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Repetition 1

Models of Computation

• Turing Machine: States like Finite Automaton plus
Turing tape carrying input/output and working space;
head of machine working and moving on tape; updates
of symbols, states and movement given by Turing table.

• Register Machine: Adding and Subtracting and
Comparing natural numbers in registers; conditional
and unconditional jumps between numbered
statements.

• Primitive recursive and µ-recursive functions: Functions
defined from some base functions together with
concatenation, primitive recursion and, in the case of
µ-recursive functions, search for places where some
condition holds.
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Repetition 2

Example: Multiplication can be done naively by repeated
addition.

Line 1: Function Mult(R1,R2);

Line 2: R3 = 0;

Line 3: R4 = 0;

Line 4: If R3 = R1 Then Goto Line 8;

Line 5: R4 = R4 +R2;

Line 6: R3 = R3 + 1;

Line 7: Goto Line 4;

Line 8: Return(R4).
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Repetition 3

Primitive Recurisive: Addition, Multiplication, Subtraction,
Exponentiation, Factorial, Choose-Function, Outcomes of
Comparisons, Linear Functrions and Polynomials.

Not Primitive Recursive: Ackermann Function:

• f(0,y) = y + 1;

• f(x+ 1,0) = f(x,1);

• f(x+ 1,y + 1) = f(x, f(x+ 1,y)).

Partial Recursive: Primitive recursive plus search for an
input which makes function to 0.
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Repetition 4

Theorem 10.23
For a partial function f , the following are equivalent:

• f as a function from strings to strings can be computed
by a Turing machine;

• f as a function from natural numbers to natural numbers
can be computed by a register machine;

• f as a function from natural numbers to natural numbers
is partial recursive.

Church’s Thesis
All reasonable models of computation over Σ∗ and N are
equivalent and give the same notion as the partial recursive
functions.
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Repetition 5

One measures the size n of the input in the number of its
symbols or by log(x) = min{n ∈ N : x ≤ 2n}.

Theorem 10.25
A function f is computable by a Turing machine in time p(n)
for some polynomial p iff f is computable by a register
machine in time q(n) for some polynomial q.

Theorem 10.26
A function f is computable by a Turing machine in space
p(n) for some polynomial p iff f is computable by a register
machine in such a way that all registers take at most the

value 2q(n) for some polynomial q.

The notions in Complexity Theory are also relatively
invariant against changes of the model of computation;
however, one has to interpret the word “reasonable” of
Church in a stronger way than in recursion theory.
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Primitive Recursive

Theorem
A function is primitive recursive iff it can be computed by a
register program where the only type of goto-commands
which can go backwards are For-Loops, where one cannot
go into or out of a For-Loop and once the For-Loop is
started, its boundaries cannot be modified and the
loop-variable can only be updated by the commands of the
loop itself.

Remark
One can replace the Goto-commands completely by
allowing only For-Loops, If-Then-Else statements and
Switch-statements which are properly nested.

For full generality of Partial-Recursive functions, one would
then also need While-Loops in addition to the For-Loops.
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Example

Line 1: Function Factor(R1,R2);

Line 2: R3 = R1;

Line 3: R4 = 0;

Line 4: If R2 < 2 Then Goto Line 10;

Line 5: For R5 = 0 to R1

Line 6: If Remainder(R3,R2) > 0 Then Goto Line 9;

Line 7: R3 = Divide(R3,R2);

Line 8: R4 = R4 + 1;

Line 9: Next R5;

Line 10: Return(R4);

This function computes how often R2 is a factor of R1 and
is primitive recursive.
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Collatz Function

Not known whether primitive recursive or whether total at
all.

Line 1: Function Collatz(R1);

Line 2: If Remainder(R1,2) = 0 Then Goto Line 6;

Line 3: If R1 = 1 Then Goto Line 8;

Line 4: R1 = Mult(R1,3) + 1;

Line 5: Goto Line 2;

Line 6: R1 = Divide(R1,2);

Line 7: Goto Line 2;

Line 8: Return(R1);

Lothar Collatz conjectured in 1937 that this function is total.
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Simulating Collatz Function

Line 1: Function Collatz(R1,R2);

Line 2: LN = 2;

Line 3: For T = 0 to R2

Line 4: If LN = 2 Then Begin If Remainder(R1,2) = 0

Then LN = 6 Else LN = 3; Goto Line 10 End;

Line 5: If LN = 3 Then Begin If R1 = 1 Then LN = 8

Else LN = 4; Goto Line 10 End;

Line 6: If LN = 4 Then Begin R1 = Mult(R1,3) + 1;
LN = 5; Goto Line 10 End;

Line 7: If LN = 5 Then Begin LN = 2; Goto Line 10 End;

Line 8: If LN = 6 Then Begin R1 = Divide(R1,2);
LN = 7; Goto Line 10 End;

Line 9: If LN = 7 Then Begin LN = 2; Goto Line 10 End;

Line 10: Next T;

Line 11: If LN = 8 Then Return(R1 + 1) Else Return(0).
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Exercise 11.1

Write a program for a primitive recursive function which
simulate the following function with input R1 for R2 steps.

Line 1: Function Expo(R1);

Line 2: R3 = 1;

Line 3: If R1 = 0 Then Goto Line 7;

Line 4: R3 = R3 +R3;

Line 5: R1 = R1 − 1;

Line 6: Goto Line 3;

Line 7: Return(R3).
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Exercise 11.2

Write a program for a primitive recursive function which
simulate the following function with input R1 for R2 steps.

Line 1: Function Repeatadd(R1);

Line 2: R3 = 3;

Line 3: If R1 = 0 Then Goto Line 7;

Line 4: R3 = R3 +R3 +R3 + 3;

Line 5: R1 = R1 − 1;

Line 6: Goto Line 3;

Line 7: Return(R3).
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Bounded Simulation

Theorem 11.3
For every partial-recursive function f there is a primitive
recursive function g and a register machine M such that for
all t,

If f(x1, . . . ,xn) is computed by M within t steps
Then g(x1, . . . ,xn, t) = f(x1, . . . ,xn) + 1

Else g(x1, . . . ,xn, t) = 0.

In short words, g simulates the program M of f for t steps
and if an output y comes then g outputs y + 1 else g

outputs 0.
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Recursively Enumerable

Theorem 11.4
The following notions are equivalent for a set A ⊆ N:

(a) A is the range of a partial recursive function;

(b) A is empty or A is the range of a total recursive function;

(c) A is empty or A is the range of a primitive recursive
function;

(d) A is the set of inputs on which some register machine
terminates;

(e) A is the domain of a partial recursive function;

(f) There is a two-place recursive function g such that
A = {x : ∃y [g(x,y) > 0]}.

Definition 11.5
The set A is recursively enumerable iff it satisfies any of the
above equivalent properties.
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(a) to (c) and (c) to (b)

If A is empty then (c) holds; if A is not empty then there is
an element a ∈ A which is now taken as a constant. For the
partial function f whose range A is, there is, by Theorem
11.3, a primitive function g such that either g(x, t) = 0 or
g(x, t) = f(x) + 1 and whenever f(x) takes a value there is
also a t with g(x, t) = f(x) + 1. Now one defines a new
function h which is also primitive recursive such that if
g(x, t) = 0 then h(x, t) = a else h(x, t) = g(x, t)− 1. The
range of h is A.

(c) ⇒ (b): This follows by definition as every primitive
recursive function is also recursive.
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(b) to (d) and (d) to (e)

(b) ⇒ (d): Given a function h whose range is A, one can
make a register machine which simulates h and searches
over all possible inputs and checks whether h on these
inputs is x. If such inputs are found then the search
terminates else the register machine runs forever. Thus
x ∈ A iff the register machine program following this
behaviour terminates after some time.

(d) ⇒ (e): The domain of a register machine is the set of
inputs on which it halts and outputs a return value. Thus
this implication is satisfied trivially by taking the function for
(e) to be exactly the function computed from the register
program for (d).
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(e) to (f) and (f) to (a)

(e) ⇒ (f): Given a register program f whose domain A is
according to (e), one takes the function g as defined by
Theorem 11.3 and this function indeed satisfies that f(x) is
defined iff there is a t such that g(x, t) > 0.

(f) ⇒ (a): Given the function g as defined in (f), one
defines that if there is a t with g(x, t) > 0 then f(x) = x else
f(x) is undefined. The latter comes by infinite search for a t

which is not found. Thus the partial recursive function f has
range A.
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Decidable and Undecidable Problems

A set L is called decidable or recursive iff there is a
recursive function f such that, for all x, if x ∈ L then f(x) = 1

else f(x) = 0. One says that the function f decides the
membership in L.

A set L is called undecidable or nonrecursive iff there is no
such recursive function f deciding the membership in L.

Observation
Every recursive set is recursively enumerable.
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The Halting Problem

Definition [Turing 1936]
Let e,x 7→ ϕe(x) be a universal partial recursive function
covering all one-variable partial recursive functions. Then
the set {(e,x) : ϕe(x) is defined} is called the general
halting problem and K = {e : ϕe(e) is defined} is called the
diagonal halting problem.

The name stems from the fact that ϕe(x) is defined iff the
e-th register machine with input x halts and produces some
output.

Theorem [Turing 1936]
Both the diagonal halting problem and the general halting
problem are recursively enumerable and undecidable.
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Proof

Let F be a function which simulates ϕe(x) and assume that
there is a function Halt which can check whether ϕe(e)
halts. If so, then Halt(e) = 1 else Halt(e) = 0. Now condider
this program.

Line 1: Function Diagonalise(R1);

Line 2: R2 = 0;

Line 3: If Halt(R1) = 0 Then Goto Line 5;

Line 4: R2 = F(R1,R1) + 1;

Line 5: Return(R2).
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Function Diagonalise

The function Diagonalise has only one input.

If ϕe(e) is undefined then Halt(e) = 0 and
Diagonalise(e) = 0.

If ϕe(e) is defined then Halt(e) = 1 and F(e, e) = ϕe(e) will
be computed in Line 4 and the output will be ϕe(e) + 1.

Thus Diagonalise(e) differs from ϕe(e) for all e and is not
among ϕ0, ϕ1, . . .; as all partial-recursive functions with one
input are in this list, Diagonalise cannot be recursive and
therefore Halt also cannot be recursive.

The halting problem equals {(e,x) : F(e,x) halts}. Thus it is
the domain of a partial recursive function and recursively
enumerable. Similarly, K = {e : F(e, e) halts} is the domain
of a partial-recursive function and recursively enumerable.
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R.E. and Recursive

Theorem 11.9
A set L is recursive iff both L and N− L are recursively
enumerable.

Exercise 11.10
Prove this connection.

Exercises 11.11 – 11.13
Prove that the following variants of the halting problem are
undecidable:
11.11: {e : ϕe(2e+ 5) is defined};

11.12: {e : ϕe(e
2 + 1) is defined};

11.13: {e : ϕe(e/2) is defined}, where 1/2 is rounded to 0

and 3/2 to 1 and so on.
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Further Homeworks 11.14-11.16

Show that the following sets are recursively enumerable by
proving that a register machine halts exactly on the
members of the set:
Exercise 11.14: {x ∈ N : x is a square}.
Exercise 11.15: {x ∈ N : x is prime}.

Exercise 11.16
Prove that the set {e : ϕe(e/2) is defined} is recursively
enumerable by proving that it is the range of a primitive
recursive function. Here e/2 is the downrounded value of e
divided by 2, so 1/2 is 0 and 3/2 is 1.
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Further Homeworks 11.17-11.19

Exercise 11.17: Prove or disprove: Every recursively
enumerable set is either ∅ or the range of a function which
can be computed in polynomial time.

Exercise 11.18: Prove or disprove: Every recursively
enumerable set is either ∅ or the domain of a function f

where the graph {(x, f(x)) : x ∈ dom(f)} can be decided in
polynomial time, that is, given inputs x,y, one can decide in
polynomial time whether (x,y) = (x, f(x)).

Exercise 11.19: Prove or disprove: Every recursively
enumerable set is either ∅ or the domain of a {0,1}-valued
function f where the graph {(x, f(x)) : x ∈ dom(f)} can be
decided in polynomial time.

Second Half of Lecture: Midterm Test
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