Selftest for MA 3205 – Set Theory

Matriculation Number: _____ Marking: Each question 1 mark.

Question 1. List all elements of the set $(\{a, b, c\} \cup \{c, d, e\}) \Delta(\{a, b, e\} \cap \{c, d, e\})$:

-----·

Question 2. Determine the cardinality of $\mathcal{P}(\mathcal{P}(\{\{\mathbb{N}\}\}))) \cap \mathcal{P}(\mathcal{P}(\{\{\{\{\mathbb{N}\}\}\})))$:

 $\Box 0, \qquad \Box 1, \qquad \Box 2, \qquad \Box 4, \qquad \Box 8, \qquad \Box \aleph_0, \qquad \Box \aleph_1, \qquad \Box 2^{\aleph_0}.$

Question 3. Tick the three properties true for every inductive set *A*:

 $\begin{array}{c} \square \ \emptyset \in A; \\ \square \ A \in \{A\}; \\ \square \ \exists B \in A \ (|B| = \aleph_2); \\ \square \ \forall x \in A \ ((x \cup \{x\}) \in A); \\ \square \ \forall x \in A \ \forall y \in x \ (\{y\} \in A). \end{array}$

Question 4. Tick the four statements true for all ordinals α and β :

 $\Box \alpha \subseteq \beta \lor \beta \in \alpha;$ $\Box |\alpha| \cdot |\beta| = \max\{|\alpha|, |\beta|\};$ $\Box \alpha \cup \beta \text{ is transitive;}$ $\Box \alpha \cap \beta \text{ is well-ordered;}$ $\Box \alpha \times \beta \text{ has two elements equal to } \emptyset;$ $\Box \exists \gamma, \delta \in \alpha \ (\gamma \in \delta);$ $\Box \forall \gamma, \delta \in \alpha \ (\gamma \in \delta \lor \delta \in \gamma \lor \gamma = \delta).$

Question 5. Let f(0) = 2, f(1) = 2, f(2) = 3, f(3) = 3. Determine the image and preimage of $\{1, 2\}$: The image is $\{------\}$ and the preimage is $\{------\}$.

Question 6. What is the code for the natural number 3? The codes for 0, 1 and 2 are given as an example.

Question 7. List all elements of the set $\mathcal{TC}(\{\{1,3\},5\})$ using that natural numbers have smaller numbers as alements, list the large sets in the second line:

Question 8. Put the strings 0011,001122,1122,00,22 into Kleene-Brouwer Ordering:

_____< _____< ______< ______

Question 9. In the following, let A_{α} be a set of cardinality \aleph_{α} for all α . Determine the cardinal of the set $A_{\omega\cdot 2+3} \cup (A_{\omega} \times A_{\omega} \times A_{\omega+5}) \Delta A_{\omega+3} \Delta A_{\omega\cdot 3+3}$:

Question 10. Give a definition when a function $f : \mathbb{N} \to \mathbb{N}$ dominates a set G of functions $g : \mathbb{N} \to \mathbb{N}$:

f domintates G iff for _____ $g \in G, \exists$ _____ \forall _____(____).

Question 11. Tick those two sets of the following sets which are countable.

$\Box \mathcal{P}(\mathcal{P}(\emptyset)),$	$\Box V_{20},$	$V_{\omega},$	$\Box V_{\omega+1},$	$\square \mathbb{R},$	$\Box \mathbb{Z}.$
---	----------------	---------------	----------------------	-----------------------	--------------------

Question 12. Are the linearly ordered sets $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$ order isomorphic? Tick that answer where the statement and the reason are correct:

 \Box Yes, because both sets are dense linear orders;

 \square Yes, because there is an order-preserving mapping from \mathbb{Q} to \mathbb{R} ;

 \square No, because the cardinality of \mathbb{Q} is strictly below that of \mathbb{R} ;

 \square No, because \mathbb{Q} is complete and \mathbb{R} not.

Question 13. Tick four cardinals known to be different from 2^{\aleph_1} : 256, \aleph_0 , \aleph_1 , \aleph_2 , \aleph_ω , $\aleph_{\omega+5}$, 2^{\aleph_1} .

Question 14. By the Theorem of Hessenberg, the sets \mathbb{N} and $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ have the same cardinality. Complete the proof for this.

Define on $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ the following ordering: $(a, b, c) \sqsubset (d, e, f) \Leftrightarrow a + b + c < d + e + f$ or (_______ = ______ and $(a, b, c) <_{lex} (d, e, f)$). Then before every element in $(d, e, f) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ there are only finitely many elements, for example the elements before (0, 0, 2) are ______, _____, _____, _____, and ______, Furthermore, $(\mathbb{N} \times \mathbb{N} \times \mathbb{N}, \Box)$ is _______. Now both sets are ______, well-ordered and have that any initial segment is ______. Hence both sets are order-isomorphic to the first countable ordinal _______ and thus isomorphic to each other.

Question 15. Give the Cantor Normal Form of the following two ordinals: $\omega^{\omega^{2}} + \omega^{\omega+2} + \omega^{\omega^{2}} + \omega^{\omega+2} + \omega^{3} + \omega^{7} + \omega^{9}: \qquad ;$ $\omega^{\omega^{2}} + \omega^{\omega_{1}} + \omega^{\omega_{2}} + \omega^{\omega_{1}} + \omega^{13} + \omega^{17} + \omega^{2}: \qquad .$