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Repetition 1

Pushdown Automaton (Q,Σ,N, δ, s,S,F)
Q are states with start state s and accepting states F;
N are stack symbols with start symbol S;
Σ is terminal alphabet;
δ gives choices what to do in cycle; δ maps
(state, current input, top stack symbol) to choices for
(new state,new top of stack) where the input is from
{ε} ∪Σ and the new top of stack is from N∗.

In each cycle, the pushdown automaton follows an option of
δ what it can do.

A run is successful iff all input gets processed and an
accepting state gets reached (acceptance by state);
acceptance by empty stack requires in addition that the
stack is empty.
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Repetition 2

Theorem
The following are equivalent for a language L:

(a) L is context-free;

(b) L is recognised by a pushdown automaton accepting by
state;

(c) L is recognised by a pushdown automaton accepting by
empty stack;

(d) L is recognised by a pushdown automaton accepting by
empty stack and having only one state which is
accepting;

(e) L is recognised by a pushdown automaton accepting by
state which reads in every cycle exactly one input
symbol.

Items (b) – (d): Translate CNF into PDA;
Item (e): Translate GNF into PDA.
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Repetition 3

Example 9.17: Deterministic PDA

• Q = {s}; F = {s}; start state s;

• N = {S}; start symbol S;

• Σ = {0,1,2,3};

• δ(s,0,S) = {(s, ε)};
δ(s,1,S) = {(s,S)};
δ(s,2,S) = {(s,SS)};
δ(s,3,S) = {(s,SSS)};
δ(s, ε,S) = ∅;

• Acceptance mode is by empty stack.

The PDA recognises {w : digitsum(w) < |w| and all proper
prefixes v of w satisfy digitsum(v) ≥ |v|} deterministically.
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Repetition 4

Definition 9.19
A deterministic pushdown automaton is given as
(Q,Σ,N, δ, s,S,F) and has the acceptance mode by state
with the additional constraint that for every A ∈ N and every
a ∈ Σ and every q ∈ Q, only one of the sets
δ(q, ε,A), δ(q, a,A) and if non-empty, the set contains one
pair (p,w). The languages recognised by a deterministic
pushdown automaton are called deterministic context-free
languages.

Theorem
If L is deterministic context-free and H is regular then
H− L, L−H, L ∩H and L ∪H are also deterministic
context-free. The intersection or union of two deterministic
context-free languages does not need to be deterministic
context-free.
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Turing Machine

Example 10.2
The following Turing machine maps each binary number x
to binary x+ 1. States s, t,u, start s, halting u, tape symbols
⊔,0,1, input/output symbols 0,1.

state symbol new state new symbol movement

s 0 s 0 right

s 1 s 1 right

s ⊔ t ⊔ left

t 1 t 0 left

t 0 u 1 left

t ⊔ u 1 left

Input . . . ⊔ ⊔101 ⊔ ⊔ . . ., Output . . . ⊔ ⊔110 ⊔ ⊔ . . .;
TM ({s, t,u}, {0,1,⊔},⊔, {0,1}, δ, s, {u}).
Head starts under first input symbol.
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Working of Turing Machine

In each cycle, Turing machine reads symbol under head,
updates state and symbol according to table and moves the
head according to table left or right. If the new state is
halting then the Turing machine stops to work and the tape
content is the output (provided that it uses only input/output
symbols between the blancs ⊔).

Exercise 10.3
Construct a Turing machine to compute x 7→ 3x. Input and
output are binary numbers.

Exercise 10.4
Construct a Turing machine to compute x 7→ x+ 5. Input
and output are binary numbers.
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Words versus Numbers

One can represent numbers by binary, decimal or just follow
the words in length-lexicogrphaphical order.

decimal binary bin words ternary ter words

0 0 ε 0 ε

1 1 0 1 0

2 10 1 2 1

3 11 00 10 2

4 100 01 11 00

5 101 10 12 01

6 110 11 20 02

7 111 000 21 10

One can translate the inputs accross various
representations and look at functions as from N to N.
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Register Machines

Programs with registers R1,R2, . . . ,Rn as variables which
can take all values from N. Permitted operations:

• Ri = c for a number c;

• Ri = Rj + c for a number c;

• Ri = Rj +Rk;

• Ri = Rj − c for a number c,

• Ri = Rj −Rk,

• If Ri = c Then Goto Line k; (also with other
comparisons)

• Goto Line k;

• Return(Ri), finish the computation with content of
Register Ri.

Here subtraction does not give negative values, 3− 5 = 0.
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Multiplication

Multiplication can be done naively by repeated addition.

Line 1: Function Mult(R1,R2);

Line 2: R3 = 0;

Line 3: R4 = 0;

Line 4: If R3 = R1 Then Goto Line 8;

Line 5: R4 = R4 +R2;

Line 6: R3 = R3 + 1;

Line 7: Goto Line 4;

Line 8: Return(R4).
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Remainder

The remainder is computed by adding up in steps of R2

until one reaches the target value and then one takes the
difference to the multiple of R2.

Line 1: Function Remainder(R1,R2);

Line 2: R3 = 0;

Line 3: R4 = 0;

Line 4: R5 = R4 +R2;

Line 5: If R1 < R5 Then Goto Line 8;

Line 6: R4 = R5;

Line 7: Goto Line 4;

Line 8: R3 = R1 −R4;

Line 9: Return(R3).
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Division

This algorithm is very similar to the one for the remainder.
One has only keep track on how often one adds up.

Line 1: Function Divide(R1,R2);

Line 2: R3 = 0;

Line 3: R4 = 0;

Line 4: R5 = R4 +R2;

Line 5: If R1 < R5 Then Goto Line 9;

Line 6: R3 = R3 + 1;

Line 7: R4 = R5;

Line 8: Goto Line 4;

Line 9: Return(R3).
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Exercises

Write register machine programs following the basic form
given above; so adding and subtracting is permitted.

Exercise 10.7
Write a program P which computes for input x the value
y = 1+ 2+ 3+ . . .+ x.

Exercise 10.8
Write a program Q which computes for input x the value
y = P(1) +P(2) +P(3) + . . .+P(x) for the program P from
the previous exercise.

Exercise 10.9
Write a program O which computes for input x the factorial
y = 1 · 2 · 3 · . . . · x. Here the factorial of 0 is 1.
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Subprograms (Macros)

Register machines come without a management for local
variables. When writing subprograms, they behave more
like macros: One replaces the calling text with a code of
what has to be executed at all places inside the program
where the subprogram is called. Value passing into the
function and returning back is implemented; registers inside
the called function are renumbered to avoid clashes.

Line 1: Function Power(R5,R6);

Line 2: R7 = 0;

Line 3: R8 = 1;

Line 4: If R6 = R7 Then Goto Line 8;

Line 5: R8 = Mult(R8,R5);

Line 6: R7 = R7 + 1;

Line 7: Goto Line 4;

Line 8: Return(R8).
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Translated Program

Line 1: Function Power(R5,R6);

Line 2: R7 = 0;

Line 3: R8 = 1;

Line 4: If R6 = R7 Then Return(R8);

Line 5: R1 = R5; // Initialising the Variables used

Line 6: R2 = R8; // in the subfunction

Line 7: R3 = 0; // Subfunction starts

Line 8: R4 = 0;

Line 9: If R3 = R1 Then Goto Line 13;

Line 10: R4 = R4 +R2;

Line 11: R3 = R3 + 1;

Line 12: Goto Line 9;

Line 13: R8 = R4; // Passing value back, subfunction ends

Line 14: R7 = R7 + 1;

Line 15: Goto Line 4.
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Simulating Turing Machines

Register machines can simulate Turing machines.

The main challenge is to read and write the tape and to
read the Turing table.

For simplicity, only a one-side infinite tape is implemented.
This can be implemented as a natural number. If there are
10 tape symbols and 0 is the zero then one can say that the
digit relating to 10n could be the tape symbol number n on
the tape. So 210 would represent the tape 0120000 . . . in
this model.

This can be done for any base number including 10. One
has to implement how to Read and Write the tape.

Furthermore, one has to implement the main simulation
loop.
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Reading the Tape / Turing Table

R1 = |Γ|, R2 is the tape, R3 is the position

Line 1: Function Read(R1,R2,R3);

Line 2: R4 = Power(R1,R3);

Line 3: R5 = Divide(R2,R4);

Line 4: R6 = Remainder(R5,R1);

Line 5: Return(R6).

R6 is the symbol read. A coding of this type will also be
used for the Turing table. In general, R1 is the basis and R6

the digit number R3 in the number R2.

If R1 = 10, R2 = 23842 and R3 = 2 then R4 = 100,
R5 = 238 and R6 = 8.
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Writing the Tape

R1 = |Γ|, R2 is the old tape, R3 is the position, R4 is the
symbol to be written, R9 is the new tape content.

Line 1: Function Write(R1,R2,R3,R4); // 10,23842,2,7

Line 2: R5 = Power(R1,R3); // R5 = 100

Line 3: R6 = Divide(R2,R5); // R6 = 238

Line 4: R7 = Remainder(R6,R1); // R7 = 8

Line 5: R6 = R6 +R4 −R7; // R6 = 238+ 7− 8 = 237

Line 6: R8 = Mult(R6,R5); // R8 = 23700

Line 7: R9 = Remainder(R2,R5); // R9 = 42

Line 8: R9 = R9 +R8; // R9 = 23742

Line 9: Return(R9). // Return New Tape

The tape is split into two parts and then the last digit of the
first part is adjusted and afterwards the two parts are
reassembled.
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Simulating the Turing Machine

Line 1: Function Simulate(R1,R2,R3,R4);

Line 2: R5 = 0;

Line 3: R7 = 0;

Line 4: R9 = Mult(Mult(2,R2),R1);

Line 5: R6 = Read(R1,R4,R5);

Line 6: R8 = Read(R9,R3,Mult(R1,R7) +R6);

Line 7: R10 = Divide(R8,Mult(R2,2));

Line 8: R4 = Write(R1,R4,R5,R10);

Line 9: R7 = Remainder(Divide(R8,2),R2);

Line 10: If R7 = 1 Then Goto Line 13;

Line 11: R5 = R5 + Mult(2,Remainder(R8,2))− 1;

Line 12: Goto Line 5;

Line 13: Return(R4).

Here R1 = |Γ|, R2 = |Q|, R3 is Turing Table, R4 is Turing
Tape, R5 is position, R7 is state (0 is start, 1 is halting).
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Turing Machine Simulation

Theorem 10.12
Every Turing machine can be simulated by a register
machine and there is even one single register machine
which simulates for input (e,x) the Turing machine
described by e; if this simulation ends with an output y in
the desired form then the register machine produces this
output; if the Turing machine runs forever, so does the
simulating register machine.

Exercise 10.13
Explain how one has to change the simulation of the Turing
machine in order to have a tape which is in both directions
infinite.

Theorem 10.14 [Alan Turing 1936]
There is a single Turing machine TM(e,x) which simulates
the behaviour of the e-th Turing machine on input x.
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Primitive Recursive Functions

Constant Function: The function producing the constant 0
without any inputs is primitive recursive.

Successor Function: The function x 7→ x+ 1 is primitive
recursive.

Projection Function: Each function of the form
x1, . . . ,xn 7→ xm for some m ∈ {1, . . . ,n} is primitive
recursive.

Composition: If f : Nn → N and g1, . . . ,gn : Nm → N are
primitive recursive, so is
x1, . . . ,xm 7→ f(g1(x1, . . . ,xm), . . . ,gn(x1, . . . ,xm)).

Recursion: If f : Nn → N and g : Nn+2 → N are primitive
recursive then there is also a primitive recursive
function h with h(0,x1, . . . ,xn) = f(x1, . . . ,xn) and
h(y + 1,x1, . . . ,xn) = g(y,h(y,x1, . . . ,xn),x1, . . . ,xn).
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Example 10.17

pred(x) = x− 1 is primitive recursive via pred(0) = 0 and
pred(y + 1) = g(y,pred(y)) = y.

h(x,y) = x− y is primitive recursive via h(x,0) = x and
h(x,y + 1) = pred(h(x,y)). Recursion over wrong

parameter, so define h̃(y,x) = h(x,y) and prove that h̃ is

primitive recursive and then h(x,y) is concatenation of h̃
with (second,first) where second(x,y) = y and
first(x,y) = x.

equal(x,y) = 1− (x− y)− (y − x) is 1 when x = y and 0

when x 6= y.

h(x,y) = x+ y is primitive recursive by h(0,y) = 0+ y = y

and h(x+ 1,y) = (x+ 1) + y = (x+ y) + 1 = h(x,y) + 1.
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Exercises

Exercise 10.18
Prove that every linear function
h(x1,x2, . . . ,xn) = a1x1 + a2x2 + . . .+ anxn + b is primitive
recursive, where the parameters a1, a2, . . . , an,b are in N.

Exercise 10.19
Prove that the function h(x) = 1+ 2+ . . .+ x is primitive
recursive.

Exercise 10.20
Prove that the multiplication h(x,y) = x · y is primitive
recursive.
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Not Primitive Recursive

There is no primitive recursive function f(e,x) such that for
each primitive recursive function g(x) there is an e with
∀x [f(e,x) = g(x)].

Assume that such an f exists. Consider

g(x) = 1+ f(0,x) + f(1,x) + . . .+ f(x,x).

The function g grows faster than x 7→ f(e,x) for any
constant e. So there is no universal primitive recursive
function.

Further Example, Ackermann Function:

• f(0,y) = y + 1;

• f(x+ 1,0) = f(x,1);

• f(x+ 1,y + 1) = f(x, f(x+ 1,y)).
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Partial Recursive Functions

Definition 10.21
If f(y,x1, . . . ,xn) is a function then the µ-minimalisation
g(x1, . . . ,xn) = µy [f(y,x1, . . . ,xn)] is the first value y such
that f(y,x1, . . . ,xn) = 0. The function g can be partial, since
f might at certain combinations of x1, . . . ,xn not take the
value 0 for any y and then the search for the y is undefined.

The partial recursive or µ-recursive functions are those
which are formed from the base functions by concatenation,
primitive recursion and µ-minimalisation. If a partial
recursive function is total, it is just called a recursive
function.

Theorem 10.22
Every partial recursive function can be computed by a
register machine.
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Primitive Recursion

By structural induction. All base functions are linear and
just be computed by a register machine.

Let h(y,x1,x2) be defined by primitive recursion from f and
g. Let register programs F and G for f and g be given. Now
h has the following register program.

Line 1: Function H(R1,R2,R3);

Line 2: R4 = 0;

Line 3: R5 = F(R2,R3);

Line 4: If R4 = R1 Then Goto Line 8;

Line 5: R5 = G(R4,R5,R2,R3);

Line 6: R4 = R4 + 1;

Line 7: Goto Line 4;

Line 8: Return(R5).
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Minimalisation

Let h = µy [f(y,x1,x2) = 0] and let a program F for f be
given. The following program is for h(x1,x2).

Line 1: Function H(R1,R2);

Line 2: R3 = 0;

Line 3: R4 = F(R3,R1,R2);

Line 4: If R4 = 0 Then Goto Line 7;

Line 5: R3 = R3 + 1;

Line 6: Goto Line 3;

Line 7: Return(R3).

Furthermore, concatenation of functions computed by
register machines can also be computed by register
machines. Thus all partial recursive functions can be
computed by register machines.
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Church’s Thesis

Theorem 10.23
For a partial function f , the following are equivalent:

• f as a function from strings to strings can be computed
by a Turing machine;

• f as a function from natural numbers to natural numbers
can be computed by a register machine;

• f as a function from natural numbers to natural numbers
is partial recursive.

Church’s Thesis
All reasonable models of computation over Σ∗ and N are
equivalent and give the same notion as the partial recursive
functions.

Theory of Computation 10 Models of Computation – p. 28



Complexity

One measures the size n of the input in the number of its
symbols or by log(x) = min{n ∈ N : x ≤ 2n}.

Theorem 10.25
A function f is computable by a Turing machine in time p(n)
for some polynomial p iff f is computable by a register
machine in time q(n) for some polynomial q.

Theorem 10.26
A function f is computable by a Turing machine in space
p(n) for some polynomial p iff f is computable by a register
machine in such a way that all registers take at most the

value 2q(n) for some polynomial q.

The notions in Complexity Theory are also relatively
invariant against changes of the model of computation;
however, one has to interpret the word “reasonable” of
Church in a stronger way than in recursion theory.
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Example 10.27

The O(n2) Algorithm.

Line 1: Function Polymult(R1,R2);

Line 2: R3 = 0;

Line 3: R4 = 0;

Line 4: If R3 = R1 Then Goto Line 13;

Line 5: R5 = 1;

Line 6: R6 = R2;

Line 7: If R3 +R5 > R1 Then Goto Line 4;

Line 8: R3 = R3 +R5;

Line 9: R4 = R4 +R6;

Line 10: R5 = R5 +R5;

Line 11: R6 = R6 +R6;

Line 12: Goto Line 7;

Line 13: Return(R4).
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Example 10.27

The O(n) Algorithm.

Line 1: Function Binarymult(R1,R2);

Line 2: R3 = 1; R4 = 1; R5 = 0; R6 = R2;

Line 3: If R3 > R6 Then Goto Line 5;

Line 4: R3 = R3 +R3; Goto Line 3;

Line 5: R6 = R6 +R6; R5 = R5 +R5; R4 = R4 +R4;

Line 6: If R6 < R3 Then Goto Line 8;

Line 7: R5 = R5 +R1; R6 = R6 −R3;

Line 8: If R4 < R3 Then Goto Line 5;

Line 9: Return(R5).

The first O(n) algorithm was given by Floyd and Knuth in
1990.
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Exercises

Exercise 10.28
Write a register program which computes the remainder in
polynomial time.

Exercise 10.29
Write a register program which divides in polynomial time.

Exercise 10.30
Let an extended register machine have the additional
command which permits to multiply two registers in one
step. Show that an extended register machine can compute
a function in polynomial time which cannot be computed in
polynomial time by a normal register machine.
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