Analogs in computability of combinatorial cardinal characteristics

André Nies

Joint work with Miller, Lempp, and M. Soskova.

NUS, March 4, 2020

Set theory setting

- Several cardinal characteristics are based on cardinals of subclasses of [ω]^ω (the infinite subsets of ω) viewed up to almost equality.
- \blacksquare One of them is called the almost disjointness number, denoted $\mathfrak{a}.$
- This is the minimal size of a maximal almost disjoint (MAD) family of subsets of ω.

Let **b** be the unbounding number (the least size of a class of functions on ω that is not dominated by a single function).

Fact

$\mathfrak{b} \leq \mathfrak{a}.$

See e.g. Logic Blog '19 for a proof of this well known fact.

Further cardinal characteristics based on properties of subsets of $[\omega]^{\omega}$ modulo almost equality:

- the ultrafilter number \mathfrak{u} is the least size of a set with upward closure a free ultrafilter on ω ,
- the tower number t is the minimum size of a linearly ordered subset of [ω]^ω that can't be extended by putting a new element below all given elements,
- the independence number i (least size of a maximal independent set).

Diagram of ZFC inequalities (Soukup, 2018)

 \mathfrak{r} and \mathfrak{s} are the unreaping and splitting numbers, respectively. Their analogs in computability have been studied (BBNN, 14). \mathfrak{e} is the escaping number due to Brendle and Shelah. Its analog has been considered in computability theory by Valverde and Tveite (2017).

Analogous mass problems in computability For a set F, $F^{[n]}$ denotes the column $\{x : \langle x, n \rangle \in F\}$. We will usually denote this by F_n .

- The basic objects are collections of infinite recursive sets in the context of almost inclusion.
- Such a collection \mathbf{C} is encoded by a set F such that

 $\mathbf{C} = \mathbf{C}_{\mathbf{F}} = \{F^{[n]} \colon n \in \mathbb{N}\}.$

- Recall that a mass problem is a set of functions $\mathbb{N} \to \mathbb{N}$.
- We view properties of such collections as mass problems, consisting of the characteristic functions of the encoding sets F.
- We compare their complexity via Muchnik reducibility \leq_w and the stronger, uniform Medvedev reducibility \leq_s .

The mass problem \mathcal{A} of MAD sets

We will often identify a set $F \subseteq \mathbb{N}$ and the collection $\mathbf{C}_F = \{F_n : n \in \mathbb{N}\}$ of recursive sets described by F.

We say that $F \subseteq \mathbb{N}$ is a almost disjoint, AD in brief, if

each F_n is infinite, and $F_n \cap F_k =^* \emptyset$ for $n \neq k$.

Definition (Analog of almost disjointness number)

- The mass problem \mathcal{A} is the class of sets F such that \mathbf{C}_F is maximal almost disjoint (MAD) for the recursive sets.
- Namely, C_F is AD, and for each infinite recursive set R there is n such that $R \cap F_n$ is infinite.

No MAD set F is computable

Proposition

No MAD set F is computable.

Suppose F is AD and computable.

Let $r_{-1} = 0$, and r_n be the least number $r > r_{n-1}$ such that $r \in F_n - \bigcup_{i < n} F_i$.

Then the computable set $R = \{r_0, r_1, \ldots\}$ shows that F is not MAD.

The mass problem \mathcal{T} of maximal towers

We say that $G \subseteq \mathbb{N}$ is a tower (or \mathbb{C}_G is a tower) if for each n we have $G_{n+1} \subseteq^* G_n$ and $G_n - G_{n+1}$ is infinite.

Definition (Analog of tower number \mathbf{t})

- The mass problem \mathcal{T} is the class of sets G such that \mathbf{C}_G is a tower that is maximal in the recursive sets.
- Namely, for each infinite recursive set R there is n such that $R G_n$ is infinite.

$\mathcal{A} \equiv_{s} \mathcal{T}$ (Medvedev equivalent)

To check that $\mathcal{A} \leq_s \mathcal{T}$, given a set G let Diff(G) be the set D such that $D_n = G_n - G_{n+1}$. Clearly the operator Diff can be seen as a Turing functional.

If G is a maximal tower then D = Diff(G) is MAD. For, if R is infinite recursive then $R - G_n$ is infinite for some n, and hence $R \cap D_i$ is infinite for some i < n.

For $\mathcal{T} \leq_s \mathcal{A}$, given a set F let $G = \operatorname{Cp}(F)$ be the set such that

 $x \in G_n \leftrightarrow \forall i < n \ [x \notin F_n].$

Again Cp is a Turing functional.

If F is AD then G is a tower, and if F is MAD then G is a maximal tower.

Each non-low oracle computes a set in \mathcal{T}

Theorem

 \mathcal{T} (the mass problem of max. towers) \leq_s NonLow.

Proof. Let x, y, z denote binary strings; we identify x with the number 1x via the binary expansion. Define a Turing functional Φ for the Medvedev reduction: $\Phi^Z = G$, where for each n

$$G_n = \{ x \colon n \le s := |x| \land Z'_s \upharpoonright n = x \upharpoonright n \}.$$

It is clear that for each n we have $G_{n+1} \subseteq^* G_n$ and $G_n - G_{n+1}$ is infinite. Also, for each n, for large s the string $Z'_s \upharpoonright n$ settles, so G_n is computable.

Suppose now that R is an infinite set such that $R \subseteq^* G_n$ for each n. Then $Z'(k) = \lim_{x \in G, |x| > k} x(k)$, and hence $Z' \leq_T R'$. So if $Z \in \text{NonLow then } R$ cannot be computable, and hence $\Phi^Z \in \mathcal{T}_{10/22}$

C.e. MAD set by a finitary priority construction

Theorem

For each incomputable c.e. set A, there is a c.e. MAD set $F \leq_T A$. This shows that a c.e., totally low set is computable.

Let $V_{2e} = W_e$ and $V_{2e+1} = \mathbb{N}$ for each e. Build auxiliary c.e. set $S \leq_{\mathrm{T}} A$. Then let $F \leq_{\mathrm{T}} A$ be defined by $F^{[e]} = S^{[2e]} \cup S^{[2e+1]}$.

$$P_n: V_e - \bigcup_{i < n} S_i \text{ infinite } \Rightarrow |S_e \cap V_e| \ge k.$$

At stage s we say that P_n is satisfied if $|S_{e,s} \cap V_{e,s}| \ge k$. Construction.

Stage s > 0. For each n < s such that P_n is not satisfied, $n = \langle e, k \rangle$, if there is $x \in V_{e,s} - \bigcup_{i < n} S_{i,s}$ such that $x > \max(S_{e,s-1}), x \ge 2n$ and $A_s \upharpoonright x \neq A_{s-1} \upharpoonright x$, then put $\langle x, e \rangle$ into S (i.e., put x into S_e).

Indices for columns of a MAD hard to compute A characteristic index for a set M is an e such that $\chi_M = \varphi_e$.

Proposition

Suppose F is MAD. Then \emptyset' is not able to compute, from input n, a characteristic index for F_n .

Proof.

Assume so. Then there is a computable function f such that $\varphi_{\lim_s f(n,s)}$ is the characteristic function of F_n .

Let \widehat{F} be defined as follows. Given n, x, compute the least s > x such that $\varphi_{f(n,s),s}(x) \downarrow$. If the value is not 0 put x into \widehat{F}_n .

Clearly \widehat{F} is computable. Since $F_n =^* \widehat{F}_n$ for each n, the set \widehat{F} is MAD, contradicting the fact obtained above.

Totally low oracles

Definition

We call an oracle L totally low if whenever Φ_e^L is computable then \emptyset' can compute from e an index for Φ_e^L .

In other words, there is a functional Γ a such that

 Φ_e^L is computable $\Rightarrow \Gamma(\emptyset'; e)$ is an index for it, i.e., $\Phi_e^L = \varphi_{\Gamma(\emptyset'; e)}$.

• Exercise: totally low implies low.

• The proposition above implies that no totally low set computes a MAD set.

Not computing a MAD

Proposition

Suppose L is Δ_2^0 and 1-generic. Then L is totally low, and hence computes no MAD.

So we have:

1-generic $\Delta_2^0 \Rightarrow$ totally low \Rightarrow computes no MAD \Rightarrow low.

At the present stage of this work in progress, we only know that the last arrow does not reverse. (Use a low, noncomputable c.e. set.)

The mass problem \mathcal{U}

Definition (Analog of the ultrafilter number \mathfrak{u})

The mass problem \mathcal{U} consists of the sets F such that

• $F_n \supset^* F_{n+1}$ and $F_n - F_{n+1}$ infinite

• for each recursive set R there is n such that $F_n \subseteq^* R$ or $F_n \subseteq^* \overline{R}$.

We say that F (or, more precisely C_F) is an ultrafilter base (UFB) within the recursive sets.

Fact

 $\mathcal{T} \supseteq \mathcal{U}$, that is, each UFB is a maximal tower. So we trivially have $\mathcal{T} \leq_s \mathcal{U}$ via the identity reduction.

Example: take any *r*-maximal set *C*. By definition of *r*-maximality, the recursive sets *R* such that $R \cup C$ is cofinite form an ultrafilter. We can obtain an ultrafilter base \mathbf{C}_{E} for some $F \leq \tau \emptyset''$.

Proposition (warmup)

No ultrafilter base F is computably dominated.

Proof.

Let f(n) be the least number > n in $\bigcap_{i < n} F_i$. Then $f \leq_T F$. Assume that there is a computable function $p \ge f$. The conditions $n_0 = 1$ and $n_{k+1} = p(n_k)$ define a computable sequence. So the set

$$E = \bigcup_{i} [n_{2i}, n_{2i+1})$$

is computable.

Clearly $F_n \not\subseteq^* E$ and $F_n \not\subseteq^* \overline{E}$ for each n. So F is not an ultrafilter base.

Highness and mass problems

Our aim is to show that ultrafilter bases have exactly the high degrees. How do we formulate a version of this for strong reductions?

- Let DomFcn denote the mass problem of functions h that dominate every computable function, and also satisfy $h(s) \ge s$ for all s.
- Let $Tot = \{e : \phi_e \text{ is total}\}$. Note that F is high iff $Tot \leq_T F'$.
- The approximations to Tot are the $\{0, 1\}$ -valued binary functions f such that $\lim_{s} f(e, s) = \operatorname{Tot}(e)$.

Fact (Martin, morally)

DomFcn is strongly equivalent to

the mass problem of approximations to Tot.

Classifying the complexity of ultrafilter bases

Theorem

The mass problem **DomFcn** of dominating functions

is Medvedev equivalent to

the mass problem \mathcal{U} of ultrafilter bases. In particular, the degrees of UFB are exactly the high degrees.

Proof of DomFcn $\leq_s \mathcal{U}$ is inspired by a proof of Jockusch (1972) that any family of sets containing exactly the computable sets must have high degree.

Proof of DomFcn $\geq_s \mathcal{U}$

Let $\langle \psi_e \rangle_{e \in \mathbb{N}}$ be an effective listing of the $\{0, 1\}$ valued partial computable functions defined on an initial segment of \mathbb{N} . Let $V_{e,k} = \{x \colon \psi_e(x) = k\}.$

Let $T = \{0, 1, 2\}^{<\infty}$. Uniformly in $\alpha \in T$ we will define a possibly finite c.e. set S_{α} enumerated in an increasing fashion.

Let $S_{\emptyset,s} = [0, s)$. If we have defined (at stage s) the set $S_{\alpha} = \{r_0 < \ldots < r_k\}$, let \widetilde{S}_{α} contain the numbers of the form r_{2i} .

Define a uniform list of Turing functionals Γ_e so that the sequence $\langle \Gamma_e^h(t) \rangle_{t \in \mathbb{N}}$ is nondecreasing, for each e and each oracle function h such that $h(s) \geq s$ for each s. We will let $F_e = \{\Gamma_e^h(t) : t \in \mathbb{N}\}$.

Definition of Γ_e . Given an oracle function h, we will write a_s for $\Gamma_e^h(s)$. Let $a_0 = 0$. Suppose s > 0 and a_{s-1} has been defined.

Let $\alpha \in T$ be the leftmost string of length e such that there is an $x \in S_{\alpha,h(s)}$ with $x > a_{s-1}$. Choose x least for α and let $a_s = x$. If there is no such α let $a_s = a_{s-1}$.

Verification. Suppose h is a dominating function. Then for each e we have $F_e = S_{\alpha}$, where α is leftmost string of length e such that S_{α} is infinite.

Theorem

There is a co-c.e. ultrafilter base.

References:

- Logic Blog 2019, Section 7
- These slides available on request
- Rupprecht thesis and paper (2010)
- Brendlle, Brooke, Ng, Nies 2014: surveyish paper on Cichon diagram in computability
- Greenberg, Kuyper, Turetsky ta: Weihrauch reductions