
Theory of Computation 11
Recursively Enumerable Sets

Frank Stephan

Department of Computer Science

Department of Mathematics

National University of Singapore

fstephan@comp.nus.edu.sg

Theory of Computation 11 Recursively Enumerable Sets – p. 1



Repetition 1

Models of Computation

• Turing Machine: States like Finite Automaton plus
Turing tape carrying input/output and working space;
head of machine working and moving on tape; updates
of symbols, states and movement given by Turing table.

• Register Machine: Adding and Subtracting and
Comparing natural numbers in registers; conditional
and unconditional jumps between numbered
statements.

• Primitive recursive and µ-recursive functions: Functions
defined from some base functions together with
concatenation, primitive recursion and, in the case of
µ-recursive functions, search for places where some
condition holds.

Theory of Computation 11 Recursively Enumerable Sets – p. 2



Repetition 2

Example: Multiplication can be done naively by repeated
addition.

Line 1: Function Mult(R1,R2);

Line 2: R3 = 0;

Line 3: R4 = 0;

Line 4: If R3 = R1 Then Goto Line 8;

Line 5: R4 = R4 +R2;

Line 6: R3 = R3 + 1;

Line 7: Goto Line 4;

Line 8: Return(R4).

Theory of Computation 11 Recursively Enumerable Sets – p. 3



Repetition 3

Primitive Recurisive: Addition, Multiplication, Subtraction,
Exponentiation, Factorial, Choose-Function, Outcomes of
Comparisons, Linear Functrions and Polynomials.

Not Primitive Recursive: Ackermann Function:

• f(0,y) = y + 1;

• f(x+ 1,0) = f(x,1);

• f(x+ 1,y + 1) = f(x, f(x+ 1,y)).

Partial Recursive: Primitive recursive plus search for an
input which makes function to 0.

Theory of Computation 11 Recursively Enumerable Sets – p. 4



Repetition 4

Theorem 10.23
For a partial function f , the following are equivalent:

• f as a function from strings to strings can be computed
by a Turing machine;

• f as a function from natural numbers to natural numbers
can be computed by a register machine;

• f as a function from natural numbers to natural numbers
is partial recursive.

Church’s Thesis
All reasonable models of computation over Σ∗ and N are
equivalent and give the same notion as the partial recursive
functions.

Theory of Computation 11 Recursively Enumerable Sets – p. 5



Repetition 5

One measures the size n of the input in the number of its
symbols or by log(x) = min{n ∈ N : x ≤ 2n}.

Theorem 10.25
A function f is computable by a Turing machine in time p(n)
for some polynomial p iff f is computable by a register
machine in time q(n) for some polynomial q.

Theorem 10.26
A function f is computable by a Turing machine in space
p(n) for some polynomial p iff f is computable by a register
machine in such a way that all registers take at most the

value 2q(n) for some polynomial q.

The notions in Complexity Theory are also relatively
invariant against changes of the model of computation;
however, one has to interpret the word “reasonable” of
Church in a stronger way than in recursion theory.

Theory of Computation 11 Recursively Enumerable Sets – p. 6



Primitive Recursive

Theorem
A function is primitive recursive iff it can be computed by a
register program where the only type of goto-commands
which can go backwards are For-Loops, where one cannot
go into or out of a For-Loop and once the For-Loop is
started, its boundaries cannot be modified and the
loop-variable can only be updated by the commands of the
loop itself.

Remark
One can replace the Goto-commands completely by
allowing only For-Loops, If-Then-Else statements and
Switch-statements which are properly nested.

For full generality of Partial-Recursive functions, one would
then also need While-Loops in addition to the For-Loops.

Theory of Computation 11 Recursively Enumerable Sets – p. 7



Example

Line 1: Function Factor(R1,R2);

Line 2: R3 = R1;

Line 3: R4 = 0;

Line 4: If R2 < 2 Then Goto Line 10;

Line 5: For R5 = 0 to R1

Line 6: If Remainder(R3,R2) > 0 Then Goto Line 9;

Line 7: R3 = Divide(R3,R2);

Line 8: R4 = R4 + 1;

Line 9: Next R5;

Line 10: Return(R4);

This function computes how often R2 is a factor of R1 and
is primitive recursive.

Theory of Computation 11 Recursively Enumerable Sets – p. 8



Collatz Function

Not known whether primitive recursive or whether total at
all.

Line 1: Function Collatz(R1);

Line 2: If Remainder(R1,2) = 0 Then Goto Line 6;

Line 3: If R1 = 1 Then Goto Line 8;

Line 4: R1 = Mult(R1,3) + 1;

Line 5: Goto Line 2;

Line 6: R1 = Divide(R1,2);

Line 7: Goto Line 2;

Line 8: Return(R1);

Lothar Collatz conjectured in 1937 that this function is total.

Theory of Computation 11 Recursively Enumerable Sets – p. 9



Simulating Collatz Function

Line 1: Function Collatz(R1,R2);

Line 2: LN = 2;

Line 3: For T = 0 to R2

Line 4: If LN = 2 Then Begin If Remainder(R1,2) = 0

Then LN = 6 Else LN = 3; Goto Line 10 End;

Line 5: If LN = 3 Then Begin If R1 = 1 Then LN = 8

Else LN = 4; Goto Line 10 End;

Line 6: If LN = 4 Then Begin R1 = Mult(R1,3) + 1;
LN = 5; Goto Line 10 End;

Line 7: If LN = 5 Then Begin LN = 2; Goto Line 10 End;

Line 8: If LN = 6 Then Begin R1 = Divide(R1,2);
LN = 7; Goto Line 10 End;

Line 9: If LN = 7 Then Begin LN = 2; Goto Line 10 End;

Line 10: Next T;

Line 11: If LN = 8 Then Return(R1 + 1) Else Return(0).
Theory of Computation 11 Recursively Enumerable Sets – p. 10



Exercise 11.1

Write a program for a primitive recursive function which
simulate the following function with input R1 for R2 steps.

Line 1: Function Expo(R1);

Line 2: R3 = 1;

Line 3: If R1 = 0 Then Goto Line 7;

Line 4: R3 = R3 +R3;

Line 5: R1 = R1 − 1;

Line 6: Goto Line 3;

Line 7: Return(R3).

Theory of Computation 11 Recursively Enumerable Sets – p. 11



Exercise 11.2

Write a program for a primitive recursive function which
simulate the following function with input R1 for R2 steps.

Line 1: Function Repeatadd(R1);

Line 2: R3 = 3;

Line 3: If R1 = 0 Then Goto Line 7;

Line 4: R3 = R3 +R3 +R3 + 3;

Line 5: R1 = R1 − 1;

Line 6: Goto Line 3;

Line 7: Return(R3).

Theory of Computation 11 Recursively Enumerable Sets – p. 12



Bounded Simulation

Theorem 11.3
For every partial-recursive function f there is a primitive
recursive function g and a register machine M such that for
all t,

If f(x1, . . . ,xn) is computed by M within t steps
Then g(x1, . . . ,xn, t) = f(x1, . . . ,xn) + 1

Else g(x1, . . . ,xn, t) = 0.

In short words, g simulates the program M of f for t steps
and if an output y comes then g outputs y + 1 else g

outputs 0.

Theory of Computation 11 Recursively Enumerable Sets – p. 13



Recursively Enumerable

Theorem 11.4
The following notions are equivalent for a set A ⊆ N:

(a) A is the range of a partial recursive function;

(b) A is empty or A is the range of a total recursive function;

(c) A is empty or A is the range of a primitive recursive
function;

(d) A is the set of inputs on which some register machine
terminates;

(e) A is the domain of a partial recursive function;

(f) There is a two-place recursive function g such that
A = {x : ∃y [g(x,y) > 0]}.

Definition 11.5
The set A is recursively enumerable iff it satisfies any of the
above equivalent properties.

Theory of Computation 11 Recursively Enumerable Sets – p. 14



(a) to (c) and (c) to (b)

If A is empty then (c) holds; if A is not empty then there is
an element a ∈ A which is now taken as a constant. For the
partial function f whose range A is, there is, by Theorem
11.3, a primitive function g such that either g(x, t) = 0 or
g(x, t) = f(x) + 1 and whenever f(x) takes a value there is
also a t with g(x, t) = f(x) + 1. Now one defines a new
function h which is also primitive recursive such that if
g(x, t) = 0 then h(x, t) = a else h(x, t) = g(x, t)− 1. The
range of h is A.

(c) ⇒ (b): This follows by definition as every primitive
recursive function is also recursive.

Theory of Computation 11 Recursively Enumerable Sets – p. 15



(b) to (d) and (d) to (e)

(b) ⇒ (d): Given a function h whose range is A, one can
make a register machine which simulates h and searches
over all possible inputs and checks whether h on these
inputs is x. If such inputs are found then the search
terminates else the register machine runs forever. Thus
x ∈ A iff the register machine program following this
behaviour terminates after some time.

(d) ⇒ (e): The domain of a register machine is the set of
inputs on which it halts and outputs a return value. Thus
this implication is satisfied trivially by taking the function for
(e) to be exactly the function computed from the register
program for (d).

Theory of Computation 11 Recursively Enumerable Sets – p. 16



(e) to (f) and (f) to (a)

(e) ⇒ (f): Given a register program f whose domain A is
according to (e), one takes the function g as defined by
Theorem 11.3 and this function indeed satisfies that f(x) is
defined iff there is a t such that g(x, t) > 0.

(f) ⇒ (a): Given the function g as defined in (f), one
defines that if there is a t with g(x, t) > 0 then f(x) = x else
f(x) is undefined. The latter comes by infinite search for a t

which is not found. Thus the partial recursive function f has
range A.

Theory of Computation 11 Recursively Enumerable Sets – p. 17



Decidable and Undecidable Problems

A set L is called decidable or recursive iff there is a
recursive function f such that, for all x, if x ∈ L then f(x) = 1

else f(x) = 0. One says that the function f decides the
membership in L.

A set L is called undecidable or nonrecursive iff there is no
such recursive function f deciding the membership in L.

Observation
Every recursive set is recursively enumerable.

Theory of Computation 11 Recursively Enumerable Sets – p. 18



The Halting Problem

Definition [Turing 1936]
Let e,x 7→ ϕe(x) be a universal partial recursive function
covering all one-variable partial recursive functions. Then
the set {(e,x) : ϕe(x) is defined} is called the general
halting problem and K = {e : ϕe(e) is defined} is called the
diagonal halting problem.

The name stems from the fact that ϕe(x) is defined iff the
e-th register machine with input x halts and produces some
output.

Theorem [Turing 1936]
Both the diagonal halting problem and the general halting
problem are recursively enumerable and undecidable.

Theory of Computation 11 Recursively Enumerable Sets – p. 19



Proof

Let F be a function which simulates ϕe(x) and assume that
there is a function Halt which can check whether ϕe(e)
halts. If so, then Halt(e) = 1 else Halt(e) = 0. Now condider
this program.

Line 1: Function Diagonalise(R1);

Line 2: R2 = 0;

Line 3: If Halt(R1) = 0 Then Goto Line 5;

Line 4: R2 = F(R1,R1) + 1;

Line 5: Return(R2).

Theory of Computation 11 Recursively Enumerable Sets – p. 20



Function Diagonalise

The function Diagonalise has only one input.

If ϕe(e) is undefined then Halt(e) = 0 and
Diagonalise(e) = 0.

If ϕe(e) is defined then Halt(e) = 1 and F(e, e) = ϕe(e) will
be computed in Line 4 and the output will be ϕe(e) + 1.

Thus Diagonalise(e) differs from ϕe(e) for all e and is not
among ϕ0, ϕ1, . . .; as all partial-recursive functions with one
input are in this list, Diagonalise cannot be recursive and
therefore Halt also cannot be recursive.

The halting problem equals {(e,x) : F(e,x) halts}. Thus it is
the domain of a partial recursive function and recursively
enumerable. Similarly, K = {e : F(e, e) halts} is the domain
of a partial-recursive function and recursively enumerable.

Theory of Computation 11 Recursively Enumerable Sets – p. 21



R.E. and Recursive

Theorem 11.9
A set L is recursive iff both L and N− L are recursively
enumerable.

Exercise 11.10
Prove this connection.

Exercises 11.11 – 11.13
Prove that the following variants of the halting problem are
undecidable:
11.11: {e : ϕe(2e+ 5) is defined};

11.12: {e : ϕe(e
2 + 1) is defined};

11.13: {e : ϕe(e/2) is defined}, where 1/2 is rounded to 0

and 3/2 to 1 and so on.

Theory of Computation 11 Recursively Enumerable Sets – p. 22



Further Homeworks 11.14-11.16

Show that the following sets are recursively enumerable by
proving that a register machine halts exactly on the
members of the set:
Exercise 11.14: {x ∈ N : x is a square}.
Exercise 11.15: {x ∈ N : x is prime}.

Exercise 11.16
Prove that the set {e : ϕe(e/2) is defined} is recursively
enumerable by proving that it is the range of a primitive
recursive function. Here e/2 is the downrounded value of e
divided by 2, so 1/2 is 0 and 3/2 is 1.

Theory of Computation 11 Recursively Enumerable Sets – p. 23



Further Homeworks 11.17-11.19

Exercise 11.17: Prove or disprove: Every recursively
enumerable set is either ∅ or the range of a function which
can be computed in polynomial time.

Exercise 11.18: Prove or disprove: Every recursively
enumerable set is either ∅ or the domain of a function f

where the graph {(x, f(x)) : x ∈ dom(f)} can be decided in
polynomial time, that is, given inputs x,y, one can decide in
polynomial time whether (x,y) = (x, f(x)).

Exercise 11.19: Prove or disprove: Every recursively
enumerable set is either ∅ or the domain of a {0,1}-valued
function f where the graph {(x, f(x)) : x ∈ dom(f)} can be
decided in polynomial time.

Second Half of Lecture: Midterm Test

Theory of Computation 11 Recursively Enumerable Sets – p. 24


	Repetition 1
	Repetition 2
	Repetition 3
	Repetition 4
	Repetition 5
	Primitive Recursive
	Example
	Collatz Function
	Simulating Collatz Function
	Exercise 11.1
	Exercise 11.2
	Bounded Simulation
	Recursively Enumerable
	(a) to
(c) and (c) to (b)
	(b) to
(d) and (d) to (e)
	(e) to
(f) and (f) to (a)
	Decidable and Undecidable Problems
	The Halting Problem
	Proof
	Function Diagonalise
	R.E. and Recursive
	Further Homeworks 11.14-11.16
	Further Homeworks 11.17-11.19

