
Theory of Computation 8
Deterministic Membership Testing

Frank Stephan

Department of Computer Science

Department of Mathematics

National University of Singapore

fstephan@comp.nus.edu.sg

Theory of Computation 8 Deterministic Membership Testing – p. 1

Repetition 1: Normal Forms

The normal forms are named after Noam Chomsky (born
1928) and Sheila Greibach (born 1939).

Assume that the language does not contain ε.

Chomsky Normal Form
All rules are of the form A → BC or A → d where A,B,C
are non-terminals and d is a terminal.

Greibach Normal Form
All rules are of the form A → bw where b is a terminal and
A a non-terminal and w a (possibly empty) word of
non-terminals.

If the language contains ε, one allows in both normal forms
S → ε for the start symbol S which then is not allowed to
appear on the right side of a rule.

Theory of Computation 8 Deterministic Membership Testing – p. 2

Repetition 2: Algorithms

Given a context-free grammar as input, algorithms for the
following tasks where presented:

• Converting the grammar into Chomsky Normal Form;

• Testing whether the grammar generates a word;

• Testing whether the grammar generates infinitely many
words.

All these algorithms run in time polynomial in the size of the
grammar; for grammars in Chomsky Normal Form, the
number of non-terminals can serve as the size.

Theory of Computation 8 Deterministic Membership Testing – p. 3

Repetition 3: Derivation Tree

For grammar ({S,T,U}, {0,1}, {S → SS|TU|UT,
U → 0|US|SU, T → 1|TS|ST},S), a derivation S ⇒ TU ⇒
TSU ⇒ TUTU ⇒ 1UTU ⇒ 10TU ⇒ 101U ⇒ 1010 can
be represented by a tree: S

T

T

1

S

U

0

T

1

U

0

Theory of Computation 8 Deterministic Membership Testing – p. 4

Repetition 4

Marked Symbols
Mark the first four 1 in word 0000011111 as 0000011111.
The word can be pumped such that at least one but at most
four marked symbols are pumped or between the pumped

parts: 0000ℓ 011ℓ 111.

Ogden’s Lemma
Let L ⊆ Σ∗ be an infinite context-free language generated
by a grammar (N,Σ,P,S) in Chomsky Normal Form with h

non-terminals. Then the constant k = 2h+1 satisfies that for
every u ∈ L with at least k marked symbols, there is a
representation vwxyz = u such that wxy contains at most
k marked symbols, wy contains at least 1 marked symbol

and vwℓxyℓz ∈ L for all ℓ ∈ N.

Theory of Computation 8 Deterministic Membership Testing – p. 5

Membership Testing

For a language L and a word w of length n, one wants to
decide whether w ∈ L. The following will be shown:

Regular language: Done by a finite automaton, time O(n).

Linear language: Special case of Cocke, Kasami and

Younger’s algorithm, time O(n2).

Context-free language: Cocke, Kasami and Younger’s

algorithm, time O(n3).

Context-sensitive language: Savitch’s algorithm, space

O(n2), time O(cn
2

) for some c.

Recursively enumerable language: No algorithm
(undecidable).

Theory of Computation 8 Deterministic Membership Testing – p. 6

Cocke, Kasami and Younger

Let (N,Σ,P,S) be in Chomsky Normal Form and a1a2 . . . an
be the input word.

1. Initialisation: For all k,

Ek,k = {A ∈ N : A → ak is a rule}.

2. Loop: Go through all pairs (i, j) such that they are
processed in increasing order of j− i and let

Ei,j = {A : ∃ rule A → BC ∃k

[i ≤ k < j and B ∈ Ei,k and C ∈ Ek+1,j]}.

3. Decision: Word is generated by the grammar iff S ∈ E1,n.

Set Ei,j contains all non-terminals generating ai . . . aj.

Time O(n3): O(n2) values Ei,j with O(n) choices of k.

Theory of Computation 8 Deterministic Membership Testing – p. 7

Example 8.2, Word 0011

Grammar ({S,T,U}, {0,1}, {S → SS|TU|UT,
U → 0|US|SU,T → 1|TS|ST},S). Entries Ei,j:

E1,4 = {S}

E1,3 = {U} E2,4 = {T}

E1,2 = ∅ E2,3 = {S} E3,4 = ∅

E1,1 = {U} E2,2 = {U} E3,3 = {T} E4,4 = {T}

0 0 1 1

As S ∈ E1,4, the word 0011 is in the language.

Theory of Computation 8 Deterministic Membership Testing – p. 8

Example 8.2, Word 0111

Grammar ({S,T,U}, {0,1}, {S → SS|TU|UT,
U → 0|US|SU,T → 1|TS|ST},S). Entries Ei,j:

E1,4 = ∅

E1,3 = {T} E2,4 = ∅

E1,2 = {S} E2,3 = ∅ E3,4 = ∅

E1,1 = {U} E2,2 = {T} E3,3 = {T} E4,4 = {T}

0 1 1 1

As S /∈ E1,4, the word 0111 is not in the language.

Quiz 8.3
Make the table for word 1001.

Theory of Computation 8 Deterministic Membership Testing – p. 9

Cocke, Kasami and Younger

Exercise 8.4
Consider the grammar ({S,T,U,V,W}, {0,1,2},P,S) with
P consisting of the rules S → TT, T → UU|VV|WW,
U → VW|WV|VV|WW, V → 0, W → 1. Make the entries
of the Algorithm of Cocke, Kasami and Younger for the
words 0011, 1100 and 0101.

Exercise 8.5
Consider the grammar ({S,T,U,V,W}, {0,1,2},P,S) with
P consisting of the rules S → ST|0|1, T → TU|1,
U → UV|0, V → VW|1, W → 0. Make the entries of the
Algorithm of Cocke, Kasami and Younger for the word
001101.

Theory of Computation 8 Deterministic Membership Testing – p. 10

Linear Grammars

Linear languages sit between regular and context-free
languages.

Definition
A grammar is linear iff on every left side of a rule exactly
one non-terminal and on every right side of a rule at most
one non-terminal and arbitrary many terminals.

Normal Form
A linear grammar for a language not containing ε is in
normal form iff all rules are of one of the following forms:
A → Bc, A → cB, A → c where A,B are non-terminals and
c is a terminal.
If ε is in the language then one has the rule S → ε for the
start symbol S and S does not appear on any right side of a
rule.

Theory of Computation 8 Deterministic Membership Testing – p. 11

Parsing Linear Grammars

Let (N,Σ,P,S) be a linear grammar in normal form and
a1a2 . . . an be an input word.

1. Initialisation: For all k,

Ek,k = {A ∈ N : A → ak is in P}.

2. Loop: Process all pairs (i, j) with i < j in increasing order
of j− i and let

Ei,j = {A : ∃ rule A → Bc [B ∈ Ei,j−1 and c = aj] or

∃ rule A → cB [c = ai and B ∈ Ei+1,j]}.

3. Decision: The word is generated by the grammar iff
S ∈ E1,n.

Theory of Computation 8 Deterministic Membership Testing – p. 12

Example 8.8, Word 0110

The grammar

({S,T,U}, {0,1}, {S → 0|1|0T|1U,T → S0|0,U → S1|1},S)

is a linear grammar for palindromes. For the word 0110,
the entries are

E1,4 = {S}

E1,3 = ∅ E2,4 = {T}

E1,2 = {U} E2,3 = {S, U} E3,4 = {T}

E1,1 = {S, T} E2,2 = {S, U} E3,3 = {S, U} E4,4 = {S, T}

0 1 1 0

and as S ∈ E1,4, the word is accepted.

Theory of Computation 8 Deterministic Membership Testing – p. 13

Example 8.8, Word 1110

For processing the word 1110, one gets the following table:

E1,4 = {T}

E1,3 = {S, U} E2,4 = {T}

E1,2 = {S, U} E2,3 = {S, U} E3,4 = {T}

E1,1 = {S, U} E2,2 = {S, U} E3,3 = {S, U} E4,4 = {S, T}

1 1 1 0

Exercise 8.9
Make the entries for the word 0110110 for above grammar.

Theory of Computation 8 Deterministic Membership Testing – p. 14

Exercises 8.10 and 8.11

Exercise 8.10
Consider the following linear grammar:

({S,T,U}, {0,1}, {S → 0T|T0|0U|U0, T → 0T00|1,
U → 00U0|1},S).

Convert the grammar into the linear grammar normal form
and determine the Ei,j for input 00100.

Exercise 8.11
Which two of the following languages are linear? Provide
linear grammars for these two languages:

• L = {0n1m2k : n+ k = m};

• H = {0n1m2k : n+m = k};

• K = {0n1m2k : n 6= m or m 6= k}.

Theory of Computation 8 Deterministic Membership Testing – p. 15

Kleene Star

Algorithm 8.12
Let L be generated by a linear grammar and a1a2 . . . an be
a word. To check whether a1a2 . . . an ∈ L∗, do the following:

First Part: Compute for each i, j with 1 ≤ i ≤ j ≤ n the set
Ei,j of all non-terminals which generate aiai+1 . . . aj.

Initialise Loop for Kleene Star: Let F0 = 1.

Loop for Kleene Star: For m = 1,2, . . . ,n Do
Begin If there is a k < m with S ∈ Ek+1,m and Fk = 1

Then let Fm = 1 Else let Fm = 0 End.

Decision: w ∈ L∗ iff Fn = 1.

First Part is O(n2), Loop for Kleene Star is O(n2) .

Theory of Computation 8 Deterministic Membership Testing – p. 16

Other Combinations

Assume that H,K,L are linear languages and that one has

computed for a1 . . . an the entries EL
i,j,E

H
i,j,E

K
i,j say whether

the word ai . . . aj is in L,H,K, respectively. This information

can be computed in O(n2). Complete the algorithm to do

the following check in O(n2) time:

Exercise 8.13
Is a1a2 . . . an ∈ L ·H ·K?

Exercise 8.14
Is a1a2 . . . an ∈ (L ∩H)∗ ·K?

Theory of Computation 8 Deterministic Membership Testing – p. 17

Regular Closure of CTF

A language H is said to be in the regular closure of the
context-free languages iff it is obtained by combining finitely
many context-free languages with intersection, union,
concatenation, set-difference, Kleene Star and Kleene Plus.
An example is

H = (L1 ∩ L2)
∗ · L3 · (L1 ∩ L2)

∗ − L4

and here L1,L2,L3,L4 are context-free.

Exercise 8.15
Prove by structural induction that every language H which
is in the regular closure of the context-free languages has

an O(n3) decision algorithm.

Theory of Computation 8 Deterministic Membership Testing – p. 18

Counting Derivation Trees

One can modify the algorithm of Cocke, Kasami and
Younger to count derivation trees.

Given grammar in CNF (N,Σ,P,S), a word w = a1a2 . . . an
and all A ∈ N, let Ei,j denote the set of all nonterminals

which generate the characters ai . . . aj and Di,j,A denote the

number of derivation trees which can, with root A, derive a
word ai . . . aj. Let P be the set of rules. For each A ∈ N, if

A ∈ Ei,i, there is exactly one tree with A → ai and so

Di,i,A = 1 else Di,i,A = 0. If i < j then

Di,j,A =
∑

(B,C): A→BC ∈ P

∑

k: i≤k<j

Di,k,B ·Dk+1,j,C

and the overall number of derivation trees is D1,n,S.

Theory of Computation 8 Deterministic Membership Testing – p. 19

Exercises 8.17 - 8.20

Let P contain the rules V → VV|WW|0 and
W → VW|WV|1. Consider the grammars
G = ({V,W}, {0,1},P,W) and
H = ({U,V,W}, {0,1,2},P ∪ {U → VU|UV|2},U).

Exercise 8.17
How many derivation trees has 0011100 in G?

Exercise 8.18
How many derivation trees has 0000111 in G?

Exercise 8.19
How many derivation trees has 021111 in H?

Exercise 8.20
How many derivation trees has 010012 in H?

Theory of Computation 8 Deterministic Membership Testing – p. 20

Polynomial Space

An algorithm can be measured by

• The time needed to do the computation;

• The space (size of variables and arrays and ...) needed
to do the computation.

Let n be a parameter to measure the size of the input.

If one can be computed in time F(n) then, under certain
assumptions to the machine model, it can also be done in
space F(n).

However, for the converse, only a rough estimate is known:
If something can be computed in space F(n) then one can

compute it in time 2F(n).

Theory of Computation 8 Deterministic Membership Testing – p. 21

Theorem of Savitch

Algorithm 8.21
Context-senstive grammar (N,Σ,P,S), input word w.

Recursive Call: Function Check(u,v, t)
Begin If u = v or u ⇒ v Then Return(1);
If t ≤ 1 and u 6= v and u 6⇒ v Then Return(0);
Let t′ = t/2; Let r′ = 0;
For all u′ ∈ (N ∪Σ)∗ with |u| ≤ |u′| ≤ |v| Do
Begin If Check(u,u′, t′) = 1 and Check(u′,v, t′) = 1

Then r′ = 1 End; Return(r′) End.

Decision: If Check(S,w,kn) = 1 Then w ∈ L Else w /∈ L.

Space Complexity, per call O(n), in total O(n2);

Value of t: kn/2h in depth h of recursion (k = |Σ|+ |N|+ 1);
Number of nested calls: O(log(kn)) = O(log(k) · n).

Runtime: O(cn
2

) for any c > (2k)log(k).
Theory of Computation 8 Deterministic Membership Testing – p. 22

Example

Check whether S ⇒∗ w within 8 steps. One call
Check(S,w,8).

Is there a word v such that S ⇒∗ v and v ⇒∗ w both within
4 steps? For each v, two calls Check(α, β,4) one after each
other with (α, β) = (S,v), (v,w).

Is there a word v′ such that α ⇒∗ v′ and v′ ⇒∗ β both within
2 steps? For each word v′, two calls Check(α′, β′,2) one
after each other with (α′, β′) = (α,v′), (v′, β′).

Is there a word v′′ such that α′ ⇒∗ v′′ and v′′ ⇒∗ β′ both
within 1 steps? For each word v′′, two calls Check(α′′, β′′,1)
one after each other with (α′′, β′′) = (α′,v′′), (v′′, β′).

Is α′′ = β′′ or α′′ ⇒ β′′ true? No further call needed, bottom
of recursion reached.

Theory of Computation 8 Deterministic Membership Testing – p. 23

Example 8.22

Consider grammar ({S,T,U,V,W}, {0,1},P,S) with rules
P being the following:

S → 0S|U, U → V|0, 0V → 1U, V → 1, 1V → WU,
1W → W0, 0W → 10.

This gives a binary counter with S → 0S generating enough
digits before doing S → U. U stands for last digit 0, V
stands for last digit 1, W stands for a digit 0 still having a
carry bit to pass on.

Deriving a binary number k needs at least k steps; as the
length n of k is logarithmic in k, the derivation length can be
exponential in n. In particular deriving 1n needs more than
2n steps.

Theory of Computation 8 Deterministic Membership Testing – p. 24

Exercises 8.23 and 8.24

Exercise 8.23
Give a proof that there are kn or less words of length up to
n over the alphabet Σ ∪N with k− 1 symbols.

Exercise 8.24
Modify Savitch’s Algorithm such that it computes the length
of the shortest derivation of a word w in the
context-sensitive grammar, provided that such derivation
exists. If it does not exist, the algorithm should return the
special value ∞.

Theory of Computation 8 Deterministic Membership Testing – p. 25

Naive Algorithm

Exercise 8.25
What is the time and space complexity of this naive
algorithm?

Recursive Call: Function Check(u,w, t)
Begin If u = w or u ⇒ w Then Return(1);
If t ≤ 1 and u 6= v and u 6⇒ w Then Return(0);
Let r′ = 0;
For all v ∈ (N ∪Σ)∗ with u ⇒ v and |v| ≤ |w| Do
Begin If Check(v,w, t− 1) = 1 Then r′ = 1 End;
Return(r′) End;

Decision: If Check(S,w,kn) = 1 Then w ∈ L Else w /∈ L.

Theory of Computation 8 Deterministic Membership Testing – p. 26

Growing Grammars

Definition [Dahlhaus and Warmuth 1986]
A grammar (N,Σ,P,S) is growing context-sensitive iff
|l| < |r| for all rules l → r in the grammar.

Theorem [Dahlhaus and Warmuth 1986]
Given a growing context-senstive grammar there is a
polynomial time algorithm which decides membership of
the language generated by this growing grammar.

In this result, polynomial time means here only with respect
to the words in the language, the dependence on the size of
the grammar is not polynomial time. So if one asks the
uniform decision problem for an input consisting of a pair of
a grammar and a word, no polynomial time algorithm is
known for this problem. As the problem is NP-complete, the
algorithm is unlikely to exist.

Theory of Computation 8 Deterministic Membership Testing – p. 27

Example 8.28

Consider the grammar

({S,T,U}, {0,1}, {S → 011|T11,T →
T0U|00U,U0 → 0UU,U1 → 111},S)

which is growing. This grammar has derivations like
S ⇒ T11 ⇒ 00U11 ⇒ 001111 and
S ⇒ T11 ⇒ T0U11 ⇒ 00U0U11 ⇒ 00U01111 ⇒
000UU1111 ⇒ 000U111111 ⇒ 00011111111. The
language of the grammar is

{0n12
n

: n > 0} = {011,001111,0318,04116,05132, . . .}

and not context-free, as infinite languages satisfying the
context-free pumping lemma can only have constant gaps
(sequence of lengths without a word). This grammar has
growing gaps.

Theory of Computation 8 Deterministic Membership Testing – p. 28

Exercises 8.29 - 8.31

Exercise 8.29
Show that every context-free language is the union of a
language generated by a growing grammar and a language
containing only words up to length 1.

Exercise 8.30
Modify the proof of Theorem 6.11 to prove that every
recursively enumerable language, that is, every language
generated by some grammar is the homomorphic image of
a language generated by a growing context-sensitive
grammar.

Exercise 8.31
Construct a growing grammar for the language

{12
n

02n12
n

: n > 0} which is the “palindromisation” of the
language from Example 8.28.

Theory of Computation 8 Deterministic Membership Testing – p. 29

	Repetition 1: Normal Forms
	Repetition 2: Algorithms
	Repetition 3: Derivation Tree
	Repetition 4
	Membership Testing
	Cocke, Kasami and Younger
	Example 8.2, Word 0011
	Example 8.2, Word 0111
	Cocke, Kasami and Younger
	Linear Grammars
	Parsing Linear Grammars
	Example 8.8, Word 0110
	Example 8.8, Word 1110
	Exercises 8.10 and 8.11
	Kleene Star
	Other Combinations
	Regular Closure of CTF
	Counting Derivation Trees
	Exercises 8.17 - 8.20
	Polynomial Space
	Theorem of Savitch
	Example
	Example 8.22
	Exercises 8.23 and 8.24
	Naive Algorithm
	Growing Grammars
	Example 8.28
	Exercises 8.29 - 8.31

