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Repetition 1

If (Q,X,4,s,F) is a non-deterministic finite automaton (nfa)
then ) has a set of values (not always single value), that is,
for p € Q and a € X there can be several q € Q such that
the nfa can go from p to q on symbol a.

A run of an nfa on a word a;a- . ..a, IS a sequence

qod192 - - -dn € Q* such that qo =s and qm+1 € 0(dm, am+1)
for all m < n.

If g € F then the run is “accepting” else the run is
“rejecting”.

The nfa accepts a word w iff it has an accepting run on w;
this is also the case if there exist other rejecting runs.

§ as relation: (p,a, q) € ¢ iff nfa can go on a from p to q.
6 as set-valued function: §(p,a) = {q : nfa can go on a from

p to q}.
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Repetition 2

The language {w : some letter appears twice} has an nfa
with n + 2 states while a dfa needs 2™ + 1 states; here for

n =4, where n = |X|.
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Repetition 3

Given an nfa, one let for given state q and symbol a the set
6(q, a) denote all states ' to which the nfa can transit from
g on symbol a.

Theorem 4.5 [Buchi; Rabin and Scoitt]
For each nfa (Q, X, 9,s, F) with n = |Q| states, there is an
equivalent dfa ({Q’: Q' C Q}, X, ¢, {s}, F’) with 2™ states
suchthat F ={Q' CQ: Q'nF #(} and
vQ CQVac X[5'(Qa) = Ugyeqdl(d.a)

= {q"€Q:3d € Q'[d" € i(d,a)]}].
As the number of states is often overshooting, it is good to

minimise the resulting automaton with the algorithm of
Myhill and Nerode.

Theory of Computation 5 Combining Languages — p. 4



Repetition 4

The following statements are all equivalent to “L is regular”:
(a) L Is generated by a regular expression;

(b) L is generated by a regular grammar;

(c) L is recognised by a determinisitic finite automaton;

(d) L is recognised by a non-determinisitic finite automaton;
(e) L and X* — LL both satisfy the Block Pumping Lemma;
(f) L satsifies Jaffe’'s Matching Pumping Lemma;

(9) L has only finitely many derivatives.
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Product Automata

Let (Ql, >, 01,81, Fl) and (Qz, >, 09,82, Fz) be dfas which
recognise L; and Ls, respectively.

Consider (Ql X Qao, 2,01 X 09, (Sl, Sz), F) with

(51 X 52)((0_[1, qz), a) — (51((]1, a), 52((]2, a)) This automaton
Is called a product automaton and one can choose F such
that it recognises the union or intersection or difference of
the respective languages.

Union: F = F; x Q2 U Q7 X Fs;

Intersection: F = F1 x Fo =F1 X Qz M Ql X Fa;

Difference: F = F; x (Q2 — F2);

Symmetric Difference: F = F1 x (Q2 — F2)U (Q1 — F1) x Fa.
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Example

Fora=1,2, let automaton ({s,t},{0,1,2},0,,s,{s})
recognise when there is an even number of a; if input b
equals a then state is changed else state remains
unchanged.

Quiz: Which Boolean combination does this product
automaton recognise? 0
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Kleene Star

Assume (Q, X, 9, s, F) is an nfa recognising L. Now L* is
recognised by (QuU {s'}, X, 0" ¢, {s'} UF) where

§'(s',a) = d(s,a) and ¢'(p,a) = d(p,a) forp € Q — F and
¢ (p,a) =d(p,a) Ud(s,a) forp € F.

0 0

start — start —>@
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Concatenation

Assume (Ql; >, 01,81, Fl) and (Qz, >, 09,82, Fz) are nfas
recognising L; and Ly with Q1 N Q2 = () and assume

e ¢ La. Now (Q1 U Q2, 32, 0,81, Fa) recognises Ly - Ly where
(p,a,q) € 6 whenever (p,a,q) € 41 Uz or (p € F1 and
(s2,a,q) € d2).

If Lo contains ¢ then one can consider the union of L; and
L1 . (Lz — {8})
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Example

Li-Lowith L; = {00, 1]_}>|< and Ly = 2*17T0T.
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Exercise 5.3

The previous slides give upper bounds on the size of the
dfa for a union, intersection, difference and symmetric
difference as n? states, provided that the original two dfas
have at most n states.

Give the corresponding bounds for nfas: If L and H are
recognised by nfas having at most n states each, how many
states does one need at most for an nfa recognising (a) the
union L U H, (b) the intersection L. N H, (c) the difference

L — H and (d) the symmetric difference (L — H)uU (H — L)?

Give the bounds in terms of “linear”, “quadratic” and
“exponential”. Explain your bounds.
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Sample Automata

Exercise 5.4

Let ¥ ={0,1,2,3,4,5,6,7,8,9}. Construct a (not
necessarily complete) dfa recognising the language

> -{aa:a€ X}*N{aaaaa:ac X}". Itis not needed to give
a full table for the dfa, but a general schema and an
explanation how it works.

Exercise 5.5

Make an nfa for the intersection of the following languages:
{0,1,2}*-{001}-{0,1,2}*-{001}-{0,1,2}%;
{001,0001,2}*; {0,1,2}*- {00120001} - {0,1,2}*.

Exercise 5.6

Make an nfa for the union Ly U L; U Lo with
L,=1{0,1,2}*-{aa}-{0,1,2}*-{aa}-{0,1,2}" for
ac{0,1,2}.
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Exercise 5.7

Consider two context-free grammars with terminals X,
disjoint non-terminals N; and N, start symbols S; € N;
and S, € N2 and rule sets P; and Py which generate L. and
H, respectively. Explain how to form from these a new
context-free grammar for

(a) LUH,

(b) L - H and

(c) L*.

Write down the context-free grammars for {0®1%" : n € N}

and {0"13" : n € N} and form the grammars for union,
concatenation and star explicitly.
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Example 5.8

The language {0}* - {1™2™ : n € N} is context-free.

Grammar ({S, T}, {0,1,2},P,S) with P be given by
S — 0S|T|e and T — 1T2|e.

The language {0"1™ : n € N} - {2}* IS context-free.

L = {0"1"2" : n € N} is not context-free but the intersection
of the two above.

The complement of L is the union of {0?1™2k : n < k},
for1™m2k . n > k}, {o"1™m2k : m < k}, {o"1™2% : m > k},
{o"1™m2k : n < m}, {0"1™2K : n > m} and
{0,1,2}*-{10,20,21} -{0,1,2}".

Each of these languages is context-free. Grammar for the

first of them: S — 0S2|S2|T2, T — 1T|e. The union is also
context-free. Hence L has a context-free complement.
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Context-Free Intersects Regular

Theorem 5.9

If L is context-free and H is regularthen LN H is
context-free.

Construction.

Let (N, 3, P, S) be a context-free grammar generating L
with every rule being either A — w or A — BC with

A, B, CeNandw e X*,

Let (Q, X, 4,s,F) be a dfa recognising H.

Let S’ ¢ Q x N x Q and make the following new grammar
(Q x N x QU{S'}, X, R,S’) with rules R:

S’ — (s,S,q) forall q € F;

(p,A,q) — (p,B,r)(r,C,q) for all rules A — BC in P and

allp,q,r € Q;
(p,A,q) — w forall rules A — w in P with §(p, w) = q.
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Exercises 5.10 and 5.11

Recall that the language L of all words which contain as
many 0s as 1s is context-free; a grammar for it is
({S},{0,1},{S — SS|¢|0S1|1S0}, S).

Exercise 5.10
Construct a context-free grammar for L N (0017)*.

Exercise 5.11
Construct a context-free grammar for L N 0*1*0*1*.
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Context-Sensitive and Concatenation

Let L, and L2 be context-sensitive languages not
containing . Let (Ny,3,P1,S1) and (N2, 3, P2, S2) be two
context-senstive grammers generating L, and L»,
respectively, where N1 NNy = () and where each rule 1 — r
satisfies |1| < |r| and 1 € N/ for the respective e € {1, 2}.
Let S ¢N1UN2UE.

Now (Nl U No U {S}, >, PiUPs U {S — 8182}, S) generates
L4 - Lo.

If veL;iandw c Lathen S = S1So =* vSy =* vw.
Furthermore, the first rule has to be S = S1S5 and from
then onwards, each rule has on the left side either 1 € N7
so that it applies to the part generated from S; or it has in
the left side 1 € N so that 1is in the part of the word
generated from S,. Hence every intermediate word z in the
derivation is of the form xy = z with S; =* xand Sy =* y.

Theory of Computation 5 Combining Languages —p. 17



Context-Sensitive and Kleene-star

Let (N1,3,P1,S1) and (N2, 3, P2, S2) be context-sensitive
grammars for L — {e} with Ny "Ny =( and all rules 1 — r
satisfying |1| < |r| and 1 € N or 1 € N3, respectively. Let
S. S’ be symbols not in N; UN, U X.

Now consider (N; UNs U {S,S’}, X, P, S) where P contains
the rules S — S’|e and S’ — S1S2S"|S1S2 | S1 plus all rules
in P; UPs.

This grammar generates L*.
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Context-Sensitive and Intersection

Theorem.
The intersection of two context-sensitive languages is
context-sensitive.

Construction.
Let (N, X, Py, S) be grammars for L; and L. Now make a
new non-terminal set N = (N7 UX U {#}) x (Ng U X U {#})

with start symbol (3) and following types of rules:

(a) Rules to generate and manage space;

(b) Rules to generate a word v in the upper row;

(c) Rules to generate a word w in the lower row;

(d) Rules to convert a string from N into v provided that the
upper components and lower components of the string are
both v.
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Type of Rules

(@): (5) — (s) (%) for producing space; (3) (&) — (i) (c)
and (¢) () — (%) (&) for space management.

(b) and (c): For each rule in P4, for example, for
AB — CDE € P, and all symbols F, G, H, ... In N5, one

has the corresponding rule (8) (&) (i) — (%) (2) (5)- So
rules in P1 are simulated in the upper half and rules in P5
are simulated in the lower half and they use up # if the left
side is shorter than the right one.

(d): Each rule (2) — afor a € X is there to convert a

matching pair (2) from ¥ x X (a nonterminal) to a (a
terminal).
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Grammar for 0"1*2"* withn > 0O

Grammar L;: S — S2|0S1|01.
Grammar Lo: S — 0S|1S2|12.

Grammar for Intersection.
N={(8):A,Bec{S,01,2#}}

Rules where A, B, C stand for any members of
{8.0.1,2,4}: (g) — (s) (%);

®) @)~ () (@) (@) %) ~ &) (©);

W E)E = Q6

i
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Exercises 5.14 and 5.17

Exercise 5.14
Let L = {0™1"2" : n € N} and construct a context-sensitive
grammar for L*.

Exercise 5.17

Consider the language L = {00} - {0,1,2,3}* U {1,2,3} -
{0,1,2,3}*uU{0,1,2,3}*-{02,03,13,10, 20, 30,21, 31,32} -
{0,1,2,3}* U {c} U {0172"3" : n € N}.

Which versions of the Pumping Lemma does it satisfy:
e Regular Pumping Lemma (with / without bounds);
e Context-Free Pumping Lemma (with / without bounds);
e Block Pumping Lemma (for regular languages)?
Determine the exact position of L in the Chomsky hierarchy.
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Mirror Images

Define (ajas...a,)™ = a, ...aza; as the mirror image of a
string.
It follows from the definition of context-free and

context-sensitive, that if L is context-free / context-sensitive
so is L™, This can be achieved by replacing every rule

1 — r by 1™ — ymi,

For example, the mirror image of the language of the words
011317%3 js given by language of the words 132720, While
L is generated by a context-free grammar with one
non-terminal S and rules S — 05111 |111, L™ is then
generated by a similar grammar with the rules

S — 111S0|111.
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Exercise 5.18

Recall that x™! is the mirror image of x, so

(01001)™ = 10010. Furthermore, L™ = {x™! : x € L}.
Show the following two statements:
(a) If an nfa with n states recognises L then there is also an

nfa with up to n + 1 states recognising L™,
(b) Find the smallest nfas which recognise L = 0*(1* U 2¥)

as well as L™,
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Palindromes

The members of the language {x € * : x = x™!} are called
palindromes. A palindrome is a word or phrase which looks
the same from both directions.

An example is the German name “OTTO?”; furthermore,
when ignoring spaces and punctuation marks, a famous
palindrome is the phrase “A man, a plan, a canal: Panama.’
originating from the time when the canal in Panama was
built.

The grammar with the rules S — aSalaalale with a ranging
over all members of 3 generates all palindromes; so for
3. =1{0,1, 2} the rules of the grammar would be

S — 0S0|1S1[2S2|00(|11|22|0]|1|2]e.

The set of palindromes is not regular.
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Exercises

Exercise 5.20

Letw € {0,1,2,3,4,5,6,7,8,9}" be a palindrome of even
length and n be its decimal value. Prove that n is a multiple
of 11. Note that it is essential that the length is even, as for
odd length there are counter examples (like 111 and 202).

Exercise 5.21
Given a context-free grammar for a language L, is there

also one for L N L™!? If so, explain how to construct the
grammar; if not, provide a counter example where L is

context-free but L N L™! is not.
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Exercises

Exercise 5.22

Is the following statement true or false”? Prove your answer:
Given a language L, the language L n L™ equals to

{w e L: wis a palindrome}.

Exercise 5.23

Let L = {w € {0,1,2}* : w = w™} and consider

H =LN{012,210,00,11,22}* N ({0,1}* - {1,2}* - {0,1}*).
This is the intersection of a context-free and regular
language and thus context-free. Construct a context-free
grammar for H.
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Exercises

In the following, one considers regular expressions
consisting of the symbol L of palindromes over {0,1,2} and
the mentioned operations. What is the most difficult level in
the hierarchy “regular, linear, context-free, context-sensitive”
such expressions can generate. It can be used that

{10'10910%1 : i # j,i # k,j # k} is not context-free.

Exercise 5.24: Expressions containing L and U and finite
sets.

Exercise 5.25: Expressions containing L and U and - and
Kleene star and finite sets.

Exercise 5.26: Expressions containing L and U and - and
and N and Kleene star and finite sets.

Exercise 5.27: Expressions containing L and - and set
difference and Kleene star and finite sets.
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Next Week’s Midterm Examination

Topics
Defining and proving using structural induction
Making and analysing finite automata

Converting regular languages from one form into another
form, Deterministic versus non-deterministic finite
automata, Bounds on number of states

Pumping lemmas: Usage for proofs; Properties
Combining finite automata

Basic properties of context-free grammars: Making of such
grammars, Usage of pumping lemma for context-free
languages

Revise lecture notes; Try exercises and compare with
solutions by fellow students
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Example of Inductive Definition

e<10 <11 <00 <3301 <310 <1311 <3000 <51 ...; Use
this length-lexicographical order <;; to define sw(regexp):

sw(l)) = oo;
sw({wi,...,Wn}) = minp{wy,..., Wn};

sw(o) !f SW(T) = 00;

sw(oUT) = { SW(T) If sw(o) = o0;
miny {sw(o),sw(7)} otherwise;
o' If sw(o) = o0

sw(o-T) = { or sw(7) = oo;
sw(o) -sw(7) otherwise;
sw(o™) = e.

One can show by structural induction: |sw(o)| < |o| where
loo]j=1and 0] =1 and || = 0.
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