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Languages

Examples of Languages (Sets)
(a) Set of all natural numbers in binary notation: either 0 or
1 followed by arbitrarily many digits from 0,1.
(b) Set of all possible computer programs in syntax of
programming language C: Tools can translate a formal
description of C syntax into a syntax checker.
(c) Set of all C programs which pass a compiler without
error messages: Compilers check more than just
syntactical correctness.
(d) Set of all C programs which do not have bugs: No
computer program can solve this task completely.
(e) Set of all texts of books written in English and published
between 1066 and 1492: Exhaustive list describes this set.

Theory of Computation
How does one describe above sets? How does one modify
descriptions? Do descriptions allow membership checks?
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Languages

Language = Set of Strings over an Alphabet.
Alphabet Σ, for example Σ = {0,1,2}. Always finite.

Finite languages
L1 = ∅, no elements.
L2 = {ε}, set consisting of empty string.
L3 = {00,01,02,10,11,12,20,21,22}, all elements of
length 2.
L4 = {ε,0,00,000,0000}, all strings of 0s up to length 4.
L5 = {01,001,02,002}, all strings consisting of one or two
0s followed by a 1 or 2.

Theory of Computation 1 Sets and Regular Expressions – p. 3



Operations with Languages

Union:
L ∪H = {u : u ∈ L or u ∈ H};
{00,01,02} ∪ {01,11,21} = {00,01,02,11,21};
{0,00,000} ∪ {00,000,0000} = {0,00,000,0000}.

Intersection:
L ∩H = {u : u ∈ L and u ∈ H};
{00,01,02} ∩ {01,11,21} = {01};
{0,00,000} ∩ {00,000,0000} = {00,000}.

Set Difference:
L−H = {u : u ∈ L and u /∈ H};
{00,01,02} − {01,11,21} = {00,02}.

Concatenation:
000 · 1122 = 0001122;
L ·H = {v ·w : v ∈ L and w ∈ H};
{0,00} · {1,2} = {01,001,02,002}.
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Kleene Star and Plus

Definition
L∗ = {ε} ∪ L ∪ L · L ∪ L · L · L ∪ . . .
= {w1 ·w2 · . . . ·wn : n ≥ 0 and w1,w2, . . . ,wn ∈ L};

L+ = L ∪ L · L ∪ L · L · L ∪ . . .
= {w1 ·w2 · . . . ·wn : n > 0 and w1,w2, . . . ,wn ∈ L}.

Examples
∅∗ = {ε}.
Σ∗ is the set of all words over Σ.
{0}∗ = {ε,0,00,000,0000, . . .}.
{00,01,10,11}∗ are all binary words of even length.

ε ∈ L+ iff ε ∈ L.

Notation
Often w∗ in place of {w}∗;
Often w · L in place of {w} · L.
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Regular Languages

Regular expressions are either finite sets listed by their
elements or obtained from other regular expressions by
forming the Kleene star, Kleene plus, union, intersection,
set-difference or concatenation.

A language is regular iff it can be described by a regular
expression.

Regular sets have many different regular expressions.

For example, {0,00} · {1,2} and {01,001,02,002} describe
the same set. Also 0∗ and (00)∗ ∪ 0 · (00)∗ describe the
same set.

Intersections and set difference are traditionally not used in
regular expressions, as every regular set has an expression
only using union, concatenation and Kleene star.

The complement of a language L is Σ∗ − L.
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Quiz

Which three sets are described by two of the following
regular expressions?

1. {00,000}+;

2. {000,0000}+;

3. 00 · 0∗;

4. 000 · 0∗;

5. {000,0000} ∪ (000000 · 0∗);

6. {00,01,02,10,11,12};

7. 0∗1∗2∗;

8. (0∗1∗2∗)∗;

9. ({0,1} · {0,1,2}∗) ∩ ({0,1,2} · {0,1,2}).
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Exercises 1.6, 1.7 and 1.8

Exercise 1.6
Assume A has 3 and B has 2 elements. How many
elements do the following sets have at least and at most; it
depends on the actual choice which of the bounds is
realised: A ∪B, A ∩B, A ·B, A−B, A∗ ∩B∗.

Exercise 1.7
Let A,B be finite sets and |A| be the number of elements of
A. Is the following formula correct:

|A ∪B|+ |A ∩B| = |A|+ |B|?

Prove your answer.

Exercise 1.8
Make a regular expression without intersection and set
difference for 0∗1∗0∗1∗ ∩ (11)∗(00)∗(11)∗(00)∗.
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Tutorial

Register for a tutorial group
During the semester, you can make up to TEN marks in
tutorials (full course = 100 marks).

(a) Write up to four exercises up in the Forum, at most one
per week; these can be reserved after the lecture at the
lecturer; two marks for each exercise, at most eight marks.

(b) Present in the tutorial group one exercise per week; you
have in your own group priority on exercises you write up,
however, you can also present other exercises not signed
up by any member of your group; five presentations, one
mark; eight presentations, two marks; one presentation per
week is counted.
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Tests

Midterm Tests are inside the class and take up a part but
not all of the lectures on Tuesday 17 September 2019 and
Tuesday 29 October 2019; each midterm test counts 20
marks. The midterm tests are in the second half of the
lectures on those days.

The final examination counts 50 marks. It is 28 November
2019 at 17:00 hrs and the duration is 2 hours. Please
consult NUS webpages for more information and
doublecheck the information there.

Summary: Tutorial 10 marks, Mitderms 20 + 20 marks,
Final 50 marks.
https://nusmods.com/modules/CS4232/theory-of-
computation
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Theorem of Lyndon and Schützenberger

Theorem
If two words v,w satisfy vw = wv then ∃u [v,w ∈ u∗];
If all words v,w ∈ L satisfy vw = wv then ∃u [L ⊆ u∗].

Proof
Case v = ε or w = ε: u = vw.
Case v 6= ε and w 6= ε and |v| = |w|: v = w.
Case v 6= ε and w 6= ε and |v| < |w|: Let k be greatest
common divisor of |v|, |w| and u be the first k symbols of v.
There are i, j with v = u1u2 . . .ui and w = u1u2 . . .uj for

words u1,u2, . . . ,uj of length k.

Note that vjwi = wivj and |vj| = |wi|, as both have the

length ijk. Thus vj = wi.

For each uh there is a position of uh in wi where u1 is at the

same position in vj. Thus uh = u1.
So v,w ∈ u∗ for u = u1.
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Example, Second Part

Example: Let v = abcd and w = abcdef and vw = wv.
Now k = 2 (greatest common divisor of 4,6).
v3 = ab cd ab cd ab cd;
w2 = ab cd ef ab cd ef .

Now ab = ab at 0,1, ab = ef at 4,5, ab = cd at 8,9. So
ab = cd = ef and v,w ∈ (ab)∗.

Second Part: Let v be shortest nonempty word of L and u

be shortest word with v ∈ u∗.
Let w ∈ L be arbitrary.
There is ũ with v,w ∈ ũ∗.

Now ũi = uj = v for some i, j.
Thus ũ,u ∈ û∗ as in Part 1 for some û where |û| is greatest
common divisor of |u| and |ũ|.
By choice of u, û = u and w ∈ u∗.
So L ⊆ u∗.
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Structural Induction

Theorem
Let P be a property of sets such that the following holds:

• Every finite set (including ∅) satisfies P;

• If L,H satisfy P so does L ∪H;

• If L,H satisfy P so does L ·H;

• If L satisfies P so does L∗.

Then all regular sets satisfy P.

Proof.
Let L(σ) be the set generated by the regular expression σ.
Here finite sets and the operations union, concatenation
and Kleene star are permitted for regular expressions.

Now it is shown that there is no shortest regular expression
σ such that L(σ) does not satisfy P.
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Shortest Expression

Assume that σ is a shortest expression not satisfying P; if
there are several shortest ones, σ is just any of these.

• If σ is a list of a finite set then P satisfies L(σ);

• If σ = (ρ ∪ τ) then ρ, τ are shorter than σ and L(ρ),L(τ)
satisfy P and so does L(σ) = L(ρ) ∪ L(τ);

• If σ = (ρ · τ) then ρ, τ are shorter than σ and L(ρ),L(τ)
satisfy P and so does L(σ) = L(ρ) · L(τ);

• If σ = τ∗ then τ is shorter than σ and L(τ) satisfies P

and so does L(σ) = (L(τ))∗.

So there is no case in which L(σ) would not satisfy P, thus
this σ does not exist and there is no regular expression σ for
which L(σ) does not satisfy P. All regular languages satisfy
P.

Theory of Computation 1 Sets and Regular Expressions – p. 14



Strengthening the Theorem

Theorem
Let P be a property of sets such that the following holds:

• The empty set and the set {ε} satisfy P;

• For every letter a, the set {a} satisfies P;

• If L,H satisfy P so does L ∪H;

• If L,H satisfy P so does L ·H;

• If L satisfies P so does L∗.

Then all regular sets satisfy P.

This strengthening is just based on the fact that every finite
set of strings can be formed using concatenation and union
from the sets containing a single letter word, the set
containing the empty word and the empty set.
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Polynomial and Exponential Growth

Definition
A language L has polynomial growth iff there is a
polynomial p such that for all n there are in L at most p(n)
many words shorter than n.
A language L has exponential growth iff there are constants
h,k such that L contains for all n at least 2n words which
are shorter than h · n+ k.

Theorem
Every regular set has either polynomial or exponential
growth.

This will be proven by structural induction.

Theory of Computation 1 Sets and Regular Expressions – p. 16



Examples

Every finite set has polynomial growth, as one plus the
number of elements is a polynomial which is an upper
bound as required.
The set 0∗1∗ has polynomial growth as there are n(n+ 1)/2
many words shorter than n in this set.
The set 0∗ ∪ 1∗ has polynomial growth as there are at most
2n many words shorter than n in this set.

The set {00,11}∗ · {222222} has exponential growth as it
has for all n at least 2n words shorter than 7+ 2n.
The set {0000,1111}∗ has exponential growth as it has for
all n at least 2n words shorter than 1+ 4n.

The set {00,11}∗ · ∅ is empty and has polynomial growth.
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Rules for Growth

Finite sets have polynomial growth.

If L and H have polynomial growth then so do L ∪H and
L ·H.

If L or H have exponential growth then so does L ∪H.

The sets L · ∅ and ∅ · L have polynomial growth.

If L and H are not empty and at least one of them has
exponential growth so does L ·H.

If L contains v,w with vw 6= wv then L∗ has exponential
growth else L∗ has polynomial growth.

Let P(L) say that the language L has either polynomial or
exponential growth. Then the rules imply that all finite sets
satisfy P and that, whenever L,H satisfy P so do L ∪H,
L ·H and L∗. Thus all regular sets satisfy P by structural
induction.
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Quiz

Does L ∩H have exponential growth whenever L and H

have exponential growth?

Does {0101,010101}∗ have exponential growth?

Does {000,001,011,111}∗ · {0000,1111} have exponential
growth?

Does the (non-regular) set {w ∈ {0,1}∗ : w has at most
log(|w|) many 1s} have polynomial growth?

Does the set {w ∈ {0,1}∗ : w has at most log(|w|) many
1s} have exponential growth?

Is there a polynomial p such that every set of polynomial
growth has at most p(n) elements shorter than n for every
n?
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Rules for Regular Expressions

(a) L ∪ L = L, L ∩ L = L, (L∗)∗ = L∗, (L+)+ = L+;

(b) (L ∪H)∗ = (L∗ ·H∗)∗ and if ε ∈ L ∩H then
(L ∪H)∗ = (L ·H)∗;

(c) (L ∪ {ε})∗ = L∗, ∅∗ = {ε} and {ε}∗ = {ε};

(d) L+ = L · L∗ = L∗ · L and L∗ = L+ ∪ {ε};

(e) (L ∪H) ·K = (L ·K) ∪ (H ·K) and
K · (L ∪H) = (K · L) ∪ (K ·H);

(f) (L ∪H) ∩K = (L ∩K) ∪ (H ∩K) and
(L ∩H) ∪K = (L ∪K) ∩ (H ∪K);

(g) (L ∪H)−K = (L−K) ∪ (H−K) and
(L ∩H)−K = (L−K) ∩ (H−K).
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Inequality Rules

(a) L · L can be different from L: {0} · {0} = {00};

(b) (L ∩H)∗ ⊆ L∗ ∩H∗;
Properness: L = {00}, H = {000}, (L ∩H)∗ = {ε},
L∗ ∩H∗ = {000000}∗;

(c) If {ε} ∪ (L ·H) = H then L∗ ⊆ H;
Properness: L = {ε}, H = {0}∗;

(d) If L ∪ (L ·H) = H then L+ ⊆ H;
Properness: L = {ε}, H = {0}∗;

(e) (L ∩H) ·K ⊆ (L ·K) ∩ (H ·K);
Properness: ({0} ∩ {00}) · {0,00} = ∅ ⊂ {000} =
({0} · {0,00}) ∩ ({00} · {0,00});

(f) K · (L ∩H) ⊆ (K · L) ∩ (K ·H);
Properness: {0,00} · ({0} ∩ {00}) = ∅ ⊂ {000} =
({0,00} · {0}) ∩ ({0,00} · {00}).

Theory of Computation 1 Sets and Regular Expressions – p. 21



Characterising Kleene Star

Corollary 1.17. For any set L, the following statements

characterise L∗ and L+:

(a) L∗ is the smallest set H such that {ε} ∪ (L ·H) = H;

(b) L∗ is the smallest set H such that {ε} ∪ (L ·H) ⊆ H;

(c) L+ is the smallest set H such that L ∪ (L ·H) = H;

(d) L+ is the smallest set H such that L ∪ (L ·H) ⊆ H.

In the above, one could also use H · L in place of L ·H.
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Exercise 1.18

Which three of the following sets are not equal to any of the
other sets:

(a) {01,10,11}∗;

(b) (({0,1} · {0,1})− {00})∗;

(c) ({01,10} · {01,10,11} ∪ {01,10,11} · {01,10})∗;

(d) ({01,10,11} · {01,10,11})∗ ∪ {01,10,11} · ({01,10,11} ·
{01,10,11})∗;

(e) {0,1}∗ − {0,1} · {00,11}∗;

(f) (({01}∗ ∪ {10})∗ ∪ {11})∗;

(g) ({ε} ∪ ({0} · {0,1}∗ ∩ {1} · {0,1}∗))∗.

Explain your answer.
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Exercise 1.19

Make a regular expression which contains all those decimal
natural numbers which start with 3 or 8 and have an even
number of digits and end with 5 or 7.

Make a further regular expression which contains all odd
ternary numbers without leading 0s; here a ternary number
is a number using the digits 0,1,2 with 10 being three, 11
being four and 1212 being fifty. The set described should
contain the ternary numbers
1,10,12,21,100,102,111,120,122,201, . . . which are the
numbers 1,3,5,7,9,11,13,15,17,19, . . . in decimal.
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Exercise 1.20

Let S be the smallest class of languages such that

• every language of the form u∗ for a nonempty word u is
in S;

• the union of two languages in S is again in S;

• the concatenation of two languages in S is again in S.

Prove by structural induction the following properties of S:

(a) Every language in S is infinite;

(b) Every language in S has polynomial growth.

Lay out all inductive steps explicitly without only citing
results in this lecture.

Theory of Computation 1 Sets and Regular Expressions – p. 25



Exercise 1.21

Let L satisfy the following statement: For all u,v,w ∈ L,
either uv = vu or uw = wu or vw = wv. Which of the
following statements are true for all such L:

• All x,y ∈ L satisfy xy = yx;

• All sufficiently long x,y ∈ L satisfy xy = yx;

• The language L has polynomial growth.

Give an answer to these questions and prove them.
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Exercises 1.22-1.23

In the following, each digit, the symbol ε, the symbol ·, the
symbol ∪, the comma and each set bracket and each
normal bracket have length 1 and the length of the
expression is the number of all the symbols in it (counting
repetitions).

Exercise 1.22
Let L consist of all words which contain each of the letters
0,1,2,3 exactly once. Make a regular expression
generating L which has at most length 100.

Exercise 1.23
Make a regular expression for the set {w ∈ {0}∗ : |w| ≤ 9}
which has at most length 26.
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Exercises 1.24-1.26

Let V be the set of vowels, W be the set of consonants and
S be the set of punctuation marks and T be the set of
spacings (blancs and new lines and so on).

Exercise 1.24. Make a regular expression (using above
sets) of all words which contain at least two vowels and
before, after and between vowels is exactly one consonant.

Exercise 1.25. Make a regular expression of all sentences
where each sentence consists of words containing one
vowel and arbitrarily many consonants and between two
words are spacings and after the last word is a punctuation
mark.

Exercise 1.26. Make a regular expressions generating texts
of sentences separted by spacings where sentences are as
above with the only difference that words can have one or
two vowels and up to four consonants.
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