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Abstract. The strong n-conjecture is a generalisation of the abc-conjecture to ar-
bitrary n where all n numbers have to be coprime. It asks for the limit superior of
the qualities of n-tuples summing up to 0. Konyagin showed that for odd n ≥ 5, this
value is at least 3/2. Later, other authors added the requirement that zero subsums
be excluded. We follow their results, even in a slightly stricter way, and show that for
odd n ≥ 5, the limit quality is at least 5/3 and for even n ≥ 6, the limit quality is at
least 5/4. This latter result improves a bound of 1 obtained by Browkin. Furthermore,
we construct for all n ≥ 6 and m ≥ 3 a sequence of n-tuples who do not contain any
multiples of 3, 4, . . . ,m and whose qualities approach 5/4. For the Gaussian integers
(= complex integers), we show that for n ≥ 4 the quality is at least 5/3, again with
excluding any given finite set of factors (except that odd n require that one of the
Gaussian integers is even).

1 Introduction

The abc-conjecture [11, 12, 20] is a well-known open problem in mathematics that postulates
that there is no constant q > 1 such that for infinitely many tuples (a, b, c) of coprime and
nonzero integers with a + b + c = 0 the quality log(max{|a|, |b|, |c|})/ log(rad(a · b · c)) ex-
ceeds q. Here rad(a · b · c) is the largest square-free divisor of a · b · c. For example, given a
tuple (8192,−8181,−11) = (213,−34 · 101,−11), its entries are pairwise coprime, their largest
square-free divisor is 6666 = 2 · 3 · 11 · 101 and its quality is log(8192)/ log(6666), which is
approximately 1.0234.

The conjecture itself is quite well-studied and still unresolved. On the way towards partial
solutions, various variants of it led to new related conjectures being made. While Vojta [18,
19] has studied a very general statement that implies the abc-conjecture, a more immediate
generalisation is the n-conjecture first studied by Browkin and Brzeziński [2].

⋆ F. Stephan is supported in part by Singapore Ministry of Education Academic Research Fund Tier 2 grants MOE2016-
T2-1-019 / R146-000-234-112, MOE2019-T2-2-121 / R146-000-304-112 and MOE-000538-00.

1



The topic of this paper is not this n-conjecture itself but the strong n-conjecture. This
conjecture had been dealt with in two small variations by Browkin [1] and Ramaekers [14]4 and
authors have called their variants strong n-conjectures, because they require that the numbers
are pairwise coprime while the n-conjecture allows some primefactors to occur in several but not
all numbers. Browkin [1] did not try to rule out zero subsums and Ramaekers [14] forbade the
zero subsums only if the signs of the numbers remain unchanged; we also forbid zero subsums
where the signs are swapped from positive to negative or vice versa and justify this at the end
of the introduction. In the rest of this article we will simply refer to their incomparable versions
as Browkin’s and Ramaekers’ conjectures, respectively.

Both conjectures concern the possible values of quality which we now state here formally.
While Ramaekers’ conjecture postulates that the qualities of the applicable n-tuples have only
the limit superior of 1 for every fixed n, Browkin’s conjecture just requires that there is some
upper bound, without stating what this bound is; indeed, his paper [1] has a nontrivial lower
bound by Konyagin for odd values of n from 5 onwards, which we will adjust to our setting, as
Konyagin’s example which Browkin [1] cites explicitly allows zero subsums.

Definition 1. For (a1, . . . , an) ∈ Zn we write

q(a1, a2, . . . , an) =
log(max{|a1|, |a2|, . . . , |an|})

log rad(a1 · a2 · . . . · an)

where for a number x, rad(x) is the largest squarefree divisor of x. Then for an infinite set of
n-tuples A = {a1, a2, . . .} ⊆ Zn, let the quality of A be defined as

QA = lim sup
k→∞

q(ak)

where the enumeration a1, a2, . . . of A must be one-one.

Note that the usage of a one-one enumeration does not change the usual definition of QA;
however, this way of writing allows us to use fewer quantifiers.

Different conjectures arise when considering different sets A and making different predictions
about QA’s value. The main goal of this article is to clarify the relation between these different
conjectures and to try to unify the picture. We start by presenting Browkin’s and Ramaekers’
conjectures and explaining how they differ. We then define our own variant, with two objectives:

First, our version has several parameters, and is therefore a template for obtaining multiple
different conjectures to study, which we will do. But secondly, for some choice of those parameters,
we obtain a conjecture that is at the same time stronger than both Browkin’s and Ramaekers’
version. Here stronger means that any lower bound for the quality defined according to us is
necessarily also a lower bound for the qualities appearing in both Browkin’s and Ramaekers’
version.
4 Ramaekers’ version is also mentioned as open on the Wikipedia page of the n-conjecture and called “strong form” and
while our article gives non-trivial lower bounds for n ≥ 5, also building on Konyagin’s work [1], we leave the cases n = 3
(abc-conjecture) and n = 4 unresolved.
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We then show some lower bounds for quality as defined by us for this particular choice of
parameters. For this purpose, we improve a construction of Konyagin (see Browkin [1]) estab-
lishing lower bounds for Browkin’s version in such a way that the same modified examples also
establishes lower bounds for our and Ramaekers’ notions.

Next, we take advantage of the freedom offered by the new parameters that we introduced
with our definition. This allows us to apply similar techniques as before to more general questions.
One of the requirements in the previously known conjectures was to only consider n-tuples of
integers that are pairwise coprime. We loosen this requirement by allowing g.c.d.s to be inside
some finite set E ⊇ {1}. Also, we can restrict the sets of n-tuples considered in the definition
of quality by disallowing all n-tuples containing entries that are multiples of elements of some
set F ; more precisely, from n = 6 onwards, we obtain the lower bound of 5/4 in such a way that
the witnessing tuples avoid a set of forbidden factors F = {3, 4, . . . , p} where p can be chosen
arbitrarily; however, the set has to be finite.

We point out that our proof techniques are mostly elementary and often inspired by existing
literature in the field. Nonetheless, by modifying them according to our needs, we achieve new
and stronger results compared to what can be found in the existing literature. After exploring
the rational integers, we look for the corresponding results in the Gaussian (= complex) and
Hamiltonian integers.

Before proceding with the main part of our work, we give some justification why we allow the
multiplication of numbers with −1 when considering the subsum condition. Originally, all the
conjectures were made for positive natural numbers and in the case of the abc-conjecture one
just considers tuples (a, b, c) with a + b = c. In the case of four-tuples (a, b, c, d), there are two
arrangements, either in the form a+ b = c+ d or in the form a+ b+ c = d; the objective is now
that such an arrangement should be unique except for swapping sides. Thus, it should be avoided
that a tuple can be arranged in two different additive equations like the tuple (a, b, c, d, e) in the
following example:

a+ b+ c = d+ e, a+ d = b+ c+ e.

In this case, adding the equations would give 2a + b + c + d = b + c + d + 2e and that implies
a = e, for example both a, e could be the number 1 and subtracting it on both sides of the
first displayed equation would give the subsum condition b + c = d. Thus if some but not all
numbers swap sides, this implies that some nontrivial subsum condition exists and in order to
capture all of these rearrangements, we do not prescribe on which side of the equation the terms
of the subsums are. Bringing the sides of the subsum back to one side invokes some negative
numbers and thus, when one uses both positive and negative numbers, but all on the same side,
we think it is reasonable to allow in subsum conditions multiplication of numbers with −1; thus
we consider three factors −1, 0, 1 and a nontrivial subsum has at least one number multiplied
with 0 and one multiplied with −1 or 1. All our lower bounds work with this restrictive subsum
condition.

The other deviation from the standard literature is that when dealing with quaternion inte-
gers, we restricted us to the case where all coordinates are integers and called this Hamiltonian
integers. We are aware of the fact that Hurwitz [8] considered also integers where all coordinates
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are the sum of an integer and 1/2; however, we believe that readers can follow our exposition
better if we do not admit these additional integers, as they would complicate all our proofs, even
those of illustrative examples.

Similarly we preferred Gaussian integers over the Eisenstein integers for the complex case, as
those are easier to handle and to follow; we suspect that similar results as those we have might
also hold for the Eisenstein integers. The Eisenstein integers are those complex numbers which
are obtained as the additive closure of the set of all complex and rational sixth roots of 1. We
leave the further study of these integers to follow-up work.

2 Preliminaries

Even though it is not the subject of this article, we first recall the n-conjecture and how it relates
to the abc-conjecture.

Conjecture 2 (n-conjecture; Browkin and Brzeziński [2]). Let n ≥ 3 and let

A(n) =

(a1, . . . , an) ∈ Zn :
a1 + . . .+ an = 0, gcd(a1, . . . , an) = 1, and there
are no b1, . . . , bn ∈ {0, 1} and i, j with 1 ≤ i, j ≤ n
such that bi = 0 and bj = 1 and

∑n
k=1 bk · ak = 0

 .

Then QA(n) = 2n− 5 for every n.

Theorem 3 (Browkin and Brzeziński [2]). If the abc-conjecture is false then the n-conjecture
is false for every n ≥ 4.

The first “strong n-conjecture” that we study is the following. It is obtained from the n-conjecture
by requiring that the entries in each n-tuple are pairwise coprime and removing the condition
that forbids proper subsums of the numbers in the n-tuples to equal 0.

Conjecture 4 (Browkin [1]). Let n ≥ 3 and let

B(n) =

{
(a1, . . . , an) ∈ Zn :

a1 + . . .+ an = 0 and gcd(ai, aj) = 1
for i, j with 1 ≤ i < j ≤ n

}
.

Then QB(n) < ∞ for every n.

Note that, if we fix n = 3 and replace “QB(n) < ∞” by “QB(n) = 1”, we obtain the abc-conjecture.

Note also that QA(4) = 3 implies QB(3) = 1. To see this latter point, assume that there
are infinitely many counter examples (a, b, c) to the abc-conjecture of quality at least q with
q > 1. Then these examples also witness that QA(4) ≥ 3q via the four-tuples (a3, b3, c3,−3abc).
Similarly, for n = 5, consider the set of n-tuples of the form (a5, b5, c5,−5abc3, 5a2b2c) which all
have quality at least 5q.
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Theorem 5 (Konyagin; see Browkin5 [1]).

QB(n) ≥

{
1 if n ≥ 4 is even,
3/2 if n ≥ 5 is odd.

The second “strong n-conjecture” that we study is the following.

Conjecture 6 (Ramaekers [14]). Let n ≥ 3 and let

R(n) =

(a1, . . . , an) ∈ Zn :

a1 + . . .+ an = 0,
gcd(ai, aj) = 1 for i, j with 1 ≤ i < j ≤ n, and there
are no b1, . . . , bn ∈ {0, 1} and i, j with 1 ≤ i, j ≤ n
such that bi = 0 and bj = 1 and

∑n
k=1 bk · ak = 0

 .

Then QR(n) = 1 for every n.

Note that Ramaekers’ conjecture maintains the subsum condition from the original n-conjecture,
unlike Browkin’s. Furthermore, again unlike Browkin’s, Ramaekers’ conjecture makes a claim
about the exact numerical value of the quality. Darmon and Granville [4, End of Section 5.2] also
mention this statement as the “generalised abc-conjecture”, but only conjecturing QR(n) < ∞
and without clarifying whether they require pairwise or setwise coprimeness.

Except for (1,−1, 0) and its reorderings, all triples in B(3) are also in R(3), thus the abc-
conjecture is again equivalent to the statement that QR(3) = 1. Ramaekers computed many
elements of R(3), R(4) and R(5) with quality larger than 1; however, the qualities of the tuples
inR(4) are in general smaller than those of the examples inR(3). Thus it might be that disproving
the conjecture QR(4) = 1 is even more challenging than disproving the abc-conjecture. We do not
know if there is any implication between the cases for n = 3 and n = 4. For larger n, however,
we will see below that QR(n) > 1.

The set R(n) is strictly smaller than the set B(n), so by definition QR(n) could be smaller
than QB(n). Therefore, a statement analogous to Theorem 5 cannot be trivially inferred to
hold for QR(n). Indeed, for odd n ≥ 7, Konyagin’s proof of Theorem 5 uses n-tuples which are
in B(n) \ R(n). However, we will show below how it can be amended to correct this “flaw” in
order to refute Ramaekers’ conjecture. In fact, we will even improve Konyagin’s construction
to work for the quality appearing in the following open problem. Here we introduce two new
parameters, the exception set E and the set of forbidden factors F .

Open Problem 7. Let n ≥ 3 and E,F ⊂ N be finite sets such that E ∩ F = ∅, 1 ∈ E and
minF ≥ 3. Also let U(E,F, n) contain all (a1, . . . , an) ∈ Zn satisfying the following conditions:

(i) gcd(ai, aj) ∈ E for i, j with 1 ≤ i < j ≤ n;
(ii) a1 + . . .+ an = 0;

5 We point out that there is a typing error when Browkin states Konyagin’s result; where we say “n ≥ 5” he says “n ≥ 3”.
But then Theorem 5 would already disprove the abc-conjecture. Indeed, Konyagin’s proof only works for odd n ≥ 5.
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(iii) there are no b1, . . . , bn ∈ {−1, 0, 1} and i, j with 1 ≤ i, j ≤ n such that bi = 0 and bj = 1
and

∑n
k=1 bk · ak = 0;

(iv) none of the numbers a1, . . . , an is a multiple of any number in F .

Fixing different interesting choices of E, F and n, what are meaningful upper and lower bounds
on QU(E,F,n)?

Note that our subsum condition (ii) is more demanding than the ones studied previously as we
also allow negative terms in the subsums. Also note how in condition (i) we allow all g.c.d.s from
the set E, instead of only allowing the g.c.d. 1 as in the previous conjectures. We point out that
making the set E smaller only makes it harder to establish lower bounds. Thus, whenever we
establish a lower bound for the case E = {1} in the remainder of the article, that lower bound
immediately also holds for larger sets E, and we will often not explicitly mention this fact.

Concerning condition (iv), the set F can be empty, in which case the condition is trivially
satisfied by every n-tuple. Furthermore, (a1, . . . , an) ∈ U(E,F, n) must contain an even number
of even numbers to satisfy (ii). As a result, if n is even and E does not contain even numbers,
then no (a1, . . . , an) ∈ U(E,F, n) can contain any even entries. So if n is even and E does not
contain even numbers, we may w.l.o.g. assume that 2 ∈ F . Similarly, when 2 ∈ F and n is odd,
then U(E,F, n) = ∅ as the sum of odd many odd numbers cannot be 0.

Fact 8. We have QU({1},∅,n) ≤ QR(n) ≤ QB(n) for every n.

We now modify Konyagin’s construction in the way described above.

Theorem 9 (Konyagin [1]). QU({1},∅,5) ≥ 3/2.

Theorem 9 and Fact 8 immediately imply Conjecture 6 is false as stated for odd n = 5; for
n = 4 the conjecture remains open and that is the main case on which Ramaekers was working.
Konyagin did not consider forbidding subsums and thus by adding once +1 and once −1, he
could copy his result from one odd value for n ≥ 5 to the next larger odd value of n.

Proof (Theorem 9). Fix some arbitrary k ≥ 1 and let a = (62
k
+ 1)3, b = −(62

k − 1)3,
c = −6 · (62k)2, d = −31 and e = 29. Then log(a) ≥ 3 · 2k · log(6), rad(a · b · c · d · e) is a factor of
(62

k
+ 1) · (62k − 1) · 6 · 31 · 29 and its logarithm is bounded by a constant ℓ plus log(6) · 2 · 2k.

Then

q(a, b, c, d, e) ≥ 3 · 2k · log(6)
2 · 2k · log(6) + ℓ

,

which converges to 3/2 for k → ∞.
We prove that for every k ≥ 1, if a, b, c, d, e are chosen as above, they are pairwise coprime:

The numbers a, b, c are of the forms (s + 1)3, (s− 1)3 and −6s2, respectively, for s = 62
k
. Note

that s−1 and s are trivially coprime, and that the same holds for s and s+1. As 2 and 3 are the
only factors of s, neither of them can be a factor of s− 1 or s+ 1, and thus (s+ 1)3 and 6s2, as
well as (s− 1)3 and 6s2, are coprime. To see that (s− 1)3 and (s+1)3 are coprime as well, note
that s−1 and s+1 are both odd, meaning that 2 cannot be a common factor; therefore s−1 and
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s+1 are coprime. Then (s− 1)3 and (s+1)3 are coprime as well. Finally, we study the sequence
(62

k
)k≥1. If we can show that modulo 29 and modulo 31 none of its elements equals −1, 0, or 1,

then we have shown that s− 1, s, s+1 are not multiples of 29 or 31; and thus that each of a, b, c
is coprime with both d = 29 and e = 31. To see this we proceed by repeated squaring: First,
modulo 29, we obtain the sequence 6, 62 = 36 ≡ 7, 64 ≡ 72 = 49 ≡ −9, 68 ≡ (−9)2 = 81 ≡ −6,
616 ≡ (−6)2 = 36 ≡ 7, and so on. Similarly, modulo 31, we obtain the sequence 6, 5, −6, 5, and
so on. Thus, a, b, c, d, e are pairwise coprime, establishing condition (i) in Open Problem 7.

Condition (ii) is immediate. For the subsum condition (iii), choose k large enough. Then
if ±(s + 1)3 is part of a subsum, so must ∓(s − 1)3 in order to have any hope of achieving a
subsum equaling 0; the same holds vice versa. Also, the signs of these two numbers must be
opposite; w.l.o.g. assume that they are chosen in such a way that the sum of the two numbers
is positive, namely that it equals 6 · s2 + 2. Since k was chosen large, we can again argue that
−6s2 must be part of the subsum in order to have any hope of achieving a subsum equaling 0.
But (s+ 1)3 − (s− 1)3 − 6s2 = 2, and thus the only way to achieve a sum of 0 in this case is
by also adding 29 and −31. But then all five numbers a, b, c, d, e have been selected for the sum
and it is not a proper subsum.

So assume that neither ±(s+ 1)3 nor ∓(s− 1)3 are part of a subsum. If ±6 · s2 is part of a
subsum then adding or subtracting 29 or 31 is not enough to achieve a subsum equaling 0 for
large enough k. If, on the other hand, ±6 · s2 is not part of the subsum either, then using only
29 and 31, a subsum of 0 can clearly not be achieved. ⊓⊔

We mention that Konyagin’s result can also be derived from an example given by Darmon and
Granville [4, item (d) on page 542] by choosing t = 2k; they cite correspondence with Noam D.
Elkies as the source.

For the next result we use a proof that is similar to the last, except that we use a fifth degree
polynomial instead of a third degree one to obtain a better bound. In addition we can avoid
the factor 3 but not the factors 2, 5, 7, 10. We point out that the result is closely related to
Ramaekers’ [14, Section 4.4] that QU({1,2},∅,4) ≥ 5/3. He credits the already mentioned examples
from Darmon and Granville [4] and Elkies that show that QU({1,2},∅,4) > 1 with the idea of using
polynomial identities. The two constants 1 and 7 in the following construction are obtained by
splitting the single constant 8 of Ramaekers.

Theorem 10. Let F be such that 2, 5, 7, 10 /∈ F . Then QU({1},F,5) ≥ 5/3.

Proof. Let z > max(F ∪ {11}) and y = z!. Choose a large enough k and x such that x + 1 =
(y + 1)k. Note that x is a multiple of y, as x = (y + 1)k − 1 =

∑k
h=1

(
k
h

)
· yh. Then consider

a = (x+ 1)5, b = −(x− 1)5, c = −10 · (x2 + 1)2, d = 7 and e = 1.
Condition (i) in Open Problem 7 holds for every such a, b, c, d, e for reasons analogous to

those in the proof of Theorem 9, together with the observation that, as x is a multiple of 7, none
of a, b, c can be a multiple of 7.

Condition (ii) is satisfied, as a+ b+ c+ d+ e = 10x4+20x2+2+ c+ d+ e = −8+ d+ e = 0.
For condition (iii), first note that since the residues of a, b, c, d, e modulo 20 — which is a

factor of y — are 1, 1, 10, 7 and 1, respectively, we have that if c or d are part of a subsum then
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so must all of a, b, c, d, e. The only subsums without c and d that we need to consider are a− b
or a− e or b− e or a− b− e, but these equal (x+ 1)5 − (x− 1)5, (x+ 1)5 − 1, (x− 1)5 − 1 and
(x− 1)5 − 2, respectively, and as we chose k ≥ 1 and x ≥ 11! none of them can equal 0.

As x is a multiple of y, every number in {2, 3, . . . , z} ⊇ F divides x, and therefore no such
number divides any of x− 1, x+1, x2 +1. Similarly, no number in F divides 10 · (x2 +1)2. Con-
sequently, none of a, b, c, d, e is a multiple of any element of F , which establishes condition (iv).

The quality lower bound of 5/3 in the limit can be established by modifying the argument
from the proof of Theorem 9 in the obvious way. ⊓⊔

The following proposition will be useful for later arguments.

Proposition 11. Let u,m ∈ N with m ≥ u, q =
∏

p≤m∧ p prime p and F = {3, 4, . . . ,m}. Then
there are a natural number v and an integer w with u = v+w such that no element of F divides
v or w, gcd(v, w) = 1 and q ≤ v ≤ |w| ≤ (m+ 1) · q.

Proof. Let q be as in the statement. We run the following algorithm:

(1) Let v = u+ 1 + q and w = −q − 1.
(2) For all prime numbers 3 ≤ p ≤ m,
(3) while p divides one of v or w,
(4) let v = v + q/p and w = w − q/p.
(5) If 4 divides v then let v = v + q and w = w − q.

Note that the sum v + w = u and the fact that w is odd are invariants during the execution of
this algorithm. Further note that q ≤ v and |w| ≤ (m+ 1) · q are immediate by construction.

During the “for” loop over p, since q/p is not a multiple of p, only one of the numbers v, v+ q/p,
v+q/p+q/p can be a multiple of p. The same applies to the numbers w, w−q/p, and w−q/p−q/p.
Thus, for each p, the instruction inside the “while” loop will be executed 0, 1 or 2 times, and
afterwards neither v nor w will be divisible by p.

We claim that, once established, this property is preserved throughout the rest of the algo-
rithm: Consider some prime p′ ̸= p which was handled in a previous iteration of the “while”
loop, and assume that at the beginning of the iteration for p of the “while” loop we have that
neither v nor w are divisible by p′. Since q/p is a multiple of p′, we have v ≡ v + q/p (mod p′)
and w ≡ w − q/p (mod p′); thus the property is preserved by the action of line (4). For similar
reasons, the property also is preserved during the final execution of line (5). This proves the
claim, and it follows that after the algorithm terminates, v and w are not divisible by any odd
prime ≤ m.

Assume that v is divisible by 4 before the execution of line (5). Then, since q is not divisible
by 4, v+q is an even number not divisible by 4. Thus, in any case, after the execution of line (5),
v is not divisible by 4. Since w was odd, it is still odd after the execution of line (5); in particular
it is not divisible by 4.

Overall we have established that, when the algorithm terminates, none of the numbers
3, 4, . . . ,m divide v or w.
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To see that v and w are coprime, first note that 2 cannot be a common prime factor since w is
odd. By construction, any odd common prime factor p of v and w must be larger than m. But
any such p also is a prime factor of u = v + w, which is impossible as u ≤ m. ⊓⊔

The following result, which to the best of our knowledge is new,6 shows that Ramaekers’ con-
jecture can be refuted for any even n ≥ 6, even with arbitrary forbidden set F .

Theorem 12. Let F be arbitrary and let n ≥ 6. Then QU({1},F,n) ≥ 5/4.

In the proof, we will use the following well-known fact.

Theorem 13 (Dirichlet’s Prime Number Theorem [5]). For every two positive coprime
integers a and d, there are infinitely many positive integers n such that a+ nd is prime.

Proof (Theorem 12). As enlarging F only makes the statement harder to prove, we can
assume that F = {3, 4, . . . , ℓ} for some ℓ ≥ 11.

Let s = ℓ!. By Theorem 13, there are infinitely many positive integers t such that 10 · s · t− 1
is prime. Choose such a t with t > 101 and let y = s · t. Since 10 · y− 1 is prime and larger than
y + 1, it is clear that these two numbers are coprime. Then there are infinitely many positive
integers h such that (y + 1)h ≡ 1 (mod 10 · y − 1), and for such h we have in particular that
(y + 1)h! ≡ 1 (mod 10 · y − 1). Later, we will let h go to infinity, but for the moment we give an
analysis that is true independently of the exact value of h as long as h is large enough.

So let x be (y + 1)h!. First note that since y is even, x is odd by definition. Secondly, if we
expand the product in the definition of x, we obtain a polynomial in y with constant term 1; in
this polynomial, each of the non-constant terms is divisible by y and therefore by every element
of F . Then, the presence of the constant term 1 in the polynomial implies that gcd(x, y) = 1
and in particular that x is not divisible by any element of F ∪ {2}. (†)

We choose the first four entries of the n-tuple (a1, . . . , an) as follows:

− a1 = (x+ y)5;
− a2 = −(x− y)5;
− a3 = −(10y − 1) · x4;
− a4 = −(x2 + 10y3)2.

Of course we haven’t fixed h yet, so that the exact value of x is not yet determined, and the
same is consequently true for a1, . . . , an. However, we can already observe that

a1 + a2 + a3 + a4 = −2y5 + 100y6 (‡)

and therefore that a1 + a2 + a3 + a4 is independent of x. We continue with the definition of
a7, a8, . . . , an in a way that does not depend on x.

− Choose a7, a8, . . . , an as negated odd prime numbers such that |a7| > 700y6 and such that for
k = 7, 8, . . . , n− 1 we have 6 · |ak| < |ak+1|.

6 In 2000, Browkin [1] stated that nothing is known about this case.
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Finally, we choose the remaining two elements a5 and a6; by the preceding choices and arguments
the following definition is independent of x.

− Let u be such that u + a1 + a2 + a3 + a4 + (
∑n

k=7 an) = 0 and let m = 4u. By the previous
choices, it is easy to see that u must be a positive number. So we can apply Proposition 11
to these values of u and m and let a5 and a6 be the numbers v and w with u = v + w as
provided by that proposition.

We will show in a moment that, for every h chosen large enough, all four conditions in Open
Problem 7 are met by (a1, . . . , an). We claim that this implies that Q(E,F, n) ≥ 5/4. To see that,
note that rad(a1 · . . . · an) will be a divisor of

(x+ y) · (x− y) · (10y − 1) · (x2 + 10y3) · a5 · . . . · an.

Letting h go to infinity does not affect a5, . . . , an and inside the other terms in the above ex-
pression only x grows with h while all other parts remain constant. Thus, rad(a1 · . . . · an)
is bounded from above by a polynomial in x of degree at most 4, while, due to the choice
of a1, max{|a1|, |a2|, . . . , |an|} is bounded from below by a polynomial in x of degree 5. Using
L’Hôpital’s rule and the chain rule, Q(E,F, n) ≥ 5/4.

It remains to show that for all h large enough, all four conditions in Open Problem 7 are met
by (a1, . . . , an). That condition (ii) holds is immediate by how we chose a5 and a6.

By an analogous argument to that used for (†), it can be seen that each of a1, a2, a3, a4
equals 1 modulo any prime factor of y, thus is not divisible by any element of F . The same is
true by construction for each of a5, . . . , an. It follows that condition (iv) ist met.

Next, we establish condition (i) in several intermediate steps:

− a1 and a2 are coprime: Note that any common prime divider of a1 and a2 must also be a
factor of 2y, as it must divide x+y and x−y and thus their difference. Note that y is even by
construction, so that y has the same prime dividers as 2y. Thus, any common prime divider
of a1 and a2 must also divide y and, consequently, x. But we already know that gcd(x, y) = 1.

− a3 is coprime with both a1 and a2: The factor x of a3 is coprime with x + y and x− y, as x
is coprime to y. Furthermore, x = (y + 1)h! ≡ 1 (mod 10y − 1) and thus

x+ y ≡ 1 + y ̸≡ 0 (mod 10y − 1) and x− y ≡ −y + 1 ̸≡ 0 (mod 10y − 1).

Consequently, 10y−1 divides neither x+y nor x−y and, together with the fact that 10y−1
is prime, we obtain that a3 is coprime with a1 and a2.

− a3 and a4 are coprime: We establish this by showing that a4 is coprime with both factors
of a3. First, to determine gcd(10y − 1, a4), note that x2 ≡ 1 (mod 10y − 1). Observe that

100y2 − 1 = (10y − 1) · (10y + 1) ≡ 0 (mod 10y − 1),

which implies y2 + 1 ≡ 101y2 (mod 10y − 1). Thus

x2 + 10y3 ≡ 1 + 10y3 ≡ (10y − 1) · y2 + y2 + 1 ≡ 101y2 (mod 10y − 1).
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Trivially, the primes 101 and 10y− 1 > 101 have no common factor. And any common factor
of y2 with 10y − 1 would also have to be a factor of y, thus of 10y, thus of 1. As a result,
gcd(10y − 1, a4) = 1.
Secondly, we must determine gcd(x, a4) = gcd(x, x2 + 10y3). Clearly, this number must di-
vide 10y3. But by (†), no divider of y nor any element of F ∪ {2} divides x. Therefore,
gcd(x, a4) = 1.

− a4 is coprime with both a1 and a2: Clearly, a1 · a2 is a power of (x+ y)(x− y) = x2 − y2 and
a4 is a (negated) power of x2 + 10y3. Any common prime factor p of a4 with either a1 or a2
would therefore have to be a factor of the difference between the previous two expressions,
thus of 10y3 + y2 = y2 · (10y + 1). Such a p divides one of x+ y or x− y; thus, it cannot be
a factor of y, because otherwise it would divide x, contradicting the coprimeness of x and y.
Thus, such a p would have to be a prime factor of 10y + 1. Recall that x ≡ 1 (mod 10y + 1),
thus in particular x ≡ 1 (mod p). Since p divides one of x+y or x−y, it would also be a prime
factor of either (10y+1)−10 ·(x+y) = −10x+1 ≡ −9 (mod p) or of (10y+1)+10 ·(x−y) =
10x + 1 ≡ 11 (mod p). This can only be true if p ∈ {3, 11}, which is impossible since both
3 and 11 divide y and thus cannot divide 10y + 1. In conclusion, a4 is coprime with both a1
and a2.

− Each of a1, a2, a3 is coprime with each of a5, . . . , an: If h is chosen large enough, then by
construction, a5 and a6 only have prime factors between m > |a7| > 700y6 and h. Observe
that for any prime p with y + 1 < m < p ≤ h it holds that p − 1 divides h!, and thus, by
Fermat’s Little Theorem, x = (y+1)h! ≡ 1 (mod p). This holds in particular for any prime p
dividing a5 or a6 and for all primes p ∈ {a7, a8, . . . , an}; thus any such p is coprime with x.
Since for such a p we also have p > 700y6 by construction, it follows that p is coprime with
x + y and x − y as well. As we trivially have p ̸= 10y − 1, we can conclude that p does not
divide any of a1, a2, a3.

− a4 is coprime with each of a5, . . . , an: For the same reasons as in the previous item, we only
need to consider potential prime factors p between 700y6 and h. For such p, we again have
that x ≡ 1 (mod p) by the choice of x. Then x2+10y3 ≡ 1+10y3 ̸≡ 0 (mod p), which implies
that p does not divide a4.

− a5, . . . , an are pairwise coprime: First, being pairwise distinct primes, the a7, a8 . . . , an are
trivially pairwise coprime. Secondly, recall how a5 and a6 were defined using Proposition 11
in such a way as to ensure that a5 and a6 are coprime with each other. Finally, the propo-
sition also guarantees that no primes less than m divide a5 or a6; as m is larger than any
of |ai| for 7 ≤ i ≤ n, we have in particular that both of a5 and a6 are coprime with each
of a7, a8 . . . , an.

It remains to establish the subsum condition (iii) for (a1, . . . , an) via a series of claims. In the
following, let b1, b2, . . . , bn ∈ {−1, 0,+1} be such that

∑n
k=1 bk · ak = 0.

− It must hold that b1 = b2 = b3 = b4: Recall that the a5, . . . , an do not depend on x. Since
x = (y+1)h!, this implies for h large enough that x > 100 ·(|a5|+ |a6|+ . . .+ |an|). Thus, if for
some choice of (b1, b2, b3, b4) we have that |

∑4
k=1 bk · ak| > x, then no choice of (b5, b6, . . . , bn)
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can lead to
∑n

k=1 bk · ak = 0. We will argue that this must be the case unless we have
b1 = b2 = b3 = b4.
So let us inspect all possible choices of (b1, b2, b3, b4). We first exclude some trivial cases:
First, if only one of b1, b2, b3, b4 is non-zero, then clearly |

∑4
k=1 bk · ak| > x. Secondly, the

fact that a1 has positive sign while a2, a3, a4 have negative sign means that for some choices
of (b1, b2, b3, b4) we have |

∑4
k=1 bk · ak| > x simply because either all summands are positive

or all are negative; we omit these cases. Finally, to reduce further the numbers of cases to
inspect, we assume w.l.o.g. that bi = 1 when 1 ≤ i ≤ 4 is smallest such that bi ̸= 0; the case
bi = −1 is symmetric. Then the remaining cases that do not have b1 = b2 = b3 = b4 are
− a1 + a2 + b3 · a4 + b4 · a4 where (b3, b4) ̸= (1, 1),
− a1 − a2 + b3 · a4 + b4 · a4,
− a1 + b3 · a3 + b4 · a4,
− a2 + b3 · a3 + b4 · a4,
− a3 + b4 · a4,
and all of them clearly have absolute values that are lower-bounded by x. Thus, the only
remaining cases are those where b1 = b2 = b3 = b4.

With this property established, we can from now on treat a1 + · · ·+ a4 as a single number that
can either be part of a subsum or not.

− It must hold that b5 = b6: Note that by the choice of a5 and a6 and by the properties ensured
by Proposition 11 we have that a5 > 0 and a6 < 0 and that

a5, |a6| > (|a1|+ |a2|+ |a3|+ |a4|) +
n∑

k=7

|an|.

Thus, in any zero subsum, a5 and a6 must either not occur at all or in such a way that they
partly cancel each other out additively. This is only possible when b5 = b6.

Again, from now on we treat a5 + a6 as a single number that may be part of a subsum or not.
To complete the proof we distinguish all three possible cases concerning the value of b5 = b6.

− If b5 = b6 = 0, then the subsum is empty: This is because in the sequence

|a1 + a2 + a3 + a4|, |a7|, |a8|, . . . , |an|

each entry is more than 6 times the previous one; so that the only way of obtaining a zero
subsum in the case b5 = b6 = 0 is by letting bk = 0 for all 1 ≤ k ≤ n.

− If b5 = b6 = 1, then bk = 1 for all 1 ≤ k ≤ n: Assume that for some choice of (bk)1≤k≤n with
b5 = b6 = 1 we have

∑n
k=1 bk · ak = 0. Since we also have

∑n
k=1 ak = 0 it follows that

n∑
k=1

ak −
n∑

k=1

bk · ak = (1− b1) · (a1 + a2 + a3 + a4) +
n∑

k=7

(1− bk) · ak = 0,

where 1− bk ∈ {0, 1, 2} for k ∈ {1, 7, 8, . . . , n}. For the same reason as in the previous item,
the only choice of (1− bk)k∈{1,7,8,...,n} that makes this equality true is 1− bk = 0 (thus bk = 1)
for all k ∈ {1, 7, 8, . . . , n}.
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− If b5 = b6 = −1, then bk = −1 for all 1 ≤ k ≤ n: This is shown by a symmetric argument.

Thus condition (iii) holds, completing the proof. ⊓⊔

We can obtain the following corollary by adapting the proof of Theorem 10 for the case n = 5
and the proof of Theorem 12 for the case n ≥ 6. The details are left to the reader.

Corollary 14. If n ≥ 5 is odd and F ⊆ {3, 4, . . . ,m} does not contain any multiple of 2 or 5
then QU({1},F,n) ≥ 5/3.

Next, we prove the following theorem.

Theorem 15. Let F be a finite set with min(F ) ≥ 3. Then QU({1},F,5) > 1.

We point out that, to prove this statement, the approaches of Theorems 9 and 10 will not work,
as the use of binomial formulas there had the effect that one of the entries of the constructed
5-tuples are divisible by 3 or 5. The technique used in the proof of Theorem 12 is not applicable
either, as the splitting of one term into two via Proposition 11 can only be carried out for n-tuples
with n ≥ 6. We thus require a new argument.

Proof. As before, we can assume that F = {3, 4, 5, . . . ,m} for some m. Let p = h! − 1 for
h > 9m and keep h and p constant during the remainder of the construction. Let x = k! in
dependency on some sufficiently large parameter k > p; as in the previous constructions, we will
show that for sufficiently large k all required properties are ensured. Then we will let k go to
infinity to obtain infinitely many examples that witness a lower bound for QU({1},F,5).

Consider the following numbers. The choice of a1, a2, a3 and a4 + a5 follows Ramaekers [14,
Section 4.4]. As in the previous construction, the fourth number is then split into two summands:

− a1 = (x+ 1)p;
− a2 = −(x− 1)p;
− a3 = −2p · (x2 + (p− 2)/3)(p−1)/2;
− a4 = −(a1 + a2 + a3 + y) for some odd number y > p to be chosen below;
− a5 = y.

Note that, as a polynomial in x, a1 + a2 is of degree p − 1 and even, that is, of the form
c0+c2x

2+c4x
4+c6x

6+ . . . Also note that a1+a2+a3 is an even polynomial in x of degree p−5.
Finally note that, when dividing an even polynomial by a polynomial of the form x2+c, for c ∈ Z,
then the remainder is an integer. Thus, modulo x2, modulo x2 − 1 and modulo x2 + (p − 2)/3,
we have that a1 + a2 + a3 is congruent to three integers z0, z1 and z2, respectively. We choose y
such that

− none of y, y + z0, y + z1, y + z2 has a prime factor q with 5 ≤ q ≤ (2p)p + |z0|+ |z1|+ |z2|,
− neither y nor y + z0 are divisible by 2 or 3.
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We achieve this by a process that is similar to the one used in the proof of Proposition 11. Let
r =

∏
q≤(2p)p+|z0|+|z1|+|z2| ∧ q prime and proceed as follows.

(1) Let y = 1.
(2) For all primes q with 5 ≤ q ≤ (2p)p + |z0|+ |z1|+ |z2|,
(3) let y = min({y + i · r/q : 0 ≤ i ≤ 4} ∩ {y′ : q ∤ y′ ∧ q ∤ y′ + z0 ∧ q ∤ y′ + z1 ∧ q ∤ y′ + z2}).

Note that q does not divide r/q, and thus, for each z ∈ {y, y + z0, y + z1, y + z2}, at most one
among z, z + r/q, . . . , z + 4 · r/q can be a multiple of q. Thus, by the pigeonhole principle, the
choice of y in (3) is always possible. That the final y emerging from this process has the first of
the two stipulated properties then follows from an argument analogous to that used in the proof
of Proposition 11.

To argue that y has the second property, we first claim that z0 is divisible by 6. An easy
calculation shows that z0 = 2 − 2p · ((p − 2)/3)(p−1)/2, an even number. To see that z0 ≡
0 (mod 3), it is enough to show that 2p · ((p − 2)/3)(p−1)/2 ≡ 2 (mod 3). For that, note that,
as h! ≡ 0 (mod 4), we have that p − 1 = h! − 2 ≡ 2 (mod 4), and thus that (p − 1)/2 is odd.
Recall that p = h!− 1, thus p ≡ 8 (mod 9). Now p− 2 ≡ 6 (mod 9) and (p− 2)/3 ≡ 2 (mod 3).
Now, (p− 2)/3 ≡ p ≡ 2 (mod 3) So 2p · ((p− 2)/3)(p−1)/2 ≡ 2 (mod 3) as it is a product of an
odd number of factors all of which are congruent to 2 modulo 3. Thus, z0 ≡ 0 (mod 6), and after
the execution of line (1) of the algorithm, y ≡ y + z0 ≡ 1 (mod 6). As all terms r/q appearing in
the algorithm are multiples of 6, this last property is invariant during the algorithm’s execution,
and the final y and y + z0 are not divisible by 2 or 3, either.

With y chosen, we can now begin to verify properties (i)–(iv) stipulated in Open Problem 7.
Now note that x will be a multiple of 3 due to the choice of the corresponding factorial and

that (p − 2)/3 and p are not multiples of 3, due to p + 1 being a multiple of 9, for that reason
a3 is also not a multiple of 3. Furthermore, 2p(x2 − (p − 2)/3)(p−1)/2 is not divisible by 4, as p
is odd, x is even, p + 1 is a multiple of 12 and (p− 2)/3 modulo 6 is either 1 or 3 or 5. Taking
into account that all odd prime factors q of members of F divide x and that p, (p− 2)/3 are not
multiples of q, the numbers x+ 1, x− 1 and x2 − (p− 2)/3 are not multiples of q. Furthermore,
it had been shown above that also y+ z0 is not a multiple of q. So none of a1, a2, a3, a4, a5 is the
multiple of a member of F and condition (iv) is satisfied.

Recall that the properties of this theorem where to be shown for all sufficiently large k only
and that x = k!; here sufficiently implies in particular that k ≥ 2p+|y|+|z0+y|+|z1+y|+|z2+y|
and every prime factor of these numbers is a factor of x. Furthermore, any prime factor q of
y, z0 + y, z1 + y, z2 + y is neither a factor of 2p nor of (p− 2)/3; thus q is not a factor of a1, a2
or a3, in particular a1, a2, a3 are all three coprime to a5. Furthermore, if q divides one of a1 or
a2 then q must also divide x2 − 1 and the remainder of a4 by x2 − 1 is z0 + y. Thus if q would
also divide a4 then q must divide z0 + y and that was previously excluded. Similarly, if q divides
a3 and a4 then q must divide x2 + (p − 2)/3 and thus q must be a factor of z2 + y what was
previously excluded.

Furthermore, every prime factor of a5 will be a factor of x and as a4 modulo x equals to
2p · ((p − 2)/3)(p−1)/2, the common prime factors must be a factor of the latter. But these had
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been excluded above from being a factor of a4. Thus a4 and a5 are coprime. a1 and a2 are coprime,
as x is even and thus x−1 and x+1 are coprime. We have that (x2+(p−2)/3)−(x2−1) = (p−5)/3.
So all the common factors of x+1 or x−1 on one side and a3 on the other side are either factors
of 2p or factors of (p − 5)/3. As k > 3p, these numbers are factors of x and thus not factors of
either x+ 1 or x− 1. So a3 is coprime to both a1 and a2. Thus condition (i) is satisfied.

Condition (ii) is also satisfied, by the way the numbers are chosen. Condition (iii) is satisfied,
as again one can look at a1, a2, a3, a4 as polynomials in x and a subsum can only be 0 when
these polynomials eliminate all terms depending on x. a1 and a2 have degree p and need to be
added in order to obtain degree p− 1, this needs a3 to be added in order to get a lower degree;
the resulting degree of p − 5 is the degree of a4 and that can only be brought to down to the
constant y by adding a4 as well. The constant y needs to be added in order to get 0. These
degree arguments work for all sufficiently large k and x = k!.

Furthermore, one can see from the degree arguments that rad(a1 · a2 · a3 · a4 · a5) has, in
dependence of x, has the upper size bound (x2 − 1) · (x2 + (p − 2)/3) · O(xp−5) · y which is a
polynomial of degree p− 1 using that y is constant but x can be any k! for sufficiently large k.
Thus one can esitmate that for k → ∞ the quality is bounded by

p · log(x+ 1)/ log((x2 − 1) · (x2 + (p− 2)/3) ·O(xp−5) · y)

which is similar to
p · log(x)/ log(x4 · xp−5 ·O(1))

and thus, one can argue that QU({1},F,5) ≥ p/(p− 1) > 1. This completes the proof. ⊓⊔

Note that the reason why we can only obtain the strict lower bound 1 using the technique just
described is that the value of the ratio p/(p− 1) heavily depends on the choice of F .

3 The Role of the Exception Set

Note that we set the requirement that exception sets E have to be finite. The reason is that
otherwise certain choices like E = {2h, 2h + 1 : h ∈ N} would, for example, allow the tuples
((2h + 1)3,−23h,−3 · 2h · (2h + 1),−1) for all h ∈ N which would give the same lower bound for
QU(E,∅,4) as the 4-conjecture, assuming that still all numbers as a set should be coprime. If one
does also not assume the latter, then for the just chosen E one would even have QU(E,∅,3) = ∞.
For finite sets E, the set-wise coprime requirement is not stated, as the value QU(E,F,n) does not
depend on whether the set-wise coprimeness condition is required.

Davies (see Browkin [1]) provides a construction showing that QU({1,2},∅,4) ≥ 3/2 and Ra-
maekers [14, Section 4.4], citing Pomerance [13], discusses a construction giving the better lower
bound QU({1,2,4,8},∅,4) ≥ 5/3. We state the latter result in the framework of our paper. Note how
it contrasts with Ramaekers’ conjecture that QR(4) = 1; this demonstrates that just adding 2
into E is a game changer.

Theorem 16. If F ⊂ N is finite such that 2, 4, 5, 8, 10 /∈ F , then QU({1,2},F,4) ≥ 5/3.
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Proof. Witnessed by the family (depending on k) of numbers a1 = (x + 1)5, a2 = −(x − 1)5,
a3 = −10 · (x2 + 1)2 and a4 = 8 with y being the product of all members of F ∪ {2, 3, 5, 7} and
x = (y + 1)k − 1 with k ∈ {2, 3, . . .}.

As all members of F ∪{2, 3, 5, 7} divide x, all members of this set are coprime to x− 1, x+1
and x2 + 1. Thus the only factors of a1, a2, a3, a4 which can occur in F are those of 10 and 8
which are explicitly excluded from F . Thus condition (iv) is satisfied.

Furthermore, x− 1 and x+ 1 are coprime, as they are odd; x2 − 1 and 10 · (x2 + 1) are also
coprime, as x2 is a multiple of 2 · 3 · 5. The greatest common divisor of −10 · (x2 + 1)2 and 8 is
2 which is a member of the exception set. So condition (i) is satisfied.

Condition (ii) is obtained by simply forming a1 + a2 + a3 + a4 for arbitary x; the resulting
polynomial in x vanishes.

Now one looks at possible subsums. It is easy to see that (x + 1)5 and (x − 1)5 have to be
subtracted from each other in order to get a polynomial in x of degree 4 or less; only such a
polynomial has a chance to be made to 0 when adding or subtracting the other two terms. When
considering sums or subsums of the first three terms, only in two cases the terms depending on
x disappear from the sum, namely in the cases a1− a2− a3 or −a1+ a2+ a3. The result is either
a4 or −a4. Furthermore, as x ≥ 210, none of the subsums a3, a4, a3+a4, a3−a4 is 0. So condition
(iii) is satisfied as well.

As also in previous calculations, one shows that these examples verify that Q({1, 2}, F, n) ≥
5/3 by the fact that rad(a1 · a2 · a3 · a4) is a factor of 10 · (y+1) · (x− 1) · (x2 +1) which is O(x3)
due to y + 1 and 10 being constant while a1 = (x+ 1)5. ⊓⊔

Example 17. We have QU({1,2,3,4,6,7,12,14},∅,5) ≥ 7/4.

This is witnessed by the quintuples of the form ((x+ 1)7,−(x− 1)7,−14 · (x2 + 1)3,−28x4, 12),
where x = 210k+2 and k ∈ N. We do not provide further details of the proof, as the following
example gives an even better bound.

Example 18. There is a finite set E with QU(E,∅,5) ≥ 9/5.

Proof. One chooses the following numbers:

1. a1 = 189(x+ 1)9;
2. a2 = −189(x− 1)9;
3. a3 = −42(3x2 + 7)4;
4. a4 = 16(63x2 + 79)2;
5. a5 = 608.

Here one chooses x itself to be 211k−1 for some natural number k. Now one has that the greatest
common divisor of a1 and a2 is 189, the one of a1 ·a2 and a3 is 21 times a factor of 10, the one of
a1 · a2 and a4 is a factor of 142 and the one of a3 and a4 is a factor of 136. The greatest common
divisor of a5 and any number is a factor of 608. Now choosing E = {r : r is a factor of one of
the numbers 136, 189, 142, 210, 608} satisfies (i); note that E ⊆ {1, 2, 3, . . . , 608}.
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One can verify by adding the polynomials that (ii) is satisfied. Condition (iii) holds for all
sufficiently large x: when x is large, the subsum must also be 0 when viewed as a polynomial in
x; for that reason, taking the degrees of the polynomials into account, either a1, a2 must both
appear in the subsum or only a5 appears which would then give the nonzero number a5 or −a5.
If a1 and a2 both appear, then it must be of the form a1 + a2 for eliminating the ninth power;
as the result is a polynomial of degree 8, one has to subtract a3 but then again the result is a
polynomial of degree 4, so the subsum needs to be a1 + a2 + a3 + a4 and has as result −a5, so
a5 must also be added and the so (iii) is satisfied.

Condition (iv) is void.

One sees that x+1 is selected to be a power of a small number 211. So rad(a1 ·a2 ·a3 ·a4 ·a5)
is a factor of 189 · 42 · 16 · 608 · 211 · (x− 1) · (3x2 +7) · (63x2 +79) which is a polynomial in x of
degree 5 while a1 is a polynomial in x of degree 9; this gives the lower bound 9/5 for large x. ⊓⊔

4 Gaussian Integers and the case n = 4

Gaussian integers (also called the complex integers) are integers augmented by the imaginary
unit i =

√
−1 and form the set Z + Z · i. Similarly, Eisenstein and others considered complex

integers which have as units not the fourth roots of 1 but all sixth roots of 1. Wagon [21] gives
some overview on this approach together with Mathematica algorithms to hand them. However,
we decided to stick to the easier case of Gaussian integers.

The existence of complex roots allows to factorise numbers which are prime numbers in the
ratioanl integers; here rational integers denote the elements of Z, that is, they are those Gaussian
integers which are at the same time rational numbers and do not have imaginary components
[6]. For Gaussian integers, 2 = i · (1− i)2 and 5 = (2 + i) · (2− i); in general, a rational integer
z ≥ 2 can be properly factorised if z is not a prime in the rational integers or z = x2 + y2 for
two rational integers x, y where then z = (x+ yi) · (x− yi).

Let C(E,F, n) denote the counterpart of U(E,F, n) when allowing Gaussian integers in place
of rational integers, here a Gaussian integer x+ yi has the norm x2 + y2, the square root of this
norm is called the absolute value. As norms are rational integers while the absolute value may be
not, it is preferred to work with norms in number theory. The norm (or the absolute value) goes
into the formula of the quality before taking the logarithms. Furthermore, primes in the Gaussian
integers are defined such that they are neither units nor zero nor have other factors than units
or products of themselves with units; two primes are associates if they can be obtained from
each other by multiplying with units. Given an infinite set A of n-tuples of Gaussian integers
with a one-one enumeration a1, a2, . . . where ak = (ak,1, . . . , ak,n), the quality of the set A and
its elements is defined as follows:

QA = lim sup
k→∞

q(ak) where

q(ak,1, . . . , ak,n) =
log max{norm(ak,1), . . . , norm(ak,n)}

radnorm(ak1 · . . . · ak,n)
.
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Here radnorm(b) is the maximum of the norms of the products q of primefactors of b which are
not associates of each other. Thus one looks at QC(E,F,n) for the set C(E,F, n) of all n-tuples
(a1, a2, . . . , an) of Gaussian integers satisfying that no factor in F divides any component ak and
the common factors of ai, aj with i ̸= j are members of E and every sum with

∑
bkak = 0 and

bk ∈ {−1, 0, 1} satisfies that either all bk are 0 or all bk are nonzero. In other words, C(E,F, n)
is the Gaussian integer analogue of the set U(E,F, n) in the rational integers.

Darmon and Granville cite correspondence with Noam D. Elkies for various examples in their
article; some of these examples imply that QC({1,2},∅,4) > 1.

Theorem 19 (Elkies [4]). In the Gaussian integers, QC({1},∅,4) ≥ 5/3.

Proof. One of Elkies’ examples [4, item (e) on page 542], shows the following polynomial identity
of degree 5 for the complex rationals which, after multiplying with the denominators, can be
brought into this form:

(x2 + 2 · x · y − 2 · y2)5 − (x2 − 2 · x · y − 2 · y2)5 + i · (−x2 + 2i · x · y − 2 · y2)5 −
i · (−x2 − 2i · x · y − 2 · y2)5 = 0.

Denote the four additive terms with a5, −b5, i · c5 and −i · d5. One can see that a − b and
c − d are, up to multiplications with units, products of x and 2y. Furthermore, a · b − c · d =
(x4 − 8x2y2 + 4y4) − (x4 + 8x2y2 + 4y4) = −16x2y2. Thus one can conclude that any common
primefactor of two of these numbers is a factor of x or 2y.

While Elkies’ used this identity to solve equations where, when multiplied with some constant
factors, two fifth powers and two tenth powers sum up to 0, we go another way and choose x
and y such that b = 1, that is, that x2− 2xy− 2y2 = (x− y)2− 3y2 = 1. Here it is needed that x
is odd. Now the greatest common divisor of x and 2y is 1, as otherwise the Pell equation would
not have a solution, as when both x, y are multiples of p so is (x− y)2 − 3y2 and it could not be
1. Furthermore, no prime factor p of x or of 2y is a factor of a, b, c or d, as each of a, b, c, d is
the sum of two multiples of p and one non-multiple of p. Thus no prime factors of x and 2y can
be factors of a, b, c, d, but all common prime factors of two of a, b, c, d are also a prime factor of
either x or 2y. Thus a, b, c, d are pairwise coprime.

The so obtained choice allows to conclude that the largest of the four numbers has the norm

max{norm(a), norm(b), norm(c), norm(d)}5

while the norm of product of the three non-unit components is bounded from above by

max{norm(a), norm(b), norm(c), norm(d)}3

so that the quality is at least 5/3.

This result can be, using the Pell equation technique, generalised to the following one.

Theorem 20. If n ≥ 4 and F is a finite set of Gaussian integers which contains neither units
nor units multiplied with 1 + i then QC({1},F,n) ≥ 5/3.
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Proof. Let s be the product of all norms of members of F times 2310; note that the norm of a
complex number is the square of its real part plus the square of its imaginary part, for example,
the norm of 7 + 9i is 72 + 92 = 130. If n is odd then let m = 5 else let m = 4. If n > 5 then
one chooses n−m− 2 odd prime numbers (in the rational integers) an, an−1, . . . , am+2 such that
each of them is larger than s and thus coprime to all members of F and each ak−1 is at least five
times as large as ak and each prime an, an−1, . . . , am+2 has modulo 4 the value 3, so that these
prime numbers are also prime numbers in the Gaussian integers. Now let t be the product of s
and the absolute values of am+2, am+3, . . . , an; furthermore, choose using Proposition 11 am and
am+1 to be rational integers such that 1+

∑
k=m,...,n ak = 0 and no rational prime number below

10 · t divides either am or am+1. Let u = t · am · am+1.
If n = m, that is, n ∈ {4, 5}, one skips the above and just selects u to be t as calculated

above and am will be chosen as below.
Now one let (v, w) be a sufficiently large solution of the Pell Equation v2 − w2 · 3u2 = 1; as

3u2 is not a perfect square, it follows from a Theorem of Lagrange that there are infinitely many
such pairs (v, w). Now let y = u · w and x = v + u · w and let in the case that n is even

a1 = (x2 + 2xy − 2y2)5,

−1 = −(x2 − 2 · x · y − 2 · y2)5,
a2 = i · (−x2 + 2i · x · y − 2 · y2)5,
a3 =−i · (−x2 − 2i · x · y − 2 · y2)5,
a4 =−1 in the case that n = 4,

and in the case of n being odd (including the so far ignored case n = 5),

a1 = i · (x2 + 2xy − 2y2)5,

−i =−i · (x2 − 2 · x · y − 2 · y2)5,
a2 = i2 · (−x2 + 2i · x · y − 2 · y2)5,
a3 =−i2 · (−x2 − 2i · x · y − 2 · y2)5,
a4 = 1− i,

a5 =−1 in the case that n = 5,

that is, one multiplies the numbers of the case of n being odd with i and adds a4 as one even
Gaussian integer to allow all others to be odd; note that here a Gaussian integer is even iff the
sum of the two coordinates is even iff the Gaussian integer is not coprime to 2. Furthermore,
for n = m, one let am be −1 what is otherwise the sum of

∑
k=m,...,n am. Note that the second

equation is in both cases satisfied by the choice of x, y and that the other three numbers are
chosen in the same way as in Theorem 19. Note that all members of F and 2, am, am+1, . . . , an
are factors of u and thus of y and therefore a1, a2, a3 are coprime to these numbers, as proven
in Theorem 19. Furthermore, if n is odd then a4 is the only even number and it is a prime
number of the Gaussian integers dividing 2. Here prime numbers p in the Gaussian integers are
considered to be identical with −p, i · p,−i · p.
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It remains to show the subsum property. For this let p be a rational integer prime factor of
either am or am+1. Now consider the case that p divides am, the case of a divider of am+1 is
symmetric. So am is 0 modulo p. Furthermore, note that y is 0 modulo p and therefore x = 1
modulo p. The primes am+2, am+3, . . . , an are all equal to themselves and smaller than p/2 − 5
when taken as remainder of the division by p. Thus one has the following situation modulo p:

If n is even
then m = 4 and a1 + a2 + a3 = 1 and 1 +

∑
k>m ak = 0

else m = 5 and a1 + a2 + a3 + a4 = 1 and 1 +
∑

k>m ak = 0.

In summary
∑

k<m ak = 1. Furthermore, the numbers am+2, . . . , an are all at least 11 and form an
ascending chain of numbers smaller than p/2− 5 with each member being five times larger than
the previous one and their sum is, modulo p, equal to −am+1. Only the numbers a1, a2, . . . , am−1

have an imaginary component and the same is true modulo p, where one considers them as a real
number from {0, 1, . . . , p− 1} added with an imaginary number from i · {0, 1, . . . , p− 1} and for
the ease of notation, one identifies −k with p− k. As am+1 is the sum of the others and the first
m−1 of them have norms bounded by 2 and the others form sum of each term in the sum being
more than five times the previous one and thus more than the sum of the absolute values of the
previous ones, the only possible nontrivial zero sums of these numbers involve a1, a2, . . . , am−1

and am. However, if p would be a factor of am+1, one would conclude that the only nontrivial
zero sums of this numbers involve a1, a2, . . . , am−1 and am+1. The combination of this gives that
the only nontrivial sum, if any, would be

∑
k<m ak · bk with bk ∈ {−1, 0, 1}. These have to be 0

also modulo p and therefore one has to look at the following possible cases.

If n is even then this would only be the case a2−a3 = 0, however, it follows from the proof of
Theorem 19 that for the full numbers without remainder that this subsum is not 0. If n is odd
then there are the cases a2−a3 = 0 (already excluded), a1+a4−a2 = 0 and a1+a4+a3 = 0. To
exclude the other two, one takes a prime number q dividing x and gets, modulo q, that −2y2 = 1.
It follows that the values of a1 + a4 − a2 and a1 + a4 + a3 are, modulo q, both 2, not 0. Thus no
nontrivial subsum gives 0.

Furthermore, in the case n = 5, there are more possible equalities modulo p; here p is a
prime factor of v and q is a prime factor of u ·w and thus modulo p, 2y = 0 and x2 = 1; modulo
q, x = 0 and −2y2 = 1. Modulo p, the nontrivial subsums are as follows: a2+a3 = 0, a2+a5 = 0,
−a3 + a5 = 0, a1 + a4 + a3 = 0, a1 + a4 − a2 = 0, a1 + a4 + a5 = 0. Modulo q, the nontrivial
subsums are as follows: a2+a3 = 0, −a2+a5 = 0, a3+a5 = 0, a1+a4−a3 = 0, a1+a4+a2 = 0,
a1 + a4 + a5 = 0. Now one considers only those nontrivial subsums which occur both modulo p
and modulo q and these are a2 + a3 = 0 and a1 + a4 + a5 = 0. The first one was excluded in
Theorem 19 and the second one says implies that (x2+2xy−y2)5−1 = 0. As x2−2xy−y2 = 1,
this equation equals to (1 + 4xy)5 − 1 = 0 and that is not satisfied, as x and y are both integers
which are not zero. So there is no nontrivial subsum for n = 5. In the case that n = 4, it is
already shown in Theorem 19 that there are no nontrivial subsums.

Note, however, that the numbers a1, . . . , an are chosen such that if all bk are 1 then they sum
up to 0. Furthermore, the values a4, . . . , an are all constant in the construction while a1, a2, a3
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depend on v, w and can be arbitrary large. Let

d = max{|x2 + 2xy − 2y2|, | − x2 + 2i · xy − 2y2|, | − x2 − 2i · xy − 2y2|}

and one has the the quality is at least the quotient of log(d5) and log(d3 · c) where the constant
part c is the product a4 · a5 · . . . · an which is independent of d and d can be made as large as
possible. Thus one has that, in the Gaussian integers, QC({1},F,n) ≥ 5/3 for all n ≥ 4.

Example 21. This example shows that in the Gaussian integers, QC({1},F,4) ≥ 5/3 for the set F
of all prime factors of 2, 3, 5, 7 and QU({1},∅,6) ≥ 5/3.

Although this follows already from the previous theorem, a more direct construction is given
in order to illustrate the previous result; however, this construction does not follow the proof
exactly but has a simpler, more explicit proof idea.

Note that z0 = 3650401 and y0 = 2107560 satisfy z20 − 3y20 = 1. Furthermore, y0 = 23 · 3 · 5 ·
7 · 13 · 193. So x0 = z0 + y0 and y0 provide a, b, c, d as required in Theorem 19 based on Elkies’
identity and all of a, b, c, d do not have any common prime factors with 2, 3, 5, 7 in the Gaussian
integers. The same is true for all xn, yn, zn derived from x0, y0, z0 by

(xn+1, yn+1, zn+1) = (2 · yn · zn + 2 · z2n − 1, 2 · yn · zn, 2 · z2n − 1)

as all yn are multiples of y0. Now let an, bn, cn, dn be derived from xn, yn as in Theorem 19 and
recall that

a5n − b5n + i · c5n − i · d5n = 0.

As bn = 1 by the choice of xn, yn, zn and as none of an, bn, cn, dn has a prime factor in common
with 3, 5, 7, one gets the equality

a5n + i · c5n − i · d5n + 7− 5− 3 = 0

and all its members are coprime. Furthermore, only the second and third term contain an imag-
inary component and thus every subsum must either omit both terms or have them in the same
way added (or negated) as above. When omitted, as one needs an even number of terms to
make the sum of odd numbers to 0, a5n cannot be part of it, as its absolute value is much above
3 + 5 + 7. Furthermore, any sum of two would not give 0, as the sum above does not contain
any v, w with v = w or v = −w. So the part a5n + i · c5n − i · d5n must be part of any subsum, as
otherwise no combination of 3, 5, 7 can make it 0. However, this subsum and its negation only
take the values −1 and 1 and no single of 3, 5, 7 can make these 0. Hence there are no proper
subsums which make the signed sum of less than the six terms to be 0. This completes the proof
of the claims in this example.

5 Hamiltonian Integers and the case n = 3

Hamilton discovered that one can get a skew field extension over the reals by introducing three
square roots i, j and k of −1 which do not commute. Hamiltonian integers are then the restriction
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of this structure to numbers of the form q + ri+ sj+ tk with q, r, s, t ∈ Z. These numbers form
a ring with 1 and the multiplication of integers with these ring elements commutes, but for the
imaginary units the rules i ·j = k, i ·k = −j, j ·k = i and v ·w = −v ·w for distinct v, w ∈ {i, j,k}.
Hardy and Wright [6] give an overview over the Hamiltonian integers, but they also consider the
additional half integers introduced by Hurwitz [8]; Remark 28 below gives more details of this
concept, though we for our work stick to the easier way to define Hamiltonian integers.

Due to noncommutativity, there are certain aspects where the Hamiltonian integers differ
from the rational integers or the Gaussian integers. For example,

13 = −1 · (2i+ 3j)2 = −1 · (1 + 2i+ 2j+ 2k) · (1− 2i− 2j− 2k).

The norm of a Hamiltonian integer q + ri+ sj+ tk is the number q2 + r2 + s2 + t2 – note that
many authors take the square-root of this sum, but this leads here to non-integer values what is
undesirable. The norm of a product is the product of the norms of the factors. A factorisation of
a Hamiltonian integer x is any product of Hamlitonian integers whose value is x. A facorisation
of a tuple (x, y, z) is the product of the factorisations of x, y, z, but not the factorisation of x·y ·z,
as that can have optimiations which the product of factorisations does not have. The radical of
a number or tuple is a factorisation from which one has deleted any entry which occured in the
factorisation already before in the same exact form. So the radical of −1 ·(2i+3j)2 is −1 ·(2i+3j)
and the radical of −1 · (1 + 2i + 2j + 2k) · (1 − 2i − 2j − 2k) is that factorisation itself. Thus
the two factorisations of 13 above have two different radicals. The radnorm of a number or a
tuple is the smallest norm taken by any factorisation of this number or tuple. Due to the first
factorisation, the radnorm of 13 is 13; the second factorisation would give the norm 169 and
is thus suboptimal. The next example shows that there is a reason for defining the radnorm of
tuples differently from the radnorm of the product of their members.

Example 22. radnorm(2, 7) > radnorm(14).

Proof. Note that 14 = −1 · (3i + 2j + k)2 has the radnorm 1 · (32 + 22 + 12) = 14. As 14 is
the product of two different prime numbers and each prime number divides the radnorm of a
natural number, this value is optimal. Now assume that 7 = u ·x ·v ·x ·w where u, v, w are units.
The norm of x has to be 7 and now the task is to show that this factorisation does not exist;
as products of units are units, one can without loss of generality assume that in a factorisation,
two neighbouring units are merged into one. Now one multiplies 7 with v · u−1 from the front
and with u · v−1 · −1 from the back. Note that the units commute with 7 and there is no sign
change. Furthermore, v · u−1 · u = v. For the back side, let w′ = w · u · v−1. Furthermore, let
y = u · x. Note that y and u · x have the same norm, as the norm is multiplicative and u is a
unit. Now the equation is 7 = y · y · w′. The norm of y must be 7. As 7 is not the sum of three
squares, the value of y must be equal to q + ri + sj + tk with three of these coefficients have
the absolute value 1 and one has the absolute value 2. Now the new value in the first position
is q2 − r2 − s2 − t2 which differs from −7 and +7. It also differs from 0 as it is the sum of one
even and three odd integers, independently on how the sign of these integers is taken. Thus the
full number must have also at least one nonzero imaginary component. Multiplying it with w′
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preserves the number of nonzero components in the number and the number is not 7. Hence there
is no factorisation of 7 with two equal factors of norm 7 and so radnorm(7) = 49. Furthermore,
radnorm(2) = 2, as 2 = −1 · (i+ j)2. So radnorm(2, 7) = 98. ⊓⊔

Note that exactly the natural numbers of the form 4a · (8b+ 7) cannot be written as the sum of
three squares and that thus prime numbers of this form cannot be written as u ·y2 for any unit u
by the above proof. Indeed, one can show that these are the only prime numbers which cannot be
factorised this way. All others prime numbers p are of the form r2+s2+t2 with r, s, t ∈ N and thsu
p = −1 · (ri+ sj+ tk)2 which gives that radnorm(p) = p. Furthermore, note that for composite
numbers of the above form, one can sometimes prove that their radnorm is smaller than their
norm. An example is that radnorm(27559) = radnorm(7·3937) ≤ norm(7)·norm(60i+16j+9k) =
49 · 3937 = 192913 while norm(27559) = 759498481. Note that 27559 = 3444 · 8+7 = 7 · 31 · 127,
so it is the product of three prime numbers of the form 8b+7. The preceding discussions justify
the following definition.

Let H(E,F, n) be as in the definition of U(E,F, n) with the only difference that one uses
Hamiltonian integers instead of rational integers; the restrictions on F are modified in the sense
that F does not contain units and that no member of F occurs as factor in any factorisation of the
n-tuple. Furthermore, let H ′(F, n) be the adjustment of the the set B(n) from the n-conjecture
to Hamiltonian integers such that no member of any factorisation of an n-tuple in H ′(F, n)
contains any factor from F and that no nonzero nonunit occurs as factor in some factorisation
of each member of the tuple. The numbers QH(E,F,n) and QH′(F,n) are defined analogously. The
main interest in this section is with the notions of QH({1},F,3) and QH′(F,3). Here for any infinite
set A of Hamiltonian tuples, of all n-tuples in A and any tuple a⃗ = (a1, a2, . . . , an), one defines
the following notions:

maxnorm(⃗a) = max{norm(a1), norm(a2), . . . , norm(an)};

q(⃗a) =
log(maxnorm(⃗a))

log(radnorm(⃗a))
;

Q{a⃗1 ,⃗a2,...} = lim sup
k→∞

q(⃗ak).

Here a⃗1, a⃗2, . . . is a one-one enumeration of some infinite set A of n-tuples in the Hamiltonian in-
tegers. Natural choices for A are A = H(E,F, n) or A = H ′(F, n) as defined above. Furthermore,
q(a1, a2, . . . , an) is called the quality of the tuple (a1, a2, . . . , an).

Note that a square gives a linear factor in the logarithm which cancels out, thus it does not
make a difference if one defines the norm as in this paper or as one takes always the square-root
of the norm as done by many other authors. The next result shows that due to root-taking, even
for integer tuples, the quality of the tuple can be at least 2.

Example 23. For given h, let (ah, bh, ch) = (2h, 1,−2h − 1) and note that for even h = 2ℓ,
−2h − 1 = (2ℓi+ k)2 and for odd h = 2ℓ+ 1, −2h − 1 = (2ℓi+ 2ℓj+ k)2. Thus

q(ah, bh, ch) ≥
log(22h)

log(2h+2)
= 2 · h

h+ 2
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and QH({1},∅,3) ≥ 2. So the abc-conjecture needs, for Hamiltonian integers, even if the numbers
itself are integers, at least constant 2.

Furthermore, note that if F is a set of odd integers, that is of integers with odd norm, then
the product of all numbers in F and of their conjugates — the conjugate of q + ri + sj + tk is
q − ri− sj− tk — gives then an odd number ℓ which is a multiple of all norms of the numbers
in F and also a multiple of all numbers in F . Now choosing h = ℓ! in the above makes sure that
every rational prime number p dividing ℓ satisfies that 2h modulo p is 1 and thus 2h +1 modulo
p is 2, so p is no factor of this number. Furthermore, all odd numbers are coprime with powers
of 2. Thus for any finite set F of odd Hamiltonian integers there are infinitely many h such that
2h, 2h + 1, 1 are all coprime to all members in F and therefore, for such F , QH({1},F,3) ≥ 2 as
well.

The same lower bound can be obtained by studying Pell equations.

Example 24. Let c be a natural number which is not a perfect square. Then v2− c ·w2 = 1 has
infinitely many solutions in the rational integers. Furthermore, x4−c·y4 = 1 and x4−c·(i+j)4·y4 =
1 both have infinitely many solutions in the Hamiltonian integers.

Proof. The solution of each Pell equation in the rational integers is well-known; Lenstra [9]
provides an overview and explain’s Lagrange’s proof for this. Now let (v, w) be a solution of
the equation such that w is a multiple of 8. Note that whenever (v, w) is a solution, so is
(v2+c ·w2, 2vw); repeating this process 3 times gets w to be a multiple of 8 as assumed. Now the
number v2+ c ·w2 is equal to 1 modulo 8, as v2+ c ·w2 has to be odd. Note that squares modulo
8 are either 0 or 1 or 4. Now Legendre’s Three-Square Theorem – see, for instance, Shiu [16] –
says that numbers which are not of the form 42 ·(8b+7) are the sum of three squares. So v2+cw2

is the sum of three squares r2 + s2 + t2 and equal to −x2 for x = ri+ sj+ tk. At least one of vw
and 2vw is not of the form 4a · (8b + 7), as one of them has an odd number of prime factors 2.
Furthermore, note that when v is 1 modulo 8, then the mapping (v, w) 7→ (v2+c ·w2, 2vw) maps
solutions of the Pell equation to new solutions and changes the number of occurrences of the
prime factor 2 in the second number from even to odd or odd to even, thus there are infinitely
many solutions (v, w) of the Pell equation v2 − c · w2 = 1 in the rational integers where vw is
the sum of three squares and furthermore infinitely many solutions (v, w) where 2vw is the sum
of three squares.

First consider numbers v, w where 2vw is not of the form 4a · (8b+7). Then 2vw is of the sum
of three squares and thus equal to −y2 for a Hamiltonian integer y. It follows that x4 − cy4 = 1.

Second consider numbers v, w where vw is not of the form 4a · (8b + 7), then vw is equal
to −y2 for some Hamiltonian integer y and c(2vw)2 = c · 4 · (vw)2 = c · (i + j)4 · y4 for this
Hamiltonian integer y. Now one gets a solution for x4 − c · (i+ j)4 · y4. ⊓⊔

The above examples showed that for abc-triples given by rational integer, the facorisation in the
Hamiltonian integers gives at least the lower bound 2 instead of 1. The next proposition says
if one can construct systematically abc-triples of rational integers which have with respect to
factorising in Hamilitonian integers all a quality above 2 + 2ε then one has indeed proven that
in the rational integers the abc-conjecture has at least lower bound 1 + ε.
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Proposition 25. Let a⃗ = (a1, a2, . . . , an) be a tuple of rational nonzero integers having the sum
0 and let qH(⃗a) be the quality of a⃗ with respect to factorisation in the Hamiltonian integers and
qZ(⃗a) be the quality of a⃗ with respect to factorisation in the rational integers. Now qZ(⃗a) ≤
qH(⃗a) ≤ 2qZ(⃗a).

For all applicable E,F, n,

QU(E,F,n) ≤ QH(E,F,n)∩Zn ≤ 2 ·QU(E,F,n) and QA(n) ≤ QH′(∅,n)∩Zn ≤ 2 ·QA(n),

where the Q on the middle of each sequence of inequalities refers to factorisation in the Hamil-
tonian integers and the other two numbers to factorisation in the rational integers.

Proof. Note that in factorisations the part of the norm contributed by units is 1 and thus one
can multiply out two neighbouring units belonging to the same component of the tuple without
changing the norm of the factorisation. As the product of the norms is the norm of the product
and as every norm of a nonzero Hamiltonian integer is a nonzero natural number, there are only
finitely many factorisations which have to be taken into account. One of the factorisations of
the tuple, call it x1 · x2 · . . . · xm witnesses the value of the radnorm of the tuple. Each prime p
in the natural nubmers is a factor of norm(a1) · norm(a2) · . . . · norm(an) iff it is a factor of the
integer a1 · a2 · . . . · an iff it is a factor of norm(x1) · norm(x2) · . . . · norm(xm).

Thus radnorm(a1, a2, . . . , an) consists of the product of norm(xk) of those xk which occur at
position k for the first time in the factorisation; thus radnorm(a) is a multiple of the radical of
a1 · a2 · . . . · an as integers. Furthermore, radnorm(⃗a) is bounded from above by the square of the
radical of a1 ·a2 · . . . ·an, as one could just take the rational integer factorisation of the tuple and
use that for integer primes p, norm(p) = p2. So while in the qH(a) the numerator is just twice
the value of qZ(a), the denominator is between that of qZ(a) and twice that of qZ(a). This then
directly gives the inequality qZ(⃗a) ≤ qH(⃗a) ≤ 2qZ(⃗a).

The inequalities of the second equation follow directly from those for the qualities of the
tuples. ⊓⊔

It is an open question whether the third statement also holds in the case that one does not
require the tuples to be integer-triples.

Hardy and Wright [6, Theorem 374] show that every two Hamiltonian integers have a greatest
common right hand divisor. Note that this one is then also a right-hand divisor of the sum. For
this, however, it is needed that in both cases no factor is on the right side of the divisor, not
even two different units. However, it is not true that if a Hamiltonian integer appears in the
factorisations of two Hamiltonian integers that it then also appears in the factorisation of the
sum. This is if two numbers are multiples of a number then so is there sum. This is due to the
noncommutativity of the multiplication. The next example uses this to prove that QH′(∅,3) ≥ 4.
By definition the example cannot be used for showing QH({1},∅,3) ≥ 4; indeed, we were unable to
find any systematic construction of examples showing a lower bound beyond 2.

Theorem 26. For all n ≥ 3, QH′(∅,n) ≥ 4 · (2n− 5).
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Proof. Let (a, b) be a solution to the Pell equation a2 − 2b2 = 1, recall that there are infinitely
many such solutions. Now let y = a + bi + bj. Now y2 is 1 + 2abi + 2abj. Now one conisders
−i · y2 · i which is 1 + 2abi− 2abj. The product x = y2 · −i · y2 · i is 1 + 4abi− 8a2b2k. Note that
this number is odd and that x̄ = −j · x · j. The sum x + x̄ = 2. As one can choose y to have
an arbitrarily large norm, the norms of x, x̄ satisfy norm(x) = norm(y)4 and the quality of the
tuple (x, x̄,−2) is 4 log(norm(y))/(log(norm(y)) + log(2)) and as log(2) is constant in this term,
the limit superior of these qualities is 4.

For the bounds of the n-conjecture in general, one considers formulas computing x2n−5+x̄2n−5

which can be obtained by the following recursive equations, the first one is the general recursion
formula and then follow two starting equations; the remaining equations are computed with a
computer program using the recursion formula; the recursion formula is based on the fact that
xx̄ = x̄x = norm(x) as well as xn+2 = 2 · xn+1 − x̄ · xn+1 and x̄n+2 = 2 · x̄n+1 − x · x̄n+1:

xn+2 + x̄n+2 = 2 · (xn+1 + x̄n+1)− norm(x) · (xn + x̄n);

x0 + x̄0 = 2;

x+ x̄ = 2;

x2 + x̄2 = 4− 2 · norm(x);

x3 + x̄3 = 8− 6 · norm(x);

x4 + x̄4 = 16− 16 · norm(x) + 2 · norm(x)2;

x5 + x̄5 = 32− 40 · norm(x) + 10 · norm(x)2;

x6 + x̄6 = 64− 96 · norm(x) + 36 · norm(x)2 − 2 · norm(x)3;

x7 + x̄7 = 128− 224 · norm(x) + 112 · norm(x)2 − 14 · norm(x)3.

So x2m + x̄2m are x2m+1 + x̄2m+1 are both polynomials of degree m in norm(x) with coefficients
independent of x (as long as chosen such that x + x̄ = 2) and one can see by the induction
formula that this property is preserved. Furthermore, the coefficients of even powers of norm(x)
are nonnegative and those of odd powers of norm(x) are nonpositive. One can see that the
updating in the recursion formula makes the absolute values of these coefficients larger, as the
minused-out term is multiplied with norm(x), and that for each even degree 2m, the m-th
power gets the coefficient (−1)m · 2. The latter can be seen from the fact that when forming
the polynomial for x2m+2 + x̄2m+2, one multiplies the polynomial for 2m with norm(x) and adds
to it 2 times the polynomial for x2m+1 + x̄2m+1. Similarly one sees that the calculation of the
polynomial x2m+3 + x̄2m+3 can make coefficients only have large absolute values, not smaller
ones. Thus the coefficients for norm(x)0, . . . , norm(x)m are in the polynomials for x2m+ x̄2m and
x2m+1 + x̄2m+1 nonzero and alternating in sign.

Furthermore, as y is odd, so is also x. The constant term in each equation is 2m, as one can
split (x+ x̄)m = 2m into two pure terms xm and x̄m and mixed terms which all allow to bracket
out norm(x) = xx̄. 2m is coprime to any odd number in the Hamiltonian integers.

For the subsum property, note that if one subtracts out one subsum giving 0, the other
remaining subsum is also 0 and both have {0, 1}-valued coefficients for the term. As xm, x̄m are
the only numbers with imaginary components, these numbers have both to go into one of the
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two subsums, so one considers the other one. For the other subsum, one can assume that x is so
large that norm(x) is at least 3 times any absolute value of a coefficient in the equation. Thus
the subsum is a telescope sum where the lower-order terms of norm(x)k cannot compensate the
impact of the highest nonzero term. Therefore this subsum must have all coefficients 0 and so
the subsum property of the n-conjecture is satisfied whenever the (a, b) in y = a + bi + bj is
chosen to be sufficiently large solutions of the Pell equation a2 − 2b2 = 1.

So one chooses for the n-conjecture m = 2n− 5 and obtains an equation with the two terms
xm, x̄m plus m+1/2 terms of fixed coefficients cn,h multiplied with norm(x)h for h = 0, 1, . . . ,m.
This gives n terms in total and the tuple considered is of the form

a = (x2n−5, x̄2n−5, cn,0, cn,1 · norm(x), cn,2 · norm(x)2, . . . , cn,n−3 · norm(x)n−3)

Now maxnorm(a) = norm(x2n−5) = norm(y)4·(2n−5); note that norm(x) = norm(y)4; here one
assumes that y is chosen such that norm(x) > norm(cn,h) for all h; note that norm(norm(x)) =
norm(x)2 at the evaluation of the norms of terms norm(x)h. Furthermore, radnorm(a) is a factor
of norm(y ·

∏n−3
h=0 cn,h) and therefore the quality is at least the limit superior of the expressions

4(2n− 5) log(norm(y))/(log(norm(y)) + log(norm(c̃))), where c̃ is the product of all coefficients;
as y can be chosen to have arbitrarily large norm without changing the coefficients, the quality
of the n-conjecture in the Hamiltonian integers is at least 4 · (2n− 5). ⊓⊔

This result indicates that there might be some difference between the normal and the strong
version of the abc-conjecture for Hamiltonian integers, as the lower bounds obtained differ by a
factor 2. Note that these two versions coincide for the rational and Gaussian integers.

One can also show that in various preceeding results for QU(E,F,n), the construction of the
big factors (which depend on x) are natural numbers which are not of the form 4a · (8b+7) and
therefore these can be written as −1 times a square of a Hamiltonian integer. Thus one obtains
the following corollary.

Corollary 27. (a) Let E and F be arbitrary and let n ≥ 6. Then QH(E,F,n) ≥ 5/2.
(b) For odd n ≥ 5, QH({1},∅,n) ≥ 10/3.

Proof. First one has to note that if the norm of two Hamiltonian integers is coprime then they
are also coprime as Hamiltonian integers. This comes due to the fact that a common nonunit
factor has a norm of at least 2 which divides the norm of each multiple. Thus if the numbers
a1, a2, . . . , an are pairwise coprime as rational integers, then they are also pairwise coprime as
Hamiltonian integers.

(a): For the result from Theorem 12, note that the entity y there is a multiple of 8 and that x is
of the form (y + 1)h!, so x is of the form 8b+ 1 and not of the form 8b+ 7. The same is true for
x+y, x−y and x2+10y3. It follows that all the big factors which depend on x are the product of
−1 and a square in the Hamiltonian integers. Thus the n-tuples given in Theorem 12 (depending
on the parameter h) actually witnesses that in the Hamiltonian integers QH({1},F,n) ≥ 5/2 for all
n ≥ 6.
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(b): For the result from Theorem 10, one modifies the proof of Theorem 12 a bit. The underlying
equation is now

(x+ 3)5 − (x− 3)5 − 30(x2 + 9)2 = −1944

and let y be the product of 8 and all odd prime numbers between 5 and m, inclusively. Now
one splits as in Theorem 12 the number −1944 into a4, a5, . . . , an what are n − 3 odd coprime
numbers which are all not multiples of a prime below 50 and where without loss of generality m
was chosen so large that m is larger than any of the numbers generated by this splitting. Note
that these numbers a4, . . . , an are fixed while a1, a2, a3 depend on the choice of m,h, y, x. Now
one let x − 3 = (y + 3)(m+h)!+1 so that x − 3 modulo p is 3 for all odd prime numbers between
5 and m. x + 3 is 9 modulo p for these prime numbers. Furthermore, if p > 50 then x2 + 9 is
62+9 = 45 modulo p. So choosing a1, a2, a3 as (x+3)5, −(x−3)5 and −30(x2+9)2, respectively,
completes the choice. a2 is a high power of a small number, but a1 and a3 contribute the radical
approximately in order x3 and these are required to be brought down. As y is 0 modulo 8 and
(m+h)!+1 is an odd power, x−3 is 3 modulo 8 and x+3 is 1 modulo 8. Furthermore, x2+9 is
36+9 modulo 8 what can be simplied to 5 modulo 8. So both x+3 and x2+9 are the sums of three
squares in the rational integers and of the form −1 times a square in the Hamiltonian integers.
This gives that the sequence of tuples (a1, a2, . . . , an) chosen in dependence of the parameter h
witnesses that QH({1},∅,n) ≥ 10/3. How to choose m exactly in dependence of a4, . . . , an such that
the telescope sum arguements work and to do this verification is left to the reader. ⊓⊔

Remark 28. Hurwitz [8] as well as Hardy and Wright [6] consider a set C of units and then
define that two numbers x, y are associates iff there are units c, d ∈ C with x = cyd; as c, d are
multiplicatively invertable, this definition is symmetric for x and y: c−1xd−1 = y. So one might
ask whether one gets a type of unique factorisation if one chooses the right set of units C. In
other words, whether the pathology mentioned at the beginning of this section can be overcome
by enlarging C beyond {−1, 1,−i, i,−j, j,−k,k}.

The apporach of Hurwitz [8] is to enlarge the Hamiltonian integers by adding in halfintegers
where all four coordinates must differ exactly by 1/2 from a rational integer. The resulting set of
units has then 24 members, the eight units given above plus sixteen additional ones where every
coordinate is either −1/2 or 1/2. Using these units, Hurwitz achieved that every halfinteger is
the product of up to two of units and a Hamiltonian integer, leaving the units to be the only
halfintegers to be relevant [6, Theorem 371].

But also this larger set C does not avoid the problem that numbers might fail to have a
unique factorisation in the Hamiltonian integers. Here a Hamiltonian integer x is a prime iff
x ̸= 0, x is not a unit and all factors of x are either associates of x or units; an equivalent
statement is that the norm of x is a prime in the natural numbers. Thus every natural number
prime p, which has norm p2, is the product of two Hamiltonian integer primes, each with norm
p.

The Jacobi Four Square Theorem, see Hirschhorn [7] for the exact statement and a short
proof, implies that an odd prime number p in the natural numbers can be written in 8(p + 1)
ways as a sum of four squares, p = q2+ r2+s2+ t2, where q, r, s, t are rational integers. Thus the
number p can be written in 8(p+ 1) ways as a product (q + ri+ sj+ tk) · (q− ri− sj− tk) and
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so there are at least 8(p + 1) different prime factors of p in the Hamiltonian integers of which
each one, paired with another one, multiplies to p.

However, when picking one of these factorisations, there are at most 2·|C|2 other factorisations
where at least one of the numbers is an associate of one of the numbers in the given factorisation,
thus the amount of these is constant while the overall number of possible factorisations is 8(p+1).
Therefore, when p is sufficiently large, that is, when p > 2|C|2, there are two factorisations
x · y = p and x′ · y′ = p where x and y are both not associates of any of x′ and y′.

In other words, these factorisations cannot be unique and one has indeed to minimise the
quality of number by going over the quality of all possible factoriations instead of searching for a
unique prime factorisation which does not exist, even not modulo associates. This result is then
also independent on whether one uses eight units (as we do) or twentyfour units (as Hurwitz [8]
and Hardy and Wright [6] do).

6 Conclusion

We first summarise our results. We showed that for all n ≥ 6 and all finite sets F ⊆ {3, 4, 5, 6, . . .}
that QU({1},F,n) ≥ 5/4. Furthermore, methods in principle known to the researchers in the field
give for all odd n, QU({1},∅,n) ≥ 5/3. For n = 5, we showed that for all finite sets F ⊆ {3, 4, 5, 6, . . .}
there is a number qF > 1 such that QU({1},F,5) ≥ qF but we were not able to find a common
lower bound for all these qF other than 1. In the case of the Gaussian integers, we were able to
establish that for all n ≥ 4 and all finite sets F of Gaussian integers which contain neither a
unit nor 1 + i multiplied with a unit, the lower bound QC({1},F,n) ≥ 5/3 holds.

The methods in the present work use polynomial identities. Mason [10] and Stother [17]
proved that given a polynomial identity of the form f +g = h where these functions are coprime
as polynomials and not all of the functions are constant, the maximum degree of f, g, h is at
most the number of distinct complex roots of f · g · h minus 1. Known methods to choose the
variable of the polynomial identity allow only to overcome the gap of 1 in the degrees, but they
do not allow anything better; so one arrives at families of examples constructed with polynomial
identities to have at most the guaranteed quality 1.

Furthermore, whenever a polynomial formula of three terms f, g, h in one variable produces
more examples than its degree than the formula then the equality f + g = h must hold, thus the
above restriction applies. Thus solutions of formulas of the form f + g = h which are parame-
terised by only one variable are not interesting. However, for several variable, this restriction of
the Theorem of Mason and Stother does not apply, so the Pell equaltion x2 − z3y2 = 1 has for
each z which is not a perfect square infinitely many solutions. But the Theorem of Mason and
Stoher says now that one cannot find parameterisations of x, y, z in one variable t which find
infinitely many triples (x(t), y(t), z(t)) with x(t)2 − y(t)2z(t)3 = 1.

The conjecture that the constant of the abc-conjecture is 1 implies a further restriction to
such solutions (x, y, z), also when not parameterised by one variable: For an infinite sequence
of solutions (xk, yk, zk) with xk → ∞, the ratio log(zk)/ log(xk) must go to 0. This constraint
does not come from the Theorem of Mason and Stother but is an additional constraint which is
unproven.
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Furthermore, for small numbers, researchers found examples of larger quality, as often some
powers go in which do not stem from the polynomial identity; however, such effects require
exhaustive search to find and methods to utilise them systematically are not known. Therefore
the methods here do not give any insights for the case n = 3. Shapiro and Sparer [15] generalised
the Theorem of Mason and Stother to larger n but there a factor n − 2 goes into the equation
which then permits the use of polynomial identities to construct the examples in this paper
systematically. Furthermore, for n = 4, all known useful polynomial identities in the integers
have two terms with factor 2, thus they do not apply; only for the Gaussian integers a useful
polynomial identity is found by Elkies [4] which was utilised in Theorem 19 and then generalised
to the full result using solutions to Pell equations. Therefore, for the rational integers, the lower
bounds for n = 3 and n = 4 are still both 1; similarly for Gaussian integers, the lower bound
for the case n = 3 is still 1. For all these constants, only lower bounds are known and any
information on upper bounds is missing; so proven any upper bound is an important challenge
and the overall goal would be to identify for interesting choices of E,F, n the value QU(E,F,n).

The role of the exception set E and the forbidden set F is another source of research questions.
For instance, let

Qn = sup{QU(E,F,n) : E,F ⊂ N finite, 1 ∈ E, minF ≥ 3, E ∩ F = ∅ and #U(E,F, n) = ∞}.

Then we can ask the following question.

Open Problem 29. Are all Qn bounded by some common constant c from above?

Furthermore, the lower bounds obtained for the abc-conjecture and the strong abc-conjecture for
Hamiltonian integers differ by a factor 2. This is mainly due to the fact that in the Hamiltonian
integers, a setwise coprime sum of three numbers can have that the factors of the first two
numbers are essentially the same, a phenomenon which does not occur in rational and Gaussian
integers. Therefore the following question is natural to ask.

Open Problem 30. Are the constants of the strong abc-conjecture and the normal abc-conjec-
ture (= 3-conjecture) different in the Hamiltonian integers?

The following table gives an overview of the currently known lower bounds; the n in the last two
columns are at least 5.

Integer-Type, Conjecture-Type Formula 3 4 5 6 odd n even n
Rational integers, strong n-conjecture QU({1},∅,n) 1 1 5/3 5/4 5/3 5/4
Gaussian integers, strong n-conjecture QC({1},∅,n) 1 5/3 5/3 5/3 5/3 5/3
Hamiltonian integers, strong n-conjecture QH({1},∅,n) 2 2 10/3 5/2 10/3 5/2
Hamiltonian integers, n-conjecture QH′(∅,n) 4 12 20 28 8n-20 8n-20

We do not claim that the new lower bounds are optimal, but we conjecture that all the constants
here can be matched by some upper bounds, though these might be larger. We would like to
thank Benne de Weger for correspondence and for making his unpublished notes available to us
[22].
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2. Jerzy Browkin and Juliusz Brzeziński. Some remarks on the abc-conjecture. Mathematics
of Computation, American Mathematical Society, 62(206):931–939, 1994.

3. Henri Cohen. Number Theory — Volume 1: Tools and Diophantine Equations. Springer,
2007.

4. Henri Darmon and Andrew Granville. On the equations z = F (x, y) and Axp +Byq = Czr.
Bulletin of the London Mathematical Society, 27(6):513–543, 1995.

5. Johann Dirichlet. Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren
erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich
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