
Theory of Computation 3
Deterministic Finite Automata

Frank Stephan

Department of Computer Science

Department of Mathematics

National University of Singapore

fstephan@comp.nus.edu.sg

Theory of Computation 3 Deterministic Finite Automata – p. 1

Repetition 1

Grammar (N,Σ,P,S) describes how to generate the words
in a language; the language L of a grammar consists of all
the words in Σ∗ which can be generated.

N: Non-terminal alphabet, disjoint to Σ.

S ∈ N is the start symbol.

P consists of rules l → r with each rule having at least one
symbol of N in the word l.

v ⇒ w iff there are x,y and rule l → r in P with v = xly and
w = xry. v ⇒∗ w: several such steps.

The grammar with N = {S}, Σ = {0,1} and
P = {S → SS,S → 0,S → 1} permits to generate all
nonempty binary strings.

S ⇒ SS ⇒ SSS ⇒ 0SS ⇒ 01S ⇒ 011.

Theory of Computation 3 Deterministic Finite Automata – p. 2

Repetition 2

Grammar (N,Σ,P,S) generating L.

CH0: No restriction. Generates all recursively enumerable
languages.

CH1 (context-sensitive): Every rule is of the form
uAw → uvw with A ∈ N, u,v,w ∈ (N ∪Σ)∗.

Easier formalisation: If l → r is a rule then |l| ≤ |r|, that is, r
is at least as long as l. Special rule for the case that ε ∈ L.

CH2 (context-free): Every rule is of the form A → w with
A ∈ N and w ∈ (N ∪Σ)∗.

CH3 (regular): Every rule is of the form A → wB or A → w

with A,B ∈ N and w ∈ Σ∗.

L is called context-sensitive / context-free / regular iff it can
be generated by a grammar of respective type.

Theory of Computation 3 Deterministic Finite Automata – p. 3

Multiples of 3

Check whether decimal number a1a2 . . . an is a multiple of 3.

Easy Algorithm
Scan through the word from a1 to an.
Maintain memory s.
Initialise s = 0.
For m = 1,2, . . . ,n Do

Begin Let s = s+ am modulo 3 End.
If s = 0

Then a1a2 . . . an is multiple of 3
Else a1a2 . . . an is not a multiple of 3.

Test the algorithm on 1, 20, 304, 2913, 49121, 391213,
2342342, 123454321.

Theory of Computation 3 Deterministic Finite Automata – p. 4

Finite Automaton

0start 1

2

0,3,6,9
1,4,7

2,5,8

2,5,8

0,3,6,9

1,4,7

1,4,7
2,5,8

0,3,6,9

Theory of Computation 3 Deterministic Finite Automata – p. 5

Automata Working Mod 7

Automaton ({0,1,2,3,4,5,6}, {0,1, . . . ,9}, δ,0, {0}) with δ
given as table.

q type δ(q, a) for a = 0 1 2 3 4 5 6 7 8 9

0 acc 0 1 2 3 4 5 6 0 1 2

1 rej 3 4 5 6 0 1 2 3 4 5

2 rej 6 0 1 2 3 4 5 6 0 1

3 rej 2 3 4 5 6 0 1 2 3 4

4 rej 5 6 0 1 2 3 4 5 6 0

5 rej 1 2 3 4 5 6 0 1 2 3

6 rej 4 5 6 0 1 2 3 4 5 6

δ(q, a) is the remainder of 10 ∗ q+ a by 7.
δ(0,568) = δ(δ(δ(0,5),6),8) = 1.

Theory of Computation 3 Deterministic Finite Automata – p. 6

Automaton as Program

function div257 begin

var a in {0,1,2,...,256};

var b in {0,1,2,3,4,5,6,7,8,9};

if exhausted(input) then reject;

read(b,input); a = b;

if b == 0 then

begin if exhausted(input)

then accept else reject end;

while not exhausted(input) do

begin read(b,input);

a = (a*10+b) mod 257 end;

if a == 0 then accept else reject end.

Automaton checks whether input is multiple of 257.
Automaton rejects leading 0s of decimal numbers.
Important: All variables can only store constantly many
information during the run of the automaton.

Theory of Computation 3 Deterministic Finite Automata – p. 7

Finite Automaton - Formal

A deterministic finite automaton (dfa) is given by a set Q of
states, the alphabet Σ used, the state-transition function δ
mapping Q×Σ to Q, the starting state s ∈ Q and a set
F ⊆ Q of final states.

On input a1a2 . . . an, one can associate to this input a
sequence q0q1q2 . . .qn of states of the finite automaton
with q0 = s and δ(qm, am+1) = qm+1 for all m < n. This
sequence is called the run of the dfa on this input.

A dfa accepts a word w iff its run on the input w ends in an
accepting state, that is, in a member of F. Otherwise the
dfa rejects the word w.

One can inductively extend δ to a function from Q×Σ∗ to Q

by letting δ(q, ε) = q and δ(q,wa) = δ(δ(q,w), a). So the dfa
accepts w iff δ(s,w) ∈ F.

Theory of Computation 3 Deterministic Finite Automata – p. 8

Exercise 3.6

Make a finite automaton for the program from the Slide 7.

Use Q = {s, z, r,q0,q1, . . . ,q256}.

Here s is the starting state, r is an always rejecting state
which is never left and z is the state which is reached after
reading the first 0. Furthermore, when the word is starting
with 1,2, . . . ,9, then the automaton should cycle between
the states q0,q1, . . . ,q256.

Describe when the automaton is in state qa and how the
states are updated on b. There is no need to write a table
for δ, it is sufficient to say how δ works in each relevant
case.

Theory of Computation 3 Deterministic Finite Automata – p. 9

Quiz 3.7

Let ({s, t}, {0,1,2}, δ, s, {t}) be a finite automaton with
δ(s, a) = t and δ(t, a) = s for all a ∈ {0,1,2}. Determine the
language of strings recognised by this automaton.

sstart t

0,1,2

0,1,2

Theory of Computation 3 Deterministic Finite Automata – p. 10

Regular Sets

Theorem 3.8
The following statements are equivalent for a language L.

(a) L is recognised by a deterministic finite automaton;

(b) L is generated by a regular expression;

(c) L is generated by a regular grammar.

Equivalence of (b) and (c) was in Lecture 2. Now
implication (a) to (c) is shown; the missing implication
comes in Lecture 4.

Theory of Computation 3 Deterministic Finite Automata – p. 11

Implication (a) to (c)

Assume (Q,Σ, δ, s,F) is a dfa recognising L.

Consider grammar (Q,Σ,P, s) with P having the following
rules:

• q → ar whenever δ(q, a) = r;

• q → ε whenever q ∈ F.

Let w = a1a2 . . . an be a word.

The dfa recognises w iff there is an accepting run starting in
q0 = s and transiting from qm−1 to qm on symbol am with
qn ∈ F iff there is a derivation of w of the form
q0 ⇒ a1q1 ⇒ a1a2q2 ⇒ . . . ⇒ a1a2 . . . anqn ⇒ a1a2 . . . an
with q0 = s for the given grammar iff the grammar generates
w.

Theory of Computation 3 Deterministic Finite Automata – p. 12

Example

Language: Multiples of 3 (with leading zeroes).

Grammar
Set of Terminals: {0,1,2,3,4,5,6,7,8,9}.
Set of Non-Terminals: {q0,q1,q2}.
Rules:
q0 → 0q0|1q1|2q2|3q0|4q1|5q2|6q0|7q1|8q2|9q0|ε;
q1 → 0q1|1q2|2q0|3q1|4q2|5q0|6q1|7q2|8q0|9q1;
q2 → 0q2|1q0|2q1|3q2|4q0|5q1|6q2|7q0|8q1|9q2.
Start Symbol: q0.

Sample Derivations
q0 ⇒ 2q2 ⇒ 22q1 ⇒ 222q0 ⇒ 222;
q0 ⇒ 2q2 ⇒ 24q0 ⇒ 243q0 ⇒ 243;
q0 ⇒ 7q1 ⇒ 72q0 ⇒ 729q0 ⇒ 729;
q0 ⇒ 2q2 ⇒ 25q1 ⇒ 256q1 6⇒ 256.

Theory of Computation 3 Deterministic Finite Automata – p. 13

Block Pumping Lemma

Theorem 3.9 [Ehrenfeucht, Parikh and Rozenberg 1981]
If L is a regular set then there is a constant k such that for
all strings u0,u1, . . . ,uk with u0u1 . . .uk ∈ L there are i, j
with 0 < i < j ≤ k and

(u0u1 . . .ui−1) · (uiui+1 . . .uj−1)
∗ · (ujuj+1 . . .uk) ⊆ L.

So if one splits a word in L into k+ 1 parts then one can
select some neighbouring parts in the middle of the word
which can be pumped.

If one ui with 0 < i < k is empty then ui can be pumped;
one can also require that u1,u2, . . . ,uk−1 are nonempty.

Theory of Computation 3 Deterministic Finite Automata – p. 14

Example 3.10

L = {1,2}∗ · (0 · {1,2}∗ · 0 · {1,2}∗)∗ satisfies the Block
Pumping Lemma with k = 3:
Let u0,u1,u2,u3 be given with u0u1u2u3 ∈ L.
If u1 contains an even number of 0 then u0(u1)

∗u2u3 ⊆ L;
If u2 contains an even number of 0 then u0u1(u2)

∗u3 ⊆ L;
If u1,u2 both contain an odd number of 0 then
u0(u1u2)

∗u3 ⊆ L.

H = {u : u has a different number of 0s than 1s} does not
satisfy the Block Pumping Lemma with any k:

If u = 0k1k+k! then one takes u0,u1, . . . ,uk−1 = 0 and

uk = 1k+k! and whatever pumping interval one choses, the

pump is of the form 0h for h < k and 0k · (0h)k!/h1k+k! is not
in H.

Theory of Computation 3 Deterministic Finite Automata – p. 15

Block Pumping

Theorem 3.11 [Ehrenfeucht, Parikh and Rozenberg 1981]
If a language and its complement both satisfy the Block
Pumping Lemma then the language is regular.

Quiz 3.12 Which of the following languages over
Σ = {0,1,2,3} satisfies the pumping-condition of the Block
Pumping Lemma:
(a) {00,111,22222}∗ ∩ {11,222,00000}∗∩

{22,000,11111}∗,
(b) {0m1n2o : m+ n+ o = 5555},
(c) {0m1n2o : m+ n = o+ 5555},
(d) {w : w contains more 1 than 0}?

Theory of Computation 3 Deterministic Finite Automata – p. 16

Blockpumping Constants

The optimal constant for a language L is the least n such
that for all words u0u1u2 . . .un ∈ L there are i, j with
0 < i < j ≤ n and u0 . . .ui−1(ui . . .uj−1)

∗uj . . .un ⊆ L.

Exercise 3.13 Find the optimal block pumping constants for
the following languages:
(a) {w ∈ {0,1,2,3,4,5,6,7,8,9}∗ : at least one nonzero digit
a occurs in w at least three times};
(b) {w ∈ {0,1,2,3,4,5,6,7,8,9}∗ : |w| = 255};
(c) {w ∈ {0,1,2,3,4,5,6,7,8,9}∗ : the length |w| is not a
multiple of 6}.

Exercise 3.14 Find the optimal block pumping constants for
the following languages:
(a) {w ∈ {0,1,2,3,4,5,6,7,8,9}∗ : w is a multiple of 25};
(b) {w ∈ {0,1,2,3,4,5,6,7,8,9}∗ : w is not a multiple of 3};
(c) {w ∈ {0,1,2,3,4,5,6,7,8,9}∗ : w is a multiple of 400}.

Theory of Computation 3 Deterministic Finite Automata – p. 17

Exercises 3.15 and 3.16

Exercise 3.15
Find a regular language L so that the constant of the Block
Pumping Lemma for L is 4 and for the complement of L is
4096 or more. Note that you can use an alphabet Σ of
sufficiently large size.

Exercise 3.16
Give an example of a language L which satisfies the normal
Pumping Lemma (where there is a k such that for all w with
|w| ≥ k there are x,y, z with xyz = w, |y| > 0, |xy| ≤ k and
xy∗z ⊆ L) but not the Block Pumping Lemma.

Theory of Computation 3 Deterministic Finite Automata – p. 18

Derivatives

Given a language L, let Lx = {y : x · y ∈ L} be the
derivative of L at x.

Theorem 3.17 [Myhill and Nerode].
A language L is regular iff L has only finitely many
derivatives.

If L has k derivatives, one can make a dfa recognising L.
The states are strings x1,x2, . . . ,xk representing the
derivatives Lx1

,Lx2
, . . . ,Lxk

.
The transition rule δ(xi, a) is the unique xj with Lxj

= Lxia.

The starting state is the unique state xi with Lxi
= L.

A state xi is accepting iff ε ∈ Lxi
iff xi ∈ L.

Theory of Computation 3 Deterministic Finite Automata – p. 19

Example 3.19

Let L = 0∗1∗2∗. Now L0 = 0∗1∗2∗, L01 = 1∗2∗, L012 = 2∗

and L0121 = ∅. The corresponding automaton is the
following.

L0start L01

L012 L0121

0

1

2

1

2
0

2
0,1

0,1,2

Theory of Computation 3 Deterministic Finite Automata – p. 20

Other Direction

Assume that a dfa recognises a language L and that δ is
the transition function of the dfa. Now if δ(s,v) = δ(s,w)
then Lv = Lw: Given a word u, then u ∈ Lv iff vu ∈ L iff
δ(δ(s,v),u) is accepting iff δ(δ(s,w),u) is accepting iff
wu ∈ L iff u ∈ Lw.

So one can pick for every reachable state q a word xq with

δ(s,xq) = q and it follows that for every word y there is a

reachable state q with δ(s,y) = q and thus Ly = Lxq
.

In summary, every derivative Ly is equal to one of the

derivatives Lxq
with q being a reachable state and therefore

there are only finitely many derivatives in a regular
language.

Theory of Computation 3 Deterministic Finite Automata – p. 21

Example 3.20

Let L = {0n1n : n ∈ N}.

Then L0n = {0m1n+m : m ∈ N}.

The shortest string in L0n is 1n.

If n 6= n′ then L0n 6= L0n′ . Hence there are infinitely many

different derivatives.

The language L cannot be regular.

Theory of Computation 3 Deterministic Finite Automata – p. 22

Jaffe’s Pumping Lemma

Lemma 3.21 [Jaffe 1978]
A language L ⊆ Σ∗ is regular iff there is a constant k such

that for all x ∈ Σ∗ and y ∈ Σk there are u,v,w with y = uvw

and v 6= ε such that, for all h, Lxuvhw = Lxy.

Proof
If a dfa recognises with k states recognises L then there
are for every x,y with |y| = k two distinct prefixes u,uv of y
such that the dfa is in the same state after reading xu and
xuv. Thus when splitting y into u · v ·w for u,v from above
then, for all z, the automaton is for all h on the words

xuvhwz in the same state; hence Lxuvhw = Lxy for all h.

Conversely, for every z of length at least k there is a z′

shorter than z with Lz′ = Lz; thus there are at most as many
derivatives as there are words up to length k− 1 and thus L

is regular by the Theorem of Myhill and Nerode.
Theory of Computation 3 Deterministic Finite Automata – p. 23

Exercises

Exercise 3.22
Assume that the alphabet Σ has 5000 elements. Define a
language L ⊆ Σ∗ such that Jaffe’s Matching Pumping
Lemma is satisfied with constant k = 3 while every
deterministic finite automaton recognising L has more than
5000 states. Prove your answer.

Exercise 3.23
Find a language which needs for Jaffe’s Matching Pumping
Lemma at least constant k = 100 and can be recognised by
a deterministic finite automaton with 100 states. Prove your
answer.

Theory of Computation 3 Deterministic Finite Automata – p. 24

Algorithm 3.29

Minimise dfa (Q,Σ, δ, s,F)

Construct Set R of Reacheable States: R = {s};
While ∃q ∈ R ∃a ∈ Σ [δ(q, a) /∈ R]
Do Begin R = R ∪ {δ(q, a)} End.

Identify Distinguishable States γ:
Initialise γ = {(q,p), (q,p) : p ∈ R ∩ F,q ∈ R− F};
While ∃(p,q) ∈ R×R− γ ∃a ∈ Σ [(δ(p, a), δ(q, a)) ∈ γ]
Do Begin γ = γ ∪ {(p,q), (q,p)} End.

Minimal Automaton (Q′,Σ, δ′, s′,F′):
Q′ = {q ∈ R : ∀p < q [(p,q) ∈ γ or p /∈ R]};
δ′(q, a) is the unique p ∈ Q′ with (p, δ(q, a)) /∈ γ;
s′ is the unique s′ ∈ Q′ with (s, s′) /∈ γ;
F′ = F ∩Q′.

Theory of Computation 3 Deterministic Finite Automata – p. 25

Exercise 3.30

Make an equivalent minimal complete dfa for this one:

sstart o p q

t u

r

0 0 0 0

0 0

1

2

1

2 2

1

2

1

1,2 1,2

0

1

2

Follow the steps of the algorithm of Myhill and Nerode.

Theory of Computation 3 Deterministic Finite Automata – p. 26

Exercise 3.31

Assume that Σ = {0,1,2,3,4,5,6,7,8,9} and
Q = {(a,b, c) : a,b, c ∈ Σ} is the set of states. Furthermore
assume that δ((a,b, c),d) = (b, c,d) for all a,b, c,d ∈ Σ,
(0,0,0) is the start state and that
F = {(1,1,0), (3,1,0), (5,1,0), (7,1,0), (9,1,0)} is the set of
accepting states.

This dfa has 1000 states. Find a smaller dfa for this set and
try to get the dfa as small as possible.

Theory of Computation 3 Deterministic Finite Automata – p. 27

Exercise 3.32

Assume that Σ = {0,1,2,3,4,5,6,7,8,9} and
Q = {(a,b, c) : a,b, c ∈ Σ} is the set of states. Furthermore
assume that δ((a,b, c),d) = (b, c,d) for all a,b, c,d ∈ Σ,
(0,0,0) is the start state and that
F = {(1,2,5), (3,7,5), (6,2,5), (8,7,5)} is the set of
accepting states.

This dfa has 1000 states. Find a smaller dfa for this set and
try to get the dfa as small as possible.

Theory of Computation 3 Deterministic Finite Automata – p. 28

Exercises 3.33 to 3.36

These two exercises ask to provide a minimal dfa for a
language L; though L is given by a context-free grammar, it
is in both cases regular. The dfas need not be complete.

Exercise 3.33 – The grammar is given as

({S,T,U}, {0,1,2,3},P,S) with P =
{S → TTT|TTU|TUU|UUU, T → 0T|T1|01,
U → 2U|U3|23}.

Exercise 3.34 – The grammar is given as

({S,T,U}, {0,1,2,3,4,5},P,S) with P =
{S → TS|SU|T23U, T → 0T|T1|01,
U → 4U|U5|45}.

Exercises 3.35 and 3.36 – Provide regular expressions for
the first and the second of the above grammars,
respectively.

Theory of Computation 3 Deterministic Finite Automata – p. 29

Additional Exercises

Provide finite automata for the below sets of numbers; the
dfas can be made in any of the styles of slides 5 to 7.

Exercise 3.37. All decimal numbers where between
between two occurences of a digit d are at least three other
digits.

Exercise 3.38. All decimal numbers which are not multiples
of a one-digit prime number.

Exercise 3.39. All decimal numbers with at least five
decimal digits which are divisible by 8.

Exercise 3.40. All decimal numbers which have in their
decimal representation twenty consecutive odd digits.

Exercise 3.41. All octal numbers (digits 0,1,2,3,4,5,6,7)
without leading zeroes which are not multiples of 7.

Theory of Computation 3 Deterministic Finite Automata – p. 30

Automata to Regular Expressions

Consider the automaton ({0,1,2,3}, {0,1,2,3}, δ,0, {1,3})
with δ given in this table.

q type δ(q, a) for a = 0 1 2 3

0 start, rej 0 1 2 3

1 acc 1 1 2 3

2 rej 2 2 2 3

3 acc 3 3 3 3

Exercise 3.42. Make a regular expression for the language
L recognised by the dfa.

Exercise 3.43. Let L as in Exercise 3.42 and make a regular
expression for the language of words of odd lengths in L.

Exercise 3.44. Let L as in Exercise 3.42 and make a
regular expression for the language of words of length at
least 5 in L.

Theory of Computation 3 Deterministic Finite Automata – p. 31

	Repetition 1
	Repetition 2
	Multiples of 3
	Finite Automaton
	Automata Working Mod 7
	Automaton as Program
	Finite Automaton - Formal
	Exercise 3.6
	Quiz 3.7
	Regular Sets
	Implication (a)
to (c)
	Example
	Block Pumping Lemma
	Example 3.10
	Block Pumping
	Blockpumping Constants
	Exercises 3.15 and 3.16
	Derivatives
	Example 3.19
	Other Direction
	Example 3.20
	Jaffe's Pumping Lemma
	Exercises
	Algorithm 3.29
	Exercise 3.30
	Exercise 3.31
	Exercise 3.32
	Exercises 3.33 to 3.36
	Additional Exercises
	Automata to Regular Expressions

