ∈ A} of the natural numbers. For learning regular languages,
Angluin [3] has obtained the following result.

Theorem 12.16 [3]. There is a learning algorithm M and there is a polynomial
p such that for every consistent teacher and every regular language R determined
by a finite automaton of size n the dialogue between the learner and the teacher
(q0, a0, q1, a1, . . . , qm, am) satisfies at every stage m that the length of query qm and m
itself are both bounded by p(max{n, |a0|, |a1|, . . . , |am−1|}). Roughly spoken, M learns
polynomially in the size of the target and the answers of the teacher, which M must
of course read.

Exercise 12.17. Construct a deterministic finite automaton which accepts all binary
strings ηa such that a is not a multiple of 5. So the language contains η1 = 0, η2 = 1,
η3 = 00, η4 = 01, η6 = 11, η7 = 000, η8 = 001 and η9 = 010 but it does not contain
η0, η5 = 10, η10 = 011 and η15 = 0000.

Query learning is quite powerful. For example one can learn all r.e. languages with
equivalence queries.

Example 12.18. One can learn the graphs of all total recursive functions finitely
from superset queries but not behaviourally correct from text. The algorithm is to
find the first e such that {⟨x, φe(x)⟩ : φe(x) ↓} ⊇ L. If f = φe then this algorithm
needs at most e+ 1 queries.

115

Example 12.19. The class of all r.e. sets can be learned with finitely many equiva-
lence queries by just asking these queries until the answer is “Yes”.

For some further natural query-languages, one might need infinitely many queries in
order to learn every r.e. set.

Theorem 12.20. The class of all r.e. sets can be learned in the limit with infinitely
many queries for each of the following query languages: disjointness queries, subset-
queries and supersetqueries.

Algorithm for Disjointness-Queries. The algorithm converges to the first e such
that there is no x with We(x) ̸= L(x). This algorithm has to be translated into the
various query-languages, here the example for disjointness queries where the queries
are underlined.

1. Let a = 0; Let I = ∅; Let J = ∅; Let e = 0;

2. If L ∩ {a} ≠ ∅ Then I = I ∪ {a} Else J = J ∪ {a};

3. Let a = a+ 1;

4. If I = ∅ Then Conjecture ∅; Goto 2;

5. If J = ∅ Then Conjecture N; Goto 2;

6. Choose indices i, j such that

Wi =

{
∅ if I ̸⊆ We;
N if I ⊆ We;

Wj =

{
∅ if J ∩We = ∅;
N if J ∩We ̸= ∅;

7. If Wi ∩ L = ∅ or Wj ∩ L ̸= ∅ Then Let e = e+ 1;

8. Conjecture We; Goto 2;

Theorem 12.21. If a class is learnable from a learner using texts and finitely many
disjointness queries for any language learnt then there is a further learner for the
same class using text only and no queries at all.

The intuitive reason for this result is that one can figure out in the limit whether
L ∩We is empty or not. As long as no element of the meet has shown up in the text
and be enumerated within the given time, a negative answer is assumed but when
such an element comes up, this answer is revised to a positive one. This permits to
simulate such a learner by a learner only using the text.

116

References

[1] Lenny Adleman and Manuel Blum. Inductive inference and unsolvability. The
Journal of Symbolic Logic, 56:891–900, 1991.

[2] Dana Angluin. Inductive inference of formal languages from positive data. In-
formation and Control, 45:117–135, 1980.

[3] Dana Angluin. Learning regular sets from queries and counterexamples. Infor-
mation and Computation, 75:87–106, 1987.

[4] Marat Arslanov. On some generalizations of a fixed-point theorem. Soviet
Mathematics (Iz. VUZ), Russian, 25(5):9–16, 1981, English translation, 25(5):1–
10, 1981.

[5] Janis Bārzdiņš. Prognostication of automata and functions. Information Pro-
cessing ’71, (1) 81–84. Edited by C. P. Freiman, North-Holland, Amsterdam,
1971.

[6] Janis Bārzdiņš. Two Theorems on the Limiting Synthesis of Functions. Theory
of Algorithm and Programs I:82–88. Latvian State University, 1974.

[7] Janis Bārzdiņš and Rūsiņš Freivalds. On the prediction of general recursive
functions. Soviet Mathematical Doklady, 13:1224–1228, 1972.

[8] Richard Beigel. Gaps in Bounded Query Hierarchies. Proceedings of the 14th
Annual IEEE Conference on Computational Complexity, 4-6 May 1999, Atlanta,
Georgia, USA. IEEE Computer Society, 124-141, 1999.

[9] Manuel Blum. A machine independent theory of the complexity of recursive
functions. Journal of the Association of Computing Machinery, 14:322–336,
1967.

[10] Lenore Blum and Manuel Blum. Towards a mathematical theory of inductive
inference. Information and Control, 28:125–155, 1975.

[11] Valeriy K. Bulitko. Reducibility by linear Zhegalkin tables. Siberian Mathemat-
ical Journal, Russian, 21:23–31, 1980, English translation, 21:332–339, 1980.

[12] Vadim Bulitko. On completeness of pseudosimple sets. Journal of Universal
Computer Science, 1:151–154, 1995.

[13] Mark Burgin. The Rise and Fall of the Church-Turing Thesis. Manuscript,
http://arxiv.org/ftp/cs/papers/0207/0207055.pdf.

117

[14] Crsitian S. Calude and Gregory J. Chaitin. Randomness everywhere. Nature,
400:319-320, 1999.

[15] Cristian S. Calude and André Nies, Chaitin Ω numbers and strong reducibilities.
Journal of Universal Computer Science, 3:1162–1166, 1997.

[16] Georg Cantor. Über eine Eigenschaft des Inbegriffes aller reellen algebraischen
Zahlen. Journal für die Reine und Angewandte Mathematik 77:258–262, 1874.

[17] John Case. The power of vacillation in language learning. SIAM Journal on
Computing, 28(6):1941–1969, 1999.

[18] John Case and Chris Lynes. Machine inductive inference and language iden-
tification. Proceedings of the nineth International Colloquium on Automata,
Languages and Programming, Lecture Notes in Computer Science 140:107–115,
1982.

[19] John Case and Carl Smith. Comparison of identification criteria for machine
inductive inference. Theoretical Computer Science, 25:193–220, 1983.

[20] Gregory Chaitin. Algorithmi Information Theory. Cambridge Tracts in Theo-
retical Computer Science I, Cambride University Press, 1987.

[21] Martin Davis (editor). The Undecidable. Basic Papers on Undecidable Proposi-
tions, Unsolvable Problems and Computable Functions. Raven Press, 1965.

[22] Richard Dedekind. Was sind und was sollen die Zahlen? Braunschweig, 1888.

[23] Alexander Dëgtev. tt- and m-degrees. Algebra and Logic, Russian, 12:143–161,
1973, English translation, 12:78–89, 1973.

[24] Alexander Dëgtev. Three theorems on tt-degrees. Algebra and Logic, Russian,
17(3):270–281, 1978, English translation, 17:187–194, 1978.

[25] Alexander Dëgtev. On (m,n)-computable sets. Algebraic Systems (Edited by
D.I. Moldavanskij). Ivanova Gos. Univ., Russian, pages 88–99, 1981.

[26] Alexander Dëgtev. Comparison of linear reducibility with other reducibilities of
tabular type. Algebra and Logic, Russian, 21:511–529, 1982, English translation,
21:339–353, 1982.

[27] James C.E. Dekker. Two notes on r.e. sets. Proceedings of the American Math-
ematical Society, 4:495–501, 1953.

118

[28] James C.E. Dekker. Productive sets. Transactions of the American Mathemat-
ical Society, 78:129–149, 1955.

[29] James C.E. Dekker and John Myhill. Retraceable sets. Canadian Journal of
Mathematics, 10:357–373, 1958.

[30] Rod Downey and Liang Yu. Arithmetical Sacks forcing. Archive for Mathemat-
ical Logic, 45:715–720, 2006.

[31] Lance Fortnow, William Gasarch, Sanjay Jain, Efim Kinber, Martin Kummer,
Steven Kurtz, Mark Pleszkoch, Theodore Slaman, Robert Solovay and Frank
Stephan. Extremes in the degrees of inferability. Annals of Pure and Applied
Logic, 66:231–276, 1994.

[32] Rūsiņš Freivalds and Rolf Wiehagen. Inductive inference with additional in-
formation. Elektronische Informationsverarbeitung und Kybernetik 15:179–185,
1979.

[33] Richard Friedberg. Two recursively enumerable sets of incomparable degrees
of unsolvability. Proceedings of the National Academy of Sciences, 43:236–238,
1957.

[34] Richard Friedberg. A criterion for completeness of degrees of unsolvability. The
Journal of Symbolic Logic, 22:159–160, 1957.

[35] Richard Friedberg. Three theorems on recursive enumeration. The Journal of
Symbolic Logic, 23(3):309–316, 1958.

[36] Richard Friedberg and Hartley Rogers. Reducibilities and completeness for sets
of integers. Zeitschrift für Mathematische Logik und Grundlagen der Mathe-
matik, 5:117–125, 1959.

[37] William Gasarch and Mark Pleszkoch. Learning via queries to an oracle. Pro-
ceedings of the Second Annual Conference on Computational Learning Theory
(COLT), 214–229, 1989.

[38] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme I. Monatshefte für Mathematik und Physik 38:173–
198, 1931.

[39] Mark Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

119

[40] Lane Hemaspaandra, Harald Hempel and Jörg Vogel. Optimal Separations
for Parallel versus Sequential Self-Checking: Parallelism Can Exponentially In-
crease Self-Checking Cost. Technical Report TR 691, Department of Computer
Science, University of Rochester, May 1998.

[41] Sanjay Jain, Daniel Osherson, James Royer and Arun Sharma. Systems that
Learn: An Introduction to Learning Theory. The MIT Press, Cambridge, Mas-
sachusetts, 1999. Second Edition of Reference [82].

[42] Sanjay Jain and Arun Sharma. Learning with the knowledge of an upper bound
on program size. Information and Computation, 102:118–166, 1993.

[43] Sanjay Jain and Arun Sharma. On the non-existence of maximal inference
degrees for language identification. Information Processing Letters, 47:81–88,
1993.

[44] Carl G. Jockusch. Reducibilities in Recursive Function Theories. PhD Thesis,
Massachusetts Institute of Technology, 1966.

[45] Carl G. Jockusch. Semirecursive sets and positive reducibility. Transactions of
the American Mathematical Society, 131:420–436, 1968.

[46] Carl G. Jockusch. Relationships between reducibilities. Transactions of the
American Mathematical Society, 142:229–237, 1969.

[47] Carl G. Jockusch. Degrees of functions with no fixed points. Congress of Logic,
Philosophy, and Methodology of Science VIII, North-Holland, pages 191–201,
1989.

[48] Carl G. Jockusch. Degrees of generic sets. London Mathematical Society Lecture
Notes, 45:110–139, 1981.

[49] Carl G. Jockusch, Manuel Lerman, Robert Soare and Robert Solovay. Re-
cursively enumerable sets modulo iterated jumps and extensions of Arslanov’s
Completeness criterion. The Journal of Symbolic Logic, 54:1288–1323, 1989.

[50] Carl G. Jockusch and Robert Soare. Π0
1 classes and degrees of theories. Trans-

actions of the American Mathematical Society, 173:33–56, 1972.

[51] Stephen Cole Kleene. Introduction to Metamathematics. North-Holland, 1952.

[52] Stephen Cole Kleene and Emil Leon Post. The uppersemilattice of degrees of
recursive unsolvability. Annals of Mathematics, 59:379–407, 1954.

120

[53] Stephen Cole Kleene. Hierarchies of number-theoretic predicates. Bulletin of
the American Mathematical Society, 61:193–213, 1955.

[54] Andrei N. Kolmogorov and Vladimir A. Uspensky. Algorithms and randomness.
Theory of Probability and Applications, 32:389–412, 1987.

[55] Antońın Kučera and Theodore Slaman. Randomness and recursive enumerabil-
ity. SIAM Journal of Computing, 31:199–211, 2001.

[56] Martin Kummer. Numberings ofR1∪F . Computer Science Logic 1988, Springer
Lecture Notes in Computer Science 385:166–186, 1989.

[57] Martin Kummer. An easy priority-free proof of a theorem of Friedberg. Theo-
retical Computer Science 74:249–251, 1990.

[58] Martin Kummer. A proof of Beigel’s cardinality conjecture. The Journal of
Symbolic Logic, 57:677–681, 1992.

[59] Martin Kummer and Frank Stephan. On the structure of degrees of inferability.
Journal of Computer and System Sciences, Special Issue COLT 1993, 52:214–
238, 1996.

[60] Martin Kummer and Frank Stephan. Recursion theoretic properties of frequency
computation and bounded queries. Information and Computation, 120:59–77,
1995.

[61] Alistair H. Lachlan. Lower bounds for pairs of recursively enumerable degrees.
Proceedings of the London Mathematical Society, 16:537–569, 1966.

[62] Alistair H. Lachlan. Complete recursively enumerable sets. Proceedings of the
American Mathematical Society, 19:99–102, 1968.

[63] Alistair H. Lachlan. On the lattice of recursively enumerable sets. Transactions
of the American Mathematical Society, 130:1–37, 1968.

[64] Leonid Levin. On the notion of a random sequence. Soviet Mathematics Doklady
14:1413–1416, 1973.

[65] Donald Martin. Completeness, the recursion theorem and effectively simple sets.
Proceedings or the American Mathematical Society, 17:838–842, 1966.

[66] Donald Martin. Classes of recursively enumerable sets and degrees of unsolv-
ability. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik,
12:295–310, 1966.

121

[67] Per Martin-Löf, The definition of random sequences. Information and Control,
9:602–619, 1966.

[68] Yuri V. Matiyasevich. Diofantovost’ perechislimykh mnozhestv. Doklady
Akademii Nauk SSSR, 191:297-282, 1970 (Russian). English translation: Enu-
merable sets are Diophantine, Soviet Mathematics Doklady, 11:354-358, 1970.

[69] Yuri V. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, Cambridge, Mas-
sachusetts, 1993.

[70] Timothy McNicholl. The inclusion problem for generalized frequency classes.
PhD thesis, Department of Mathematics, George Washington University, Wash-
ington DC, May 1995.

[71] Joseph S. Miller. Every 2-random real is Kolmogorov random. The Journal of
Symbolic Logic, 69:907–913, 2004.

[72] Joseph S. Miller and Liang Yu. On initial segment complexity and degrees of
randomness. Transactions of the American Mathematical Society, to appear.

[73] Webb Miller and Donald Martin. The degrees of hyperimmune sets. Zeitschrift
für Mathematische Logik und Grundlagen der Mathematik, 14:159–166, 1968.

[74] Albert Abramovich Muchnik. Negative answer to the problem of reducibility
in the theory of algorithms. Doklady Akademii Nauk S. S. S. R., 108:194–197,
1956.

[75] John Myhill. Creative sets. Zeitschrift für Mathematische Logik und Grundlagen
der Mathematik, 1:97–108, 1955.

[76] John Myhill and John C. Shepherdson. Effective operations on partial recursive
functions. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik,
1:310-317, 1955.

[77] André Nies. Lowness properties of reals and randomness. Advances in Mathe-
matics, 197:274–305, 2005.

[78] André Nies, Frank Stephan and Sebastiaan A. Terwijn. Randomness, relativiza-
tion and Turing degrees. The Journal of Symbolic Logic 70:515–535, 2005.

[79] Piergiorgio Odifreddi. Classical Recursion Theory. North-Holland, Amsterdam,
1989.

122

[80] Piergiorgio Odifreddi. Classical Recursion Theory, Volume II. Elsevier, Ams-
terdam, 1999.

[81] Piergiorgio Odifreddi. Private Communication, 2007.

[82] Daniel Osherson, Michael Stob and Scott Weinstein. Systems That Learn, An
Introduction to Learning Theory for Cognitive and Computer Scientists. Brad-
ford — The MIT Press, Cambridge, Massachusetts, 1986.

[83] Emil Leon Post. Finite combinatory processes. Formulation I. The Journal of
Symbolic Logic, 1:103–105, 1936.

[84] Emil Leon Post. Recursively enumerable sets of positive integers and their
decision problems. Bulletin of the American Mathematical Society, 50:284–316,
1944.

[85] Henry Gordon Rice. Classes of enumerable sets and their decision problems.
Transactions of the American Mathematical Society 74:358–366, 1953.

[86] Robert W. Robinson. Simplicity of recursively enumerable sets. The Journal of
Symbolic Logic, 32:162–172, 1967.

[87] Hartley Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York, 1967.

[88] Gerald E. Sacks. Recursive enumerability and the jump operator. Transactions
of the American Mathematical Society, 108:223–239, 1963.

[89] Gerald E. Sacks. On the degrees less than 0′. Annals of Mathematics, 77:211–
231, 1963.

[90] Gerald E. Sacks. A maximal set which is not complete. Michigan Mathematical
Journal, 11:193–205, 1964.

[91] Gerald E. Sacks. The recursively enumerable degrees are dense. Annals of
Mathematics, 80:300–312, 1964.

[92] Gerald E. Sacks. Degrees of Unsolvability. Annals of Mathematics Studies 55,
Princeton University Press, Princeton, New Jersey, 1966.

[93] Gerald E. Sacks. Higher Recursion Theory. Perspectives in Mathematical Logic,
Springer-Verlag, Heidelberg, 1990.

123

[94] Claus Peter Schnorr. Zufälligkeit und Wahrscheinlichkeit. Springer Lecture
Notes in Mathematics, 1971.

[95] Claus Peter Schnorr. Process complexity and effective random tests. Journal of
Computer and System Sciences 7:376–388, 1973.

[96] Arun Sharma. A note on batch and incremental learnability. Journal of Com-
puter and System Sciences, 56:272–276, 1998.

[97] Joseph Shoenfield. On degrees of unsolvability. Annals of Mathematics, 69:644–
653, 1959.

[98] Joseph Shoenfield. Undecidable and creative theories. Fundamenta Mathemat-
icae, 49:171–179, 1961.

[99] Joseph Shoenfield. The form of negations of a predicate. Proceedings of the
Thirteenth Symposium in Applied Mathematics of the American Mathematical
Society, pages 131–134, 1962.

[100] Joseph Shoenfield. A theorem on minimal degrees. The Journal of Symbolic
Logic, 31:539–544, 1966.

[101] Joseph Shoenfield. Degrees of Unsolvability. North-Holland, 1971.

[102] Thoralf Albert Skolem. Begründung der elementaren Arithmetik durch die
rekurrierende Denkweise ohne Anwendung scheinbarer Veränderlicher mit un-
endlichem Ausdehnungsbereich. Videnskapsselskapet Skrifter 6, 1923.

[103] Robert Soare. Recursively Enumerable Sets and Degrees. A Study of Computable
Functions and Computably Generated Sets. Springer-Verlag, Heidelberg, 1987.

[104] Ray Solomonoff. A formal theory of inductive inference, part 1 and part 2.
Information and Control, 7:1–22, 224–254, 1964.

[105] Ray Solomonoff. The discovery of algorithmic probability. Journal of Computer
and System Sciences, 55:73–88, 1997.

[106] Robert Solovay. Draft of paper on Chaitin’s work. Unpublished notes, 215 pages,
1975.

[107] Clifford Spector. On degrees of unsolvability. Annals of Mathematics, 64:581–
592, 1956.

124

[108] Frank Stephan. On one-sided versus two-sided classification. Forschungsbe-
richte Mathematische Logik 25 / 1996, Mathematisches Institut, Universität
Heidelberg, 1996.

[109] Frank Stephan. On the structures inside truth-table degrees. Forschungsberichte
Mathematische Logik 29 / 1997, Mathematisches Institut, Universität Heidel-
berg, Heidelberg, 1997.

[110] Michael J. Suslin. Sur une définition des ensembles mesurables B sans nom-
bres transfinis. Comptes rendus hebdomadaires des séances de l’ Académie des
Sciences (Paris), 164:88–91, 1917.

[111] Boris A. Trakhtenbrot. Tabular representation of recursive operators. Doklady
Akademii Nauk S. S. S. R., 101:417–420, 1955.

[112] Boris A. Trakhtenbrot. Finite automata and the logic of one place predicates.
Siberian Mathematical Journal, 3:103–131, 1962 [in Russian].

[113] Boris A. Trakhtenbrot. On autoreducibility. Soviet Mathematics Doklady
11:814–817, 1970.

[114] Alan M. Turing. On computable numbers with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42:230–265,
1936 and correction, 43:544–546, 1937.

[115] Alan M. Turing. Systems of logic based on ordinals. Proceedings of the London
Mathematical Society, 45:161–228, 1939.

[116] Vladimir Andreevich Uspenskii. Some remarks on r.e. sets. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, 3:157–170, 1957.

[117] Andrew Wiles. Modular elliptic curves and Fermat’s last theorem. Annals of
Mathematics, 141:443–551, 1995.

[118] C. E. Mike Yates. A minimal pair of recursively enumerable degrees. The
Journal of Symbolic Logic, 31:159–168, 1966.

[119] Paul Young. On reducibility by recursive functions. Proceedings of the American
Mathematical Society, 15:889–892, 1964.

[120] Paul Young. A theorem on recursively enumerable classes and splinters. Pro-
ceedings of the American Mathematical Society, 17:1050–1056, 1966.

125

