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Set theory setting

m Several cardinal characteristics are based on cardinals of
subclasses of [w]¥ (the infinite subsets of w) viewed up to
almost equality.

m One of them is called the almost disjointness number,
denoted a.

m This is the minimal size of a maximal almost disjoint (MAD)
family of subsets of w.

Let b be the unbounding number (the least size of a class of
functions on w that is not dominated by a single function).

Fact
b<a.

See e.g. Logic Blog ‘19 for a proof of this well known fact.
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Further cardinal characteristics based on properties of subsets of
[w]* modulo almost equality:

m the ultrafilter number u is the least size of a set with upward
closure a free ultrafilter on w,

m the tower number t is the minimum size of a linearly ordered
subset of [w]“ that can’t be extended by putting a new
element below all given elements,

m the independence number i (least size of a maximal
independent set).
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Diagram of ZFC inequalities (Soukup, 2018)
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t and s are the unreaping and splitting numbers, respectively. Their
analogs in computability have been studied (BBNN, 14). ¢ is the
escaping number due to Brendle and Shelah. Its analog has been

considered in computability theory by Valverde and Tveite (2017).
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Analogous mass problems in computability
For a set F, FI"l denotes the column {z: (x,n) € F}.
We will usually denote this by F,.
m The basic objects are collections of infinite recursive sets in
the context of almost inclusion.
m Such a collection C is encoded by a set F' such that
C=Cp={F":neN}L
m Recall that a mass problem is a set of functions N — N.

m We view properties of such collections as mass problems,
consisting of the characteristic functions of the encoding
sets F.

m We compare their complexity via Muchnik reducibility <,, and
the stronger, uniform Medvedev reducibility <;.
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The mass problem A of MAD sets

We will often identify a set F' C N and the collection
Cr = {F,: n € N} of recursive sets described by F'.
We say that F' C N is a almost disjoint, AD in brief, if

each F), is infinite, and F}, N F}, =* () for n # k.

Definition (Analog of almost disjointness number)

m The mass problem A is the class of sets I’ such that Cp is
maximal almost disjoint (MAD) for the recursive sets.

m Namely, Cr is AD, and for each infinite recursive set R there
is n such that R N F, is infinite.
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No MAD set F'is computable

Proposition
No MAD set F'is computable.

Suppose F'is AD and computable.

Let r_1 =0, and r, be the least number r > r,,_; such that
rel, —U.,F

Then the computable set R = {rg, 71, ...} shows that F' is not
MAD.
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The mass problem 7T of maximal towers

We say that G C N is a tower (or C is a tower) if for each n we
have G,,,1 C* G, and G,, — G,,;1 is infinite.

Definition (Analog of tower number t)

m The mass problem 7 is the class of sets G such that Cg is a
tower that is maximal in the recursive sets.

m Namely, for each infinite recursive set R there is n such that
R — @G, is infinite.
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A =, T (Medvedev equivalent)

To check that A <, T, given a set G let Diff(G) be the set D such
that D, = G,, — G,,.1. Clearly the operator Diff can be seen as a
Turing functional.

If G is a maximal tower then D = Diff(G) is MAD. For, if R is
infinite recursive then R — (,, is infinite for some n, and hence

R N D; is infinite for some 7 < n.

For T <, A, given a set F' let G = Cp(F') be the set such that
reG, < Vi<nlx &g F,)

Again Cp is a Turing functional.
If F'is AD then G is a tower, and if F'is MAD then G is a
maximal tower.
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Each non-low oracle computes a set in T

Theorem

T (the mass problem of max. towers) <; NonLow.

Proof. Let x,y, z denote binary strings; we identify x with the
number 1z via the binary expansion. Define a Turing functional ®
for the Medvedev reduction: ®? = G, where for each n

Gp={x:n<s:=|z|NZ.|n=uz|n}.

It is clear that for each n we have G,,11 C* G,, and G,, — G, 11 is
infinite. Also, for each n, for large s the string Z. [ n settles, so G,
is computable.

Suppose now that R is an infinite set such that R C* (,, for each n.
Then Z'(k) = limgeq o)k ©(k), and hence Z' <p R'. So if

Z € NonLow then R cannot be computable, and hence &% € T,
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C.e. MAD set by a finitary priority construction

Theorem
For each incomputable c.e. set A, there is a c.e. MAD set F' < A.
This shows that a c.e., totally low set is computable.

Let V5, = W, and V5.1 = N for each e. Build auxiliary c.e. set
S <t A. Then let F' <7 A be defined by Fldl = 52 |y gl2e+1],

P,:V, — USZ- infinite = |S. N V.| > k.
<n
At stage s we say that P, is satisfied if [S. , NV, 5| > k.
Construction.
Stage s > 0. For each n < s such that P, is not satisfied, n = (e, k),
if there is x € V., — ,_,, Si,s such that > max(S.,_1), © > 2n
and Ag| x # As—1 [ x, then put (z,e) into S (i.e., put x into S,).

11 / 22



Indices for columns of a MAD hard to compute
A characteristic index for a set M is an e such that x, = ..
Proposition

Suppose F' is MAD. Then ()’ is not able to compute, from input n,
a characteristic index for F,,.

Proof.
Assume so. Then there is a computable function f such that
Plim, f(n,s) 18 the characteristic function of F,.

Let F be defined as follows. Given n,x , compute the least s > x
such that ¢, s(z) . If the value is not 0 put « into F,.

Clearly Fis computable. Since F,, =" ﬁn for each n, the set Fis
MAD, contradicting the fact obtained above. i



Totally low oracles

Definition

We call an oracle L totally low if whenever ® is computable then
() can compute from e an index for ®Z.

In other words, there is a functional I" a such that

@~ is computable = T'((); ¢) is an index for it, i.e., ®L = o).

m Exercise: totally low implies low.

m The proposition above implies that no totally low set
computes a MAD set.
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Not computing a MAD

Proposition
Suppose L is AY and 1-generic. Then L is totally low, and hence
computes no MAD.

So we have:
l1-generic AY = totally low = computes no MAD = low.

At the present stage of this work in progress, we only know that the
last arrow does not reverse. (Use a low, noncomputable c.e. set.)
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The mass problem U

Definition (Analog of the ultrafilter number u)
The mass problem U consists of the sets F' such that

m F, O* F,,.1 and F,, — F, ;1 infinite

m for each recursive set R there is n such that

F, C*Ror F, C* R.

We say that F' (or, more precisely Cr) is an ultrafilter base (UFB)
within the recursive sets.
Fact

T DU, that is, each UFB is a maximal tower.
So we trivially have T <; U wia the identity reduction.

Example: take any r-maximal set C'. By definition of r-maximality, the
recursive sets R such that R U C is cofinite form an ultrafilter. We can

obtain an ultrafilter base C' - for some F <+ ()" 15 / 22



Proposition (warmup)

No ultrafilter base F' is computably dominated.

Proof.

Let f(n) be the least number > n in (,_,, Fi. Then f <p F.
Assume that there is a computable function p > f. The conditions
no = 1 and ny1 = p(ny) define a computable sequence.

So the set

E = U[n%; N2i41)
is computable.

Clearly F, ¢* E and F, ¢* E for each n. So F is not an ultrafilter
base. O
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Highness and mass problems

Our aim is to show that ultrafilter bases have exactly the high
degrees. How do we formulate a version of this for strong
reductions?

m Let DomFcn denote the mass problem of functions A that
dominate every computable function, and also satisfy h(s) > s
for all s.

m Let Tot = {e: ¢ is total}. Note that F is high iff Tot <, F".

m The approximations to Tot are the {0, 1}-valued binary
functions f such that lim; f(e, s) = Tot(e).

Fact (Martin, morally)

DomFcn is strongly equivalent to
the mass problem of approximations to Tot.
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Classifying the complexity of ultrafilter bases

Theorem
The mass problem DomFcn of dominating functions

is Medvedev equivalent to

the mass problem U of ultrafilter bases.
In particular, the degrees of UFB are exactly the high degrees.

Proof of DomFen <, U is inspired by a proof of Jockusch (1972)
that any family of sets containing exactly the computable sets must
have high degree.
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Proof of DomFen >, U

Let (¢¢)cen be an effective listing of the {0, 1} valued partial
computable functions defined on an initial segment of N. Let

Ver ={x: ¢e(x) =k}

Let T'= {0, 1,2}<*. Uniformly in o € T" we will define a possibly
finite c.e. set S, enumerated in an increasing fashion.

Let Sps = [0, s). If we have defined (at stage s) the set
Se = {10 < ... <1}, let S, contain the numbers of the form rs;.

m Let S0 = §a.
m Let Sy = S, NV for k=0,1, e = |af.
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Define a uniform list of Turing functionals I'. so that the sequence
(T"(t))4en is nondecreasing, for each e and each oracle function h
such that h(s) > s for each s. We will let F, = {T'"(t): t € N}.

Definition of I'.. Given an oracle function A, we will write a, for
I'"(s). Let ap = 0. Suppose s > 0 and a,_; has been defined.

Let av € T be the leftmost string of length e such that there is an
2 € Sa,n(s) With > a,_;. Choose x least for o and let a, = x. If
there is no such « let ay, = a,_;.

Verification. Suppose h is a dominating function. Then for each e
we have F, =* S, where « is leftmost string of length e such that
S, is infinite.
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There is a co-c.e. ultrafilter base.
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