
Theory of Computation 5
Combining Languages

Frank Stephan

Department of Computer Science

Department of Mathematics

National University of Singapore

fstephan@comp.nus.edu.sg

Theory of Computation 5 Combining Languages – p. 1

Repetition 1

If (Q,Σ, δ, s,F) is a non-deterministic finite automaton (nfa)
then δ has a set of values (not always single value), that is,
for p ∈ Q and a ∈ Σ there can be several q ∈ Q such that
the nfa can go from p to q on symbol a.

A run of an nfa on a word a1a2 . . . an is a sequence
q0q1q2 . . .qn ∈ Q∗ such that q0 = s and qm+1 ∈ δ(qm, am+1)
for all m < n.

If qn ∈ F then the run is “accepting” else the run is
“rejecting”.

The nfa accepts a word w iff it has an accepting run on w;
this is also the case if there exist other rejecting runs.

δ as relation: (p, a,q) ∈ δ iff nfa can go on a from p to q.
δ as set-valued function: δ(p, a) = {q : nfa can go on a from
p to q}.

Theory of Computation 5 Combining Languages – p. 2

Repetition 2

The language {w : some letter appears twice} has an nfa
with n+ 2 states while a dfa needs 2n + 1 states; here for
n = 4, where n = |Σ|.

∅start

{1}{0} {2} {3}

#

0,1,2,3

0 1 2

3

1,2,3 0,2,3 0,1,3 0,1,2

0,1,2,3

0 1 2

3

Theory of Computation 5 Combining Languages – p. 3

Repetition 3

Given an nfa, one let for given state q and symbol a the set
δ(q, a) denote all states q′ to which the nfa can transit from
q on symbol a.

Theorem 4.5 [Büchi; Rabin and Scott]
For each nfa (Q,Σ, δ, s,F) with n = |Q| states, there is an
equivalent dfa ({Q′ : Q′ ⊆ Q},Σ, δ′, {s},F′) with 2n states
such that F′ = {Q′ ⊆ Q : Q′ ∩ F 6= ∅} and
∀Q′ ⊆ Q ∀a ∈ Σ [δ′(Q′, a) =

⋃

q′∈Q δ(q′, a)

= {q′′ ∈ Q : ∃q′ ∈ Q′ [q′′ ∈ δ(q′, a)]}].

As the number of states is often overshooting, it is good to
minimise the resulting automaton with the algorithm of
Myhill and Nerode.

Theory of Computation 5 Combining Languages – p. 4

Repetition 4

The following statements are all equivalent to “L is regular”:

(a) L is generated by a regular expression;

(b) L is generated by a regular grammar;

(c) L is recognised by a determinisitic finite automaton;

(d) L is recognised by a non-determinisitic finite automaton;

(e) L and Σ∗ − L both satisfy the Block Pumping Lemma;

(f) L satsifies Jaffe’s Matching Pumping Lemma;

(g) L has only finitely many derivatives.

Theory of Computation 5 Combining Languages – p. 5

Product Automata

Let (Q1,Σ, δ1, s1,F1) and (Q2,Σ, δ2, s2,F2) be dfas which
recognise L1 and L2, respectively.

Consider (Q1 ×Q2,Σ, δ1 × δ2, (s1, s2),F) with
(δ1 × δ2)((q1,q2), a) = (δ1(q1, a), δ2(q2, a)). This automaton
is called a product automaton and one can choose F such
that it recognises the union or intersection or difference of
the respective languages.

Union: F = F1 ×Q2 ∪Q1 × F2;
Intersection: F = F1 × F2 = F1 ×Q2 ∩Q1 × F2;
Difference: F = F1 × (Q2 − F2);
Symmetric Difference: F = F1× (Q2−F2)∪ (Q1−F1)×F2.

Theory of Computation 5 Combining Languages – p. 6

Example

For a = 1,2, let automaton ({s, t}, {0,1,2}, δa, s, {s})
recognise when there is an even number of a; if input b
equals a then state is changed else state remains
unchanged.

Quiz: Which Boolean combination does this product
automaton recognise?

(s, s)start (s, t)

(t, s) (t, t)

0 0

0 0

1

2

1

2 2

1

2

1

Theory of Computation 5 Combining Languages – p. 7

Kleene Star

Assume (Q,Σ, δ, s,F) is an nfa recognising L. Now L∗ is
recognised by (Q ∪ {s′},Σ, δ′, s′, {s′} ∪ F) where
δ′(s′, a) = δ(s, a) and δ′(p, a) = δ(p, a) for p ∈ Q− F and
δ′(p, a) = δ(p, a) ∪ δ(s, a) for p ∈ F.

sstart

t

s′start s

t

0

1

0

1

10

0

1
10

Theory of Computation 5 Combining Languages – p. 8

Concatenation

Assume (Q1,Σ, δ1, s1,F1) and (Q2,Σ, δ2, s2,F2) are nfas
recognising L1 and L2 with Q1 ∩Q2 = ∅ and assume
ε /∈ L2. Now (Q1 ∪Q2,Σ, δ, s1,F2) recognises L1 · L2 where
(p, a,q) ∈ δ whenever (p, a,q) ∈ δ1 ∪ δ2 or (p ∈ F1 and
(s2, a,q) ∈ δ2).

If L2 contains ε then one can consider the union of L1 and
L1 · (L2 − {ε}).

Theory of Computation 5 Combining Languages – p. 9

Example

L1 · L2 with L1 = {00,11}∗ and L2 = 2∗1+0+.

s1start

r1

q1 s2

q2

r2

11

0 0
2

1

0

1

0

2

1

0

Theory of Computation 5 Combining Languages – p. 10

Exercise 5.3

The previous slides give upper bounds on the size of the
dfa for a union, intersection, difference and symmetric

difference as n2 states, provided that the original two dfas
have at most n states.

Give the corresponding bounds for nfas: If L and H are
recognised by nfas having at most n states each, how many
states does one need at most for an nfa recognising (a) the
union L ∪H, (b) the intersection L ∩H, (c) the difference
L−H and (d) the symmetric difference (L−H) ∪ (H− L)?

Give the bounds in terms of “linear”, “quadratic” and
“exponential”. Explain your bounds.

Theory of Computation 5 Combining Languages – p. 11

Sample Automata

Exercise 5.4
Let Σ = {0,1,2,3,4,5,6,7,8,9}. Construct a (not
necessarily complete) dfa recognising the language
Σ · {aa : a ∈ Σ}∗ ∩ {aaaaa : a ∈ Σ}∗. It is not needed to give
a full table for the dfa, but a general schema and an
explanation how it works.

Exercise 5.5
Make an nfa for the intersection of the following languages:
{0,1,2}∗ · {001} · {0,1,2}∗ · {001} · {0,1,2}∗;
{001,0001,2}∗; {0,1,2}∗ · {00120001} · {0,1,2}∗.

Exercise 5.6
Make an nfa for the union L0 ∪ L1 ∪ L2 with
La = {0,1,2}∗ · {aa} · {0,1,2}∗ · {aa} · {0,1,2}∗ for
a ∈ {0,1,2}.

Theory of Computation 5 Combining Languages – p. 12

Exercise 5.7

Consider two context-free grammars with terminals Σ,
disjoint non-terminals N1 and N2, start symbols S1 ∈ N1

and S2 ∈ N2 and rule sets P1 and P2 which generate L and
H, respectively. Explain how to form from these a new
context-free grammar for
(a) L ∪H,
(b) L ·H and
(c) L∗.

Write down the context-free grammars for {0n12n : n ∈ N}

and {0n13n : n ∈ N} and form the grammars for union,
concatenation and star explicitly.

Theory of Computation 5 Combining Languages – p. 13

Example 5.8

The language {0}∗ · {1n2n : n ∈ N} is context-free.

Grammar ({S,T}, {0,1,2},P,S) with P be given by
S → 0S|T|ε and T → 1T2|ε.

The language {0n1n : n ∈ N} · {2}∗ is context-free.

L = {0n1n2n : n ∈ N} is not context-free but the intersection
of the two above.

The complement of L is the union of {0n1m2k : n < k},

{0n1m2k : n > k}, {0n1m2k : m < k}, {0n1m2k : m > k},

{0n1m2k : n < m}, {0n1m2k : n > m} and
{0,1,2}∗ · {10,20,21} · {0,1,2}∗.

Each of these languages is context-free. Grammar for the
first of them: S → 0S2|S2|T2,T → 1T|ε. The union is also
context-free. Hence L has a context-free complement.

Theory of Computation 5 Combining Languages – p. 14

Context-Free Intersects Regular

Theorem 5.9
If L is context-free and H is regular then L ∩H is
context-free.

Construction.
Let (N,Σ,P,S) be a context-free grammar generating L

with every rule being either A → w or A → BC with
A,B,C ∈ N and w ∈ Σ∗.

Let (Q,Σ, δ, s,F) be a dfa recognising H.

Let S′ /∈ Q×N×Q and make the following new grammar
(Q×N×Q ∪ {S′},Σ,R,S′) with rules R:
S′ → (s,S,q) for all q ∈ F;
(p,A,q) → (p,B, r)(r,C,q) for all rules A → BC in P and
all p,q, r ∈ Q;
(p,A,q) → w for all rules A → w in P with δ(p,w) = q.

Theory of Computation 5 Combining Languages – p. 15

Exercises 5.10 and 5.11

Recall that the language L of all words which contain as
many 0s as 1s is context-free; a grammar for it is
({S}, {0,1}, {S → SS|ε|0S1|1S0},S).

Exercise 5.10
Construct a context-free grammar for L ∩ (001+)∗.

Exercise 5.11
Construct a context-free grammar for L ∩ 0∗1∗0∗1∗.

Theory of Computation 5 Combining Languages – p. 16

Context-Sensitive and Concatenation

Let L1 and L2 be context-sensitive languages not
containing ε. Let (N1,Σ,P1,S1) and (N2,Σ,P2,S2) be two
context-senstive grammers generating L1 and L2,
respectively, where N1 ∩N2 = ∅ and where each rule l → r

satisfies |l| ≤ |r| and l ∈ N+
e for the respective e ∈ {1,2}.

Let S /∈ N1 ∪N2 ∪Σ.

Now (N1 ∪N2 ∪ {S},Σ,P1 ∪P2 ∪ {S → S1S2},S) generates
L1 · L2.

If v ∈ L1 and w ∈ L2 then S ⇒ S1S2 ⇒∗ vS2 ⇒∗ vw.
Furthermore, the first rule has to be S ⇒ S1S2 and from
then onwards, each rule has on the left side either l ∈ N+

1

so that it applies to the part generated from S1 or it has in

the left side l ∈ N+
2 so that l is in the part of the word

generated from S2. Hence every intermediate word z in the
derivation is of the form xy = z with S1 ⇒∗ x and S2 ⇒∗ y.

Theory of Computation 5 Combining Languages – p. 17

Context-Sensitive and Kleene-star

Let (N1,Σ,P1,S1) and (N2,Σ,P2,S2) be context-sensitive
grammars for L− {ε} with N1 ∩N2 = ∅ and all rules l → r

satisfying |l| ≤ |r| and l ∈ N+
1 or l ∈ N+

2 , respectively. Let

S,S′ be symbols not in N1 ∪N2 ∪Σ.

Now consider (N1 ∪N2 ∪ {S,S′},Σ,P,S) where P contains
the rules S → S′|ε and S′ → S1S2S

′ |S1S2 |S1 plus all rules
in P1 ∪P2.

This grammar generates L∗.

Theory of Computation 5 Combining Languages – p. 18

Context-Sensitive and Intersection

Theorem.
The intersection of two context-sensitive languages is
context-sensitive.

Construction.
Let (Nk,Σ,Pk,S) be grammars for L1 and L2. Now make a
new non-terminal set N = (N1 ∪Σ ∪ {#})× (N2 ∪Σ ∪ {#})

with start symbol
(

S
S

)

and following types of rules:

(a) Rules to generate and manage space;
(b) Rules to generate a word v in the upper row;
(c) Rules to generate a word w in the lower row;
(d) Rules to convert a string from N into v provided that the
upper components and lower components of the string are
both v.

Theory of Computation 5 Combining Languages – p. 19

Type of Rules

(a):
(

S
S

)

→
(

S
S

)(

#
#

)

for producing space;
(

A
B

)(

#
C

)

→
(

#
B

)(

A
C

)

and
(

A
C

)(

B
#

)

→
(

A
#

)(

B
C

)

for space management.

(b) and (c): For each rule in P1, for example, for
AB → CDE ∈ P1, and all symbols F,G,H, . . . in N2, one

has the corresponding rule
(

A
F

)(

B
G

)(

#
H

)

→
(

C
F

)(

D
G

)(

E
H

)

. So

rules in P1 are simulated in the upper half and rules in P2

are simulated in the lower half and they use up # if the left
side is shorter than the right one.

(d): Each rule
(

a
a

)

→ a for a ∈ Σ is there to convert a

matching pair
(

a
a

)

from Σ×Σ (a nonterminal) to a (a

terminal).

Theory of Computation 5 Combining Languages – p. 20

Grammar for 0n1n2n with n > 0

Grammar L1: S → S2|0S1|01.
Grammar L2: S → 0S|1S2|12.

Grammar for Intersection.
N = {

(

A
B

)

: A,B ∈ {S,0,1,2,#}}.

Rules where A,B,C stand for any members of

{S,0,1,2,#}:
(

S
S

)

→
(

S
S

)(

#
#

)

;
(

A
B

)(

#
C

)

→
(

#
B

)(

A
C

)

;
(

A
C

)(

B
#

)

→
(

A
#

)(

B
C

)

;
(

S
A

)(

#
B

)

→
(

S
A

)(

2
B

)

;
(

S
A

)(

#
B

)(

#
C

)

→
(

0
A

)(

S
B

)(

1
C

)

;
(

S
A

)(

#
B

)

→
(

0
A

)(

1
B

)

;
(

A
S

)(

B
#

)

→
(

A
0

)(

B
S

)

;
(

A
S

)(

B
#

)(

C
#

)

→
(

A
1

)(

B
S

)(

C
2

)

;
(

A
S

)(

B
#

)

→
(

A
1

)(

B
2

)

;
(

0
0

)

→ 0;
(

1
1

)

→ 1;
(

2
2

)

→ 2.

Theory of Computation 5 Combining Languages – p. 21

Deriving 001122

(

S
S

)

⇒∗
(

S
S

)(

#
#

)(

#
#

)(

#
#

)(

#
#

)(

#
#

)

⇒
(

S
S

)(

2
#

)(

#
#

)(

#
#

)(

#
#

)(

#
#

)

⇒∗

(

S
S

)(

#
#

)(

#
#

)(

#
#

)(

#
#

)(

2
#

)

⇒
(

S
S

)(

2
#

)(

#
#

)(

#
#

)(

#
#

)(

2
#

)

⇒∗

(

S
S

)(

#
#

)(

#
#

)(

#
#

)(

2
#

)(

2
#

)

⇒
(

0
S

)(

S
#

)(

1
#

)(

#
#

)(

2
#

)(

2
#

)

⇒
(

0
S

)(

S
#

)(

#
#

)(

1
#

)(

2
#

)(

2
#

)

⇒
(

0
S

)(

0
#

)(

1
#

)(

1
#

)(

2
#

)(

2
#

)

⇒
(

0
0

)(

0
S

)(

1
#

)(

1
#

)(

2
#

)(

2
#

)

⇒
(

0
0

)(

0
0

)(

1
S

)(

1
#

)(

2
#

)(

2
#

)

⇒
(

0
0

)(

0
0

)(

1
1

)(

1
S

)(

2
2

)(

2
#

)

⇒
(

0
0

)(

0
0

)(

1
1

)(

1
S

)(

2
#

)(

2
2

)

⇒
(

0
0

)(

0
0

)(

1
1

)(

1
1

)(

2
2

)(

2
2

)

⇒∗ 001122.

Theory of Computation 5 Combining Languages – p. 22

Exercises 5.14 and 5.17

Exercise 5.14
Let L = {0n1n2n : n ∈ N} and construct a context-sensitive
grammar for L∗.

Exercise 5.17
Consider the language L = {00} · {0,1,2,3}∗ ∪ {1,2,3} ·
{0,1,2,3}∗ ∪ {0,1,2,3}∗ · {02,03,13,10,20,30,21,31,32} ·
{0,1,2,3}∗ ∪ {ε} ∪ {01n2n3n : n ∈ N}.

Which versions of the Pumping Lemma does it satisfy:

• Regular Pumping Lemma (with / without bounds);

• Context-Free Pumping Lemma (with / without bounds);

• Block Pumping Lemma (for regular languages)?

Determine the exact position of L in the Chomsky hierarchy.

Theory of Computation 5 Combining Languages – p. 23

Mirror Images

Define (a1a2 . . . an)
mi = an . . . a2a1 as the mirror image of a

string.

It follows from the definition of context-free and
context-sensitive, that if L is context-free / context-sensitive

so is Lmi. This can be achieved by replacing every rule

l → r by lmi → rmi.

For example, the mirror image of the language of the words

0n13n+3 is given by language of the words 13n+30n. While
L is generated by a context-free grammar with one

non-terminal S and rules S → 0S111 |111, Lmi is then
generated by a similar grammar with the rules
S → 111S0 |111.

Theory of Computation 5 Combining Languages – p. 24

Exercise 5.18

Recall that xmi is the mirror image of x, so

(01001)mi = 10010. Furthermore, Lmi = {xmi : x ∈ L}.
Show the following two statements:
(a) If an nfa with n states recognises L then there is also an

nfa with up to n+ 1 states recognising Lmi.
(b) Find the smallest nfas which recognise L = 0∗(1∗ ∪ 2∗)

as well as Lmi.

Theory of Computation 5 Combining Languages – p. 25

Palindromes

The members of the language {x ∈ Σ∗ : x = xmi} are called
palindromes. A palindrome is a word or phrase which looks
the same from both directions.

An example is the German name “OTTO”; furthermore,
when ignoring spaces and punctuation marks, a famous
palindrome is the phrase “A man, a plan, a canal: Panama.”
originating from the time when the canal in Panama was
built.

The grammar with the rules S → aSa|aa|a|ε with a ranging
over all members of Σ generates all palindromes; so for
Σ = {0,1,2} the rules of the grammar would be
S → 0S0 |1S1 |2S2 |00 |11 |22 |0 |1 |2 | ε.

The set of palindromes is not regular.

Theory of Computation 5 Combining Languages – p. 26

Exercises

Exercise 5.20
Let w ∈ {0,1,2,3,4,5,6,7,8,9}∗ be a palindrome of even
length and n be its decimal value. Prove that n is a multiple
of 11. Note that it is essential that the length is even, as for
odd length there are counter examples (like 111 and 202).

Exercise 5.21
Given a context-free grammar for a language L, is there

also one for L ∩ Lmi? If so, explain how to construct the
grammar; if not, provide a counter example where L is

context-free but L ∩ Lmi is not.

Theory of Computation 5 Combining Languages – p. 27

Exercises

Exercise 5.22
Is the following statement true or false? Prove your answer:

Given a language L, the language L ∩ Lmi equals to
{w ∈ L : w is a palindrome}.

Exercise 5.23
Let L = {w ∈ {0,1,2}∗ : w = wmi} and consider
H = L ∩ {012,210,00,11,22}∗ ∩ ({0,1}∗ · {1,2}∗ · {0,1}∗).
This is the intersection of a context-free and regular
language and thus context-free. Construct a context-free
grammar for H.

Theory of Computation 5 Combining Languages – p. 28

Exercises

In the following, one considers regular expressions
consisting of the symbol L of palindromes over {0,1,2} and
the mentioned operations. What is the most difficult level in
the hierarchy “regular, linear, context-free, context-sensitive”
such expressions can generate. It can be used that

{10i10j10k1 : i 6= j, i 6= k, j 6= k} is not context-free.

Exercise 5.24: Expressions containing L and ∪ and finite
sets.

Exercise 5.25: Expressions containing L and ∪ and · and
Kleene star and finite sets.

Exercise 5.26: Expressions containing L and ∪ and · and
and ∩ and Kleene star and finite sets.

Exercise 5.27: Expressions containing L and · and set
difference and Kleene star and finite sets.

Theory of Computation 5 Combining Languages – p. 29

Next Week’s Midterm Examination

Topics

Defining and proving using structural induction

Making and analysing finite automata

Converting regular languages from one form into another
form, Deterministic versus non-deterministic finite
automata, Bounds on number of states

Pumping lemmas: Usage for proofs; Properties

Combining finite automata

Basic properties of context-free grammars: Making of such
grammars, Usage of pumping lemma for context-free
languages

Revise lecture notes; Try exercises and compare with
solutions by fellow students

Theory of Computation 5 Combining Languages – p. 30

Example of Inductive Definition

ε <ll 0 <ll 1 <ll 00 <ll 01 <ll 10 <ll 11 <ll 000 <ll . . .; use
this length-lexicographical order <ll to define sw(reg exp):

sw(∅) = ∞;

sw({w1, . . . ,wn}) = minll{w1, . . . ,wn};

sw(σ ∪ τ) =

{

sw(σ) if sw(τ) = ∞;
sw(τ) if sw(σ) = ∞;
minll{sw(σ), sw(τ)} otherwise;

sw(σ · τ) =

{

∞ if sw(σ) = ∞
or sw(τ) = ∞;

sw(σ) · sw(τ) otherwise;

sw(σ∗) = ε.

One can show by structural induction: |sw(σ)| ≤ |σ| where
|∞| = 1 and |∅| = 1 and |ε| = 0.

Theory of Computation 5 Combining Languages – p. 31

	Repetition 1
	Repetition 2
	Repetition 3
	Repetition 4
	Product Automata
	Example
	Kleene Star
	Concatenation
	Example
	Exercise 5.3
	Sample Automata
	Exercise 5.7
	Example 5.8
	Context-Free Intersects Regular
	Exercises 5.10 and 5.11
	Context-Sensitive and Concatenation
	Context-Sensitive and Kleene-star
	Context-Sensitive and Intersection
	Type of Rules
	Grammar for $edy 0^n1^n2^n$ with $edy n>0$
	Deriving 001122
	Exercises 5.14 and 5.17
	Mirror Images
	Exercise 5.18
	Palindromes
	Exercises
	Exercises
	Exercises
	Next Week's Midterm Examination
	Example of Inductive Definition

