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Set theory setting

Several cardinal characteristics are based on cardinals of

subclasses of [ω]ω (the infinite subsets of ω) viewed up to

almost equality.

One of them is called the almost disjointness number,

denoted a.

This is the minimal size of a maximal almost disjoint (MAD)

family of subsets of ω.

Let b be the unbounding number (the least size of a class of

functions on ω that is not dominated by a single function).

Fact

b ≤ a.

See e.g. Logic Blog ‘19 for a proof of this well known fact.
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Further cardinal characteristics based on properties of subsets of

[ω]ω modulo almost equality:

the ultrafilter number u is the least size of a set with upward

closure a free ultrafilter on ω,

the tower number t is the minimum size of a linearly ordered

subset of [ω]ω that can’t be extended by putting a new

element below all given elements,

the independence number i (least size of a maximal

independent set).
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Diagram of ZFC inequalities (Soukup, 2018)

r and s are the unreaping and splitting numbers, respectively. Their

analogs in computability have been studied (BBNN, 14). e is the

escaping number due to Brendle and Shelah. Its analog has been

considered in computability theory by Valverde and Tveite (2017).
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Analogous mass problems in computability
For a set F , F [n] denotes the column {x : 〈x, n〉 ∈ F}.
We will usually denote this by Fn.

The basic objects are collections of infinite recursive sets in

the context of almost inclusion.

Such a collection C is encoded by a set F such that

C = CF = {F [n] : n ∈ N}.
Recall that a mass problem is a set of functions N→ N.

We view properties of such collections as mass problems,

consisting of the characteristic functions of the encoding

sets F .

We compare their complexity via Muchnik reducibility ≤w and

the stronger, uniform Medvedev reducibility ≤s.
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The mass problem A of MAD sets

We will often identify a set F ⊆ N and the collection

CF = {Fn : n ∈ N} of recursive sets described by F .

We say that F ⊆ N is a almost disjoint, AD in brief, if

each Fn is infinite, and Fn ∩ Fk =∗ ∅ for n 6= k.

Definition (Analog of almost disjointness number)

The mass problem A is the class of sets F such that CF is

maximal almost disjoint (MAD) for the recursive sets.

Namely, CF is AD, and for each infinite recursive set R there

is n such that R ∩ Fn is infinite.
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No MAD set F is computable

Proposition

No MAD set F is computable.

Suppose F is AD and computable.

Let r−1 = 0, and rn be the least number r > rn−1 such that

r ∈ Fn −
⋃
i<n Fi.

Then the computable set R = {r0, r1, . . .} shows that F is not

MAD.
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The mass problem T of maximal towers

We say that G ⊆ N is a tower (or CG is a tower) if for each n we

have Gn+1 ⊆∗ Gn and Gn −Gn+1 is infinite.

Definition (Analog of tower number t)

The mass problem T is the class of sets G such that CG is a

tower that is maximal in the recursive sets.

Namely, for each infinite recursive set R there is n such that

R−Gn is infinite.
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A ≡s T (Medvedev equivalent)
To check that A ≤s T , given a set G let Diff(G) be the set D such

that Dn = Gn −Gn+1. Clearly the operator Diff can be seen as a

Turing functional.

If G is a maximal tower then D = Diff(G) is MAD. For, if R is

infinite recursive then R−Gn is infinite for some n, and hence

R ∩Di is infinite for some i < n.

For T ≤s A, given a set F let G = Cp(F ) be the set such that

x ∈ Gn ↔ ∀i < n [x 6∈ Fn].

Again Cp is a Turing functional.

If F is AD then G is a tower, and if F is MAD then G is a

maximal tower.
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Each non-low oracle computes a set in T
Theorem

T (the mass problem of max. towers) ≤s NonLow.

Proof. Let x, y, z denote binary strings; we identify x with the

number 1x via the binary expansion. Define a Turing functional Φ

for the Medvedev reduction: ΦZ = G, where for each n

Gn = {x : n ≤ s := |x| ∧ Z ′s � n = x� n}.

It is clear that for each n we have Gn+1 ⊆∗ Gn and Gn −Gn+1 is

infinite. Also, for each n, for large s the string Z ′s � n settles, so Gn

is computable.

Suppose now that R is an infinite set such that R ⊆∗ Gn for each n.

Then Z ′(k) = limx∈G,|x|>k x(k), and hence Z ′ ≤T R′. So if

Z ∈ NonLow then R cannot be computable, and hence ΦZ ∈ T .
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C.e. MAD set by a finitary priority construction

Theorem

For each incomputable c.e. set A, there is a c.e. MAD set F ≤T A.

This shows that a c.e., totally low set is computable.

Let V2e = We and V2e+1 = N for each e. Build auxiliary c.e. set

S ≤T A. Then let F ≤T A be defined by F [e] = S[2e] ∪ S[2e+1].

Pn : Ve −
⋃
i<n

Si infinite ⇒ |Se ∩ Ve| ≥ k.

At stage s we say that Pn is satisfied if |Se,s ∩ Ve,s| ≥ k.

Construction.

Stage s > 0. For each n < s such that Pn is not satisfied, n = 〈e, k〉,
if there is x ∈ Ve,s −

⋃
i<n Si,s such that x > max(Se,s−1), x ≥ 2n

and As � x 6= As−1 � x, then put 〈x, e〉 into S (i.e., put x into Se).
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Indices for columns of a MAD hard to compute
A characteristic index for a set M is an e such that χM = ϕe.

Proposition

Suppose F is MAD. Then ∅′ is not able to compute, from input n,

a characteristic index for Fn.

Proof.

Assume so. Then there is a computable function f such that

ϕlims f(n,s) is the characteristic function of Fn.

Let F̂ be defined as follows. Given n, x , compute the least s > x

such that ϕf(n,s),s(x) ↓. If the value is not 0 put x into F̂n.

Clearly F̂ is computable. Since Fn =∗ F̂n for each n, the set F̂ is

MAD, contradicting the fact obtained above. 12 / 22



Totally low oracles

Definition

We call an oracle L totally low if whenever ΦL
e is computable then

∅′ can compute from e an index for ΦL
e .

In other words, there is a functional Γ a such that

ΦL
e is computable ⇒ Γ(∅′; e) is an index for it, i.e., ΦL

e = ϕΓ(∅′;e).

Exercise: totally low implies low.

The proposition above implies that no totally low set

computes a MAD set.
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Not computing a MAD

Proposition

Suppose L is ∆0
2 and 1-generic. Then L is totally low, and hence

computes no MAD.

So we have:

1-generic ∆0
2 ⇒ totally low ⇒ computes no MAD ⇒ low.

At the present stage of this work in progress, we only know that the

last arrow does not reverse. (Use a low, noncomputable c.e. set.)
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The mass problem U
Definition (Analog of the ultrafilter number u)

The mass problem U consists of the sets F such that

Fn ⊃∗ Fn+1 and Fn − Fn+1 infinite

for each recursive set R there is n such that

Fn ⊆∗ R or Fn ⊆∗ R.

We say that F (or, more precisely CF ) is an ultrafilter base (UFB)

within the recursive sets.

Fact

T ⊇ U , that is, each UFB is a maximal tower.

So we trivially have T ≤s U via the identity reduction.

Example: take any r-maximal set C. By definition of r-maximality, the

recursive sets R such that R ∪ C is cofinite form an ultrafilter. We can

obtain an ultrafilter base CF for some F ≤T ∅′′. 15 / 22



Proposition (warmup)

No ultrafilter base F is computably dominated.

Proof.

Let f(n) be the least number > n in
⋂
i<n Fi. Then f ≤T F .

Assume that there is a computable function p ≥ f . The conditions

n0 = 1 and nk+1 = p(nk) define a computable sequence.

So the set

E =
⋃
i

[n2i, n2i+1)

is computable.

Clearly Fn 6⊆∗ E and Fn 6⊆∗ E for each n. So F is not an ultrafilter

base.
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Highness and mass problems
Our aim is to show that ultrafilter bases have exactly the high

degrees. How do we formulate a version of this for strong

reductions?

Let DomFcn denote the mass problem of functions h that

dominate every computable function, and also satisfy h(s) ≥ s

for all s.

Let Tot = {e : φe is total}. Note that F is high iff Tot ≤T F ′.
The approximations to Tot are the {0, 1}-valued binary

functions f such that lims f(e, s) = Tot(e).

Fact (Martin, morally)

DomFcn is strongly equivalent to

the mass problem of approximations to Tot.
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Classifying the complexity of ultrafilter bases

Theorem

The mass problem DomFcn of dominating functions

is Medvedev equivalent to

the mass problem U of ultrafilter bases.

In particular, the degrees of UFB are exactly the high degrees.

Proof of DomFcn ≤s U is inspired by a proof of Jockusch (1972)

that any family of sets containing exactly the computable sets must

have high degree.
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Proof of DomFcn ≥s U
Let 〈ψe〉e∈N be an effective listing of the {0, 1} valued partial

computable functions defined on an initial segment of N. Let

Ve,k = {x : ψe(x) = k}.

Let T = {0, 1, 2}<∞. Uniformly in α ∈ T we will define a possibly

finite c.e. set Sα enumerated in an increasing fashion.

Let S∅,s = [0, s). If we have defined (at stage s) the set

Sα = {r0 < . . . < rk}, let S̃α contain the numbers of the form r2i.

Let Sα2 = S̃α.

Let Sαk = S̃α ∩ Ve,k for k = 0, 1, e = |α|.
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Define a uniform list of Turing functionals Γe so that the sequence

〈Γhe (t)〉t∈N is nondecreasing, for each e and each oracle function h

such that h(s) ≥ s for each s. We will let Fe = {Γhe (t) : t ∈ N}.

Definition of Γe. Given an oracle function h, we will write as for

Γhe (s). Let a0 = 0. Suppose s > 0 and as−1 has been defined.

Let α ∈ T be the leftmost string of length e such that there is an

x ∈ Sα,h(s) with x > as−1. Choose x least for α and let as = x. If

there is no such α let as = as−1.

Verification. Suppose h is a dominating function. Then for each e

we have Fe =∗ Sα, where α is leftmost string of length e such that

Sα is infinite.
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Theorem

There is a co-c.e. ultrafilter base.
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