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Languages

Language = Set of Strings over finite Alphabet Σ.
Examples for Finite Languages: ∅, {ε,0,11}.

Union: L ∪H = {u : u ∈ L or u ∈ H}.
Intersection: L ∩H = {u : u ∈ L and u ∈ H}.
Set Difference: L−H = {u : u ∈ L and u /∈ H}.
Concatenation: 000 · 1122 = 0001122;
L ·H = {v ·w : v ∈ L and w ∈ H}.
Kleene Star: L∗ = {ε} ∪ L ∪ L · L ∪ L · L · L ∪ . . .
= {w1 ·w2 · . . . ·wn : n > 0 and w1,w2, . . . ,wn ∈ L}.

Kleene Plus: L+ = L ∪ L · L ∪ L · L · L ∪ . . .
= {w1 ·w2 · . . . ·wn : n > 0 and w1,w2, . . . ,wn ∈ L}.

Regular languages are those which can be formed from
finite languages using union, concatenation and Kleene
star. Regular expressions write down such definitions
explictly.
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Growth

A set L has polynomial growth iff there is a polynomial p
such that for all n, there are at most p(n) words in L which
are shorter than n.
Examples are {00}∗, {0}∗ ∪ {1}∗ and {0}∗ · {1}∗ · {2}∗.
A set L has exponential growth iff there are constants h,k
such that for each n there are at least 2n words in L which
are shorter than hn+ k.
Examples are {0,1}∗ and {0000,1111}∗ · {2222}.

Theorem
Every regular set has either polynomial or exponential
growth.

Proof by structural induction: Let P(L) denote that L has
either polynomial or exponential growth.

P(L) is true for all finite sets L. If P(L) and P(H) are true,
so are P(L ∪H), P(L ·H) and P(L∗).
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Grammars

Grammar (N,Σ,P,S) describes how to generate the words
in a language; the language L of a grammar consists of all
the words in Σ∗ which can be generated.

N: Non-terminal alphabet, disjoint to Σ.

S ∈ N is the start symbol.

P consists of rules l → r with each rule having at least one
symbol of N in the word l.

v ⇒ w iff there are x,y and rule l → r in P with v = xly and
w = xry. v ⇒∗ w: several such steps.

The grammar with N = {S}, Σ = {0,1} and
P = {S → SS,S → 0,S → 1} permits to generate all
nonempty binary strings.

S ⇒ SS ⇒ SSS ⇒ 0SS ⇒ 01S ⇒ 011.
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Conventions 1

These conventions are followed often, but not strictly.

Terminal symbols or alphabet symbols: 0,1,2, . . .;
Variables for terminals: a,b, c, . . .;
Variables for sets of alphabets: Σ,Γ,∆;

Non-Terminals: S,T, . . .; Start symbol S;
Variables for terminals: A,B,C, . . .;

Words over terminals:
ε,0,1,2,3, . . . ,00,01,10,02,11,20,03, . . .;
Symbol repetition in words: 0819, 0n1n2n;
Variables for words over terminals: u,v,w,x,y, z;
Words over non-terminals and terminals: same letters,
sometimes capital.
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Conventions 2

Rules: S → 00|11|ST|T,T → TT|222;
Variables for rules: l → r, A → w;
Derivation one step: v ⇒ w;
Derivation arbitrary steps (including none): v ⇒∗ w;

Languages: ∅, {00,11}, Σ∗, {0,1}∗, regular expressions;
Variables for Languages: L,H,K, . . .;

States of automata (next lecture): o,p,q, r, s, t; start: s;
Automata transition function: δ;
Variables of states of automata: often same symbols;

Natural numbers:
0,1,2, . . . ,9,10,11, . . . ,99,100,101,102, . . .;
Variables of natural numbers: m,n, i, j,k, . . .;

Variables for functions: f ,g,h, . . .;
Set of natural numbers: N.
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Examples

Example 2.3
At least three symbols, 0s followed by 1s, at least one 0 and
one 1.
N = {S,T}, Σ = {0,1}, start symbol S,
P has S → 0T1, T → 0T, T → T1, T → 0, T → 1.

Example 2.4
All words with as many 0s as 1s.
N = {S}, Σ = {0,1}, S → SS|0S1|1S0|ε.
The symbol | separates alternatives.

Example 2.5
All words of odd length.
N = {S,T}, Σ = {0,1,2}, start symbol S,
S → 0T|1T|2T|0|1|2, T → 0S|1S|2S.

Theory of Computation 2 Chomsky Hierarchy and Grammars – p. 7



The Chomsky Hierarchy

Grammar (N,Σ,P,S) generating L.

CH0: No restriction. Generates all recursively enumerable
languages.

CH1 (context-sensitive): Every rule is of the form
uAw → uvw with A ∈ N, u,v,w ∈ (N ∪Σ)∗ and v = ε is
only possible if A = S and S does not occur on any right
side of a rule.

Easier formalisation: If l → r is a rule then |l| ≤ |r|, that is, r
is at least as long as l. Special rule (as above) for the case
that ε ∈ L.

CH2 (context-free): Every rule is of the form A → w with
A ∈ N and w ∈ (N ∪Σ)∗.

CH3 (regular): Every rule is of the form A → wB or A → w

with A,B ∈ N and w ∈ Σ∗.
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Examples

A language L is called context-sensitive / context-free /
regular iff it can be generated by a grammar of respective
type.

Regular grammar for Example 2.3:
N = {S,T}, Σ = {0,1}, start symbol S,
S → 0S|00T|01T, T → 1T|1.

Grammar for Example 2.4 is context-free. This was the
example of all words with same number of 0 and 1.

Grammar for Example 2.5 is regular. This was the example
of all words of odd length.

Example 2.9.
Context-Sensitive Grammar for {0n1n2n : n ∈ N}.
N = {S,T,U}, Σ = {0,1,2}, start symbol S,
S → 012|0T12|ε, T → 0T1U|01U, U1 → 1U, U2 → 22.
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Expression ⇒ Regular Grammar

Theorem
Every regular language is generated by a regular grammar.

The next slide will provide the following details:

• Every finite set is generated by a regular grammar;

• If two regular grammars with disjoint sets of
non-terminals generate L and H then one can combine
these two grammars to new regular grammars for
L ∪H, L ·H and L∗, respectively.

One can always rename the non-terminals in order to
achieve that two grammars do not use the same
non-terminals; thus one can prove by structural induction
that every regular set L satisfies the property “L is
generated by some regular grammar.”
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Constructing the Grammars

If L = {w1,w2, . . . ,wn} then grammar
({S},Σ, {S → w1|w2| . . . |wn},S) generates L.

Assume that the regular grammar (N1,Σ,P1,S1) generates
L and the regular grammar (N2,Σ,P2,S2) generates H and
N1 ∩N2 = ∅. A,B are always non-terminals and w ∈ Σ∗.

Choose S /∈ N1 ∪N2 ∪Σ; the regular grammar
({S} ∪N1 ∪N2,Σ, {S → S1|S2} ∪P1 ∪P2,S) generates
L ∪H.

Let P = {A → wB : A → wB is in P1 ∪P2} ∪ {A → wS2 :
A → w is in P1} ∪ {A → w : A → w is in P2}; the regular
grammar (N1 ∪N2,Σ,P,S1) generates L ·H.

Let P = P1 ∪ {S → S1|ε} ∪ {A → wS : A → w is in P1}; the
regular grammar (N1 ∪ {S},Σ,P,S) generates L∗.
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Example 2.11

Given ({0,1}∗ · 2 · {0,1}∗ · 2) ∪ {0,2}∗ ∪ {1,2}∗.
Choose Non-Terminals S,T,U,V,W with
LS = LT ∪ LV ∪ LW;
LT = {0,1}∗ · 2 · {0,1}∗ · 2 = {0,1}∗ · 2 · LU;
LU = {0,1}∗ · 2;
LV = {0,2}∗;
LW = {1,2}∗.
Grammar ({S,T,U,V,W}, {0,1,2},P,S) with these rules:
S → T|V|W,
T → 0T|1T|2U,
U → 0U|1U|2,
V → 0V|2V|ε,
W → 1W|2W|ε.
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Regular Grammar ⇒ Expression

Let R1,R2, . . . ,Rn be an explicit list of rules in the regular
grammar and define inductively for m = 0,1, . . . ,n and all
non-terminals C,D the sets EC,D,m,EC,m defined as

follows:

• EC,D,m is the set of all words v ∈ Σ∗ for which there is a

derivation C ⇒∗ vD using only the rules
R1,R2, . . . ,Rm;

• EC,m is the set of all words v ∈ Σ∗ for which there is a

derivation C ⇒∗ v using only the rules R1,R2, . . . ,Rm.

It will be proven by induction that all these sets can be
generated by regular expressions. The base case is that
EC,C,0 = {ε}, as one can derive C ⇒∗ C without applying

any rule, that EC,D,0 = ∅ when C 6= D and that EC,0 = ∅.

Theory of Computation 2 Chomsky Hierarchy and Grammars – p. 13



Inductive Step

For m = 0,1, . . . ,n− 1, define all EC,D,m+1 and EC,m+1

using the corresponding expressions on level m.

If Rm+1 is A → w:

• EC,D,m+1 = EC,D,m;

• EC,m+1 = EC,m ∪ (EC,A,m · {w}).
If Rm+1 is A → wB:

• EC,D,m+1 =

EC,D,m ∪ (EC,A,m · {w} · (EB,A,m · {w})∗ · EB,D,m);

• EC,m+1 = EC,m ∪ (EC,A,m · {w} · (EB,A,m · {w})∗ ·EB,m).

The final regular expression is ES,n where S is the start

symbol.
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Example 2.13

Regular grammar ({S,T}, {0,1,2,3},P,S) with
S → 0S|1T|2 and T → 0T|1S|3.
Let LS = {w : (S → w) ∈ P} = {2} and LT = {3}.
Let LS,S = {w : (S → wS) ∈ P} = {0}, LS,T = {1},

LT,S = {1}, LT,T = {0}.

Regular Expression:
(LS,S)

∗ ·(LS,T ·(LT,T)
∗ ·LT,S ·(LS,S)

∗)∗ ·(LS∪LS,T ·(LT,T)
∗ ·LT)

giving 0∗ · (10∗10∗)∗ · (2 ∪ 10∗3).

Equivalent expression:
(LS,S ∪ LS,T · (LT,T)

∗ · LT,S)
∗ · (LS ∪ LS,T · (LT,T)

∗ · LT)

giving (0 ∪ 10∗1)∗ · (2 ∪ 10∗3).
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The Pumping Lemma

Theorem 2.15 (a)
Let L be a regular language. There is a constant k such
that every w ∈ L with |w| > k equals to xyz with y 6= ε and
|xy| ≤ k and xy∗z ⊆ L.

Tighter versions will be shown later.

Example
L = 0110·{2,3}∗∪001100·{22,33}∗·11∪0011001100·{2,3}.
Then the constant k is 11.
If w ∈ L and |w| > 11 then there are at least two
occurrences of 2,3 in w.
So split w into xyz such that y is the first block of two digits
from 2,3 occuring in w.
Then xy∗z ⊆ L.

Theory of Computation 2 Chomsky Hierarchy and Grammars – p. 16



Proof by Structural Induction

If k is larger than the length of all members of L then L

satisfies the Pumping Lemma with constant k.

If L,H satisfy the Pumping Lemma with constant k so does
L ∪H.

If L,H satisfy the Pumping Lemma with constant k then
L ·H satisfies the Pumping Lemma with constant 2k: if
v ∈ L and w ∈ H satisfy |vw| > 2k then either |v| ≤ k and
one can pump inside the first k symbols of w or |v| > k and
one can pump inside the first k symbols of v.

If L satisfies the Pumping Lemma with constant k so does
L∗: If v = w1w2 . . .wn with |v| > k and w1,w2, . . . ,wn ∈ L

then either |w1| ≤ k and w∗

1w2 . . .wn ⊆ L or |w1| > k and
one can pump inside w1.
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Weaker Version of Pumping Lemma

Corollary 2.16
If L is regular then there is a constant k such that for all
u ∈ L longer than k there are x,y, z with y 6= ε, u = xyz and
xy∗z ⊆ L.

Exercise 2.17
Let p1,p2,p3, . . . be the list of prime numbers in ascending
order. Show that L = {0n : n > 0 and n 6= p1 · p2 · . . . · pm for
all m} satisfies Corollary 2.16 but does not satisfy
Theorem 2.15 (a).
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Exercise 2.18

Assume that (N,Σ,P,S) is a regular grammar and h is a
constant such that N has less than h elements and for all
rules of the form A → wB or A → w with A,B ∈ N and
w ∈ Σ∗ it holds that |w| < h. Show that Theorem 2.15 (a)

holds with the constant k being h2.

Theory of Computation 2 Chomsky Hierarchy and Grammars – p. 19



Pumping Position and Length

Example 2.20
Let L = {w ∈ {0,1}∗ : w has as many 0s as 1s}.

L satisfies Corollary 2.16.

Given w ∈ {0,1}∗ − {0}∗ − {1}∗. Let w = xyz with
y ∈ {01,10}.

If w ∈ L then xy∗z ⊆ L.

L does not satisfy Theorem 2.15 (a), as there is a constraint
on the position where the word is pumped.

Let k be the pumping constant and consider 0k+11k+1.
Pumping before position k expands or reduces the number
of 0s while keeping the number of 1s the same.
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Context-Free Languages

Theorem 2.15 (b): Pumping-Lemma for CTF
Assume that L is a context-free language. Then there is a
constant k such that for all u ∈ L with |u| > k there is a
representation vwxyz of u with |wxy| ≤ k and w 6= ε or
y 6= ε and vwnxynz ∈ L for all n ∈ N.

Applications
Showing that certain languages are not context-free or
regular.

L = {u : u is a decimal number where every digit appears
as often as the other digits}.
This language is not context-free.

L = {3n7n : n ∈ {1,2,3, . . .}}.
This language is context-free but not regular.
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Primes

Example 2.19
The set L = {0p : p is a prime} is not context-free.

Let k be the pumping constant and p be a prime number
larger than k.

Now 0p = vwxyz with wy 6= ε and vwrxyrz ∈ L for all r.

Let q = |wy|, note that q > 0.

Now vwp+1xyp+1z ∈ L and has length p+ p · q.

This is p · (1+ q) and is not a prime.

Hence 0p+p·q /∈ L, a contradiction to the Pumping Lemma.

So L does not satisfy the Pumping Lemma for context-free
languages.
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Theorem 2.21

Let L ⊆ {0}∗. The following conditions are equivalent for L.

(a) L is regular;

(b) L is context-free;

(c) L satisfies the Pumping Lemma for regular languages;

(d) L satsifies the Pumping Lemma for context-free
languages.

Clearly (a) implies (b),(c) and (b),(c) both imply (d).
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Proof of (d) implies (a)

Assume that k is the pumping constant for the context-free
Pumping Lemma. Then, for every word u ∈ L with |u| > k,
one can split 0n into vwxyz such that |wxy| ≤ k and wy 6= ε

and vwhxyhz ∈ L for all h.

This in particular holds when h− 1 is a multiple of k!/|wy|.
As words from 0∗ commute with each other, 0n · (0k!)∗ ⊆ L.

For each remainder m ∈ {0,1, . . . ,k!− 1}, let

nm = min{i : ∃j [i > k and i = m+ jk! and 0i ∈ L]}

and let nm = ∞ when there is no such i, that is, min ∅ = ∞.

Now L is the union of L ∩ {ε,0,00, . . . ,0k} and those sets

0nm · (0k!)∗ where m < k! and nm < ∞. Thus L is regular.
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Exercise 2.22

Construct context-free grammars for the sets

L = {0n1m2k : n < m or m < k},

H = {0n1m2n+m : n,m ∈ N} and
K = {w ∈ {0,1,2}∗ : w has a subword of the form 20n1n2

for some n > 0 or w = ε}.

Which of the versions of the Pumping Lemma (Theorems
2.15 (a) and 2.15 (b) and Corollary 2.16) are satisfied by L,
H and K, respectively.

Theory of Computation 2 Chomsky Hierarchy and Grammars – p. 25



Exercise 2.23

Exercise
Let L = {0n1n2n : n ∈ N}.

Show that this language is not context-free using the
Pumping Lemma for context-free languages.

Comment
This is a classical result and standard exercise in the field.
This example often comes up and it is useful to remember
it. It will be used in varied form for various further results.
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Additional Exercises

Exercise 2.24
Let L = {0h1i2j3k : (h 6= i and j 6= k) or (h 6= k and i 6= j)}
be given. Construct a context-free grammar for L and
determine which of versions of the Pumping Lemma
(Corollary 2.16 and Theorems 2.15 (a) and 2.15 (b)) are
satisfied by L.

Exercise 2.25
Consider the linear grammar ({S},Σ, {S → 00S|S1|S2|3},S)
and construct for the language L generated by the grammar
the following: a regular grammar for L and a regular
expression for L.
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Grammars and Growth

For the following exercises, let f(n) be the number of words
w ∈ L with |w| < n. To answer the questions, either
construct a grammar witnessing that such an L exists or
prove that it cannot exist.

Exercise 2.26
Is there a context-free language L with f(n) = ⌊√n⌋?
Exercise 2.27
Is there a regular L with f(n) = n(n+ 1)/2?

Exercise 2.28
Is there a context-sensitive L with f(n) = nn, where 00 = 0?

Exercise 2.29
Is there a regular L with f(n) = (3n − 1)/2+ ⌊n/2⌋?
Exercise 2.30
Is there a regular L with f(n) = ⌊n/3⌋+ ⌊n/2⌋?
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Length of Pumps

Call a nonempty y a pump for xyz ∈ L iff {x} · {y}∗ · {z} ⊆ L.
For the below languages L, find the smallest k such there is
a h for which all words w ∈ L with |w| ≥ h have a pump of
length up to k. State h,k and explain the answer.

Exercise 2.31: L = {000,111,222}∗ ∩ {0000,1111,2222}∗ ∩
{00000,11111,22222}∗.
Exercise 2.32: L is the set of all words where the length is 1

or 3 or 7 or 9 modulo 10.

Exercise 2.33: L is the set of all words where the length is
neither 1 nor 3 nor 7 nor 9 modulo 10.

Exercise 2.34: L = {001100110011} · {222}∗ ∪ {0011} ·
{2222}∗ ∪ {001100110011001100110011}.

Exercise 2.35: L is the set of all decimal numbers without
leading zeroes which are multiples of 512.
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Decimal Numbers

For the following sets H, find an infinite L ⊆ H such that L
is of complexity as low as possible and L satisfies the given
property. Choose L to be in the best level of the Chomsky
Hierarchy (regular better than context-free better than
context-sensitive). Give grammars or regular expressions
and use pumping lemmas to show that it does not go better.

Exercise 2.36: Find infinite L ⊆ H for
H = {10n20m1 : n ≥ m ≥ 1 and n+m is even} such that
all members of L are square numbers.

Exercise 2.37: Find infinite L ⊆ H for
H = {10n30m30k1 : 2n ≥ m+ k and 3 divides n+m+ k}
such that all members of L are third powers (cubes).

Exercise 2.38: Find infinite L ⊆ H for
H = {1} · {0}+ · {3} · {0}+ · {3} · {0}+ · {1} · {0}+ such that
all members of L are third powers (cubes).
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