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Repetition 1

Let (Q1,Σ, δ1, s1,F1) and (Q2,Σ, δ2, s2,F2) be dfas which
recognise L1 and L2, respectively.

Consider (Q1 ×Q2,Σ, δ1 × δ2, (s1, s2),F) with
(δ1 × δ2)((q1,q2), a) = (δ1(q1, a), δ2(q2, a)). This automaton
is called a product automaton and one can choose F such
that it recognises the union or intersection or difference of
the respective languages.

Union: F = F1 ×Q2 ∪Q1 × F2;
Intersection: F = F1 × F2 = F1 ×Q2 ∩Q1 × F2;
Difference: F = F1 × (Q2 − F2);
Symmetric Difference: F = F1× (Q2−F2)∪ (Q1−F1)×F2.
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Repetition 2 and Gaps Filled

Regular languages are also closed under Kleene star,
Kleene plus and concatenation: Use nfas for these and
convert to dfas.

Context-free languages are closed under union, Kleene
star, Kleene plus, concatenation and intersection with
regular languages. They are in general not closed under
intersection and complement.

Context-sensitive languages are closed under union,
intersection, Kleene star, Kleene plus and concatenation.
While these are easy to see, the following result is more
difficult: They are also closed under complement (not part
of this course).

Recursively enumerable languages are closed under union,
intersection, Kleene star, Kleene plus and concatenation;
they are not closed under complement.
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Repetition 3: Palindromes

The members of the language {x ∈ Σ∗ : x = xmi} are called
palindromes. A palindrome is a word or phrase which looks
the same from both directions.

An example is the German name “OTTO”; furthermore,
when ignoring spaces and punctuation marks, a famous
palindrome is the phrase “A man, a plan, a canal: Panama.”
originating from the time when the canal in Panama was
built.

The grammar with the rules S → aSa|aa|a|ε with a ranging
over all members of Σ generates all palindromes; so for
Σ = {0,1,2} the rules of the grammar would be
S → 0S0 |1S1 |2S2 |00 |11 |22 |0 |1 |2 | ε.

The set of palindromes is not regular.
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Homomorphism

Example
Let ascii(Year 2019) = 596561722032303139 represent
each letter of “Year 2019” by its two-digit hexadecimal
ASCII representation.

Definition 6.1
A homomorphism is a mapping h with domain Σ∗ for some
alphabet Σ which preserves concatenation:
h(v ·w) = h(v) · h(w).

Proposition 6.2
The homomorphism is determined by the images of the
single letters and h(w) = h(a1) · h(a2) · . . . · h(an) for a word
w = a1a2 . . . an; h(ε) = ε.

Quiz
What is ascii(Year 1819) for above homomorphism ascii?
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Exercises 6.3 and 6.4

Count the number of homomorphisms and list them; explain
why there are not more. Two homomorphisms are the same
iff they have the same values h(0),h(1),h(2),h(3). Here
they take values from 4∗.

Exercise 6.3
How many homomorphisms h satisfy h(012) = 44444,
h(102) = 444444, h(00) = 44444 and h(3) = 4?

Exercise 6.4
How many homomorphisms h satisfy h(012) = 44444,
h(102) = 44444, h(0011) = 444444 and h(3) = 44?
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Homomorphic Images

Theorem 6.5
The homomorphic images of regular and context-free
languages are regular and context-free, respectively.

Construction
Given a homomorphism h, replace in any rule of a given
regular / context-free grammar every terminal a by the word
h(a); these replacements only occur on the right side of the
rules. The type of the grammar remains unchanged.

For a proof that S ⇒∗ w in the original grammar iff S ⇒ h(w)
in the new grammar, one shows by induction for a
derivation S ⇒ v1 ⇒ . . . ⇒ vn ⇒ w translates into
h(S) ⇒ h(v1) ⇒ . . . ⇒ h(vn) ⇒ h(w) where h is extended
by letting h(A) = A for all non-terminals A. The converse
also holds.
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Example 6.6

One can apply the homomorphisms also directly to regular
expressions using the rules h(L ∪H) = h(L) ∪ h(H),
h(L ·H) = h(L) · h(H) and h(L∗) = (h(L))∗. Thus one can
move a homomorphism into the inner parts (which are the
finite sets used in the regular expression) and then apply
the homomorphism there.

So for the language ({0,1}∗ ∪ {0,2}∗) · {33}∗ and the
homomorphism which maps each symbol a to aa, one
obtains the language ({00,11}∗ ∪ {00,22}∗) · {3333}∗.
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Homomorphisms and Growth

Exercise 6.7
Consider the following statements for regular languages L:

(a) h(∅) = ∅;

(b) If L is finite so is h(L);

(c) If L has polynomial growth so has h(L);

(d) If L has exponential growth so has h(L).

Which of these statements are true and which are false?
Prove the answers. Use the following rules: Example 6.6;
H∗ has polymomial growth iff H ⊆ {u}∗ for some word u;
if H,K have polynomial growth so do H ∪K and H ·K.

Exercise 6.8
Construct a context-sensitive language L and a
homomorphism h such that L has polynomial growth and
h(L) has exponential growth.
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Homomorphism Reduce Kleene star

One can reduce the number of stars in
⋃

a∈Σ aa∗ to two

using intersection:

00∗ ∪ 11∗ ∪ 22∗ ∪ 33∗ =
({0,1,2,3} · {00,11,22,33}∗ · {ε,0,1,2,3}) ∩
({00,11,22,33}∗ · {ε,0,1,2,3}).

The general results needs also a homomorphism.

Theorem 6.9
Let L be a regular language. Then there are two regular
expressions σ, τ each containing only one Kleene star and
some finite sets and concatenations and there is one
homomorphism h such that L is described by h(σ ∩ τ).

The idea is to encode states of a dfa into the symbols;
expressions σ and τ test state-transitions at even and odd
positions, respectively; h removes the state markers from
the symbols.
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Construction

Let (Q,Σ, δ, s,F) be a dfa recognising the language and let
Γ = Q×Σ and

Γ1 = {(q, a)(p,b) ∈ Γ× Γ : δ(q, a) = p};

Γ2 = {(q, a)(p,b) ∈ Γ1 : δ(p,b) ∈ F};

Γ3 = {(q, a) : δ(q, a) ∈ F};

Γ4 = {ε : s ∈ F};

Γ5 = {(s, a) : a ∈ Σ}.

The expression is h(σ ∩ τ) where h((q, a)) = a;

σ = (Γ∗
1 · (Γ2 ∪ Γ3) ∪ Γ4);

τ = (Γ5 · Γ
∗
1 · (Γ ∪ {ε}) ∪ Γ4).

Odd transitions and acceptance checked by σ;
Even transitions and start checked by τ .
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Context-Senstive Languages

Theorem 6.11
Every recursively enumerable language (= language
generated by some grammar) is the homomorphic image of
a context-sensitive language.

The idea is that if some grammar generates
(N, {1,2, . . . ,k},P,S) for L, one can make a new grammar
for a context-sensitive language H such that for all

w ∈ {1,2, . . . ,k}∗, w ∈ L iff w · 0ℓ ∈ H for some ℓ. These
additional 0 will be used to make words longer so that in the
new grammar, all rules l → r satisfy |l| ≤ |r| which is
obtained sufficiently many 0 on the ride side and by making
rules for 0 to swap with other symbols to move right.
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Images of Homomorphisms

Determine h(L) for the following languages:

(a) {0,1,2}∗;

(b) {00,11,22}∗ ∩ {000,111,222}∗;

(c) ({00,11}∗ ∪ {00,22}∗ ∪ {11,22}∗) · {011222};

(d) {w ∈ {0,1}∗ : w has more 1s than it has 0s}.

Exercise 6.13
h is given as h(0) = 1, h(1) = 22, h(2) = 333.

Exercise 6.14
h is given as h(0) = 3, h(1) = 4, h(2) = 334433.
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Exercise 6.15

Let a homomorphism h : {0,1,2,3,4,5,6,7,8,9}∗ →
{0,1,2,3}∗ be given by the equations h(0) = 0,
h(1) = h(4) = h(7) = 1, h(2) = h(5) = h(8) = 2,
h(3) = h(6) = h(9) = 3. Interpret the images of h as
quarternary numbers (numbers of base four, so 12321

represents 1 times two hundred fifty six plus 2 times sixty
four plus 3 times sixteen plus 2 times four plus 1). Prove the
following:

• Every quarternary number is the image of a decimal
number without leading zeroes;

• A decimal number w has leading zeroes iff the
quarternary number h(w) has leading zeroes;

• A decimal number w is a multiple of three iff the
quarternary number is a multiple of three.
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Exercise 6.16

Consider only homomorphisms
h : {0,1,2,3,4,5,6,7,8,9}∗ → {0,1}∗ such that

• h(w) has leading zeroes iff w has;

• h(0) = 0;

• the range of h is {0,1}∗.

For each of p = 2,3,5, answer the following question: Can
one choose h such that, in addition, w is a multiple of p iff
h(w) is as a binary number, is a multiple of p?

If h can be chosen as desired then list this h else prove that
such a homomorphism h cannot exist.
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Exercise 6.17

Construct a homomorphism
h : {0,1,2,3,4,5,6,7,8,9}∗ → {0,1}∗ such that for every w

the number h(w) has never leading zeroes and the
remainder of the decimal number w when divided by nine is
the same as the remainder of the binary number h(w) when
divided by nine.

Note that here it is not required that the range covers all
binary numbers.
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Fibonacci Representation

Let a0 = 1, a1 = 1, a2 = 2 and, for all n, an+2 = an + an+1.
Every number is the sum of non-neighbouring Fibonacci
numbers: For each non-zero n there is a unique
bmbm−1 . . .b0 ∈ (10+)+ with

n =
∑

k=0,1,...,m

bk · ak.

So 1010 represents four and 100100 represents ten.

Exercise 6.18: Construct a homomorphism
h : {0,1,2,3,4,5,6,7,8,9} → {0,1}∗ such that h(0) = 0 and
the image of all decimal numbers is the regular set

{0} ∪ (10+)+. Show that all h satisfying this also satisfy the
following statement: For every p > 1 there is a decimal
number w such that (w is a multiple of p iff h(w) is not a
multiple of p). Theory of Computation 6 Homomorphisms – p. 17



Inverse Homomorphism

Description 6.19
Let h have domain Σ∗ and the set
h−1(L) = {w ∈ Σ∗ : h(w) ∈ L} is called the inverse image of

h. h−1 satisfies the following rules:

(a) h−1(L) ∩ h−1(H) = h−1(L ∩H);

(b) h−1(L) ∪ h−1(H) = h−1(L ∪H);

(c) h−1(L) · h−1(H) ⊆ h−1(L ·H);

(d) h−1(L)∗ ⊆ h−1(L∗).
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Theorem 6.20 and Exercise 6.21

Theorem 6.20
If L is on level k of the Chomsky hierarchy and h is an

homomorphism then h−1(L) is on level k of the Chomsky
hierarchy.

Construction for the regular case: If (Q,Γ, γ, s,F) is a dfa
recognising L and h : Σ∗ → Γ∗ is an homomorphism then

(Q,Σ, δ, s,F) is a dfa recognising h−1(L) where, for every
q ∈ Q and a ∈ Σ, δ(q, a) = γ(q,h(a)).

Exercise 6.21
Let h : {0,1,2,3}∗ → {0,1,2,3}∗ be given by h(0) = 00,
h(1) = 012, h(2) = 123 and h(3) = 1 and let L consist of all
words containing exactly five 0s and at least one 2.

Construct a complete dfa recognising h−1(L).
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Generalised Homomorphism

Description 6.22
A generalised homomorphism is a mapping from regular
sets to regular sets which satisfies h(L ∪H) = h(L) ∪ h(H),
h(L ·H) = h(L) · h(H), h(L∗) = (h(L))∗ and h(∅) = ∅ for all
regular sets L and H.

Examples 6.23
The following mappings are generalised homomorphisms:

• L 7→ L ∩ {ε};

• ∅ 7→ ∅ and L 7→ {ε} for all non-empty sets L;

• ∅ 7→ ∅, {ε} 7→ {ε} and L 7→ Σ∗ for all other sets L;

• L 7→ L (identity mapping);

• L 7→ {v ∈ Σ∗ : ∃w ∈ L [|v| = |w|]}.
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Exercises 6.24-6.25

Exercise 6.24
Show that whenever h : Σ∗ → Γ∗ is a homomorphism then
the mapping L 7→ {h(u) : u ∈ L} is a generalised
homomorphism which maps regular subsets of Σ∗ to
regular subsets of Γ∗.

Exercise 6.25
Let h be any given generalised homomorphism. Show by
structural induction that h(L) =

⋃
u∈L h(u) for all regular

languages L. Furthermore, show that every mapping h

satisfying h({ε}) = {ε}, h(L) =
⋃

u∈L h({u}) and

h(L ·H) = h(L) · h(H) for all regular subsets L,H of Σ∗ is a
generalised homomorophism. Is the same true if one
weakens the condition h({ε}) = {ε} to ε ∈ h({ε})?
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Exercises 6.26-6.28

Exercise 6.26
Construct a mapping which satisfies h(∅) = ∅, h({ε}) = {ε},
h(L ∪H) = h(L) ∪ h(H) and h(L ·H) = h(L) · h(H) for all
regular languages L,H but which does not satisy
h(L) =

⋃
u∈L h({u}) for some infinite regular set L.

Exercise 6.27
Assume that h is a generalised homomorphism and
k(L) = h(L) · h(L). Is k a generalised homomorphism?
Prove the answer.

Exercise 6.28
Assume that h is a generalised homomorphism and

ℓ(L) =
⋃

u∈h(L)Σ
|u|, where Σ0 = {ε}. Is ℓ a generalised

homomorphism? Prove the answer.
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Exercise 6.29

Let Σ = {0,1,2} and h be the generalised homomorphism
given by h({0}) = {1,2}, h({1}) = {0,2} and
h({2}) = {0,1}. Which of the following statements are true
for this h and all regular subsets L,H of Σ∗:

(a) If L 6= H then h(L) 6= h(H);

(b) If L ⊆ H then h(L) ⊆ h(H);

(c) If L is finite then h(L) is finite;

(d) If L is infinite then h(L) is infinite and has exponential
growth.

Prove the answers. The formula h(L) =
⋃

u∈L h({u}) from

Exercise 6.25 can be used without proof for this exercise.
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Generalised Homomorphisms

Determine h(L) =
⋃

a1a2...an∈L
h(a1) ·h(a2) · . . . ·h(an) for the

following languages; if possible give regular expressions.

(a) {00,01,02,10,11,12,20,21,22}∗;

(b) {00,11,22}∗ · {000,111,222};

(c) {0n1n2n : n ≥ 2}.

Exercise 6.30
h is given as h(0) = {3,4}+, h(1) = {3,5}+, h(2) = {4,5}+.

Exercise 6.31
h is given as h(0) = {ε,3,33}, h(1) = {ε,4,44},
h(2) = {ε,5,55}.

Exercise 6.32
h is given as h(a) = {aaa, aaaa}+ for all letters a ∈ {0,1,2}.
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