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1 Sets and Regular Expressions

In theoretical computer science, one considers several main ways to describe a language
L; here a language is usually a set of strings w over an alphabet Σ. The alphabet Σ is
usually finite. For example, {ε, 01, 10, 0011, 0101, 0110, 1001, 1010, 1100, 000111, . . .}
is the language of all strings over {0, 1} which contain as many 0 as 1. Furthermore,
let vw or v ·w denote the concatenation of the strings v and w by putting the symbols
of the second string behind those of the first string: 001 · 01 = 00101. Sets of strings
are quite important, here some ways to define sets.

Definition 1.1. (a) A finite list in set brackets denotes the set of the corresponding
elements, for example {001, 0011, 00111} is the set of all strings which have two 0s
followed by one to three 1s.

(b) For any set L, let L∗ be the set of all strings obtained by concatenating finitely
many strings from L: L∗ = {u1 · u2 · . . . · un : n ∈ N ∧ u1, u2, . . . , un ∈ L}.

(c) For any two sets L and H, let L ∪ H denote the union of L and H, that is,
the set of all strings which are in L or in H.

(d) For any two sets L and H, let L∩H denote the intersection of L and H, that
is, the set of all strings which are in L and in H.

(e) For any two sets L and H, let L ·H denote the set {v · w : v ∈ L ∧ w ∈ H},
that is, the set of concatenations of members of L and H.

(f) For any two sets L and H, let L − H denote the set difference of L and H,
that is, L−H = {u : u ∈ L ∧ u /∈ H}.

Remarks 1.2. For finite sets, the following additional conventions are important:
The symbol ∅ is a special symbol which denotes the empty set – it could also be
written as { }. The symbol ε denotes the empty string and {ε} is the set containing
the empty string.

In general, sets of strings considered in this lecture are usually sets of strings over
a fixed alphabet Σ. Σ∗ is then the set of all strings over the alphabet Σ.

Besides this, one can also consider L∗ for sets L which are not an alphabet but
already a set of strings themselves: For example, {0, 01, 011, 0111}∗ is the set of all
strings which are either empty or start with 0 and have never more than three consec-
utive 1s. The empty set ∅ and the set {ε} are the only sets where the corresponding
starred set is finite: ∅∗ = {ε}∗ = {ε}. The operation L 7→ L∗ is called the “Kleene
star operation” named after Stephen Cole Kleene who introduced this notion.

An example for a union is {0, 11} ∪ {01, 11} = {0, 01, 11} and for an intersection
is {0, 11} ∩ {01, 11} = {11}. Note that L ∩H = L− (L−H) for all sets L and H.

Formal languages are languages L for which there is a mechanism to check mem-
bership in L or to generate all members of L. The various ways to describe a language

3



L are given by the following types of mechanisms:

• By a mechanism which checks whether a given word w belongs to L. Such a
mechanism is called an automaton or a machine.

• By a mechanism which generates all the words w belonging to L. This mecha-
nism is step-wise and consists of rules which can be applied to derive the word
in question. Such a mechanism is called a grammar.

• By a function which translates words to words such that L is the image of
another (simpler) language H under this function. There are various types of
functions f to be considered and some of the mechanisms to compute f are
called transducers.

• An expression which describes in a short-hand the language considered like, for
example, {01, 10, 11}∗. Important are here in particular the regular expressions.

Regular languages are those languages which can be defined using regular expres-
sions. Later, various characterisations will be given for these languages. Regular
expressions are a quite convenient method to describe sets.

Definition 1.3. A regular expression denotes either a finite set (by listing its ele-
ments), the empty set by using the symbol ∅ or is formed from other regular expressions
by the operations given in Definition 1.1 (which are Kleene star, concatenation, union,
intersection and set difference).

Convention. For regular expressions, one usually fixes a finite alphabet Σ first. Then
all the finite sets listed are sets of finite strings over Σ. Furthermore, one does not
use complement or intersection, as these operations can be defined using the other
operations. Furthermore, for a single word w, one writes a∗ in place of {a}∗ and abc∗

in place of {ab} · {c}∗. For a single variable w, w∗ denotes (w)∗, even if w has several
symbols. L+ denotes the set of all non-empty concatenations over members of L; so
L+ contains ε iff L contains ε and L+ contains a non-empty string w iff w ∈ L∗. Note
that L+ = L · L∗. Sometimes, in regular expressions, L + H is written in place of
L ∪H. This stems from the time where typesetting was mainly done only using the
symbols on the keyboard and then the addition-symbol was a convenient replacement
for the union.

Example 1.4. The regular language {00, 11}∗ consists of all strings of even length
where each symbol in an even position (position 0, 2, . . .) is repeated in the next odd
position. So the language contains 0011 and 110011001111 but not 0110.

The regular language {0, 1}∗ · 001 · {0, 1, 2}∗ is the set of all strings where after
some 0s and 1s the substring 001 occurs, followed by an arbitrary number of 0s and
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1s and 2s.
The regular set {00, 01, 10, 11}∗ ∩ {000, 001, 010, 010, 100, 101, 110, 111}∗ consists

of all binary strings whose length is a multiple of 6.
The regular set {0}∪{1, 2, 3, 4, 5, 6, 7, 8, 9} · {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ consists of all

decimal representations of natural numbers without leading 0s.

Exercise 1.5. List all members of the following sets:

(a) {0, 1} · {0, 1, 2};
(b) {0, 00, 000} ∩ {00, 000, 0000};
(c) {1, 11} · {ε, 0, 00, 000};
(d) {0, 00} · {ε, 0, 00, 000};
(e) {0, 1, 2} · {1, 2, 3} ∩ {1, 2, 3} · {0, 1, 2};
(f) {00, 11} · {000, 111} ∩ {000, 111} · {00, 11};
(g) {0, 1, 2} ∪ {2, 3, 4} ∪ {1, 2, 3};
(h) {000, 111}∗ ∩ {0, 1} · {0, 1} · {0, 1}.

Exercise 1.6. Assume A has 3 and B has 2 elements. How many elements do the
following sets have at least and at most; it depends on the actual choice which of the
bounds is realised: A ∪B, A ∩ B, A ·B, A−B, A∗ ∩B∗.

Exercise 1.7. Let A,B be finite sets and |A| be the number of elements of A. Is the
following formula correct:

|A ∪B|+ |A ∩B| = |A|+ |B|?

Prove the answer.

Exercise 1.8. Make a regular expression for 0∗1∗0∗1∗ ∩ (11)∗(00)∗(11)∗(00)∗ which
does not use intersections or set difference.

Theorem 1.9: Lyndon and Schützenberger [58]. If two words v, w satisfy
vw = wv then there is a word u such that v, w ∈ u∗. If a language L contains
only words v, w with vw = wv then L ⊆ u∗ for some u.

Proof. If v = ε or w = ε then u = vw satisfies the condition. So assume that v, w
both have a positive length and are different. This implies that one of them, say w,
is strictly longer than the other one. Let k be the greatest common divisor of the
lengths |v| and |w|; then there are i, j such that v = u1u2 . . . ui and w = u1u2 . . . uj
for some words u1, u2, . . . , uj of length k. It follows from vw = wv that vjwi = wivj.
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Now |vj| = |wi| = ijk and therefore vj = wi. The numbers i, j have the greatest
common divisor 1, as otherwise k would not be the greatest common divisor of |v|
and |w|. Thus the equation vj = wi implies that for each h ∈ {1, . . . , j} there is some
position where uh is in one word and u1 in the other word so that all uh are equal to
u1.

This fact follows from the Chinese Remainder Theorem: For every possible com-
bination (i′, j′) of numbers in {1, 2, . . . , i}× {1, 2, . . . , j} there is a position h′ · k such
that h′ by i has remainder i′ − 1 and h′ by j has remainder j′ − 1, that is, the parts
of the upper and lower words at positions h′ · k, . . . , (h′ + 1) · k − 1 are ui′ and uj′ ,
respectively. It follows that v, w ∈ u∗1. Here an example for the last step of the proof
with i = 3 and j = 4:

u1 u2 u3 u1 u2 u3 u1 u2 u3 u1 u2 u3,
u1 u2 u3 u4 u1 u2 u3 u4 u1 u2 u3 u4.

The upper and the lower word are the same and one sees that each u1 in the upper
word is matched with a different uh in the lower word and that all uh in the lower
word are matched at one position with uh.

For the second statement, consider any language L such that all words v, w ∈ L
satisfy vw = wv. Let v ∈ L be any non-empty word and u be the shortest prefix of v
with v ∈ u∗. Now let w be any other word in L. As vw = wv there is a word ũ with
v, w ∈ ũ∗. Now u, ũ satisfy that their length divides the length of v and |u| ≤ |ũ| by
choice of u. If u = ũ then w ∈ u∗. If u 6= ũ then one considers the prefix û of u, ũ
whose length is the greatest common divisor of |u|, |ũ|. Now again one can prove that
u, ũ are both in û∗ and by the choice of u, û = u: The words u|ũ| and ũ|u| are the
same and the prefix û of u is matched with all positions in ũ starting from a multiple
of |û| so that u ∈ û∗; similarly ũ ∈ û∗. Thus w ∈ u∗. It follows that L is a subset of
u∗. The case that L does not contain a non-empty word is similar: then L is either
empty or {ε} and in both cases the subset of the set u∗ for any given u.

Theorem 1.10: Structural Induction. Assume that P is a property of languages
such that the following statements hold:

• Every finite set of words satisfies P ;

• If L,H satisfy P so do L ∪H, L ·H and L∗.

Then every regular set satisfies P .

Proof. Recall that words include the empty word ε and that finite sets can also be
empty, that is, not contain any element.

The proof uses that every regular set can be represented by a regular expression
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which combines some listings of finite sets (including the empty set) by applying the
operations of union, concatenation and Kleene star. These expressions can be written
down as words over an alphabet containing the base alphabet of the corresponding
regular language and the special symbols comma, opening and closing set bracket,
normal brackets for giving priority, empty-set-symbol, union-symbol, concatenation-
symbol and symbol for Kleene star. Without loss of generality, the normal brackets
are used in quite redundant form such that every regular expression σ is either a
listing of a finite set or of one of the forms (τ ∪ ρ), (τ · ρ), τ ∗ for some other regular
expressions τ, ρ. In the following, for a regular expression σ, let L(σ) be the regular
language described by the expression σ.

Assume by way of contradiction that some regular set does not satisfy P . Now
there is a smallest number n such that for some regular expression σ of length n, the
set L(σ) does not satisfy P . Now one considers the following possibility of what type
of expression σ can be:

• If σ is the string ∅ then L(σ) is the empty set and thus L(σ) satisfies P ;

• If σ lists a finite set then again L(σ) satisfies P by assumption;

• If σ is (τ ∪ρ) for some regular expressions then τ, ρ are shorter than n and there-
fore L(τ), L(ρ) satisfy P and L(σ) = L(τ)∪L(ρ) also satisfies P by assumption
of the theorem;

• If σ is (τ ·ρ) for some regular expressions then τ, ρ are shorter than n and there-
fore L(τ), L(ρ) satisfy P and L(σ) = L(τ) · L(ρ) also satisfies P by assumption
of the theorem;

• If σ is τ ∗ for some regular expression τ then τ is shorter than n and therefore
L(τ) satisfies P and L(σ) = L(τ)∗ also satisfies P by assumption of the theorem.

Thus in all cases, the set L(σ) is satisfying P and therefore it cannot happen that a
regular language does not satisfy P . Thus structural induction is a valid method to
prove that regular languages have certain properties.

Remark 1.11. As finite sets can be written as the union of singleton sets and as every
singleton set consisting of a word a1a2 . . . an can be written as {a1} · {a2} · . . . · {an},
one can weaken the assumptions above as follows:

• The empty set and every set consisting of one word which is up to one letter
long satisfies P ;

• If L,H satisfy P so do L ∪H, L ·H and L∗.

If these assumptions are satisfied then all regular sets satisfy the property P .

Definition 1.12. A regular language L has polynomial growth iff there is a constant
k such that at most nk words in L are strictly shorter than n; a regular language L
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has exponential growth iff there are constants h, k such that, for all n, there are at
least 2n words shorter than n · k + h in L.

Theorem 1.13. Every regular language has either polynomial or exponential growth.

Proof. The proof is done by structural induction over all regular sets formed by reg-
ular expressions using finite sets, union, concatenation and Kleene star. The property
P for this structural induction is that a set has either polynomial growth or exponen-
tial growth and now the various steps of structural induction are shown.

First every finite set has polynomial growth; if the set has k members then there
are at most nk words in the set which are properly shorter than k. Note that the def-
inition of “polynomial growth” says actually “at most polynomial growth” and thus
the finite sets are included in this notion.

Now it will be shown that whenever L,H have either polynomial or exponential
growth so do L ∪H, L ·H and L∗.

Assume now that L,H have polynomial growth with bound functions ni and nj ,
respectively, with i, j ≥ 1. Now L ∪ H and L · H have both growth bounded by
ni+j. For the union, one needs only to consider n ≥ 2, as for n = 1 there is at
most the one word ε strictly shorter than n in L ∪ H and ni+j = 1. For n ≥ 2,
ni+j ≥ 2 ·nmax{i,j} ≥ ni+nj and therefore the bound is satisfied for the union. For the
concatenation, every element of L ·H is of the form v · w where v is an element of L
strictly shorter than n and w is an element of H strictly shorter than n; thus there are
at most as many elements of L ·H which are strictly shorter than n as there are pairs
of (v, w) with v ∈ L,w ∈ H, |v| < n, |w| < n; hence there are at most ni · nj = ni+j

many such elements.
The following facts are easy to see: If one of L,H has exponential growth then

so has L ∪H; If one of L,H has exponential growth and the other one is not empty
then L ·H has exponential growth. If L or H is empty then L ·H is empty and has
polynomial growth.

Now consider a language of the form L∗. If L contains words v, w ∈ L with
vw 6= wv then {vw,wv}∗ ⊆ L∗ and as |vw| = |wv|, this means that there are 2n words
of length |vw| · n in L for all n > 0; thus it follows that L has at least 2n words of
length shorter than |vw| · n+ |vw|+ 1 for all n and L has exponential growth.

If L does not contain any words v, w with vw 6= wv, then by the Theorem 1.9 of
Lyndon and Schützenberger, the set L is a subset of some set of the form u∗ and thus
L∗ is also a subset of u∗. Thus L∗ has for each length at most one word and L∗ has
polynomial growth.

This completes the structural induction to show that all regular sets have either
polynomial or exponential growth.

Examples 1.14. The following languages have polynomial growth:
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(a) {001001001}∗ · {001001001001}∗;
(b) ({001001001}∗ · {001001001001}∗)∗;
(c) {001001, 001001001}∗ · {0000, 00000, 000000}∗;
(d) ∅ · {00, 01, 10}∗;
(e) {0, 1, 00, 01, 10, 11, 000, 001, 010, 011}.

The following languages have exponential growth:

(f) {001, 0001}∗;
(g) {000, 111}∗ ∩ {0000, 1111}∗ ∩ {00000, 11111}∗.

As a quiz, check out the following related questions:

(a) Does L ∩H have exponential growth whenever L,H do?

(b) Does {0101, 010101}∗ have exponential growth?

(c) Does {000, 001, 011, 111}∗ · {0000, 1111} have exponential growth?

(d) Does the set {w : w ∈ {0, 1}∗ and there are at most log(|w|) many 1s in w} have
polynomial growth?

(e) Does the set {w : w ∈ {0, 1}∗ and there are at most log(|w|) many 1s in w} have
exponential growth?

(f) Is there a maximal k such that every set of polynomial growth has at most nk

members shorter than n for every n?

Proposition 1.15. The following equality rules apply to any sets:

(a) L ∪ L = L, L ∩ L = L, (L∗)∗ = L∗, (L+)+ = L+;

(b) (L ∪H)∗ = (L∗ ·H∗)∗ and if ε ∈ L ∩H then (L ∪H)∗ = (L ·H)∗;

(c) (L ∪ {ε})∗ = L∗, ∅∗ = {ε} and {ε}∗ = {ε};
(d) L+ = L · L∗ = L∗ · L and L∗ = L+ ∪ {ε};
(e) (L ∪H) ·K = (L ·K) ∪ (H ·K) and K · (L ∪H) = (K · L) ∪ (K ·H);

(f) (L ∪H) ∩K = (L ∩K) ∪ (H ∩K) and (L ∩H) ∪K = (L ∪K) ∩ (H ∪K);

(g) (L ∪H)−K = (L−K) ∪ (H −K) and (L ∩H)−K = (L−K) ∩ (H −K).

Proof. (a) L ∪ L consists of all words which appear in at least one of the copies of
L, thus it equals in L. Similarly, L ∩ L = L. (L∗)∗ consists of all words u of the form
w1w2 . . . wn where w1, w2, . . . , wn ∈ L∗ and each wm is of the form vm,1vm,2 . . . vm,nm

with vm,1, vm,2, . . . , vm,nm
∈ L. Note that these concatenations can take ε in the case

that n = 0 or nm = 0, respectively. The word u is the concatenation of concatenations
of words in L which can be summarised as one concatenation of words in L. Thus
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u ∈ L∗. For the other way round, note that L∗ ⊆ (L∗)∗ by definition. If ε ∈ L
then L+ = L∗ and (L+)+ = (L∗)∗ else L+ = L∗ − {ε} and (L+)+ = (L∗ − {ε})+ =
(L∗ − {ε})∗ − {ε} = (L∗)∗ − {ε} = L∗ − {ε} = L+.

(b) L∗ · H∗ contains L and H as subsets, as one can take in the concatenation
the first or second component from L,H and the other one as ε. Thus (L ∪ H)∗ ⊆
(L∗ · H∗)∗. On the other hand, one can argue similarly as in the proof of (a) that
(L∗ ·H∗)∗ ⊆ (L ∪H)∗. In the case that ε ∈ L ∩H, it also holds that L ∪H ⊆ L ·H
and thus (L ∪H)∗ = (L ·H)∗.

(c) It follows from the definitions that L∗ ⊆ (L ∪ {ε})∗ ⊆ (L∗)∗. As (a) showed
that L∗ = (L∗)∗, it follows that all three sets in the chain of inequalities are the same
and L∗ = (L∪{ε})∗. ∅∗ contains by definition ε as the empty concatenation of words
from ∅ but no other word. The third equality {ε}∗ = {ε} follows from the first two.

(d) The equalities L+ = L · L∗ = L∗ · L and L∗ = L+ ∪ {ε} follow directly from
the definition of L+ as the set of non-empty concatenations of members of L and the
definition of L∗ as the set of possibly empty concatenations of members of L.

(e) A word u is in the set (L ∪H) ·K iff there are words v, w with u = vw such
that w ∈ K and v ∈ L ∪ H. If v ∈ L then vw ∈ L · K else vw ∈ H · K. It then
follows that u ∈ (L · K) ∪ (H · K). The reverse direction is similar. The equation
K · (L ∪H) = (K · L) ∪ (K ·H) is be proven by almost identical lines of proof.

(f) A word u is in (L∪H)∩K iff (u is in L or u is in H) and u is in K iff (u is in
L and u is in K) or (u in in H and u is in K) iff u ∈ (L∩K)∪ (H ∩K). Thus the first
law of distributivity follows from the distributivity of “and” and “or” in the logical
setting. The second law of distributivity given as (L ∩H) ∪K = (L ∪K) ∩ (H ∪K)
is proven similarly.

(g) The equation (L∪H)−K = (L−K)∪(H−K) is equal to (L∪H)∩(Σ∗−K) =
(L∩ (Σ∗ −K))∪ (H ∩ (Σ∗ −K)) and can be mapped back to (f) by using Σ∗ −K in
place of K where Σ is the base alphabet of the languages considered. Furthermore, a
word u is in (L∩H)−K iff u is in both L and H but not in K iff u is in both L−K
and H −K iff u is in (L−K) ∩ (H −K).

Proposition 1.16. The following inequality rules apply to any sets and the mentioned
inclusions / inequalities are proper for the examples provided:

(a) L · L can be different from L: {0} · {0} = {00};
(b) (L ∩H)∗ ⊆ L∗ ∩H∗;

Properness: L = {00}, H = {000}, (L ∩H)∗ = {ε}, L∗ ∩H∗ = {000000}∗;
(c) If {ε} ∪ (L ·H) = H then L∗ ⊆ H;

Properness: L = {ε}, H = {0}∗;
(d) If L ∪ (L ·H) = H then L+ ⊆ H;

Properness: L = {ε}, H = {0}∗;
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(e) (L ∩H) ·K ⊆ (L ·K) ∩ (H ·K);
Properness: ({0}∩ {00}) · {0, 00} = ∅ ⊆ {000} = ({0} · {0, 00})∩ ({00} · {0, 00});

(f) K · (L ∩H) ⊆ (K · L) ∩ (K ·H);
Properness: {0, 00} · ({0}∩ {00}) = ∅ ⊆ {000} = ({0, 00} · {0})∩ ({0, 00} · {00}).

Proof. Item (a) and the witnesses for the properness of the inclusions in items (b)–
(f).

For the inclusion in (b), assume that v = w1w2 . . . wn is in (L ∩H)∗ with w1, w2,
. . . , wn ∈ (L∩H); v = ε in the case that n = 0. Now w1, w2, . . . , wn ∈ L and therefore
v ∈ L∗; w1, w2, . . . , wn ∈ H and therefore v ∈ H∗; thus v ∈ L∗ ∩H∗.

For items (c) and (d), define inductively L0 = {ε} and Ln+1 = Ln ·L; equivalently
one could say Ln+1 = L · Ln. It follows from the definition that L∗ =

⋃

n≥0 L
n and

L+ =
⋃

n≥1 L
n. In item (c), ε ∈ H and thus L0 ⊆ H. Inductively, if Ln ⊆ H then

Ln+1 = L ·Ln ⊆ L ·H ⊆ H; thus
⋃

n≥0 L
n ⊆ H, that is, L∗ ⊆ H. In item (d), L1 ⊆ H

by definition. Now, inductively, if Ln ⊆ H then Ln+1 = L · Ln ⊆ L · H ⊆ H. Now
L+ =

⋃

n≥1 L
n ⊆ H.

The proofs of items (e) and (f) are similar, so just the proof of (e) is given here.
Assume that u ∈ (L ∩ H) · K. Now u = vw for some v ∈ L ∩ H and w ∈ K. It
follows that v ∈ L and v ∈ H, thus vw ∈ L · K and vw ∈ H · K. Thus u = vw ∈
(L ·K) ∩ (H ·K).

The proofs of (c) and (d) actually show also the following: If {ε} ∪ (L ·H) ⊆ H then
L∗ ⊆ H; if L∪ (L ·H) ⊆ H then L+ ⊆ H. Furthermore, H = L∗ and H = L+ satisfies
{ε}∪ (L ·H) = H L∪ (L ·H) = H, respectively. Thus one has the following corollary.

Corollary 1.17. For any set L, the following statements characterise L∗ and L+:

(a) L∗ is the smallest set H such that {ε} ∪ (L ·H) = H;

(b) L∗ is the smallest set H such that {ε} ∪ (L ·H) ⊆ H;

(c) L+ is the smallest set H such that L ∪ (L ·H) = H;

(d) L+ is the smallest set H such that L ∪ (L ·H) ⊆ H.

Exercise 1.18. Which three of the following sets are not equal to any of the other
sets:

(a) {01, 10, 11}∗;
(b) (({0, 1} · {0, 1})− {00})∗;
(c) ({01, 10} · {01, 10, 11} ∪ {01, 10, 11} · {01, 10})∗;
(d) ({01, 10, 11} · {01, 10, 11})∗ ∪ {01, 10, 11} · ({01, 10, 11} · {01, 10, 11})∗;
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(e) {0, 1}∗ − {0, 1} · {00, 11}∗;
(f) (({01}∗ ∪ {10})∗ ∪ {11})∗;
(g) ({ε} ∪ ({0} · {0, 1}∗ ∩ {1} · {0, 1}∗))∗.

Explain the answer.

Exercise 1.19. Make a regular expression which contains all those decimal natural
numbers which start with 3 or 8 and have an even number of digits and end with 5 or 7.

Make a further regular expression which contains all odd ternary numbers with-
out leading 0s; here a ternary number is a number using the digits 0, 1, 2 with 10
being three, 11 being four and 1212 being fifty. The set described should contain
the ternary numbers 1, 10, 12, 21, 100, 102, 111, 120, 122, 201, . . . which are the numbers
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, . . . in decimal.

Exercise 1.20. Let S be the smallest class of languages such that

• every language of the form u∗ for a non-empty word u is in S;

• the union of two languages in S is again in S;

• the concatenation of two languages in S is again in S.

Prove by structural induction the following properties of S:

(a) Every language in S is infinite;

(b) Every language in S has polynomial growth.

Lay out all inductive steps explicitly without only citing results in this lecture.

Exercise 1.21. Let L satisfy the following statement: For all u, v, w ∈ L, either
uv = vu or uw = wu or vw = wv. Which of the following statements are true for all
such L:

(a) All x, y ∈ L satisfy xy = yx;

(b) All sufficiently long x, y ∈ L satisfy xy = yx;

(c) The language L has polynomial growth.

Give an answer to these questions and prove them.

Exercise 1.22. Let L consist of all words which contain each of the letters 0, 1, 2, 3
exactly once. Make a regular expression generating L which has at most length 100 for
L. For the length of the expression, each digit, each comma, each concatenation symbol
and each bracket and each set bracket counts exactly as one symbol. Concatenation
binds more than union. Kleene star and plus should not be used, as L is finite.
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Exercise 1.23. Make a regular expression for the set {w ∈ {0}∗ : |w| ≤ 9} which has
at most 26 characters using explicit lists of finite sets and concatenation and union.
In the expression, the concatenation symbol, the union symbol, each set bracket, each
comma, each symbol 0 and each symbol ε, all count all as one character.

In the following, let V be the set of vowels, W be the set of consonants, S be the set
of punctuation marks and T be the set of spacings (blancs and new lines and so on).
Note that all three exercises have slightly different definitions of words, though they
always are strings of some vowels and perhaps some consonants. There is no need to
distinguish upper and lower case letters.

Exercise 1.24. Make a regular expression (using above sets) of all words which con-
tain at least two vowels and before, after and between vowels is exactly one consonant.
Examples of such words are “woman”, “regular”, “lower” but not “upper”, “man”,
“runner”, “mouse” and “mice”.

Exercise 1.25. Make a regular expression of all sentences where each sentence con-
sists of words containing one vowel and arbitrarily many consonants and between two
words are spacings and after the last word is a punctuation mark. Example: “can dogs
and cats run fast?”

Exercise 1.26. Make a regular expressions generating texts of sentences separted by
spacings where sentences are as above with the only difference that words can have
one or two vowels and up to four consonants. Example: “can dogs and cats run very
fast? yes, they can. sheep can run, too.”

In the next four exercises, L and H range over infinite subsets of {1, 2, 3, 4, 5, 6, 7, 8, 9}
· {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ which are viewed as sets of natural numbers having their
usual value in the decimal system. Furthermore, p, q ≥ 2 and p, q ∈ N.

Exercise 1.27. If L does not contain numbers of the form x, x + 1, the same is
true for L · L. Prove the answer, in the case of a negative answer, provide a regular
expression for the regular set L.

Exercise 1.28. There is a number p and some L as specified above such that both L
and L+ consist only of powers of p. Either provide p and regular expression for L or
prove that there are no such p and L.

Exercise 1.29. Let Lq denote the concatenation of q copies of L. Find p, q such that
the following property (∗) is true: (∗): Every infinite set L has an infinite subset H
such that Hq consists only of numbers divisible by p. Prove the answer.

Exercise 1.30. Prove that (∗) from Exercise 1.29 is false when p = 74.
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2 Grammars and the Chomsky Hierarchy

The set of binary numbers (without leading zeroes) can be described by the regular
expression {0} ∪ ({1} · {0, 1}∗). Alternatively, one could describe these numbers also
in a recursive way as the following example shows.

Example 2.1. If one wants to write down a binary number, one has the following
recursive rules:

• A binary number can just be the string “0”;

• A binary number can be a string “1” followed by some digits;

• Some digits can either be “0” followed by some digits or “1” followed by some
digits or just the empty string.

So the binary number 101 consists of a 1 followed by some digits. These some digits
consists of a 0 followed by some digits; now these some digits can again be described
as a 1 followed by some digits; the remaining some digits are now void, so one can
describe them by the empty string and the process is completed. Formally, one can
use S to describe binary numbers and T to describe some digits and put the rules
into this form:

• S → 0;

• S → 1T ;

• T → T0, T → T1, T → ε.

Now the process of making 101 is obtained by applying the rules iteratively: S → 1T
to S giving 1T ; now T → 0T to the T in 1T giving 10T ; now T → 1T to the T in 10T
giving 101T ; now T → ε to the T in 101T giving 101. Such a process is described by
a grammar.

Grammars have been formalised by linguists as well as by mathematicians. They
trace in mathematics back to Thue [87] and in linguistics, Chomsky [17] was one of the
founders. Thue mainly considered a set of strings over a finite alphabet Σ with rules
of the form l → r such that every string of the form xly can be transformed into xry
by applying that rule. A Thue-system is given by a finite alphabet Σ and a finite set
of rules where for each rule l → r also the rule r → l exists; a semi-Thue-system does
not need to permit for each rule also the inverted rule. Grammars are in principle
semi-Thue-systems, but they have made the process of generating the words more
formal. The main idea is that one has additional symbols, so called non-terminal
symbols, which might occur in the process of generating a word but which are not
permitted to be in the final word. In the introductory example, S (binary numbers)
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and T (some digits) are the non-terminal symbols and 0, 1 are the terminal digits.
The formal definition is the following.

Definition 2.2. A grammar (N,Σ, P, S) consists of two disjoint finite sets of symbols
N and Σ, a set of rules P and a starting symbol S ∈ N .

Each rule is of the form l → r where l is a string containing at least one symbol
from N .

v can be derived from w in one step iff there are x, y and a rule l → r such that
v = xly and w = xrw. v can be derived from w in arbitrary steps iff there are n ≥ 0
and u0, u1, . . . , un ∈ (N ∪Σ)∗ such that u0 = v, un = w and um+1 can be derived from
um in one step for each m < n.

Now (N,Σ, P, S) generates the set L = {w ∈ Σ∗ : w can be derived from S}.

Convention. One writes v ⇒ w for saying that w can be derived from v in one step
and v ⇒∗ w for saying that w can be derived from v (in an arbitrary number of steps).

Example 2.3. Let N = {S, T}, Σ = {0, 1}, P contain the rules S → 0T1, T →
0T, T → T1, T → 0, T → 1 and S be the start symbol.

Then S ⇒∗ 001 and S ⇒∗ 011: S ⇒ 0T1 ⇒ 001 and S ⇒ 0T1 ⇒ 011 by applying
the rule S → 0T1 first and then either T → 0 or T → 1. Furthermore, S ⇒∗ 0011
by S ⇒ 0T1 ⇒ 0T11 ⇒ 0011, that is, by applying the rules S → 0T1, T → T1 and
T → 0. S 6⇒∗ 000 and S 6⇒∗ 111 as the first rule must be S → 0T1 and any word
generated will preserve the 0 at the beginning and the 1 at the end.

This grammar generates the language of all strings which have at least 3 symbols
and which consist of 0s followed by 1s where there must be at least one 0 and one 1.

Example 2.4. Let ({S}, {0, 1}, P, S) be a grammar where P consists of the four rules
S → SS|0S1|1S0|ε.

Then S ⇒∗ 0011 by applying the rule S → 0S1 twice and then applying S → ε.
Furthermore, S ⇒∗ 010011 which can be seen as follows: S ⇒ SS ⇒ 0S1S ⇒ 01S ⇒
010S1 ⇒ 0100S11 ⇒ 010011.

This grammar generates the language of all strings in {0, 1}∗ which contain as
many 0s as 1s.

Example 2.5. Let ({S, T}, {0, 1, 2}, P, S) be a grammar where P consists of the rules
S → 0T |1T |2T |0|1|2 and T → 0S|1S|2S.

Then S ⇒∗ w iff w ∈ {0, 1, 2}∗ and the length of w is odd; T ⇒∗ w iff w ∈ {0, 1, 2}∗
and the length of w is even but not 0.

This grammar generates the language of all strings over {0, 1, 2} which have an
odd length.
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Exercise 2.6. Make a grammar which generates all strings with four 1s followed by
one 2 and arbitrary many 0s in between. That is, the grammar should correspond to
the regular expression 0∗10∗10∗10∗10∗20∗.

The Chomsky Hierarchy. Noam Chomsky [17] studied the various types of gram-
mars and introduced the hierarchy named after him; other pioneers of the theory of
formal languages include Marcel-Paul Schützenberger. The Chomsky hierarchy has
four main levels; these levels were later refined by introducing and investigating other
classes of grammars and formal languages defined by them.

Definition 2.7. Let (N,Σ, P, S) be a grammar. The grammar belongs to the first of
the following levels of the Chomsky hierarchy which applies:

(CH3) The grammar is called regular (or right-linear) if every rule (member of P )
is of the form A → wB or A → w where A,B are non-terminals and w ∈ Σ∗.
A language is regular iff it is generated by a regular grammar.

(CH2) The grammar is called context-free iff every rule is of the form A → w with
A ∈ N and w ∈ (N ∪ Σ)∗. A language is context-free iff it is generated by a
context-free grammar.

(CH1) The grammar is called context-sensitive iff every rule is of the form uAw →
uvw with A ∈ N and u, v, w ∈ (N ∪ Σ)∗ and v 6= ε; furthermore, in the case
that the start symbol S does not appear on any right side of a rule, the rule
S → ε can be added so that the empty word can be generated. A language is
called context-sensitive iff it is generated by a context-sensitive grammar.

(CH0) There is the most general case where the grammar does not satisfy any of
the three restrictions above. A language is called recursively enumerable iff it is
generated by some grammar.

The next theorem permits easier methods to prove that a language is context-sensitive
by constructing the corresponding grammars.

Theorem 2.8. A language L not containing ε is context-sensitive iff it can be gen-
erated by a grammar (N,Σ, P, S) satisfying that every rule l → r satisfies |l| ≤ |r|.

A language L containing ε is context-sensitive iff it can be generated by a grammar
(N,Σ, P, S) satisfying that S → ε is a rule and that any further rule l → r satisfies
|l| ≤ |r| ∧ r ∈ (N ∪ Σ− {S})∗.

Example 2.9. The grammar ({S, T, U}, {0, 1, 2}, P, S) with P consisting of the rules
S → 0T12|012|ε, T → 0T1U |01U , U1 → 1U , U2 → 22 generates the language of all
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strings 0n1n2n where n is a natural number (including 0).
For example, S ⇒ 0T12 ⇒ 00T1U12 ⇒ 00T11U2 ⇒ 00T1122 ⇒ 0001U1122 ⇒

00011U122 ⇒ 000111U22 ⇒ 000111222.
One can also see that the numbers of the 0s, 1s and 2s generated are always the

same: the rules S → 0T12 and S → 012 and S → ε produce the same quantity of
these symbols; the rules T → 0T1U and T → 01U produce one 0, one 1 and one U
which can only be converted into a 2 using the rule U2 → 22 but cannot be converted
into anything else; it must first move over all 1s using the rule U1 → 1U in order
to meet a 2 which permits to apply U2 → 22. Furthermore, one can see that the
resulting string has always the 0s first, followed by 1s and the 2s last. Hence every
string generated is of the form 0n1n2n.

Note that the notion of regular language is the same whether it is defined by a regular
grammar or by a regular expression.

Theorem 2.10. A language L is generated by a regular expression iff it is generated
by a regular grammar.

Proof. One shows by induction that every language generated by a regular expression
is also generated by a regular grammar. A finite language {w1, w2, . . . , wn} is gener-
ated by the grammar with the rules S → w1|w2| . . . |wn. For the inductive sets, assume
now that L and H are regular sets (given by regular expressions) which are generated
by the grammars (N1,Σ, P1, S1) and (N2,Σ, P2, S2), where the sets of non-terminals
are disjoint: N1 ∩N2 = ∅. Now one can make a grammar (N1 ∪N2 ∪ {S, T},Σ, P, S)
where P depends on the respective case of L ∪H, L ·H and L∗. The set P of rules
(with A,B being non-terminals and w being a word of terminals) is defined as follows
in the respective case:

Union L ∪H: P contains all rules from P1 ∪ P2 plus S → S1|S2;

Concatenation L ·H: P contains the rules S → S1, T → S2 plus all rules of the
form A → wB which are in P1 ∪ P2 plus all rules of the form A → wT with
A→ w in P1 plus all rules of the form A→ w in P2;

Kleene Star L∗: P contains the rules S → S1 and S → ε and each rule A → wB
which is in P1 and each rule A→ wS for which A→ w is in P1.

It is easy to see that in the case of the union, a word w can be generated iff one uses
the rule S → S1 and S1 ⇒∗ w or one uses the rule S → S2 and S2 ⇒∗ w. Thus
S ⇒∗ w iff w ∈ L or w ∈ H.

In the case of a concatenation, a word u can be generated iff there are v, w such
that S ⇒∗ S1 ⇒∗ vT ⇒ vS2 ⇒∗ vw and u = vw. This is the case iff L contains v and
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H contains w: S1 ⇒∗ vT iff one can, by same rules with only the last one changed to
have the final T omitted derive that v ∈ L for the corresponding grammar; T ⇒∗ w
iff one can derive in the grammar for H that w ∈ L. Here T was introduced for being
able to give this formula; one cannot use S2 directly as the grammar for H might
permit that S2 ⇒∗ tS2 for some non-empty word t.

The ingredient for the verification of the grammar for Kleene star is that S1 → uS
without using the rule S → S1 iff S1 → u can be derived in the original grammar
for L; now one sees that S →∗ uS for non-empty words in the new grammar is only
possible iff u = u1u2 . . . un for some n and words u1, u2, . . . , un ∈ L; furthermore, the
empty word can be generated.

For the converse direction, assume that a regular grammar with rules R1, R2, . . . , Rn

is given. One makes a sequence of regular expressions EC,D,m and EC,m where C,D
are any non-terminals and which will satisfy the following conditions:

• EC,D,m generates the language of words v for which there is a derivation C ⇒∗

vD using only the rules R1, R2, . . . , Rm;

• EC,m generates the language of all words v for which there is a derivation C ⇒∗ v
using only the rules R1, R2, . . . , Rm.

One initialises all EC,0 = ∅ and if C = D then EC,D = {ε} else EC,D = ∅. If EC,m and
EC,D,m are defined for m < n, then one defines the expressions EC,m+1 and EC,D,m+1

in dependence of what Rm+1 is.
If Rm+1 is of the form A → w for a non-terminal A and a terminal word w then

one defines the updated sets as follows for all C,D:

• EC,D,m+1 = EC,D,m, as one cannot derive anything ending with D with help of
Rm+1 what can not already be derived without help of Rm+1;

• EC,m+1 = EC,m ∪ (EC,A,m · {w}), as one can either only use old rules what is
captured by EC,m or go from C to A using the old rules and then terminating
the derivation with the rule A→ w.

In both cases, the new expression is used by employing unions and concatenations
and thus is in both cases again a regular expression.

If Rm+1 is of the form A → wB for non-terminals A,B and a terminal word w
then one defines the updated sets as follows for all C,D:

• EC,D,m+1 = EC,D,m∪EC,A,m ·w · (EB,A,m ·w)∗ ·EB,D,m, as one can either directly
go from C to D using the old rules or go to A employing the rule and producing
a w and then ending up in B with a possible repetition by going be to A and
employing again the rule making a w finitely often and then go from B to D;
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• EC,m+1 = EC,m ∪ EC,A,m · w · (EB,A,m · w)∗ · EB,m, as one can either directly
generate a terminal word using the old rules or go to A employing the rule and
producing a w and then ending up in B with a possible repetition by going be
to A and employing again the rule making a w finitely often and then employ
more rules to finalise the making of the word.

Again, the new regular expressions put together the old ones using union, concate-
nation and Kleene star only. Thus one obtains also on level m + 1 a set of regular
expressions.

After one has done this by induction for all the rules in the grammar, the resulting
expression ES,n where S is the start symbol generates the same language as the given
grammar did. This completes the second part of the proof.

For small examples, one can write down the languages in a more direct manner, though
it is still systematic.

Example 2.11. Let L be the language ({0, 1}∗ · 2 · {0, 1}∗ · 2) ∪ {0, 2}∗ ∪ {1, 2}∗.
A regular grammar generating this language is ({S, T, U, V,W}, {0, 1, 2}, P, S) with

the rules S → T |V |W , T → 0T |1T |2U , U → 0U |1U |2, V → 0V |2V |ε and W →
1W |2W |ε.

Using the terminology of Example 2.13, LU = {0, 1}∗ · 2, LT = {0, 1}∗ · 2 · LU =
{0, 1}∗ · 2 · {0, 1}∗ · 2, LV = {0, 2}∗, LW = {1, 2}∗ and L = LS = LT ∪ LV ∪ LW .

Exercise 2.12. Let L be the language ({00, 11, 22}·{33}∗)∗. Make a regular grammar
generating the language.

Example 2.13. Let ({S, T}, {0, 1, 2, 3}, P, S) be a given regular grammar.
For A,B ∈ {S, T}, let LA,B be the finite set of all words w ∈ {0, 1, 2, 3}∗ such that

the rule A→ wB exists in P and let LA be the finite set of all words w ∈ {0, 1, 2, 3}∗
such that the rule A→ w exists in P . Now the grammar generates the language

(LS,S)
∗ · (LS,T · (LT,T )

∗ · LT,S · (LS,S)
∗)∗ · (LS ∪ LS,T · (LT,T )

∗ · LT ).

For example, if P contains the rules S → 0S|1T |2 and T → 0T |1S|3 then the language
generated is

0∗ · (10∗10∗)∗ · (2 ∪ 10∗3)

which consists of all words from {0, 1}∗ · {2, 3} such that either the number of 1s is
even and the word ends with 2 or the number of 1s is odd and the word ends with 3.

Exercise 2.14. Let ({S, T, U}, {0, 1, 2, 3, 4}, P, S) be a grammar where the set P
contains the rules S → 0S|1T |2, T → 0T |1U |3 and U → 0U |1S|4. Make a regular
expression describing this language.
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The Pumping Lemmas are methods to show that certain languages are not regular
or not context-free. These criteria are only sufficient to show that a language is
more complicated than assumed, they are not necessary. The following version is the
standard version of the pumping lemma.

Theorem 2.15: Pumping Lemma. (a) Let L ⊆ Σ∗ be an infinite regular language.
Then there is a constant k such that for every u ∈ L of length at least k there is a
representation x · y · z = u such that |xy| ≤ k, y 6= ε and xy∗z ⊆ L.

(b) Let L ⊆ Σ∗ be an infinite context-free language. Then there is a constant k
such that for every u ∈ L of length at least k there is a representation vwxyz = u
such that |wxy| ≤ k, w 6= ε ∨ y 6= ε and vwℓxyℓz ∈ L for all ℓ ∈ N.

Proof. Part (a): One considers for this proof only regular expressions might up
by finite sets and unions, concatenations and Kleene star of other expressions. For
regular expressions σ, let L(σ) be the language described by σ. Now assume that σ is
a shortest regular expression such that for L(σ) fails to satisfy the Pumping Lemma.
One of the following cases must apply to σ:

First, L(σ) is a finite set given by an explicit list in σ. Let k be a constant longer
than every word in L(σ). Then the Pumping Lemma would be satisfied as it only
requests any condition on words in L which are longer than k – there are no such
words.

Second, σ is (τ ∪ ρ) for further regular expressions τ, ρ. As τ, ρ are shorter than
σ, L(τ) satisfies the Pumping Lemma with constant k′ and L(ρ) with constant k′′; let
k = max{k′, k′′}. Consider any word w ∈ L(σ) which is longer than k. If w ∈ L(τ)
then |w| > k′ and w = xyz for some x, y, z with y 6= ε and |xy| ≤ k′ and xy∗z ⊆ L(τ).
It follows that |xy| ≤ k and xy∗z ⊆ L(σ). Similarly, if w ∈ L(ρ) then |w| > k′′ and
w = xyz for some x, y, z with y 6= ε and |xy| ≤ k′′ and xy∗z ⊆ L(ρ). It again follows
that |xy| ≤ k and xy∗z ⊆ L(σ). Thus the Pumping Lemma also holds in this case
with the constant k = max{k′, k′′}.

Third, σ is (τ · ρ) for further regular expressions τ, ρ. As τ, ρ are shorter than σ,
L(τ) satisfies the Pumping Lemma with constant k′ and L(ρ) with constant k′′; let
k = k′ + k′′. Consider any word u ∈ L(σ) which is longer than k. Now u = vw with
v ∈ L(τ) and w ∈ L(ρ). If |v| > k′ then v = xyz with y 6= ε and |xy| ≤ k′ and
xy∗z ⊆ L(τ). It follows that |xy| ≤ k and xy∗(zw) ⊆ L(σ), so the Pumping Lemma
is satisfied with constant k in the case |v| > k′. If |v| ≤ k′ then w = xyz with y 6= ε
and |xy| ≤ k′′ and xy∗z ⊆ L(ρ). It follows that |(vx)y| ≤ k and (vx)y∗z ⊆ L(σ), so
the Pumping Lemma is satisfied with constant k in the case |v| ≤ k′ as well.

Fourth, σ is τ ∗ for further regular expression τ . Then τ is shorter than σ and
L(τ) satisfies the Pumping Lemma with some constant k. Now it is shown that
L(σ) satisfies the Pumping Lemma with the same constant k. Assume that v ∈
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L(σ) and |v| > k. Then v = w1w2 . . . wn for some n ≥ 1 and non-empty words
w1, w2, . . . , wn ∈ L(τ). If |w1| ≤ k then let x = ε, y = w1 and z = w2 · . . . · wn. Now
xy∗z = w∗

1w2 . . . wn ⊆ L(τ)∗ = L(σ). If |w1| > k then there are x, y, z with w1 = xyz,
|xy| ≤ k, y 6= ε and xy∗z ⊆ L(τ). It follows that xy∗(z · w2 · . . . · wn) ⊆ L(σ). Again
the Pumping Lemma is satisfied.

It follows from this case distinction that the Pumping Lemma is satisfied in all
cases and therefore the regular expression σ cannot be exist as assumed. Thus all
regular languages satisfy the Pumping Lemma.

Part (b) will be proven later using derivation trees of words and Chomsky Normal
Form of the grammar; the proof will be given when these tools are introduced.

In Section 3 below a more powerful version of the pumping lemma for regular sets
will be shown. The following weaker corollary might also be sufficient in some cases
to show that a language is not regular.

Corollary 2.16. Assume that L is an infinite regular language. Then there is a
constant k such that for each word w ∈ L with |w| > k, one can represent w as
xyz = w with y 6= ε and xy∗z ⊆ L.

Exercise 2.17. Let p1, p2, p3, . . . be the list of prime numbers in ascending order.
Show that L = {0n : n > 0 and n 6= p1 · p2 · . . . · pm for all m} satisfies Corollary 2.16
but does not satisfy Theorem 2.15 (a).

Exercise 2.18. Assume that (N,Σ, P, S) is a regular grammar and h is a constant
such that N has less than h elements and for all rules of the form A→ wB or A→ w
with A,B ∈ N and w ∈ Σ∗ it holds that |w| < h. Show that Theorem 2.15 (a) holds
with the constant k being h2.

Example 2.19. The set L = {0p : p is a prime number} of all 0-strings of prime
length is not context-free.

To see this, assume the contrary and assume that k is the constant from the
pumping condition in Theorem 2.15 (b). Let p be a prime number larger than k.
Then 0p can be written in the form vwxyz with q = |wy| > 0. Then every string of
the form vwℓxyℓz is in L; these strings are of the form 0p+q·(ℓ−1). Now choose ℓ = p+1
and consider 0p+q·p. The number p+ q · p = p · (q+1) is not a prime number; however
0p+q·p is in L by the pumping condition in Theorem 2.15 (b). This contradiction
proves that L cannot be context-free.

Example 2.20. The language L of all words which have as many 0 as 1 satisfies
the pumping condition in Corollary 2.16 but not the pumping condition in Theo-
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rem 2.15 (a).
For seeing the first, note that whenever w has as many 0 as 1 then every element

of w∗ has the same property. Indeed, L = L∗ and Corollary 2.16 is satisfied by every
language which is of the form H∗ for some H.

For seeing the second, assume the contrary and assume that n is the constant used
in Theorem 2.15 (a). Now consider the word 0n1n. By assumption there is a repre-
sentation xyz = 0n1n with |xy| ≤ n and y 6= ε. As a consequence, xyyz = 0n+m1n for
some m > 0 and xyyz /∈ L. Hence the statement in Theorem 2.15 (a) is not satisfied.

Theorem 2.21. Let L ⊆ {0}∗. The following conditions are equivalent for L:

(a) L is regular;

(b) L is context-free;

(c) L satisfies the Theorem 2.15 (a) for regular languages;

(d) L satisfies the Theorem 2.15 (b) for context-free languages.

Proof. Clearly (a) implies (b),(c) and (b),(c) both imply (d). Now it will be shown
that (d) implies (a).

Assume that k is the pumping constant for the context-free Pumping Lemma.
Then, for every word u ∈ L, one can split 0n into vwxyz such that |wxy| ≤ k and at
least one of w, y is not empty and vwhxyhz ∈ L for all h.

Now when h − 1 = ℓ · k!/|wy| for some integer ℓ, the word vwhxyhz is equal to
0n · 0k!·ℓ. As all these vwhxyhz are in L, it follows that 0n · (0k!)∗ ⊆ L. For each
remainder m ∈ {0, 1, . . . , k!− 1}, let

nm = min{i : ∃j [i > k and i = m+ jk! and 0i ∈ L]}

and let nm = ∞ when there is no such i, that is, min ∅ = ∞.
Now L is the union of finitely many regular sets: First the set L∩{ε, 0, 00, . . . , 0k}

which is finite and thus regular; Second, all those sets 0nm · (0k!)∗ where m < k! and
nm < ∞. There are at most k! many of these sets of the second type and each is
given by a regular expression. Thus L is the union of finitely many regular sets and
therefore regular itself.

Exercise 2.22. Consider the following languages:

• L = {0n1n2n : n ∈ N};
• H = {0n1m : n2 ≤ m ≤ 2n2};
• K = {0n1m2k : n ·m = k}.
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Show that these languages are not context-free using Theorem 2.15 (b).

Exercise 2.23. Construct context-free grammars for the sets L = {0n1m2k : n <
m∨m < k}, H = {0n1m2n+m : n,m ∈ N} and K = {w ∈ {0, 1, 2}∗ : w has a subword
of the form 20n1n2 for some n > 0 or w = ε}.

Which of the versions of the Pumping Lemma (Theorems 2.15 (a) and 2.15 (b)
and Corollary 2.16) are satisfied by L, H and K, respectively.

Exercise 2.24. Let L = {0h1i2j3k : (h 6= i and j 6= k) or (h 6= k and i 6= j)} be
given. Construct a context-free grammar for L and determine which of versions of the
Pumping Lemma (Theorems 2.15 (a) and 2.15 (b) and Corollary 2.16) are satisfied
by L.

Exercise 2.25. Consider the grammar ({S}, {0, 1, 2, 3}, {S → 00S|S1|S2|3}, S) and
construct for the language L generated by the grammar the following: a regular gram-
mar for L and a regular expression for L.

In the following exercises, let fL(n) be the number of words w ∈ L with |w| < n. So
if L = {0}∗ then fL(n) = n and if L = {0, 1}∗ then fL(n) = 2n − 1.

Exercise 2.26. Is there a context-free language L with fL(n) = ⌊√n⌋, where ⌊√n⌋ is
the largest integer bounded by

√
n? Either prove that there is no such set or construct

a set with the corresponding context-free grammar.

Exercise 2.27. Is there a regular set L with fL(n) = n(n + 1)/2? Either prove that
there is no such set or construct a set with the corresponding regular grammar or
regular expression.

Exercise 2.28. Is there a context-sensitive set L with fL(n) = nn, where 00 =
0? Either prove that there is no such set or construct a set with the corresponding
grammar.

Exercise 2.29. Is there a regular set L with fL(n) = (3n−1)/2+⌊n/2⌋? Either prove
that there is no such set or construct a set with the corresponding regular grammar or
regular expression.

Exercise 2.30. Is there a regular set L with fL(n) = ⌊n/3⌋ + ⌊n/2⌋? Either prove
that there is no such set or construct a set with the corresponding regular grammar or
regular expression.

For the following exercises, call y a pump of xyz ∈ L iff |y| ≥ 1 and {x}·{y}∗ ·{z} ⊆ L.
For infinite languages L the optimal pump length k as witnessed by h is the smallest
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number k for which there is a h such that all w ∈ L with |w| ≥ h have a pump of
length up to k.

Exercise 2.31. Determine the optimal pump length k and the witness length h for the
language {000, 111, 222}∗ ∩ {0000, 1111, 2222}∗ ∩ {00000, 11111, 22222}∗ and explain
the solution.

Exercise 2.32. Determine the optimal pump length k and the witness length h for
the language of all words where the length modulo 10 is in {1, 3, 7, 9} and explain the
solution.

Exercise 2.33. Determine the optimal pump length k and the witness length h for
the language of all words where the length modulo 10 is in {0, 2, 4, 5, 6, 8} and explain
the solution.

Exercise 2.34. Determine the optimal pump length k and the witness length h for the
language {001100110011} · {222}∗ ∪ {0011} · {2222}∗ ∪ {001100110011001100110011}
and explain the solution.

Exercise 2.35. Determine the optimal pump length k and the witness length h for
the language of all decimal numbers without leading zeroes which are multiples of 512
and explain the solution.

In the following exercises, the task is the following: Given a set H which is interpreted
as a set of decimal numbers, find an infinite set L ⊆ H having the property stated in
the exercise. Furthermore, if possible L should be regular and a regular expression or
grammar should witness this; if L cannot be taken to be regular, but can be taken
to be context-free then a context-free grammar should witness that L is context-free
and one should use the pumping lemma to show that L cannot be taken regular; if
L is context-sensitive then a grammar should witness this and one should use the
context-free pumping lemma to prove that no infinite context-free L can solve the
task.

Exercise 2.36. Find infinite L ⊆ H for H = {10n20m1 : n ≥ m ≥ 1 and n +m is
even} such that all members of L are square numbers.

Exercise 2.37. Find infinite L ⊆ H for H = {10n30m30k1 : 2n ≥ m + k and 3
divides n+m+ k} such that all members of L are third powers (cubes).

Exercise 2.38. Find infinite L ⊆ H for H = {1}·{0}+ ·{3}·{0}+ ·{3}·{0}+ ·{1}·{0}+
such that all members of L are third powers (cubes).
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3 Finite Automata

An automaton is in general a mechanism which checks whether a word is in a given
language. An automaton has a number of states which memorise some information.
Here an example.

Example 3.1: Divisibility by 3. Let a0a1 . . . an be a decimal number. One can
check whether a0a1 . . . an is a multiple of 3 by the following algorithm using a memory
s ∈ {0, 1, 2} and processing in step m the digit am. The memory s is updated
accordingly.

Case s=0 : If am ∈ {0, 3, 6, 9} then update s = 0;
if am ∈ {1, 4, 7} then update s = 1;
if am ∈ {2, 5, 8} then update s = 2.

Case s=1 : If am ∈ {0, 3, 6, 9} then update s = 1;
if am ∈ {1, 4, 7} then update s = 2;
if am ∈ {2, 5, 8} then update s = 0.

Case s=2 : If am ∈ {0, 3, 6, 9} then update s = 2;
if am ∈ {1, 4, 7} then update s = 0;
if am ∈ {2, 5, 8} then update s = 1.

The number a0a1 . . . an is divisible by 3 iff s = 0 after processing an. For example,
123456 is divisible by 3 as the value of s from the start up to processing the corre-
sponding digits is 0, 1, 0, 0, 1, 0, 0, respectively. The number 256 is not divisible by 3
and the value of s is 0, 2, 1, 1 after processing the corresponding digits.

Quiz 3.2. Which of the following numbers are divisible by 3: 1, 20, 304, 2913, 49121,
391213, 2342342, 123454321?

Description 3.3: Deterministic Finite Automaton. The idea of this algorithm
is to update a memory which takes only finitely many values in each step according
to the digit read. At the end, it only depends on the memory whether the number
which has been processed is a multiple of 3 or not. This is a quite general algorithmic
method and it has been formalised in the notion of a finite automaton; for this, the
possible values of the memory are called states. The starting state is the initial value
of the memory. Furthermore, after processing the word it depends on the memory
whether the word is in L or not; those values of the memory which say a0a1 . . . an ∈ L
are called “accepting states” and the others are called “rejecting states”.

One can display the automata as a graph. The nodes of the graph are the states
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(possible values of the memory). The accepting states are marked with a double bor-
der, the rejecting states with a normal border. The indicator “start” or an incoming
arrow mark the initial state. Arrows are labelled with those symbols on which a tran-
sition from one state to anothers takes place. Here the graphical representation of the
automaton checking whether a number is divisible by 3.

0start 1

2

0,3,6,9 1,4,7

2,5,8

2,5,8

0,3,6,9

1,4,7

1,4,7
2,5,8

0,3,6,9

Mathematically, one can also describe a finite automaton (Q,Σ, δ, s, F ) as follows: Q
is the set of states, Σ is the alphabet used, δ is the transition function mapping pairs
from Q× Σ to Σ, s is the starting state and F is the set of accepting states.

The transition-function δ : Q × Σ → Q defines a unique extension with domain
Q × Σ∗ as follows: δ(q, ε) = q for all q ∈ Q and, inductively, δ(q, wa) = δ(δ(q, w), a)
for all q ∈ Q, w ∈ Σ∗ and a ∈ Σ.

For any string w ∈ Σ∗, if δ(s, w) ∈ F then the automaton accepts w else the
automaton rejects w.

Example 3.4. One can also describe an automaton by a table mainly maps down
δ and furthermore says which states are accepting or rejecting. The first state listed
is usually the starting state. Here a table for an automaton which checks whether a
number is a multiple of 7:
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q type δ(q, a) for a = 0 1 2 3 4 5 6 7 8 9
0 acc 0 1 2 3 4 5 6 0 1 2
1 rej 3 4 5 6 0 1 2 3 4 5
2 rej 6 0 1 2 3 4 5 6 0 1
3 rej 2 3 4 5 6 0 1 2 3 4
4 rej 5 6 0 1 2 3 4 5 6 0
5 rej 1 2 3 4 5 6 0 1 2 3
6 rej 4 5 6 0 1 2 3 4 5 6

This automaton checks whether a number is a multiple of 7.
On input 343 the automaton goes on symbol 3 from state 0 to state 3, then on

symbol 4 from state 3 to state 2 and then on symbol 3 from state 6 to state 0. The
state 0 is accepting and hence 343 is a multiple of 7 (in fact 343 = 7 ∗ 7 ∗ 7).

On input 999 the state goes first from state 0 to state 2, then from state 2 to state
1, then from state 1 to state 5. The state 5 is rejecting and therefore 999 is not a
multiple of 7 (in fact 999 = 7 ∗ 142 + 5).

Example 3.5. One can also describe a finite automaton as an update function which
maps finite states plus symbols to finite states by some algorithm written in a more
compact form. In general the algorithm has variables taking its values from finitely
many possibilities and it can read symbols until the input is exhausted. It does not
have arrays or variables which go beyond its finite range. It has explicit commands to
accept or reject the input. When it does “accept” or “reject” the program terminates.

function div257

begin var a in {0,1,2,...,256};

var b in {0,1,2,3,4,5,6,7,8,9};

if exhausted(input) then reject;

read(b,input); a = b;

if b == 0 then

begin if exhausted(input) then accept else reject end;

while not exhausted(input) do

begin read(b,input); a = (a*10+b) mod 257 end;

if a == 0 then accept else reject end.

This automaton checks whether a number on the input is a multiple of 257; further-
more, it does not accept any input having leading 0s. Here some sample runs of the
algorithm.

On input ε the algorithm rejects after the first test whether the input is exhausted.
On input 00 the algorithm would read b one time and then do the line after the test
whether b is 0; as the input is not yet exhausted, the algorithm rejects. On input 0
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the algorithm goes the same way until but finally accepts the input as the input is
exhausted after the symbol b has been read for the first time. On input 51657, the
algorithm initialises a as 5 after having read b for the first time. Then it reaches the
while-loop and, while reading b = 1, b = 6, b = 5, b = 7 it updates a to 51, 2, 25,
0, respectively. It accepts as the final value of a is 0. Note that the input 51657 is
201 ∗ 257 and therefore the algorithm is correct in this case.

Such algorithms permit to write automata with a large number of states in a more
compact way then making a state diagram or a state table with hundreds of states.

Note that the number of states of the program is actually larger than 257, as not
only the value of a but also the position in the program contributes to the state of
the automaton represented by the program. The check “exhausted(input)” is there
to check whether there are more symbols on the input to be processed or not; so
the first check whether the input is exhausted is there to reject in the case that
the input is the empty string. It is assumed that the input is always a string from
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗.

Exercise 3.6. Such an algorithm might be written in a form nearer to a finite automa-
ton if one gives the set of states explicitly, names the starting state and the accepting
states and then only places an algorithm or mathematical description in order to de-
scribe δ (in place of a table). Implement the above function div257 using the state
space Q = {s, z, r, q0, q1, . . . , q256} where s is the starting state and z, q0 are the ac-
cepting states; all other states are rejecting. Write down how the transition-function
δ is defined as a function from Q × {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} → Q. Give a compact
definition and not a graph or table.

Quiz 3.7. Let ({s, t}, {0, 1, 2}, δ, s, {t}) be a finite automaton with δ(s, a) = t and
δ(t, a) = s for all a ∈ {0, 1, 2}. Determine the language of strings recognised by this
automaton.

sstart t

0,1,2

0,1,2

Theorem 3.8: Characterising Regular Sets. If a language L is recognised by a
deterministic finite automaton then L is regular.

Proof. Let an automaton (Q,Σ, δ, s, F ) be given. Now one builds the regular gram-
mar (Q,Σ, P, s) with the following rules:
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• the rule q → ar is in P iff δ(q, a) = r;

• the rule q → ε is in P iff q ∈ F .

So the non-terminals of the grammar are the states of the automaton and also the
roles of every q ∈ Q is in both constructs similar: For all q, r ∈ Q, it holds that
q ⇒∗ wr iff δ(q, w) = r.

To see this, one proves it by induction. First consider w = ε. Now q ⇒∗ wr iff
q = r iff δ(q, w) = r. Then consider w = va for some symbol a and assume that
the statement is already proven for the shorter word v. Now q ⇒∗ wr iff there is a
non-terminal t with q ⇒∗ vt ⇒ var iff there is a non-terminal t with δ(q, v) = t and
t⇒ ar iff there is a non-terminal t with δ(q, v) = t and δ(t, a) = r iff δ(q, w) = r.

The only way to produce a word w in the new grammar is to generate the word
wq for some q ∈ F and then to apply the rule q → ε. Thus, the automaton accepts
w iff δ(s, w) ∈ F iff there is a q ∈ F with s ⇒∗ q ∧ q ⇒ ε iff s ⇒∗ w. Hence w is
accepted by the automaton iff w is generated by the corresponding grammar.

The converse of this theorem will be shown later in Theorem 4.13.
There is a stronger version of the pumping lemma which directly comes out of the

characterisation of regular languages by automata; it is called the “Block Pumping
Lemma”, as it says that when a word in a regular language is split into sufficiently
many blocks then one can pump one non-empty sequence of these blocks.

Theorem 3.9: Block Pumping Lemma. If L is a regular set then there is a
constant k such that for all strings u0, u1, . . . , uk with u0u1 . . . uk ∈ L and u1, . . . , uk−1

being nonempty there are i, j with 0 < i < j ≤ k and

(u0u1 . . . ui−1) · (uiui+1 . . . uj−1)
∗ · (ujuj+1 . . . uk) ⊆ L.

So if one splits a word in L into k + 1 parts then one can select some parts in the
middle of the word which can be pumped.

Proof. Given a regular set L, let (Q,Σ, δ, s, F ) be the finite automaton recognis-
ing this language. Let k = |Q| + 1 and consider any strings u0, u1, . . . , uk with
u0u1 . . . uk ∈ L. There are i and j with 0 < i < j ≤ k such that δ(s, u0u1 . . . ui−1) =
δ(s, u0u1 . . . uj−1); this is due to the fact that there are |Q|+1 many values for i, j and
so two of the states have to be equal. Let q = δ(s, u0u1 . . . ui−1). By assumption, q =
δ(q, uiui+1 . . . uj−1) and so it follows that q = δ(s, u0u1 . . . ui−1(uiui+1 . . . uj−1)

h) for
every h. Furthermore, δ(q, ujuj+1 . . . uk) ∈ F and hence u0u1 . . . ui−1(uiui+1 . . . uj−1)

h

ujuj+1 . . . uk ∈ L for all h.

Example 3.10. Let L be the language of all strings over {0, 1, 2} which contains
an even number of 0s. Then the pumping-condition of Theorem 3.9 is satisfied with
parameter n = 3: Given u0u1u2u3 ∈ L, there are three cases:
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• u1 contains an even number of 0s. Then removing u1 from the word or inserting
it arbitrarily often does not make the number of 0s in the word odd; hence
u0(u1)

∗u2u3 ⊆ L.

• u2 contains an even number of 0s. Then u0u1(u2)
∗u3 ⊆ L.

• u1 and u2 contain both an odd number of 0s. Then u1u2 contains an even
number of 0s and u0(u1u2)

∗u3 ⊆ L.

Hence the pumping condition is satisfied for L.
Let H be the language of all words which contain a different number of 0s and

1s. Let k be any constant. Now let u0 = 0, u1 = 0, . . . , uk−1 = 0, uk = 1k+k!. If the
pumping condition would be satisfied for H then there are i, j with 0 < i < j ≤ k
and

0i(0j−i)∗0k−j1k+k! ⊆ H.

So fix this i, j and take h = k!
j−i

+ 1 (which is a natural number). Now one sees that

0i0(j−i)h0k−j1k+k! = 0k+k!1k+k! /∈ H, hence the pumping condition is not satisfied.

Theorem 3.11: Ehrenfeucht, Parikh and Rozenberg [25]. A language L is
regular if and only if both L and its complement satisfy the block pumping lemma.

However, there are non-regular languages L which satisfy the block pumping lemma.

Quiz 3.12. Which of the following languages over Σ = {0, 1, 2, 3} satisfy the pumping-
condition from Theorem 3.9:
(a) {00, 111, 22222}∗ ∩ {11, 222, 00000}∗ ∩ {22, 000, 11111}∗,
(b) {0i1j2k : i+ j = k + 5555},
(c) {0i1j2k : i+ j + k = 5555},
(d) {w : w contains more 1 than 0}?

Exercise 3.13. Find the optimal constants for the Block Pumping Lemma for the
following languages:
(a) {w ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ : at least one nonzero digit a occurs in w at least
three times};
(b) {w ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ : |w| = 255};
(c) {w ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ : the length |w| is not a multiple of 6};
Here the constant for a language L is the least n such that for all words u0, u1, . . . , un
the implication

u0u1u2 . . . un ∈ L⇒ ∃i, j [0 < i < j ≤ n and u0 . . . ui−1(ui . . . uj−1)
∗uj . . . un ⊆ L]

holds.
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Exercise 3.14. Find the optimal constants for the Block Pumping Lemma for the
following languages:
(a) {w ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ : w is a multiple of 25};
(b) {w ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ : w is not a multiple of 3};
(c) {w ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ : w is a multiple of 400}.

Exercise 3.15. Find a regular language L so that the constant of the Block Pumping
Lemma for L is 4 and for the complement of L is 4196.

Exercise 3.16. Give an example L of a language which satisfies Theorem 2.15 (a)
(where for every w ∈ L of length at least k there is a splitting xyz = w with |xy| ≤ k,
|y| > 0 and xy∗z ⊆ L) but does not satisfy Theorem 3.9 (the Block Pumping Lemma).

Theorem 3.17: Myhill and Nerode’s Minimal DFA [67]. Given a language L,
let Lx = {y ∈ Σ∗ : xy ∈ L} be the derivative of L to x. The language L is regular iff
the number of different derivatives Lx is finite; furthermore, for languages with exactly
n derivatives, one can construct a complete dfa having n and there is no complete dfa
with less than n states which recognises L.

Proof. Let (Q,Σ, δ, s, F ) be a deterministic finite automaton recognising L. If
δ(s, x) = δ(s, y) then for all z ∈ Σ∗ it holds that z ∈ Lx iff δ(δ(s, x), z) ∈ F iff
δ(δ(s, y), z) ∈ F iff z ∈ Ly. Hence the number of different sets of the form Lx is a
lower bound for the size of the states of the dfa.

Furthermore, one can directly build the dfa by letting Q = {Lx : x ∈ Σ∗} and
define for Lx ∈ Q and a ∈ Σ that δ(Lx, a) is the set Lxa. The starting-state is the set
Lε and F = {Lx : x ∈ Σ∗ ∧ ε ∈ Lx}.

In practice, one would of course pick representatives for each state, so there is a
finite subset Q of Σ∗ with ε ∈ Q and for each set Ly there is exactly one x ∈ Q with
Lx = Ly. Then δ(x, a) is that unique y with Ly = Lxa.

For the verification, note that there are only finitely many different derivatives, so
the set Q is finite. Furthermore, each state can be reached: For x ∈ Q, one can reach
the state x by feeding the word x into the automaton. Assume now that Lx = Ly.
Then Lxa = {z : xaz ∈ L} = {z : az ∈ Lx} = {z : az ∈ Ly} = {z : yaz ∈ L} = Lya,
thus the transition function δ is indeed independent of whether x or y is chosen to
represent Lx and will select the unique member z of Q with Lz = Lxa = Lya. In
addition, the rule for making exactly the states x with ε ∈ Lx be accepting is correct:
The reason is that, for x ∈ Q, the automaton is in state x after reading x and x has
to be accepted by the automaton iff x ∈ L iff ε ∈ Lx.

In the case that some derivative is ∅, one can get an automaton which has one less
state if one decides not to represent ∅; the resulting dfa would then be incomplete,
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that is, there would be nodes q and symbols a with δ(q, a) being undefined; if the
automaton ends up in this situation, it would just reject the input without further
analysis. An incomplete dfa is a variant of a dfa which is still very near to a complete
dfa but has already gone a tiny step in direction of an nfa (as defined in Description 4.2
below).

Remark 3.18. Although the above theorem is published by Anil Nerode [67], it
is general known as the Theorem of Myhill and Nerode and both scientists, John
Myhill and Anil Nerode, are today acknowledged for this discovery. The notion of a
derivative was fully investigated by Brzozowski when working on regular expressions
[8].

Example 3.19. If L = 0∗1∗2∗ then L0 = 0∗1∗2∗, L01 = 1∗2∗, L012 = 2∗ and L0121 = ∅.
Every further Lx is equivalent to one of these four: If x ∈ 0∗ then Lx = L; if x ∈ 0∗1+

then Lx = 1∗2∗ as a 0 following a 1 makes the word to be outside L; if x ∈ 0∗1∗2+

then Lx ∈ 2∗. If x /∈ 0∗1∗2∗ then also all extensions of x are outside L and Lx = ∅.
The automaton obtained by the construction of Myhill and Nerode is the following.

L0start L01

L012 L0121

0

1

2

1

2
0

2
0,1

0,1,2

As L0121 = ∅, one could also omit this node and would get an incomplete dfa with
all states being accepting. Then a word is accepted as long as one can go on in the
automaton on its symbols.

Example 3.20. Consider the language {0n1n : n ∈ N}. Then L0n = {0m1m+n : m ∈
N} is unique for each n ∈ N. Hence, if this language would be recognised by a dfa,
then the dfa would need infinitely many states, what is impossible.

Lemma 3.21: Jaffe’s Matching Pumping Lemma [45]. A language L ⊆ Σ∗ is
regular iff there is a constant k such that for all x ∈ Σ∗ and y ∈ Σk there are u, v, w
with y = uvw and v 6= ε such that, for all h ∈ N, Lxuvhw = Lxy.
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Proof. Assume that L satisfies Jaffe’s Matching Pumping Lemma with constant k.
For every word z with |z| ≥ k there is a splitting of z into xy with |y| = k. Now
there is a shorter word xuw with Lxuw = Lxy; thus one can find, by repeatingly using
this argument, that every derivative Lz is equal to some derivative Lz′ with |z′| < k.
Hence there are only 1 + |Σ| + . . . + |Σ|k−1 many different derivatives and therefore
the language is regular by the Theorem of Myhill and Nerode.

The converse direction follows by considering a dfa recognising L and letting k be
larger than the number of states in the dfa. Then when the dfa processes a word xyz
and |y| = k, then there is a splitting of y into uvw with v 6= ε such that the dfa is in
the same state when processing xu and xuv. It follows that the dfa is, for every h,
in the same state when processing xuvh and therefore it accepts xuvhwz iff it accepts
xyz. Thus Lxuvhw = Lxy for all h.

Exercise 3.22. Assume that the alphabet Σ has 5000 elements. Define a language
L ⊆ Σ∗ such that Jaffe’s Matching Pumping Lemma is satisfied with constant k = 3
while every deterministic finite automaton recognising L has more than 5000 states.
Prove the answer.

Exercise 3.23. Find a language which needs for Jaffe’s Matching Pumping Lemma
at least constant k = 100 and can be recognised by a deterministic finite automaton
with 100 states. Prove the answer.

Consider the following weaker version of Jaffe’s Pumping Lemma which follows from
it.

Corollary 3.24. Regular languages L and also some others satisfy the following
condition:

There is a constant k such that for all x ∈ Σ∗ and y ∈ Σk with xy ∈ L there are
u, v, w with y = uvw and v 6= ε such that, for all h ∈ N, Lxuvhw = Lxy.

That is, in Corollary 3.24, one postulates the property of Jaffe’s Pumping Lemma
only for members of L. Then it loses its strength and is no longer matching.

Exercise 3.25. Show that the language L = {ε} ∪ {0n1m2k3 : n = m or k = 0} is a
context-free language which satisfies Corollary 3.24 but is not regular. Furthermore,
show directly that this language does not satisfy Jaffe’s Pumping Lemma itself; this is
expected, as only regular languages satisfy it.

Exercise 3.26. Is the following statement true: If L satisfies Corollary 3.24 and H
is regular then L ·H satisfies Corollary 3.24?
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Exercise 3.27. Call a language prefix-free if whenever vw ∈ L and w 6= ε then
v /∈ L. Does every prefix-free language L for which Lmi satisfies Theorem 2.15 (a)
also satisfy Corollary 3.24? Here xmi is the mirror image of x, so 01122mi = 22110
and Lmi = {xmi : x ∈ L}. Prove the answer.

Exercise 3.28. Let Σ = {0, 1, 2}. Call a word v square-containing iff it has a
non-empty subword of the form ww with w ∈ Σ+ and let L be the language of all
square-containing words; call a word v palindrome-containing iff it has a non-empty
subword of the form wwmi or wawmi with a ∈ Σ and w ∈ Σ+ and let H be the language
of all palindrome-containing words.

Are the languages L and H regular? If so, provide a dfa. Which of the pumping
lemmas (except for the block pumping lemma) do they satisfy?

The overall goal of Myhill and Nerode was also to provide an algorithm to compute
for a given complete dfa a minimal complete dfa recognising the same language.

Algorithm 3.29: Myhill’s and Nerodes Algorithm to Minimise Determinis-
tic Finite Automata [67].
Given: Complete dfa (Q,Σ, δ, s, F ).

Computing Set R of Reachable States:
Let R = {s};
While there is q ∈ R and a ∈ Σ with δ(q, a) /∈ R, let R = R ∪ {δ(q, a)}.

Identifying When States Are Distinct:
Make a relation γ ⊆ R × R which contains all pairs of states (q, p) such that the
automaton behaves differently when starting from p or from q;
Initialise γ as the set of all (p, q) ∈ R×R such that exactly one of p, q is accepting;
While there are (p, q) ∈ R×R and a ∈ Σ such that (p, q) /∈ γ and (δ(p, a), δ(q, a)) ∈ γ,
put (p, q), (q, p) into γ.

Building Minimal Automaton:
Let Q′ = {q ∈ R such that all p ∈ R with p < q (according to some default ordering
of Q) satisfy (p, q) ∈ γ};
Let s′ be the unique state in Q′ such that (s, s′) /∈ γ;
For p ∈ Q′ and a ∈ Σ, let δ′(p, a) be the unique q ∈ Q′ such that (q, δ(p, a)) /∈ γ;
Let F ′ = Q′ ∩ F ;
Now (Q′,Σ, δ′, s′, F ′) is the minimal automaton to be constructed.

Verification. First one should verify that R contains exactly the reachable states.
Clearly s is reachable by feeding ε into the automaton. By induction, when δ(q, a)
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is added to the set R then q is reachable, by some word x; it follows that δ(q, a) is
reachable by the word xa. Furthermore, the adding of nodes is repeated until the set
R is closed, that is, for all q ∈ R and a ∈ Σ the state δ(q, a) is also in R. Thus one
cannot reach from any state inside the final R a state outside the final R and therefore
the final R consists exactly of the reachable states.

Second one verifies that the final version of γ contains exactly the pairs (p, q) ∈
R × R such that when starting from p or q, the behaviour of the automaton is dif-
ferent. When (p, q) are put into γ at the initialisation then δ(p, ε), δ(q, ε) differ in
the sense that one ends up in a rejecting and one ends up in an accepting state, that
is, ε witnesses that p, q are states of different behaviour. Now one verifies that this
invariance is kept for the inductive step: When (δ(p, a), δ(q, a)) ∈ γ and (p, q) are
going to be added into γ then there is by induction hypothesis a y such that exactly
one of δ(δ(p, a), y), δ(δ(q, a), y) is an accepting state, these two states are equal to
δ(p, ay), δ(q, ay) and therefore ay witnesses that p, q are states of different behaviour.

The next part of the verification is to show that γ indeed captures all these of
states in R of different behaviour. So assume that y = a1a2 . . . an witnesses that
when starting at p the automaton accepts y and when starting with q then the au-
tomaton rejects y. Thus (δ(p, y), δ(q, y)) ∈ γ. Now one shows by induction for
m = n− 1, n− 2, . . . , 0 that (δ(p, a1a2 . . . am), δ(q, a1a2 . . . am)) goes eventually into γ:
by induction hypothesis (δ(p, a1a2 . . . amam+1), δ(q, a1a2 . . . amam+1)) is at some point
of time going into γ and therefore the pair (δ(p, a1a2 . . . am), δ(q, a1a2 . . . am)) satisfies
that, when applying the symbol am+1 to the two states, the resulting pair is in γ,
hence (δ(p, a1a2 . . . am), δ(q, a1a2 . . . am)) will eventually qualify in the search condi-
tion and therefore at some time point go into γ. It follows that this also holds for all
m down to 0 by the induction and that (p, q), (q, p) go into γ. Thus all pairs of states
of distinct behaviour in R×R go eventually into γ.

Now let < be the linear order on the states of < which is used by the algorithm.
If for a state p there is a state q < p with (p, q) /∈ γ then the state q has the same
behaviour as p and is redundant; therefore one picks for Q′ all those states for which
there is no smaller state of the same behaviour. Note that (p, p) never goes into γ for
any p ∈ R and therefore for each p there is a smallest q such that (p, q) /∈ γ and for
each p there is a q ∈ R′ with the same behaviour. In particular s′ exists. Further-
more, one can show by induction for all words that δ(s, w) is an accepting state iff
δ′(s′, w) is one. A more general result will be shown: The behaviour of δ(s, w) and
δ′(s′, w) are not different, that is, (δ(s, w), δ′(s′, w)) /∈ γ. Clearly (δ(s, ε), δ′(s′, ε)) /∈ γ.
Now, for the inductive step, assume that (δ(s, w), δ′(s′, w)) /∈ γ and a ∈ Σ. Now
(δ(δ(s, w), a), δ(δ′(s′, w), a)) /∈ γ, that is, have the same behaviour. Furthermore, by
the definition of δ′, (δ(δ′(s, w), a), δ′(δ′(s′, w), a)) /∈ γ, that is, also have the same
behaviour. Now (δ(δ(s, w), a), δ′(δ′(s′, w), a)) /∈ γ, as δ(δ(s, w), a) has the same be-
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haviour as δ(δ′(s′, w), a) and δ(δ′(s′, w), a) has the same behaviour as δ′(δ′(s′, w), a).
So the new minimal automaton has the same behaviour as the original automaton.

Exercise 3.30. Let the following deterministic finite automaton be given:

sstart o p q

t u

r

0 0 0 0

0 0

1

2

1

2 2

1

2

1

1,2 1,2

0

1

2

Make an equivalent minimal complete dfa using the algorithm of Myhill and Nerode.

Exercise 3.31. Assume that the alphabet is Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and the set
of states is {(a, b, c) : a, b, c ∈ Σ}. Furthermore assume the transition function δ is
given by δ((a, b, c), d) = (b, c, d) for all a, b, c, d ∈ Σ, the starting state is (0, 0, 0) and
that the set of final states is {(1, 1, 0), (3, 1, 0), (5, 1, 0), (7, 1, 0), (9, 1, 0)}.

This dfa has 1000 states. Find a smaller dfa for this set and try to get the dfa as
small as possible.

Exercise 3.32. Assume that the alphabet is Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and the set
of states is {(a, b, c) : a, b, c ∈ Σ}. Furthermore assume the transition function δ is
given by δ((a, b, c), d) = (b, c, d) for all a, b, c, d ∈ Σ, the starting state is (0, 0, 0) and
that the set of final states is {(1, 2, 5), (3, 7, 5), (6, 2, 5), (8, 7, 5)}.

This dfa has 1000 states. Find a smaller dfa for this set and try to get the dfa as
small as possible.

Exercise 3.33. Consider the following context-free grammar:

({S, T, U}, {0, 1, 2, 3}, P, S) with P =
{S → TTT |TTU |TUU |UUU , T → 0T |T1|01, U → 2U |U3|23}.

The language L generated by the grammar is regular. Provide a dfa with the minimal
number of states recognising L.

Exercise 3.34. Consider the following context-free grammar:

({S, T, U}, {0, 1, 2, 3, 4, 5}, P, S) with P =
{S → TS|SU |T23U , T → 0T |T1|01, U → 4U |U5|45}.
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The language L generated by the grammar is regular. Provide a dfa with the minimal
number of states recognising L, the dfa does not need to be complete.

Exercise 3.35. Provide a regular expression for the language from Exercise 3.33.

Exercise 3.36. Provide a regular expression for the language from Exercise 3.34.

For the following exercises, the task is to use any of the styles above for deterministic
automata (graphs, tables as in Example 3.4 and programs as in Example 3.5). Note
that for the programs, each variable can only hold one of finitely many predefined
values, please specify the range. Furthermore, the programs read the symbols one by
one and only remember what is stored at the variables about them (plus the current
position in the program). There are commands to read the next symbol and to test
whether the input is exhausted.

Exercise 3.37. Provide a dfa (either as table or program or graph) of the set of all
decimal numbers where between between two occurences of a digit d are at least three
other digits.

Exercise 3.38. Provide a dfa (either as table or program or graph) of the set of all
decimal numbers which are not multiples of a one-digit prime number.

Exercise 3.39. Provide a dfa (either as table or program or graph) of the set of all
decimal numbers with at least five decimal digits which are divisible by 8.

Exercise 3.40. Provide a dfa (either as table or program or graph) of the set of all
decimal numbers which have in their decimal representation twenty consecutive odd
digits.

Exercise 3.41. Provide a dfa (either as table or program or graph) of the set of all
octal numbers (digits 0, 1, 2, 3, 4, 5, 6, 7) without leading zeroes which are not multiples
of 7.

Exercise 3.42. Consider the automaton ({0, 1, 2, 3}, {0, 1, 2, 3}, δ, 0, {1, 3}) with δ
given in this table.

q type δ(q, a) for a = 0 1 2 3
0 start, rej 0 1 2 3
1 acc 1 1 2 3
2 rej 2 2 2 3
3 acc 3 3 3 3
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Make a regular expression for the language L recognised by the dfa.

Exercise 3.43. Let L as in Exercise 3.42 and make a regular expression for the
language of words of odd lengths in L.

Exercise 3.44. Let L as in Exercise 3.42 and make a regular expression for the
language of words of length at least 5 in L.
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4 Nondeterministic Finite Automata

There are quite simple tasks where an automaton to check this might become much
larger than it is adequate for the case. For example, to check whether a string contains
a symbol twice, one would guess which symbol is twice and then just verify that it
occurs twice; however, a deterministic finite automaton cannot do it and the following
example provides a precise justification. Therefore, this chapter will look into mecha-
nisms to formalise this intuitive approach which is to look at a word like 0120547869
where one, by just looking at it, might intuitively see that the 0 is double and then
verify it with a closer look. Such type of intuition is not possible to a deterministic
finite automaton; however, nondeterminism permits to model intuitive decisions as
long as their is a way to make sure that the intuitive insight is correct (like scanning
the word for the twice occurring letter).

Example 4.1. Assume that Σ has n elements. Consider the set L of all strings which
contain at least one symbol at least twice.

There are at least 2n + 1 sets of the form Lx: If x ∈ L then Lx = Σ∗ else ε /∈ Lx.
Furthermore, for x /∈ L, Σ ∩ Lx = {a ∈ Σ : a occurs in x}. As there are 2n subsets of
Σ, one directly gets that there are 2n states of this type.

On the other hand, one can also see that 2n + 1 is an upper bound. If the dfa has
not seen any symbol twice so far then it just has to remember which symbols it has
seen else the automaton needs just one additional state to go when it has seen some
symbol twice. Representing the first states by the corresponding subsets of Σ and the
second state by the special symbol #, the dfa would has the following parameters:
Q = Pow(Σ) ∪ {#}, Σ is the alphabet, ∅ is the starting state and # is the unique
final state. Furthermore, δ is is given by three cases: if A ⊆ Σ and a ∈ Σ − A then
δ(A, a) = A ∪ {a}, if A ⊆ Σ and a ∈ A then δ(A, a) = #, δ(#, a) = #.

Description 4.2: Nondeterministic Finite Automaton. A nondeterministic
automaton can guess information and, in the case that it guessed right, verify that a
word is accepting.

A nondeterministic automaton (Q,Σ, δ, s, F ) differs from the deterministic au-
tomaton in the way that δ is a multi-valued function, that is, for each q ∈ Q and
a ∈ Σ the value δ(q, a) is a set of states.

Now one defines the acceptance-condition using the notion of a run: One says a
string q0q1 . . . qn ∈ Qn+1 is a run of the automaton on input a1 . . . an iff q0 = s and
qm+1 ∈ δ(qm, am+1) for all m ∈ {1, . . . , n}; note that the run has one symbol more
than the string processed. The nondeterministic automaton accepts a word w iff there
is a run on the input w whose last state is accepting.

Note that for accepting a word, there needs only to be at least one accepting run;

39



other rejecting runs might also exist. For rejecting a word, all runs which exist must
be rejecting, this includes the case that there is no run at all (neither an accepting
nor a rejecting).

Example 4.3. Consider the following nondeterministic automaton which accepts all
words which have at least four letters and at most four 1’s.

sstart o p q r

0 0 0 0 0

0,1 0,1 0,1 0,1

On input 00111, accepting runs are s s o p q r and s o o p q r; on input 11111 there is no
accepting run, as the automaton has to advance s o p q r and then, on the last input
1, gets stuck as it cannot move. The input 000 has no accepting run, as the run s o p q
does not reach the final accepting state r and all other runs end up in one of the states
s, o, p without even reaching q. Thus 00111 is accepted and 11111, 000 are rejected by
this nfa.

Example 4.4: Large DFA and small NFA. For the dfa with 2n + 1 states
from Example 4.1, one can make an nfa with n + 2 states (here for n = 4 and
Σ = {0, 1, 2, 3}). Thus an nfa can be exponentially smaller than a corresponding dfa.

∅start

{1}{0} {2} {3}

#

0,1,2,3

0 1 2

3

1,2,3 0,2,3 0,1,3 0,1,2

0,1,2,3

0 1 2

3

In general, Q contains ∅ and {a} for all a ∈ Σ and #; δ(∅, a) = {∅, {a}}; δ({a}, b) is
{a} in the case a 6= b and is # in the case a = b; δ(#, a) = #; ∅ is the starting state;
# is the only accepting state.

So the nfa has n+2 and the dfa has 2n +1 states (which cannot be made better).
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So the actual size of the dfa is more than a quarter of the theoretical upper bound
2n+2 which will be given by the construction found by Büchi [9, 10] as well as Rabin
and Scott [72]. Their general construction which permits to show that every nfa with
n states is equivalent to a dfa with 2n states, that is, the nfa and the dfa constructed
recognise the same language.

Theorem 4.5: Determinisation of NFAs [9, 10, 72]. For each nfa (Q,Σ, δ, s, F )
with n = |Q| states, there is an equivalent dfa whose 2n states are the subsets Q′ of Q,
whose starting state is {s}, whose update-function δ′ is given by δ′(Q′, a) = {q′′ ∈ Q :
∃q′ ∈ Q′ [q′′ ∈ δ(q′, a)]} and whose set of accepting states is F ′ = {Q′ ⊆ Q : Q′ ∩ F 6=
∅}.

Proof. It is clear that the automaton defined in the statement of the theorem is a
dfa: For each set Q′ ⊆ Q and each a ∈ Σ, the function δ′ selects a unique successor
Q′′ = δ′(Q′, a). Note that Q′′ can be the empty set and that, by the definition of δ′,
δ′(∅, a) = ∅.

Assume now that the nfa accepts a word w = a1a2 . . . am of m letters. Then
there is an accepting run (q0, q1, . . . , qm) on this word with q0 = s and qm ∈ F . Let
Q0 = {s} be the starting state of the dfa and, inductively, Qk+1 = δ′(Qk, ak+1) for
k = 0, 1, . . . ,m−1. One can verify by induction that qk ∈ Qk for all k ∈ {0, 1, . . . ,m}:
This is true for q0 = s by definition of Q0; for the inductive step, if qk ∈ Qk and
k < m, then qk+1 ∈ δ(qk, ak+1) and therefore qk+1 ∈ Qk+1 = δ′(Qk, ak+1). Thus
Qm ∩ F contains the element qm and therefore Qm is an accepting state in the dfa.

For the converse direction on a given word w = a1a2 . . . am, assume that the run
(Q0, Q1, . . . , Qm) of the dfa on this word is accepting. Thus there is qm ∈ Qm ∩ F .
Now one can, inductively for k = m − 1,m − 2, . . . , 2, 1, 0 choose a qk such that
qk+1 ∈ δ(qk, ak+1) by the definition of δ′. It follows that q0 ∈ Q0 and therefore q0 = s.
Thus the so defined sequence (q0, q1, . . . , qm) is an accepting run of the nfa on the
word w and the nfa accepts the word w as well.

This shows that the dfa is equivalent to the nfa, that is, it accepts and it rejects
the same words. Furthermore, as an n-element set has 2n subsets, the dfa has 2n

states.

Note that this construction produces, in many cases, too many states. Thus one would
consider only those states (subsets of Q) which are reached from others previously
constructed; in some cases this can save a lot of work. Furthermore, once the dfa is
constructed, one can run the algorithm of Myhill and Nerode to make a minimal dfa
out of the constructed one.

Example 4.6. Consider the nfa ({s, q}, {0, 1}, δ, s, {q}) with δ(s, 0) = {s, q}, δ(s, 1)
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= {s} and δ(q, a) = ∅ for all a ∈ {0, 1}.
Then the corresponding dfa has the four states ∅, {s}, {q}, {s, q} where {q}, {s, q}

are the final states and {s} is the initial state. The transition function δ′ of the dfa is
given as

δ′(∅, a) = ∅ for a ∈ {0, 1},
δ′({s}, 0) = {s, q}, δ′({s}, 1) = {s},
δ′({q}, a) = ∅ for a ∈ {0, 1},
δ′({s, q}, 0) = {s, q}, δ′({s, q}, 1) = {s}.

This automaton can be further optimised: The states ∅ and {q} are never reached,
hence they can be omitted from the dfa.

The next exercise shows that the exponential blow-up between the nfa and the dfa is
also there when the alphabet is fixed to Σ = {0, 1}.

Exercise 4.7. Consider the language {0, 1}∗ · 0 · {0, 1}n−1:
(a) Show that a dfa recognising it needs at least 2n states;
(b) Make an nfa recognising it with at most n+ 1 states;
(c) Made a dfa recognising it with exactly 2n states.

Exercise 4.8. Find a characterisation when a regular language L is recognised by an
nfa only having accepting states. Examples of such languages are {0, 1}∗, 0∗1∗2∗ and
{1, 01, 001}∗ · 0∗. The language {00, 11}∗ is not a language of this type.

Example 4.9. One can generalise the nfa to a machine (Q,Σ, δ, I, F ) where a set I
of starting states replaces the single starting state s. Now such a machine accepts a
string w = a1a2 . . . ai ∈ Σi iff there is a sequence q0q1 . . . qi of states such that

q0 ∈ I ∧ qi ∈ F ∧ ∀j < i [qi+1 ∈ δ(qi, ai)];

if such a sequence does not exist then the machine rejects the input w. The following
machine with three states recognises the set 0∗1∗ ∪ 2∗3∗, the nodes are labelled with
the regular expressions denoting the language of the words through which one can
reach the corresponding node.

0∗start 0∗1+ 2∗start 2∗3+
1 3

0
1

2
3
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The corresponding nfa would need 5 states, as one needs a common start state which
the nfa leaves as soon as it reads a symbol.

εstart 0+ 0∗1+ 2+ 2∗3+
0

1
2

3

1 3

0
1

2
3

Exercise 4.10. Let Σ = {0, 1, . . . , n − 1} and L = {w ∈ Σ∗ : some a ∈ Σ does not
occur in w}. Show that there is a machine like in Example 4.9 with |Q| = n which
recognises L and that every complete dfa recognising L needs 2n states.

The exact trade-off between the numbers of states of an nfa and of a complete dfa was
determined by Meyer and Fischer [65]. Their construction does not need the above
multiple start states.

Exercise 4.11. Given an nfa ({q0, q1, . . . , qn−1}, {0, 1}, δ, q0, {q0}) with δ(qm, 1) =
{q(m+1)modn}, δ(q0, 0) = ∅ and δ(qm, 0) = {q0, qm} for m ∈ {1, 2, . . . , n − 1}. Deter-
mine the number of states of an equivalent complete and minimal dfa and explain how
this number is derived.

Exercise 4.12. Assume that the alphabet is unary, that is, Σ = {0}. Now show that
every nfa with two states over this alphabet has an equivalent dfa with up to three
states. For this, carry out the Büchi construction and show that at least one state is
not reached.

Theorem 4.13. Every language generated by a regular grammar is also recognised
by an nfa.

Proof. If a grammar has a rule of the form A → w with w being non-empty, one
can add a non-terminal B and replace the rule A → w by A → wB and B → ε.
Furthermore, if the grammar has a rule A → a1a2 . . . anB with n > 1 then one can
introduce n−1 new non-terminals C1, C2, . . . , Cn−1 and replace the rule by A→ a1C1,
C1 → a2C2, . . ., Cn−1 → anB. Thus if L is regular, there is a grammar (N,Σ, P, S)
generating L such that all rules in P are either of the form A → B or the form
A→ aB or of the form A→ ε where A,B ∈ N and a ∈ Σ. So let such a grammar be
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given.
Now an nfa recognising L is given as (N,Σ, δ, S, F ) where N and S are as in the

grammar and for A ∈ N, a ∈ Σ, one defines

δ(A, a) = {B ∈ N : A⇒∗ aB in the grammar};
F = {B ∈ N : B ⇒∗ ε}.

If now w = a1a2 . . . an is a word in L then there is a derivation of the word a1a2 . . . an
of the form

S ⇒∗ a1A1 ⇒∗ a1a2A2 ⇒∗ . . .⇒∗ a1a2 . . . an−1 An−1 ⇒∗ a1a2 . . . an−1anAn

⇒∗ a1a2 . . . an.

In particular, S ⇒∗ a1A1, Am ⇒∗ am+1Am+1 for allm ∈ {1, 2, . . . , n−1} and An ⇒∗ ε.
It follows that An is an accepting state and (S,A1, A2, . . . , An) an accepting run of
the nfa on the word a1a2 . . . an.

If now the nfa has an accepting run (S,A1, A2, . . . , An) on a word w = a1a2 . . . an
then S ⇒∗ a1A1 and, for all m ∈ {1, 2, . . . , n−1}, Am ⇒∗ am+1Am+1 and An ⇒∗ ε. It
follows that w ∈ L as witnessed by the derivation S ⇒∗ a1A1 ⇒∗ a1a2A2 ⇒∗ . . . ⇒∗

a1a2 . . . an−1An−1 ⇒∗ a1a2 . . . an−1anAn ⇒∗ a1a2 . . . an. Thus the nfa constructed
recognises the language L.

Example 4.14. The language L = 0123∗ has a grammar with terminal alphabet Σ =
{0, 1, 2, 3}, non-terminal alphabet {S, T}, start symbol S and rules S → 012|012T ,
T → 3T |3.

One first updates the grammar such that all rules are of the form A → aB or
A → ε for A,B ∈ N and a ∈ Σ. One possible updated grammar has the non-
terminals N = {S, S ′, S ′′, S ′′′, T, T ′}, the start symbol S and the rules S → 0S ′,
S ′ → 1S ′′, S ′′ → 2S ′′′|2T , S ′′′ → ε, T → 3T |3T ′, T ′ → ε.

Now the nondeterministic finite automaton is given as (N,Σ, δ, S, {S ′′′, T}) where
δ(S, 0) = {S ′}, δ(S ′, 1) = {S ′′}, δ(S ′′, 2) = {S ′′′, T ′}, δ(T, 3) = {T, T ′} and δ(A, a) = ∅
in all other cases.

Examples for accepting runs: For 0 1 2, an accepting run is S (0)S ′ (1)S ′′ (2)S ′′′

and for 0 1 2 3 3 3, an accepting run is S (0)S ′ (1)S ′′ (2)T (3)T (3)T (3)T ′.

Exercise 4.15. Let the regular grammar ({S, T}, {0, 1, 2}, P, S) with the rules P
being S → 01T |20S, T → 01|20S|12T . Construct a nondeterministic finite automaton
recognising the language generated by this grammar.

Exercise 4.16. Consider the regular grammar ({S}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, P, S)
where the rules in P are all rules of the form S → aaaaaS for some digit a and
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the rule S → ε and let L be the language generated by this grammar. What is the
minimum number of states of a nondeterministic finite automaton recognising this
language L? What is the trade-off of the nfa compared to the minimal dfa for the
same language L? Prove the answers.

Theorem 2.10 showed that a language L is generated by a regular expression iff it has
a regular grammar; Theorem 3.8 showed that if L is recognised by a dfa then it L is
also generated by a regular expression; Theorem 4.5 showed that if L is recognised
by an nfa then L is recognised by a dfa; Theorem 4.13 showed if L is generated by
a regular grammar then L is recognised by an nfa. Thus these four concepts are all
equivalent.

Corollary 4.17. A language L is regular iff it satisfies any of the following equivalent
conditions:

(a) L is generated by a regular expression;

(b) L is generated by a regular grammar;

(c) L is recognised by a deterministic finite automaton;

(d) L is recognised by a nondeterministic finite automaton;

(e) L and its complement satisfy both the block pumping lemma;

(f) L satisfies Jaffe’s pumping lemma;

(g) L has only finitely many derivatives (Theorem of Myhill and Nerode).

It was shown above that deterministic automata can be exponentially larger than
nondeterministic automata in the sense that a nondeterministic automaton with n
states can only be translated into a deterministic complete automaton with 2n states,
provided that one permits multiple start states. One might therefore ask, how do
the other notions relate to the size of states of automata. For the sizes of regular
expressions, they depend heavily on the question of which operation one permits.
Gelade and Neven [34] showed that not permitting intersection and complement in
regular expressions can cause a double exponential increase in the size of the expression
(measured in number of symbols to write down the expression).

Example 4.18. The language L =
⋃

m<n({0, 1}m ·{1}·{0, 1}∗ ·{10m}) can be written
down in O(n2) symbols as a regular expression but the corresponding dfa has at least
2n states: if x = a0a1 . . . an−1 then 10m ∈ Lx iff x10m ∈ L iff a0a1 . . . an−110

m ∈ L iff
am = 1. Thus for x = a0a1 . . . an−1 and y = b0b1 . . . bn−1, it holds that Lx = Ly iff
∀m < n [10m ∈ Lx ⇔ 10m ∈ Ly] iff ∀m < n [am = bm] iff x = y. Thus the language L
has at least 2n derivatives and therefore a dfa for L needs at least 2n states.
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One can separate regular expressions with intersections even from nfas over the unary
alphabet {0} as the following theorem shows; for this theorem, let p1, p2, . . . , pn be
the first n prime numbers.

Theorem 4.19. The language Ln = {0p1}+ ∩ {0p2}+ ∩ . . . ∩ {0pn}+ has a regular
expression which can be written down with approximately O(n2 log(n)) symbols if one
can use intersection. However, every nfa recognising Ln has at least 2n states and
every regular expression for Ln only using union, concatenation and Kleene star needs
at least 2n symbols.

Proof. It is known that pn ≤ 2·n·log(n) for almost all n. Each set 0pm can be written
down as a regular expression consisting of two set brackets and pm zeroes in between,
if one uses Kleene star and not Kleene plus, one uses about 2pm+6 symbols (two times
0pm and four set brackets and one star and one concatenation symbol, where Kleene
star and plus bind stronger than concatenation, union and intersection). The n terms
are then put into brackets and connected with intersection symbols what gives a total
of up to 2n · pn + 3n symbols. So the overall number of symbols is O(n2 log(n)) in
dependence of the parameter n.

The shortest word in the language must be a word of the form 0k where each of
the prime numbers p1, p2, . . . , pn divides k; as all of them are distinct primes, their
product is at least 2n and the product divides k, thus k ≥ 2n. In an nfa, the length
of the shortest accepted word is as long as the shortest path to an accepting state; in
this path, each state is visited at most once and therefore the length of the shortest
word is smaller than the number of states. It follows that an nfa recognising L must
have at least 2n states.

If a regular expression generating at least one word and only consisting of listed
finite sets connected with union, concatenation, Kleene plus and Kleene star, then one
can prove that the shortest word generated by σ is at most as long as the length of the
expression. By way of contradiction, assume that σ be the length-lexicographically
first regular expression such that σ generates some words, but all of these are longer
than σ. Let sw(σ) denote the shortest word generated by σ (if it exists) and if there
are several, sw(σ) is the lexicographically first of those.

• If σ is a list of words of a finite set, no word listed can be longer than σ, thus
|sw(σ)| ≤ |σ|.

• If σ = (τ ∪ ρ) then at least one of τ, ρ is non-empty, say τ . As |τ | < |σ|,
|sw(τ)| ≤ |τ |. Now |sw(σ)| ≤ |sw(τ)| ≤ |τ | ≤ |σ|.

• If σ = (τ · ρ) then |τ |, |ρ| < |σ| and |sw(σ)| = |sw(τ)|+ |sw(ρ)|, as the shortest
words generated by τ and ρ concatenated give the shortest word generated by
σ. It follows that |sw(τ)| ≤ |τ |, |sw(ρ)| ≤ |ρ| and |sw(σ)| = |sw(τ)|+ |sw(ρ)| ≤
|τ |+ |ρ| ≤ |σ|.
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• If σ = τ ∗ then ε = sw(σ) and clearly |sw(σ)| ≤ |σ|.
• If σ = τ+ then sw(σ) = sw(τ) and |τ | < |σ|, thus |sw(σ)| = |sw(τ)| ≤ |τ | ≤ |σ|.

Thus in all five cases the shortest word generated by σ is at most as long as σ.
It follows that any regular expression generating L and consisting only of finite sets,
union, concatenation, Kleene star and Kleene plus must be at least 2n symbols long.

Example 4.20: Inductive Definition of Shortest Word. A counterpart to
structural induction are inductive definitions, which can also run along the structure
of regular expressions. For this, recall that for an alphabet Σ, the length-lexicographic
order chooses the shorter string, if two strings v, w compared are not of the same
length, and the lexicographically first string in the case that both strings have the
same length. So, for Σ = {0, 1}, the order is ε <ll 0 <ll 1 <ll 00 <ll 01 <ll 10 <ll

11 <ll 000 <ll . . . and one uses this length-lexicographical order <ll to define the
shortest word of a regular experssion sw(reg exp). The inductive definition over the
structure of regular expressions follows the following case-distinction:

sw(∅) = ∞;

sw({w1, . . . , wn}) = minll{w1, . . . , wn};

sw(σ ∪ τ) =







sw(σ) if sw(τ) = ∞;
sw(τ) if sw(σ) = ∞;
minll{sw(σ), sw(τ)} otherwise;

sw(σ · τ) =







∞ if sw(σ) = ∞
or sw(τ) = ∞;

sw(σ) · sw(τ) otherwise;

sw(σ∗) = ε.

Now one could also use this structural definition to prove along the above cases that
|sw(σ)| ≤ |σ| where {, }, (, ), ∅,∪, ·, ∗,∞ are extra symbols not in Σ which are used in
either regular expressions or the output to denote that the regular expression does not
produce a word. Furthermore, |ε| = 0. In listings of finite sets, one denotes the empty
string by just making a string of length 0 over Σ, for example the input {, 00, 001} to
sw stands for {ε, 00, 001}. Note that {} is therefore {ε} and not ∅. It is left to the
reader to adjust the above definition and the treatment of regular expressions such
that brackets are taking correctly into account.

Exercise 4.21. Assume that a regular expression uses lists of finite sets, Kleene star,
union and concatenation and assume that this expression generates at least two words.
Prove that the second-shortest word of the language generated by σ is at most as long
as σ. Either prove it by structural induction or by an assumption of contradiction as
in the proof before; both methods are nearly equivalent.
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Exercise 4.22. Is Exercise 4.21 also true if one permits Kleene plus in addition to
Kleene star in the regular expressions? Either provide a counter example or adjust the
proof. In the case that it is not true for the bound |σ|, is it true for the bound 2|σ|?
Again prove that bound or provide a further counter example.

Example 4.23: Ehrenfeucht and Zeiger’s Exponential Gap [27]. Assume that
the alphabet Σ consists of all pairs of numbers in {1, 2, . . . , n}×{1, 2, . . . , n}. Then a
complete dfa with n+1 states accepts all sequences of the form (1, a1), (a1, a2), (a2, a3),
. . . , (am−1, am) for any numbers a1, a2, . . . , am, where the automaton has the following
transition-function: If it is in state a on input (a, b) then it goes to state b else it goes
to state 0. The starting state is 1; the set {1, 2, . . . , n} is the set of accepting states
and once it reaches the state 0, the automaton never leaves this state. Ehrenfeucht
and Zeiger showed that any regular expression for this language needs at least 2n−1

symbols.
If one would permit intersection, this gap would not be there for this example, as

one could write

({(a, b) · (b, c) : a, b, c ∈ {1, 2, . . . , n}}∗ · (ε ∪ {(a, b) : a, b ∈ {1, 2, . . . , n}}))
∩ ({(1, b) : b ∈ {1, 2, . . . , n}} · {(a, b) · (b, c) : a, b, c ∈ {1, 2, . . . , n}}∗ · (ε ∪
{(a, b) : a, b ∈ {1, 2, . . . , n}}))

to obtain the desired expression whose size is polynomial in n.

Exercise 4.24. Assume that an nfa of k states recognises a language L. Show that
the language does then satisfy the Block Pumping Lemma (Theorem 3.9) with con-
stant k+ 1, that is, given any words u0, u1, . . . , uk, uk+1 such that their concatenation
u0u1 . . . ukuk+1 is in L then there are i, j with 0 < i < j ≤ k + 1 and

u0u1 . . . ui−1(uiui+1 . . . uj−1)
∗ujuj+1 . . . uk+1 ⊆ L.

Exercise 4.25. Given numbers n,m with n > m > 2, provide an example of a regular
language where the Block pumping constant is exactly m and where every nfa needs
at least n states.

In the following five exercises, one should try to find small nfas; however, full marks
are also awarded if the nfa is small but not the smallest possible.

Exercise 4.26. Consider the language H = {vawa : v, w ∈ Σ∗, a ∈ Σ}. Let n be the
size of the alphabet Σ and assume n ≥ 2. Determine the size of the smallest dfa of H
in dependence of n and give a good upper bound for the size of the nfa. Explain the
results and construct the automata for Σ = {0, 1}.
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Exercise 4.27. Consider the language I = {ua : u ∈ (Σ − {a})∗, a ∈ Σ}. Let n be
the size of the alphabet Σ and assume n ≥ 2. Determine the size of the smallest dfa
of I in dependence of n and give a good upper bound for the size of the nfa. Explain
the results and construct the automata for Σ = {0, 1}.

Exercise 4.28. Consider the language J = {abuc : a, b ∈ Σ, u ∈ Σ∗, c ∈ {a, b}}.
Let n be the size of the alphabet Σ and assume n ≥ 2. Determine the size of the
smallest dfa of J in dependence of n and give a good upper bound for the size of the
nfa. Explain the results and construct the automata for Σ = {0, 1}.

Exercise 4.29. Consider the language K = {avbwc : a, b ∈ Σ, v, w ∈ Σ∗, c /∈ {a, b}}.
Let n be the size of the alphabet Σ and assume n ≥ 2. Determine the size of the
smallest dfa of K in dependence of n and give a good upper bound for the size of the
nfa. Explain the results and construct the automata for Σ = {0, 1}.

Exercise 4.30. Consider the language L = {w : ∃ a, b ∈ Σ [w ∈ {a, b}∗]}. Let n be
the size of the alphabet Σ and assume n ≥ 2. Determine the size of the smallest dfa
of L in dependence of n and give a good upper bound for the size of the nfa. Explain
the results and construct the automata for Σ = {0, 1, 2}.

The next exercises deal with Jaffe’s Pumping Lemma and its constants.

Exercise 4.31. Show that an nfa for the language {0000000}∗ ∪ {00000000}∗ needs
only 16 states while the constant for Jaffe’s pumping lemma is 56.

Exercise 4.32. Generalise the idea of Exercise 4.31 to show that there is a family
Ln of languages such that an nfa for Ln can be constructed with O(n3) states while
Jaffe’s pumping lemma needs a constant of at least 2n. Provide the family of the Ln

and explain why it satisfies the corresponding bounds.

Exercise 4.33. Determine the constant of Jaffe’s pumping lemma and the sizes of
minimal nfa and dfa for ({00} · {00000}) ∪ ({00}∗ ∩ {000}∗).
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5 Combining Languages

One can form new languages from old ones by combining them with basic set-theore-
tical operations. In most cases, the complexity in terms of the level of the Chomsky
hierarchy does not change.

Theorem 5.1: Basic Closure Properties. Assume that L,H are languages which
are on the level CHk of the Chomsky hierarchy. Then the following languages are also
on the level CHk: L ∪H, L ·H and L∗.

Description 5.2: Transforming Regular Expressions into Automata. First
it is shown how to form dfas which recognise the intersection, union or difference of
given sets. So let (Q1,Σ, δ1, s1, F1) and (Q2,Σ, δ2, s2, F2) be dfas which recognise L1

and L2, respectively.
Let (Q1 ×Q2,Σ, δ1 × δ2, (s1, s2), F ) with (δ1 × δ2)((q1, q2), a) = (δ1(q1, a), δ2(q2, a))

be a product automaton of the two given automata; here one can choose F such that
it recognises the union or intersection or difference of the respective languages:

• Union: F = F1 ×Q2 ∪Q1 × F2;

• Intersection: F = F1 × F2 = F1 ×Q2 ∩Q1 × F2;

• Difference: F = F1 × (Q2 − F2);

• Symmetric Difference: F = F1 × (Q2 − F2) ∪ (Q1 − F1)× F2.

For example, let the first automaton recognise the language of words in {0, 1, 2} with
an even number of 1s and the second automaton with an even number of 2s. Both
automata have the accepting and starting state s and a rejection state t; they change
between s and t whenever they see 1 or 2, respectively. The product automaton is
now given as follows:

(s, s)start (s, t)

(t, s) (t, t)

0 0

0 0

1

2

1

2 2

1

2

1
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The automaton given here recognises the union. For the other operations like Kleene
star and concatenation, one needs to form an nfa recognising the corresponding lan-
guage first and can then use Büchi’s construction to transform the nfa into a dfa; as
every dfa is an nfa, one can directly start with an nfa.

So assume (Q,Σ, δ, s, F ) is an nfa recognising L. Now L∗ is recognised by (Q ∪
{s′},Σ, δ′, s′, {s′}) where δ′ = δ ∪ {(s′, a, p) : (s, a, p) ∈ δ} ∪ {(p, a, s) : (p, a, q) ∈ δ for
some q ∈ F}∪{(s′, a, s′) : a ∈ L}. The last part of the union is to add all one-symbol
words from L. This automaton has a new starting state s′ which is accepting, as
ε ∈ L∗. The other states in Q are kept so that the automaton can go through the
states in Q in order to simulate the original automaton on some word w until it is
going to process the last symbol when it then returns to s′; so it can process sequences
of words in Q each time going through s′. After the last word wn of w1w2 . . . wn ∈ L∗,
the automaton can either return to s′ in order to accept the word. Here an example.

sstart

t

s′start s

t

0

1

1 0

1

10

0

1
1

1
10

The next operation with nfas is the Concatenation. Here assume that (Q1,Σ, δ1, s1, F1)
and (Q2,Σ, δ2, s2, F2) are nfas recognising L1 and L2 with Q1 ∩ Q2 = ∅ and assume
ε /∈ L2. Now (Q1 ∪ Q2,Σ, δ, s1, F2) recognises L1 · L2 where (p, a, q) ∈ δ whenever
(p, a, q) ∈ δ1 ∪ δ2 or p ∈ F1 ∧ (s2, a, q) ∈ δ2.

Note that if L2 contains ε then one can consider the union of L1 and L1 ·(L2−{ε}).
An example is the following: L1 · L2 with L1 = {00, 11}∗ and L2 = 2∗1+0+.
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s1start

r1

q1 s2

q2

r2

11

0 0
2

1

0

1

0

2

1

0

Last but not least, one has to see how to build an automaton recognising a finite set, as
the above only deal with the question how to get a new automaton recognising unions,
differences, intersections, concatenations and Kleene star of given regular languages
represented by their automata. For finite sets, one can simply consider all possible
derivatives (which are easy to compute from a list of strings in the language) and then
connect the corresponding states accordingly. This would indeed give the smallest dfa
recognising the corresponding set.

Alternatively, one can make an automaton recognising the set {w} and then form
product automata for the unions in order to recognise sets of several strings. Here
a dfa recognising {a1a2 . . . an} for such a string of n symbols would have the states
q0, q1, . . . , qn plus r and go from qm to qm+1 on input am+1 and in all other cases would
go to state r. Only the state qn is accepting.

Exercise 5.3. The above gives upper bounds on the size of the dfa for a union, in-
tersection, difference and symmetric difference as n2 states, provided that the original
two dfas have at most n states. Give the corresponding bounds for nfas: If L and H
are recognised by nfas having at most n states each, how many states does one need
at most for an nfa recognising (a) the union L ∪ H, (b) the intersection L ∩ H, (c)
the difference L−H and (d) the symmetric difference (L−H) ∪ (H − L)? Give the
bounds in terms of “linear”, “quadratic” and “exponential”. Explain the bounds.

Exercise 5.4. Let Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Construct a (not necessarily com-
plete) dfa recognising the language (Σ · {aa : a ∈ Σ}∗) ∩ {aaaaa : a ∈ Σ}∗. It is not
needed to give a full table for the dfa, but a general schema and an explanation how
it works.

52



Exercise 5.5. Make an nfa for the intersection of the following languages: {0, 1, 2}∗ ·
{001} · {0, 1, 2}∗ · {001} · {0, 1, 2}∗; {001, 0001, 2}∗; {0, 1, 2}∗ · {00120001} · {0, 1, 2}∗.

Exercise 5.6. Make an nfa for the union L0 ∪ L1 ∪ L2 with La = {0, 1, 2}∗ · {aa} ·
{0, 1, 2}∗ · {aa} · {0, 1, 2}∗ for a ∈ {0, 1, 2}.

Exercise 5.7. Consider two context-free grammars with terminals Σ, disjoint non-
terminals N1 and N2, start symbols S1 ∈ N1 and S2 ∈ N2 and rule sets P1 and P2

which generate L and H, respectively. Explain how to form from these a new context-
free grammar for (a) L ∪H, (b) L ·H and (c) L∗.

Write down the context-free grammars for {0n12n : n ∈ N} and {0n13n : n ∈ N}
and form the grammars for the union, concatenation and star explicitly.

Example 5.8. The language L = {0n1n2n : n ∈ N} is the intersection of the context-
free languages {0}∗ · {1n2n : n ∈ N} and {0n1n : n ∈ N} · {2}∗. By Exercise 2.22 this
language is not context-free.

Hence L is the intersection of two context-free languages which is not context-
free. However, the complement of L is context-free. The following grammar generates
{0k1m2n : k < n}: the non-terminals are S, T with S being the start symbol, the
terminals are 0, 1, 2 and the rules are S → 0S2|S2|T2, T → 1T |ε. Now the comple-
ment of L is the union of eight context-free languages. Six languages of this type:
{0k1m2n : k < m}, {0k1m2n : k > m}, {0k1m2n : k < n}, {0k1m2n : k > n},
{0k1m2n : m < n} and {0k1m2n : m > n}; furthermore, the two regular languages
{0, 1, 2}∗·{10, 20, 21}·{0, 1, 2}∗ and {ε}. So the so-constructed language is context-free
while its complement L itself is not.

Although the intersection of two context-free languages might not be context-free,
one can still show a weaker version of this result. This weaker version can be useful
for various proofs.

Theorem 5.9. Assume that L is a context-free language and H is a regular language.
Then the intersection L ∩H is also a context-free language.

Proof. Assume that (N,Σ, P, S) is the context-free grammar generating L and
(Q,Σ, δ, s, F ) is the finite automaton accepting H. Furthermore, assume that every
production in P is either of the form A→ BC or of the form A→ w for A,B,C ∈ N
and w ∈ Σ∗.

Now make a new grammar (Q×N ×Q∪ {S},Σ, R, S) generating L∩H with the
following rules:

• S → (s, S, q) for all q ∈ F ;
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• (p,A, q) → (p,B, r)(r, C, q) for all p, q, r ∈ Q and all rules of the form A→ BC
in P ;

• (p,A, q) → w for all p, q ∈ Q and all rules A→ w in P with δ(p, w) = q.

For each A ∈ N , let LA = {w ∈ Σ∗ : A ⇒∗ w}. For each p, q ∈ Q, let Hp,q = {w ∈
Σ∗ : δ(p, w) = q}. Now one shows that (p,A, q) generates w in the new grammar iff
w ∈ LA ∩Hp,q.

First one shows by induction over every derivation-length that a symbol (p,A, q)
can only generate a word w iff δ(p, w) = q and w ∈ LA. If the derivation-length
is 1 then there is a production (p,A, q) → w in the grammar. It follows from the
definition that δ(p, w) = q and A→ w is a rule in P , thus w ∈ LA. If the derivation-
length is larger than 1, then one uses the induction hypothesis that the statement is
already shown for all shorter derivations and now looks at the first rule applied in
the derivation. It is of the form (p,A, q) → (q, B, r)(r, C, q) for some B,C ∈ N and
r ∈ Q. Furthermore, there is a splitting of w into uv such that (q, B, r) generates
u and (r, C, q) generates v. By induction hypothesis and the construction of the
grammar, u ∈ LB, v ∈ LC , δ(p, u) = r, δ(r, v) = q and A → BC is a rule in P .
It follows that A ⇒ BC ⇒∗ uv in the grammar for L and w ∈ LA. Furthermore,
δ(p, uv) = δ(r, v) = q, hence w ∈ Hp,q. This completes the proof of this part.

Second one shows that the converse holds, now by induction over the length of
derivations in the grammar for L. Assume that w ∈ LA and w ∈ Hp,q. If the
derivation has length 1 then A → w is a rule the grammar for L. As δ(p, w) = q, it
follows that (p,A, q) → w is a rule in the new grammar. If the derivation has length
n > 1 and the proof has already been done for all derivations shorter than n, then
the first rule applied to show that w ∈ LA must be a rule of the form A → BC.
There are u ∈ LB and v ∈ LC with w = uv. Let r = δ(p, u). It follows from the
definition of δ that q = δ(r, v). Hence, by induction hypothesis, (p,B, r) generates u
and (r, C, q) generates v. Furthermore, the rule (p,A, q) → (p,B, r)(r, C, q) is in the
new grammar, hence (p,A, q) generates w = uv.

Now one has for each p, q ∈ Q, A ∈ N and w ∈ Σ∗ that (p,A, q) generates w iff
w ∈ LA ∩Hp,q. Furthermore, in the new grammar, S generates a string w iff there is
a q ∈ F with (s, S, q) generating w iff w ∈ LS and δ(s, w) ∈ F iff w ∈ LS and there
is a q ∈ F with w ∈ Hs,q iff w ∈ L ∩H. This completes the proof.

Exercise 5.10. Recall that the language L of all words which contain as many 0s as 1s
is context-free; a grammar for it is ({S}, {0, 1}, {S → SS|ε|0S1|1S0}, S). Construct
a context-free grammar for L ∩ (001+)∗.

Exercise 5.11. Let again L be the language of all words which contain as many 0s
as 1s. Construct a context-free grammar for L ∩ 0∗1∗0∗1∗.

54



Theorem 5.12. The concatenation of two context-sensitive languages is context-
sensitive.

Proof. Let L1 and L2 be context-sensitive languages not containing ε and consider
context-sensitive grammars (N1,Σ, P1, S1) and (N2,Σ, P2, S2) generating L1 and L2,
respectively, where N1 ∩ N2 = ∅ and where each rule l → r satisfies |l| ≤ |r| and
l ∈ N+

e for the respective e ∈ {1, 2}. Let S /∈ N1 ∪N2 ∪ Σ. Now the automaton

(N1 ∪N2 ∪ {S},Σ, P1 ∪ P2 ∪ {S → S1S2}, S)
generates L1 ·L2: If v ∈ L1 and w ∈ L2 then S ⇒ S1S2 ⇒∗ vS2 ⇒∗ vw. Furthermore,
the first rule has to be S ⇒ S1S2 and from then onwards, each rule has on the left
side either l ∈ N∗

1 so that it applies to the part generated from S1 or it has in the
left side l ∈ N∗

2 so that l is in the part of the word generated from S2. Hence every
intermediate word z in the derivation is of the form xy = z with S1 ⇒∗ x and S2 ⇒∗ y.

In the case that one wants to form (L1∪{ε}) ·L2, one has to add the rule S → S2,
for L1 · (L2 ∪{ε}), one has to add the rule S → S1 and for (L1 ∪{ε}) · (L2 ∪{ε}), one
has to add the rules S → S1|S2|ε to the grammar.

As an example consider the following context-sensitive grammars generating two sets
L1 and L2 not containing the empty string ε, the second grammar could also be
replaced by a context-free grammar but is here only chosen to be context-sensitive:

• ({S1, T1, U1, V1}, {0, 1, 2, 3, 4}, P1, S1) with P1 containing the rules S1 → T1U1

V1S1 | T1U1V1, T1U1 → U1T1, T1V1 → V1T1, U1T1 → T1U1, U1V1 → V1U1,
V1T1 → T1V1, V1U1 → U1V1, T1 → 0, V1 → 1, U1 → 2 generating all words with
the same nonzero number of 0s, 1s and 2s;

• ({S2, T2, U2}, {0, 1, 2, 3, 4}, P2, S2) with P2 containing the rules S2 → U2T2S2 |
U2T2, U2T2 → T2U2, T2U2 → U2T2, U2 → 3, T2 → 4 generating all words with
the same nonzero number of 3s and 4s.

The grammar ({S, S1, T1, U1, V1, S2, T2, U2}, {0, 1, 2, 3, 4}, P, S) with P containing S →
S1S2, S1 → T1U1V1S1|T1U1V1, T1U1 → U1T1, T1V1 → V1T1, U1T1 → T1U1, U1V1 →
V1U1, V1T1 → T1V1, V1U1 → U1V1, T1 → 0, V1 → 1, U1 → 2, S2 → U2T2S2|U2T2,
U2T2 → T2U2, T2U2 → U2T2, U2 → 3, T2 → 4 generates all words with consisting of n
0s, 1s and 2s in any order followed by m 3s and 4s in any order with n,m > 0. For
example, 01120234434334 is a word in this language. The grammar is context-sensitive
in the sense that |l| ≤ |r| for all rules l → r in P .

Theorem 5.13. If L is context-sensitive so is L∗.

Proof. Assume that (N1,Σ, P1, S1) and (N2,Σ, P2, S2) are two context-sensitive gram-
mars for L with N1 ∩ N2 = ∅ and all rules l → r satisfying |l| ≤ |r| and l ∈ N+

1 or
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l ∈ N+
2 , respectively. Let S, S

′ be symbols not in N1 ∪N2 ∪ Σ.
The new grammar is of the form (N1 ∪N2 ∪{S, S ′},Σ, P, S) where P contains the

rules S → S ′|ε and S ′ → S1S2S
′ |S1S2 |S1 plus all rules in P1 ∪ P2.

The overall idea is the following: if w1, w2, . . . , w2n are non-empty words in L,
then one generates w1w2 . . . w2n by first generating the string (S1S2)

n using the rule
S → S ′, n − 1 times the rule S ′ → S1S2S

′ and one time the rule S ′ → S1S2. After-
words one derives inductively S1 to w1, then the next S2 to w2, then the next S1 to w3,
. . ., until one has achieved that all S1 and S2 are transformed into the corresponding
wm.

The alternations between S1 and S2 are there to prevent that one can non-terminals
generated for a word wk and for the next word wk+1 mix in order to derive something
what should not be derived. So only words in L∗ can be derived.

Exercise 5.14. Recall that the language L = {0n1n2n : n ∈ N} is context-sensitive.
Construct a context-sensitive grammar for L∗.

Theorem 5.15. The intersection of two context-sensitive languages is context-sensi-
tive.

Proof Sketch. Let (Nk,Σ, Pk, S) be grammars for L1 and L2. Now make a new
non-terminal set N = (N1 ∪ Σ ∪ {#}) × (N2 ∪ Σ ∪ {#}) with start symbol

(

S
S

)

and
following types of rules:
(a) Rules to generate and manage space;
(b) Rules to generate a word v in the upper row;
(c) Rules to generate a word w in the lower row;
(d) Rules to convert a string from N into v provided that the upper components and
lower components of the string are both v.

(a):
(

S
S

)

→
(

S
S

)(

#
#

)

for producing space;
(

A
B

)(

#
C

)

→
(

#
B

)(

A
C

)

and
(

A
C

)(

B
#

)

→
(

A
#

)(

B
C

)

for
space management.

(b) and (c): For each rule in P1, for example, for AB → CDE ∈ P1, and all symbols
F,G,H, . . . in N2, one has the corresponding rule

(

A
F

)(

B
G

)(

#
H

)

→
(

C
F

)(

D
G

)(

E
H

)

. So rules
in P1 are simulated in the upper half and rules in P2 are simulated in the lower half
and they use up # if the left side is shorter than the right one.

(d): Each rule
(

a
a

)

→ a for a ∈ Σ is there to convert a matching pair
(

a
a

)

from Σ×Σ
(a nonterminal) to a (a terminal).

The idea of the derivation of a word w is then to first use rules of type (a) to produce

a string of the form
(

S
S

)(

#
#

)|w|−1
and afterwards to use the rules of type (b) to derive
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the word w in the upper row and the rules of type (c) to derive the word w in the
lower row; these rules are used in combination with rules for moving # to the front
in the upper or lower half. If both derivations have produced terminal words in the
upper and lower half (terminals in the original grammar, not with respect to the new
intersection grammar) and if these words match, then one can use the rules of type
(d) which are

(

a
a

)

→ a for terminals a to indeed derive w. However, if the derivations
of the words in the upper row and lower row do not match, then the rules of type (d)
cannot derive any terminal word, as there are symbols of the type

(

a
b

)

for different
terminals a, b in the original grammar. Thus only words in the intersection can be
derived this way. If ε is in the derivation, some special rule can be added to derive
ε directly from a new start state which can only be mapped to either ε or

(

S
S

)

by a
derivation rule.

Example 5.16. Let Eqa,b be the language of all non-empty words w over Σ such that
w contains as many a as b where a, b ∈ Σ. Let Σ = {0, 1, 2} and L = Eq0,1 ∩ Eq0,2.
The language L is context-sensitive.

Proof. First one makes a grammar for Eqa,b where c stands for any symbol in
Σ− {a, b}. The grammar has the form

({S},Σ, {S → SS|aSb|bSa|ab|ba|c}, S)
and one now makes a new grammar for the intersection as follows: The idea is to pro-
duce two-componented characters where the upper component belongs to a derivation
of Eq0,1 and the lower belongs to a derivation of Eq0,2. Furthermore, there will in
both components be a space symbol, #, which can be produced on the right side of
the start symbol in the beginning and later be moved from the right to the left. Rules
which apply only to the upper or lower component do not change the length, they just
eat up some spaces if needed. Then the derivation is done on the upper and lower part
independently. In the case that the outcome is on the upper and the lower component
the same, the whole word is then transformed into the corresponding symbols from
Σ.

The non-terminals of the new grammar are all of the form
(

A
B

)

where A,B ∈
{S,#, 0, 1, 2}. In general, each non-terminal represents a pair of a symbols which
can occur in the upper and lower derivation; pairs are by definition different from
terminals in Σ = {0, 1, 2}. The start symbol is

(

S
S

)

. The following rules are there:

1. The rule
(

S
S

)

→
(

S
S

)(

#
#

)

. This rule permits to produce space right of the start
symbol which is later used independently in the upper or lower component.
For each symbols A,B,C in {S,#, 0, 1, 2} one introduces the rules

(

A
B

)(

#
C

)

→
(

#
B

)(

A
C

)

and
(

A
C

)(

B
#

)

→
(

A
#

)(

B
C

)

which enable to bring, independently of each
other, the spaces in the upper and lower component from the right to the left.
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2. The rules of Eq0,1 will be implemented in the upper component. If a rule of the
form l → r has that |l|+ k = |r| then one replaces it by l#k → r. Furthermore,
the rules have now to reflect the lower component as well, so there are entries
which remain unchanged but have to be mentioned. Therefore one adds for each
choice of A,B,C ∈ {S,#, 0, 1, 2} the following rules into the set of rules of the
grammar:
(

S
A

)(

#
B

)

→
(

S
A

)(

S
B

)

,
(

S
A

)(

#
B

)(

#
C

)

→
(

0
A

)(

S
B

)(

1
C

)

|
(

1
A

)(

S
B

)(

0
C

)

,
(

S
A

)(

#
B

)

→
(

0
A

)(

1
B

)

|
(

1
A

)(

0
B

)

,
(

S
A

)

→
(

2
A

)

;

3. The rules of Eq0,2 are implemented in the lower component and one takes again
for all A,B,C ∈ {S,#, 0, 1, 2} the following rules into the grammar:
(

A
S

)(

B
#

)

→
(

A
S

)(

B
S

)

,
(

A
S

)(

B
#

)(

C
#

)

→
(

A
0

)(

B
S

)(

C
2

)

|
(

A
2

)(

B
S

)(

C
0

)

,
(

A
S

)(

B
#

)

→
(

A
0

)(

B
2

)

|
(

A
2

)(

B
0

)

,
(

A
S

)

→
(

A
1

)

;

4. To finalise, one has the rule
(

a
a

)

→ a for each a ∈ Σ, that is, the rules
(

0
0

)

→ 0,
(

1
1

)

→ 1,
(

2
2

)

→ 2 in order to transform non-terminals consisting of matching
placeholders into the corresponding terminals. Nonmatching placeholders and
spaces cannot be finalised, if they remain in the word, the derivation cannot
terminate.

To sum up, a word w ∈ Σ∗ can only be derived iff w is derived independently in the
upper and the lower component of the string of non-terminals according to the rules
of Eq0,1 and Eq0,2. The resulting string of pairs of matching entries from Σ is then
transformed into the word w.

The following derivation of the word 011022 illustrates the way the word is gen-
erated: in the first step, enough space is produced; in the second step, the upper
component is derived; in the third step, the lower component is derived; in the fourth
step, the terminals are generated from the placeholders.

1.
(

S
S

)

⇒
(

S
S

)(

#
#

)

⇒
(

S
S

)(

#
#

)(

#
#

)

⇒
(

S
S

)(

#
#

)(

#
#

)(

#
#

)

⇒
(

S
S

)(

#
#

)(

#
#

)(

#
#

)(

#
#

)

⇒
(

S
S

)(

#
#

)(

#
#

)(

#
#

)(

#
#

)(

#
#

)

⇒

2.
(

S
S

)(

S
#

)(

#
#

)(

#
#

)(

#
#

)(

#
#

)

⇒
(

S
S

)(

2
#

)(

2
#

)(

#
#

)(

#
#

)(

#
#

)

⇒∗
(

S
S

)(

#
#

)(

#
#

)(

#
#

)(

2
#

)(

2
#

)

⇒
(

S
S

)(

S
#

)(

#
#

)(

#
#

)(

2
#

)(

2
#

)

⇒
(

S
S

)(

#
#

)(

S
#

)(

#
#

)(

2
#

)(

2
#

)

⇒
(

0
S

)(

1
#

)(

S
#

)(

#
#

)(

2
#

)(

2
#

)

⇒
(

0
S

)(

1
#

)(

1
#

)(

0
#

)(

2
#

)(

2
#

)

⇒

3.
(

0
0

)(

1
S

)(

1
2

)(

0
#

)(

2
#

)(

2
#

)

⇒∗
(

0
0

)(

1
S

)(

1
#

)(

0
#

)(

2
#

)(

2
2

)

⇒
(

0
0

)(

1
S

)(

1
S

)(

0
#

)(

2
#

)(

2
2

)

⇒
(

0
0

)(

1
1

)(

1
S

)(

0
#

)(

2
#

)(

2
2

)

⇒
(

0
0

)(

1
1

)(

1
S

)(

0
S

)(

2
#

)(

2
2

)

⇒
(

0
0

)(

1
1

)(

1
1

)(

0
S

)(

2
#

)(

2
2

)

⇒
(

0
0

)(

1
1

)(

1
1

)(

0
0

)(

2
2

)(

2
2

)

⇒

58



4. 0
(

1
1

)(

1
1

)(

0
0

)(

2
2

)(

2
2

)

⇒ 01
(

1
1

)(

0
0

)(

2
2

)(

2
2

)

⇒ 011
(

0
0

)(

2
2

)(

2
2

)

⇒ 0110
(

2
2

)(

2
2

)

⇒
01102

(

2
2

)

⇒ 011022.

In this derivation, each step is shown except that several moves of characters in
components over spaces are put together to one move.

Exercise 5.17. Consider the language L = {00} ·{0, 1, 2, 3}∗∪{1, 2, 3} ·{0, 1, 2, 3}∗∪
{0, 1, 2, 3}∗ · {02, 03, 13, 10, 20, 30, 21, 31, 32} · {0, 1, 2, 3}∗ ∪ {ε} ∪ {01n2n3n : n ∈ N}.
Which of the pumping conditions from Theorems 2.15 (a) and 2.15 (b), Corollary 2.16
and Theorem 3.9 does the language satisfy? Determine its exact position in the Chom-
sky hierarchy.

Exercise 5.18. Let xmi be the mirror image of x, so (01001)mi = 10010. Further-
more, let Lmi = {xmi : x ∈ L}. Show the following two statements:
(a) If an nfa with n states recognises L then there is also an nfa with up to n + 1
states recognising Lmi.
(b) Find the smallest nfas which recognise L = 0∗(1∗ ∪ 2∗) as well as Lmi.

Description 5.19: Palindromes. The members of the language {x ∈ Σ∗ : x = xmi}
are called palindromes. A palindrome is a word or phrase which looks the same from
both directions.

An example is the German name “OTTO”; furthermore, when ignoring spaces
and punctuation marks, a famous palindrome is the phrase “A man, a plan, a canal:
Panama.” This palindrome was from Leigh Mercer (1893-1977), a British hobby-
writer, who created lots of palindromes, Eckler [23] lists at the end of his article 100
of them.

The grammar with the rules S → aSa|aa|a|ε with a ranging over all members of
Σ generates all palindromes; so for Σ = {0, 1, 2} the rules of the grammar would be
S → 0S0 | 1S1 | 2S2 | 00 | 11 | 22 | 0 | 1 | 2 | ε.

The set of palindromes is not regular. This can easily be seen by the pumping
lemma, as otherwise L∩ 0∗10∗ = {0n10n : n ∈ N} would have to be regular. However,
this is not the case, as there is a constant k such that one can pump the word 0k10k

by omitting some of the first k characters; the resulting word 0h10k with h < k is not
in L as it is not a palindrome. Hence L does not satisfy the pumping lemma when
the word has to be pumped among the first k characters.

Exercise 5.20. Let w ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ be a palindrome of even length and
n be its decimal value. Prove that n is a multiple of 11. Note that it is essential that
the length is even, as for odd length there are counter examples (like 111 and 202).
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Exercise 5.21. Given a context-free grammar for a language L, is there also one
for L ∩ Lmi? If so, explain how to construct the grammar; if not, provide a counter
example where L is context-free but L ∩ Lmi is not.

Exercise 5.22. Is the following statement true or false? Prove the answer: Given a
language L, the language L ∩ Lmi equals to {w ∈ L : w is a palindrome}.

Exercise 5.23. Let L = {w ∈ {0, 1, 2}∗ : w = wmi} and consider H = L ∩
{012, 210, 00, 11, 22}∗∩ ({0, 1}∗ · {1, 2}∗ · {0, 1}∗). This is the intersection of a context-
free and regular language and thus context-free. Construct a context-free grammar for
H.

In the following, one considers regular expressions consisting of the symbol L of the
language of palindromes over {0, 1, 2} and the mentioned operations. What is the
most difficult level in the hierarchy “regular, linear, context-free, context-sensitive”
such expressions can generate. It can be used that the language {10i10j10k1 : i 6= j,
i 6= k, j 6= k} is not context-free.

Exercise 5.24. Determine the maximum possible complexity of the languages given
by expressions containing L and ∪ and finite sets.

Exercise 5.25. Determine the maximum possible complexity of the languages given
by expressions containing L and ∪ and · and Kleene star and finite sets.

Exercise 5.26. Determine the maximum possible complexity of the languages given
by expressions containing L and ∪ and · and ∩ and Kleene star and finite sets.

Exercise 5.27. Determine the maximum possible complexity of the languages given
by expressions containing L and · and set difference and Kleene star and finite sets.

A homomorphism is a mapping which replaces each character by a word. In general,
they can be defined as follows.

Definition 5.28: Homomorphism. A homomorphism is a mapping h from words
to words satisfying h(xy) = h(x) · h(y) for all words x, y.

Proposition 5.29. When defined on words over an alphabet Σ, the values h(a) for
the a ∈ Σ define the image h(w) of every word w.

Proof. As h(ε) = h(ε · ε) = h(ε) · h(ε), the word h(ε) must also be the empty word
ε. Now one can define inductively, for words of length n = 0, 1, 2, . . . the value of h:
For words of length 0, h(w) = ε. When h is defined for words of length n, then every
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word w ∈ Σn+1 is of the form va for v ∈ Σn and a ∈ Σ, so h(w) = h(v ·a) = h(v) ·h(a)
which reduces the value of h(w) to known values.

Exercise 5.30. How many homomorphism exist with h such that h(012) = 44444,
h(102) = 444444, h(00) = 44444 and h(3) = 4? Here two homomorphism are the
same iff they have the same values for h(0), h(1), h(2), h(3). Prove the answer: List
the homomorphism to be counted and explain why there are not more.

Exercise 5.31. How many homomorphisms h exist with h(012) = 44444, h(102) =
44444, h(0011) = 444444 and h(3) = 44? Prove the answer: List the homomorphism
to be counted and explain why there are not more.

Theorem 5.32. The homomorphic image of regular and context-free languages are
regular and context-free, respectively.

Proof. Let a regular / context-free grammar (N,Σ, P, S) for a language L be given
and let Γ be the alphabet of all symbols which appear in some word of the form
h(a) with a ∈ Σ. One extends the homomorphism h to all members of N by defining
h(A) = A for all of them and one defines h(P ) as the set of all rules h(l) → h(r) where
l → r is a rule in P ; note that h(l) = l in this case. Now (N,Γ, h(P ), S) is a new
context-free grammar which generates h(L); furthermore, if (N,Σ, P, S) is regular so
is (N,Γ, h(P ), S).

First it is easy to verify that if all rules of P have only one non-terminal on the
left side, so do those of h(P ); if all rules of P are regular, that is, either of the form
A→ w or of the form A→ wB for non-terminals A,B and w ∈ Σ∗ then the image of
the rule under h is of the form A→ h(w) or A→ h(w)B for a word h(w) ∈ Γ∗. Thus
the transformation preserves the grammar to be regular or context-free, respectively.

Second one shows that if S ⇒∗ v in the original grammar then S ⇒∗ h(v) in the
new grammar. The idea is to say that there are a number n and words v0 = S, v1, . . . vn
in (N ∪ Σ)∗ such that v0 ⇒ v1 ⇒ . . . ⇒ vn = v. Now one defines wm = h(vm) for
all m and proves that S = w0 ⇒ w1 ⇒ . . . ⇒ wn = h(v) in the new grammar. So
let m ∈ {0, 1, . . . , n − 1} and assume that it is verified that S ⇒∗ wm in the new
grammar. As vm ⇒ vm+1 in the old grammar, there are x, y ∈ (Σ ∪ N)∗ and a rule
l → r with vm = xly and vm+1 = xry. It follows that wm = h(x) · h(l) · h(y) and
wm+1 = h(x) ·h(r) ·h(y). Thus the rule h(l) → h(r) of the new grammar is applicable
and wm ⇒ wm+1, that is, S ⇒∗ wm+1 in the new grammar. Thus wn = h(v) is in the
language generated by the new grammar.

Third one considers w ∈ h(L). There are n and w0, w1, . . . , wn such that S = w0,
w = wn and wm ⇒ wm+1 in the new grammar for all m ∈ {0, 1, . . . , n− 1}. Now one
defines inductively v0, v1, . . . , vn as follows: v0 = S and so w0 = h(v0). Given now vm
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with h(vm) = wm, the word wm, wm+1 can be split into x̃h(l)ỹ and x̃h(r)ỹ, respectively,
for some rule h(l) → h(r) in h(P ). As h maps non-terminals to themselves, one can
split vm into x · l · y such that h(x) = x̃ and h(y) = ỹ. Now one defines vm+1 as x · r · y
and has that wm+1 = h(vm+1) and vm ⇒ vm+1 by applying the rule l → r from P
in the old grammar. It follows that at the end the so constructed sequence satisfies
v0 ⇒ v1 ⇒ . . . ⇒ vn and h(vn) = wn. As wn contains only terminals, vn cannot
contain any nonterminals and vn ∈ L, thus wn ∈ h(L).

Thus the items Second and Third give together that h(L) is generated by the
grammar (N,Γ, h(P ), S) and the item First gave that this grammar is regular or
context-free, respectively, as the given original grammar.

Example 5.33. One can apply the homomorphisms also directly to regular ex-
pressions using the rules h(L ∪ H) = h(L) ∪ h(H), h(L · H) = h(L) · h(H) and
h(L∗) = (h(L))∗. Thus one can move a homomorphism into the inner parts (which
are the finite sets used in the regular expression) and then apply the homomorphism
there.

So for the language ({0, 1}∗ ∪ {0, 2}∗) · {33}∗ and the homomorphism which maps
each symbol a to aa, one obtains the language ({00, 11}∗ ∪ {00, 22}∗) · {3333}∗.

Exercise 5.34. Consider the following statements for regular languages L:

(a) h(∅) = ∅;
(b) If L is finite so is h(L);

(c) If L has polynomial growth so has h(L);

(d) If L has exponential growth so has h(L).

Which of these statements are true and which are false? Prove the answers. The
rules from Example 5.33 can be used as well as the following facts: H∗ has polynomial
growth iff H∗ ⊆ {u}∗ for some word u; if H,K have polynomial growth so do H ∪K
and H ·K.

Exercise 5.35. Construct a context-sensitive language L and a homomorphism h
such that L has polynomial growth and h(L) has exponential growth.

If one constructs regular expressions from automata or grammars, one uses a lot
of Kleene stars, even nested into each other. However, if one permits the usage of
homomorphism and intersections in the expression, one can reduce the usage of stars
to the overall number of two. That intersections can save stars, can be seen by this
example:

00∗ ∪ 11∗ ∪ 22∗ ∪ 33∗ = ({0, 1, 2, 3} · {00, 11, 22, 33}∗ · {ε, 0, 1, 2, 3})
∩ ({00, 11, 22, 33}∗ · {ε, 0, 1, 2, 3}).
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The next result shows that adding in homomorphisms, the result can be used to
represent arbitrary complex regular expressions using only two Kleene star sets and
one homomorphism.

Theorem 5.36. Let L be a regular language. Then there are two regular expressions
σ, τ each containing only one Kleene star and some finite sets and concatenations and
there is one homomorphism h such that L is the language given by the expression
h(σ ∩ τ).

Proof. Assume that a nfa (Q,Γ, δ, s, F ) recognises the language L ⊆ Γ∗. Now one
makes a new alphabet Σ containing all triples (q, a, r) such that a ∈ Γ and q, r ∈ Q for
which the nfa can go from q to r on symbol a. Let ∆ contain all pairs (q, a, r)(r, b, o)
from Σ×Σ where the outgoing state of the first transition-triple is the incoming state
of the second transition-triple. The regular expressions are now

σ = {(q, a, r) ∈ Σ: q = s and r ∈ F} ∪ ({(q, a, r) ∈ Σ : q = s} · ∆∗ · {(q, a, r)(r, b, o),
(r, b, o) ∈ ∆ ∪ Σ: o ∈ F});

τ = {(q, a, r) ∈ Σ: q = s and r ∈ F} ∪ {(q, a, r)(r, b, o) ∈ ∆: q = s and o ∈ F} ∪
({(q, a, r)(r, b, o) ∈ ∆: q = s} · ∆∗ · {(q, a, r)(r, b, o), (r, b, o) ∈ ∆ ∪ Σ: o ∈ F}).

Furthermore, the homomorphism h from Σ to Γ maps (q, a, r) to a for all (q, a, r) ∈ Σ.
When allowing h and ∩ for regular expressions, one can describe L as follows: If L
does not contain ε then L is h(σ ∩ τ) else L is h((σ ∪ {ε}) ∩ (τ ∪ {ε})).

The reason is that σ and τ both recognise runs of the nfa on words where the
middle parts of the symbols in Σ represent the symbols read in Γ by the nfa and the
other two parts are the states. However, the expression σ checks the consistency of
the states (outgoing state of the last operation is ingoing state of the next one) only
after reading an even number of symbols while τ checks the consistency after reading
an odd number of symbols. In the intersection of the languages of σ and τ are then
only those runs which are everywhere correct on the word. The homomorphism h
translates the runs back into the words.

Example 5.37: Illustrating Theorem 5.36. Let L be the language of all words
which contain some but not all decimal digits. An nfa which recognises L has the
states {s, q0, q1, . . . , q9} and transitions (s, a, qb) and (qb, a, qb) for all distinct a, b ∈
{0, 1, . . . , 9}. Going to state qb means that the digit b never occurs and if it would
occur, the run would get stuck. All states are accepting.

The words 0123 and 228822 are in L and 0123456789 is not in L. For the word 0123,
the run (s, 0, q4) (q4, 1, q4) (q4, 2, q4) (q4, 3, q4) is accepting and in both the languages
generated by σ and by τ . The invalid run (s, 0, q4) (q4, 1, q4) (q0, 2, q0) (q0, 3, q0) would
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be generated by τ but not by σ, as σ checks that the transitions (q4, 1, q4) (q0, 2, q0)
match.

As the language contains the empty word, it would be generated by h((σ ∪ {ε})∩
(τ ∪ {ε})).

Homomorphisms allow to map certain symbols to ε; this permits to make the output of
a grammar shorter. As context-sensitive languages are produced by grammars which
generate words getting longer or staying the same in each step of the derivation, there
is a bit a doubt what happens when output symbols of a certain type get erased
in the process of making them. Indeed, one can use this method in order to show
that any language L generated by some grammar is the homomorphic image of a
context-sensitive language; thus the context-sensitive languages are not closed under
homomorphisms.

Theorem 5.38. Every recursively enumerable language, that is, every language gen-
erated by some grammar, is a homomorphic image of a context-sensitive language.

Proof. Assume that the alphabet is {1, 2, . . . , k} and that 0 is a digit not occurring
in any word of L. Furthermore, assume that (N, {1, 2, . . . , k}, P, S) is a grammar
generating the language L; without loss of generality, all rules l → r satisfy that
l ∈ N+; this can easily be achieved by introducing a new non-terminal A for each
terminal a, replacing a in all rules by A and then adding the rule A→ a.

Now one constructs a new grammar (N, {0, 1, 2, . . . , k}, P ′, S) as follows: For each
rule l → r in P , if |l| ≤ |r| then P ′ contains the rule l → r unchanged else P ′ contains
the rule l → r|l|. Furthermore, P ′ contains for every A ∈ N the rule 0A → A0 which
permits to move every 0 towards the end along non-terminals. There are no other
rules in P ′ and the grammar is context-sensitive. Let H be the language generated
by this new grammar.

Now define h(0) = ε and h(a) = a for every other a ∈ N ∪ {1, 2, . . . , k}. It will be
shown that L = h(H).

First one considers the case that v ∈ L and looks for a w ∈ H with h(w) = v.
There is a derivation v0 ⇒ v1 ⇒ . . . ⇒ vn of v with v0 = S and vn = v. Without
loss of generality, all rules of the form A→ a for a non-terminal A and terminal a are
applied after all other rules are done. Now it will be shown by induction that there are
numbers ℓ0 = 0, ℓ1,. . . , ℓn such that all wm = vm0

ℓm satisfy w0 ⇒∗ w1 ⇒∗ . . .⇒∗ wn.
Note that w0 = S, as ℓ0 = 0. Assume that wm is defined. There is a rule l → r. If
r is a terminal then l is one non-terminal and furthermore the rule l → r also exists
in P ′, thus one applies the same rule to the same position in wm and let ℓm+1 = ℓm
and has that wm ⇒ wm+1. If r is not a non-terminal then for the rule l → r in P
there might be some rule l → r0κ in P ′ and vm = xly ⇒ vm+1xry in the old grammar
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and wm = xly0ℓm ⇒ xr0κy0ℓm ⇒∗ xry0κ+ℓm = xry0ℓm+1 = wm+1, where one has
to make the definition ℓm+1 = κ + ℓm and where the step xr0κy0ℓm ⇒∗ xry0κ+ℓm is
possible as no other terminals than 0 are generated so far. this rule is applied before
generating any other non-terminal than 0 and therefore one has vm0

ℓm ⇒ vm+1. Thus
wm ⇒∗ wm+1 in the grammar for H. It follows that wn ∈ H and h(wn) = v.

Now assume that v = h(w) and w0 ⇒ w1 ⇒ . . . ⇒ wn is a derivation of w in the
grammar for H. Let vm = h(wm) for all m. Note that h(v0) = S. For each m < n, if
wm+1 is obtained from wm by exchanging the position of a non-terminal and 0 then
h(wm+1) = h(wm) and vm ⇒∗ vm+1. Otherwise wm = xly and wm+1 = xr0κy for some
x, y and rule l → r0κ in P ′ (where 0κ = ε is possible). Now vm = h(wm) = h(x)·l ·h(y)
and vm+1 = h(wm+1) = h(x)·r ·h(y), thus vm ⇒ vm+1 in the grammar for L. It follows
that v0 ⇒∗ v1 ⇒∗ . . .⇒∗ vn and vn = h(w) ∈ L.

The last two parts give that L = h(H) and the construction of the grammar
ensured that H is a context-sensitive language. Thus L is the homomorphic image of
a context-sensitive language.

Proposition 5.39. If a grammar (N,Σ, P, S) generates a language L and h is a
homomorphism from Σ∗ to Σ∗ and S ′, T ′, U ′ /∈ N then the grammar given as (N ∪
{S ′, T ′, U ′},Σ, P ′, S ′) with P ′ = P∪{S ′ → T ′SU ′, T ′U ′ → ε}∪{T ′a→ h(a)T ′ : a ∈ Σ}
generates h(L).

Proof Idea. If a1, a2, . . . , an ∈ Σ then T ′a1a2 . . . an ⇒∗ h(a1)h(a2) . . . h(an). Thus if
S ⇒ w in the original grammar then S ′ ⇒ T ′SU ′ ⇒∗ T ′wU ′ ⇒∗ h(w)T ′U ′ ⇒ h(w) in
the new grammar and one can also show that this is the only way which permits to
derive terminal words in the new grammar.

Exercise 5.40. Let h(0) = 1, h(1) = 22, h(2) = 333. What are h(L) for the following
languages L:

(a) {0, 1, 2}∗;
(b) {00, 11, 22}∗ ∩ {000, 111, 222}∗;
(c) ({00, 11}∗ ∪ {00, 22}∗ ∪ {11, 22}∗) · {011222};
(d) {w ∈ {0, 1}∗ : w has more 1s than it has 0s}.

Exercise 5.41. Let h(0) = 3, h(1) = 4, h(2) = 334433. What are h(L) for the
following languages L:

(a) {0, 1, 2}∗;
(b) {00, 11, 22}∗ ∩ {000, 111, 222}∗;
(c) ({00, 11}∗ ∪ {00, 22}∗ ∪ {11, 22}∗) · {011222};
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(d) {w ∈ {0, 1}∗ : w has more 1s than it has 0s}.

The next series of exercises deal with homomorphisms between number systems.
In general, it is for example known that the homomorphism h given by h(0) =
0000, h(1) = 0001, h(2) = 0010, . . . , h(F ) = 1111 translate numbers from the hexadec-
imal system into binary numbers preserving their value. However, one conventions
are not preserved: there might be leading zeroes introduced and the image of 1F is
00011111 rather than the correct 11111. The following translations do not preserve
the value, as this is only possible when translating numbers from a base system pn

to the base system p for some number p. However, they try to preserve some prop-
erties. The exercises investigate to which extent various properties can be preserved
simultaneously.

Exercise 5.42. Let a homomorphism h : {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ → {0, 1, 2, 3}∗ be
given by the equations h(0) = 0, h(1) = h(4) = h(7) = 1, h(2) = h(5) = h(8) = 2,
h(3) = h(6) = h(9) = 3. Interpret the images of h as quaternary numbers (numbers
of base four, so 12321 represents 1 times two hundred fifty six plus 2 times sixty four
plus 3 times sixteen plus 2 times four plus 1). Prove the following:

• Every quaternary number is the image of a decimal number without leading
zeroes;

• A decimal number w has leading zeroes iff the quaternary number h(w) has
leading zeroes;

• A decimal number w is a multiple of three iff the quaternary number is a multiple
of three.

Exercise 5.43. Consider any homomorphism h : {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ → {0, 1}∗
such that

• h(w) has leading zeroes iff w has;

• h(0) = 0;

• all binary numbers (without leading zeroes) are in the range of h.

Answer the following questions:

(a) Can h be chosen such that the above conditions are true and, furthermore, the
decimal number w is a multiple of two iff the binary number h(w) is a multiple
of two?

(b) Can h be chosen such that the above conditions are true and, furthermore, the
decimal number w is a multiple of three iff the binary number h(w) is a multiple
of three?
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(c) Can h be chosen such that the above conditions are true and, furthermore, the
decimal number w is a multiple of five iff the binary number h(w) is a multiple
of five?

If h can be chosen as desired then list this h else prove that such a homomorphism h
cannot exist.

Exercise 5.44. Construct a homomorphism h : {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}∗ → {0, 1}∗
such that for every w the number h(w) has never leading zeroes and the remainder
of the decimal number w when divided by nine is the same as the remainder of the
binary number h(w) when divided by nine.

Another way to represent is the Fibonacci number system. Here one let a0 = 1,
a1 = 1, a2 = 2 and, for all n, an+2 = an + an+1. Now one can write every number as
the sum of non-neighbouring Fibonacci numbers: That is for each non-zero number
n there is a unique string bmbm−1 . . . b0 ∈ (10+)+ such that

n =
∑

k=0,1,...,m

bk · ak

and the next exercise is about this numbering. This system was used by Floyd and
Knuth [29] to carry out operations on register machines (which can as unit operations
add, subtract and compare natural numbers) in linear time.

Exercise 5.45. Construct a homomorphism h : {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} → {0, 1}∗
such that h(0) = 0 and the image of all decimal numbers (without leading zeroes)
is the regular set {0} ∪ (10+)+. Furthermore, show that all h satisfying the above
condition also satisfy the following statement: For every p > 1 there is a decimal
number w (without leading zeroes) such that (w is a multiple of p iff h(w) is not a
multiple of p). In other word, the property of being a multiple of p is not preserved by
h for any p > 1.

Description 5.46: Inverse Homomorphism. Assume that h : Σ∗ ⇒ Γ∗ is a
homomorphism and L ⊆ Γ∗ is some language. Then K = {u ∈ Σ∗ : h(u) ∈ H}
is called the inverse image of L with respect to the homomorphism h. This inverse
image K is also denoted as h−1(L). The following rules are valid for h−1:

(a) h−1(L) ∩ h−1(H) = h−1(L ∩H);

(b) h−1(L) ∪ h−1(H) = h−1(L ∪H);

(c) h−1(L) · h−1(H) ⊆ h−1(L ·H);

(d) h−1(L)∗ ⊆ h−1(L∗).
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One can see (a) as follows: If h(u) ∈ L and h(u) ∈ H then h(u) ∈ L ∩ H, thus
u ∈ h−1(L) ∩ h−1(H) implies u ∈ h−1(L ∩H). If u ∈ h−1(L ∩H) then h(u) ∈ L ∩H
and u ∈ h−1(L) ∩ h−1(H).

For (b), if h(u) ∈ L or h(u) ∈ H then h(u) ∈ L ∪ H, thus u ∈ h−1(L) ∪ h−1(H)
implies u ∈ h−1(L ∪ H). If u ∈ h−1(L ∪ H) then h(u) ∈ L ∪ H and u ∈ h−1(L) or
u ∈ h−1(H), so u ∈ h−1(L) ∪ h−1(H).

For (c), note that if u ∈ h−1(L) · h−1(H) then there are v, w with u = vw and
v ∈ h−1(L) and w ∈ h−1(H). Thus h(u) = h(v) · h(w) ∈ L · H and u ∈ h−1(L · H).
However, if Σ = {0} and h(0) = 00 then h−1({0}) = ∅ while h−1({0} · {0}) = {0}
which differs from ∅ · ∅. Therefore the inclusion can be proper.

For (d), if v1, v2, . . . , vn ∈ h−1(L∗) then v1v2 . . . vn ∈ h−1(L∗) as well; thus h−1(L∗)
is a set of the form H∗ which contains h−1(L). However, the inclusion can be proper:
Using the h of (c), h−1({0}) = ∅, (h−1({0}))∗ = {ε} and h−1({0}∗) = {0}∗.

Theorem 5.47. If L is on the level k of the Chomsky hierarchy and h is a homo-
morphism then h−1(L) is also on the level k of the Chomsky hierarchy.

Proof for the regular case. Assume that L ⊆ Γ∗ is recognised by a dfa (Q,Γ,
γ, s, F ) and that h : Σ∗ → Γ∗ is a homomorphism. Now one constructs a new dfa
(Q,Σ, δ, s, F ) with δ(q, a) = γ(q, h(a)) for all q ∈ Q and a ∈ Σ. One can show by
an induction that when the input word is w then the new dfa is in the state δ(s, w)
and that this state is equal to the state γ(s, h(w)) and therefore the new automaton
accepts w iff the old automaton accepts h(w). It follows that w is accepted by the
new dfa iff h(w) is accepted by the old automaton iff h(w) ∈ L iff w ∈ h−1(L). Thus
h−1 is regular, as witnessed by the new automaton.

Exercise 5.48. Let h : {0, 1, 2, 3}∗ → {0, 1, 2, 3}∗ be given by h(0) = 00, h(1) = 012,
h(2) = 123 and h(3) = 1 and let L contain all words containing exactly five 0s and at
least one 2. Construct a complete dfa recognising h−1(L).

Description 5.49: Generalised Homomorphism. A generalised homomorphism
is a mapping h from regular subsets of Σ∗ to regular subsets of Γ∗ for some alphabets
Σ,Γ is a generalised homomorphism iff it preserves ∅, union, concatenation and Kleene
star. That is, h must satisfy for all regular subsets H,L of Σ∗ the following conditions:

• h(∅) = ∅;
• h(L ∪H) = h(L) ∪ h(H);

• h(L ·H) = h(L) · h(H);

• h(L∗) = (h(L))∗.
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Note that ∅∗ = {ε} and therefore h({ε}) = h(∅∗) = (h(∅))∗ = ∅∗ = {ε}. Furthermore,
for words v, w, h({vw}) = h({v}) · h({w}) which implies that one knows h({u}) for
all words u whenever one knows h({a}) for all symbols a in the alphabet.

Examples 5.50. First, the mapping L 7→ L ∩ {ε} is a generalised homomorphism.
Second, if one maps the empty set to ∅ and every regular nonempty subset of Σ∗

to {ε}, this is also a generalised homomorphism and would work for every target
alphabet Γ. Third, the identity mapping L 7→ L is a generalised homomorphism from
regular subsets of Σ∗ to regular subsets of Σ∗.

Exercise 5.51. Show that whenever h : Σ∗ → Γ∗ is a homomorphism then the
mapping L 7→ {h(u) : u ∈ L} is a generalised homomorphism which maps regular
subsets of Σ∗ to regular subsets of Γ∗.

Exercise 5.52. Let h be any given generalised homomorphism. Show by structural
induction that h(L) =

⋃

u∈L h(u) for all regular languages L. Furthermore, show
that every mapping h satisfying h({ε}) = {ε}, h(L) = ⋃

u∈L h({u}) and h(L · H) =
h(L) ·h(H) for all regular subsets L,H of Σ∗ is a generalised homomorophism. Is the
same true if one weakens the condition h({ε}) = {ε} to ε ∈ h({ε})?

Exercise 5.53. Construct a mapping which satisfies h(∅) = ∅, h({ε}) = {ε}, h(L ∪
H) = h(L)∪h(H) and h(L ·H) = h(L) ·h(H) for all regular languages L,H but which
does not satisy h(L) =

⋃

u∈L h({u}) for some infinite regular set L.

Exercise 5.54. Assume that h is a generalised homomorphism and k(L) = h(L)·h(L).
Is k a generalised homomorphism? Prove the answer.

Exercise 5.55. Assume that h is a generalised homomorphism and

ℓ(L) =
⋃

u∈h(L)

Σ|u|,

where Σ0 = {ε}. Is ℓ a generalised homomorphism? Prove the answer.

Exercise 5.56. Let Σ = {0, 1, 2} and h be the generalised homomorphism given
by h({0}) = {1, 2}, h({1}) = {0, 2} and h({2}) = {0, 1}. Which of the following
statements are true for this h and all regular subsets L,H of Σ∗:

(a) If L 6= H then h(L) 6= h(H);

(b) If L ⊆ H then h(L) ⊆ h(H);

(c) If L is finite then h(L) is finite;
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(d) If L is infinite then h(L) is infinite and has exponential growth.

Prove the answers. The formula h(L) =
⋃

u∈L h({u}) from Exercise 5.52 can be used
without proof for this exercise.

Note that one can the following property of the image of regular sets L with respect
to a generalised homomorphism h also take as a definition for h(L) in the case that
L is not regular:

h(L) =
⋃

a1...an∈L

h(a1) · h(a2) · . . . · h(an)

where the empty concatenation gives ε, so that ε is in h(L) whenever ε ∈ L. Now one
uses the definition in order to construct the image of h for the following three sets:

(a) I = {00, 01, 02, 10, 11, 12, 20, 21, 22}∗;

(b) J = {00, 11, 22}∗ · {000, 111, 222};

(c) K = {0n1n2n : n ≥ 2}.

If h maps 0 to {0}+ and 1, 2 to {ε} then h(I) = {0}∗, h(J) = {ε} ∪ {0}+ · {0}+ and
h(K) = {0}+.

Exercise 5.57. Determine h(I), h(J) and h(K) for I, J,K as above where h is
given by h(0) = {3, 4}+, h(1) = {3, 5}+ and h(2) = {4, 5}+. If possible, provide the
languages as regular expressions.

Exercise 5.58. Determine h(I), h(J) and h(K) for I, J,K as above where h is given
by h(0) = {ε, 3, 33}, h(1) = {ε, 4, 44} and h(2) = {ε, 5, 55}. If possible, provide the
languages as regular expressions.

Exercise 5.59. Determine h(I), h(J) and h(K) for I, J,K as above where h is given
by h(a) = {aaa, aaaa}+ for all letters a ∈ {0, 1, 2}. If possible, provide the languages
as regular expressions.
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Selftest 5.60. Consider the language L of all words of the form uvvw with u, v, w ∈
{0, 1, 2}∗ and 0 < |v| < 1000000. Is this language (a) regular or (b) context-free and
not regular or (c) context-sensitive and not context-free? Choose the right option and
explain the answer.

Selftest 5.61. Consider the language L from Selftest 5.60. Does this language satisfy
the traditional pumping lemma (Theorem 2.15 (a)) for regular languages? If so, what
is the optimal constant?

Selftest 5.62. Construct a deterministic finite automaton which checks whether a
decimal number is neither divisible by 3 nor by 5. This automaton does not need to
exclude numbers with leading zeroes. Make the automaton as small as possible.

Selftest 5.63. Construct by structural induction a function F which translates regular
expressions for subsets of {0, 1, 2, . . . , 9}∗ into regular expressions for subsets of {0}∗
such that the language of F (σ) contains the word 0n iff the language of σ contains
some word of length n.

Selftest 5.64. Assume that an nondeterministic finite automaton has 1000 states
and accepts some word. How long is, in the worst case, the shortest word accepted by
the automaton?

Selftest 5.65. What is the best block pumping constant for the language L of all
words which contain at least three zeroes and at most three ones?

Selftest 5.66. Construct a context-free grammar which recognises all the words w ∈
{00, 01, 10, 11}∗ which are not of the form vv for any v ∈ {0, 1}∗.

Selftest 5.67. Construct a constext-sensitive grammar which accepts a word iff it
has the same amount of 0, 1 and 2.

Selftest 5.68. Create a context-sensitive grammar for all words of the form (2w)k3
where k ≥ 2 and w is a binary string.

Selftest 5.69. Create a context-sensitive grammar for all words of the form 30i1j2k3
with i, j, k ≥ 1 and i · j = k (as a product of natural numbers).
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Solution for Selftest 5.60. The right answer is (a). One can write the language as
an extremely long regular expression of the form {0, 1, 2}∗ ·v0v0 · {0, 1, 2}∗∪{0, 1, 2}∗ ·
v1v1 ·{0, 1, 2}∗∪ . . .∪{0, 1, 2}∗ ·vnvn ·{0, 1, 2}∗. Here v0, v1, . . . , vn is a list of all ternary
strings from length 1 to 999999 and there are (31000000 − 3)/2 of them. Although this
expression can be optimised a bit, there is no really small one for the language which
one can write down explicitly.

Solution for Selftest 5.61. For the language L from Selftest 5.60, the optimal
constant for the traditional pumping lemma is 3:

If a word contains 3 symbols and is in L then it is of the form abb or aab; in the
first case a∗bb and in the second case aab∗ are subsets of the language. So now assume
that a word in the language L is given and it has at least four symbols.

(a) The word is of the form abbw or aabw for any w ∈ {0, 1, 2}∗ and a, b ∈ {0, 1, 2}.
This case matches back to the three-letter case and a∗bbw or aab∗w are then languages
resulting by pumping within the first three symbols which prove that the language
satisfies the pumping lemma with this constant.

(b) The word is of the form auvvw for some u, v, w ∈ {0, 1, 2}∗ with 0 < |v| <
1000000. In this case, a∗uvvw is a subset of the language and the pumping constant
is met.

(c) The word is of the form abaw for some w ∈ {0, 1, 2}∗. Then ab∗aw ⊆ L, as
when one omits the b then it starts with aa and when one repeats the b it has the
subword bb. So also in this case the pumping constant is met.

(d) The word is of the form abcbw, then abc∗bw ⊆ L and the pumping is in the
third symbol and the pumping constant is met.

(e) The word is of the form abcaw for some w ∈ {0, 1, 2}∗ then a(bc)∗aw ⊆ L. If
one omits the pump bc then the resulting start starts with aa and if one repeats the
pump then the resulting word has the subword bcbc.

One can easily verify that this case distinction is exhaustive (with a, b, c ranging
over {0, 1, 2}). Thus in each case where the word is in L, one can find a pumping
which involves only positions within its first three symbols.

Solution for Selftest 5.62. The automaton has five states named s0, s1, s2, q1, q2.
The start state is s0 and the set of accepting states is {q1, q2}. The goal is that after
processing a number w with remainder a by 3, if this number is a multiple of 3 or
of 5 then the automaton is in the state sa else it is in the state qa. Let c denote
the remainder of (a + b) at division by 3, where b is the decimal digit on the input.
Now one can define the transition function δ as follows: If b ∈ {0, 5} or c = 0 then
δ(sa, b) = δ(qa, b) = sc else δ(sa, b) = δ(qa, b) = qc. Here the entry for δ(qa, b) has to
be ignored if a = 0.

The explanation behind this automaton is that the last digit reveals whether the
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number is a multiple of five and that the running sum modulo three reveals whether
the number is a multiple of 3. Thus there are two sets of states, s0, s1, s2 which store
the remainder by 3 in the case that the number is a multiple of five and q0, q1, q2 which
store the remainder by 3 in the case that the number is not a multiple of five. By
assumption only the states q1, q2 are accepting. Above rules state how to update the
states. As s0, q0 are both rejecting and as they have in both cases the same successors,
one can fusionate these two states and represent them by s0 only, thus only five states
are needed. Note that s1 and q1 differ as one is accepting and one is rejecting, similarly
s2 and q2. Furthermore, given a ∈ {0, 1, 2}, the digit b = 3 − a transfers from sc, qc
into a rejecting state iff c = a, hence the states s0, s1, s2 are all different and similarly
q1, q2. So one cannot get a smaller finite automaton for this task.

Solution for Selftest 5.63. In the following definition it is permitted that elements
of sets are listed multiply in a set encoded into a regular expression. So one defines
F as follows:

F (∅) = ∅;
F ({w1, . . . , wn}) = {0|w1|, 0|w2|, . . . , 0|wn|};

F ((σ ∪ τ)) = (F (σ) ∪ F (τ));
F ((σ · τ)) = (F (σ) · F (τ));
F ((σ)∗) = (F (σ))∗.

Here bracketing conventions from the left side are preserved. One could also define
everything without a structural induction by saying that in a given regular expression,
one replaces every occurrence of a digit (that is, 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9) by 0.

Solution for Selftest 5.64. First one considers the nondeterministic finite automa-
ton with states {s0, s1, . . . , s999} such that the automaton goes, on any symbol, from
se to se+1 in the case that e < 999 and from s999 to s0. Furthermore, s999 is the only
accepting state. This nfa is actually a dfa and it is easy to see that all accepted words
have the length k · 1000 + 999, so the shortest accepted word has length 999.

Second assume that an nfa with 1000 states is given and that x is a shortest ac-
cepted word. There is a shortest run on this nfa for x. If there are two different
prefixes u, uv of x such that the nfa at this run is in the same state and if x = uvw
then the nfa also accepts the word uw, hence x would not be the shortest word. Thus,
all the states of the nfa including the first one before starting the word and the last
one after completely processing the word are different; thus the number of symbols in
x is at least one below the number of states of the nfa and therefore |x| ≤ 999.

Solution for Selftest 5.65. First one shows that the constant must be larger than
7. So assume it would be 7 and consider the word 000111 which is in the language.
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One can now choose u0 = ε, u1 = 0, u2 = 0, u3 = 0, u4 = 1, u5 = 1, u6 = 1, u7 = ε
and 000111 = u0u1u2u3u4u5u6u7. The next is to show that there are no i, j with
0 < i < j ≤ 7 such that u0 . . . ui−1(ui . . . uj−1)

∗uj . . . u7 is a subset of the language. If
ui . . . uj−1 contains at least one 1 then 0 . . . ui−1(ui . . . uj−1)

2uj . . . u7 would not be in
the language as it contains too many ones. If ui . . . uj−1 contains at least one 0 then

0 . . . ui−1(ui . . . uj−1)
0uj . . . u7 would not be in the language as it contains not enough

zeroes. Thus the block pumping constant cannot be 7.
Second one shows that the constant can be chosen to be 8. Given any word

u0u1u2u3u4u5u6u7u8 of the language, only three of the blocks uk can contain a 1.
Furthermore, the blocks u1, u2, u3, u4, u5, u6, u7 must be non-empty, as otherwise one
could pump the empty block. So at least four of these blocks contain a 0. Thus one
can pump any single block which does not contain a one, as there remain three further
blocks containing at least one 0 and the number of ones is not changed; it follows that
the block pumping constant is 8.

Solution for Selftest 5.66. This is a famous language. The grammar is made such
that there are two different symbols a, b such that between these are as many symbols
as either before a or behind b; as there are only two symbols, one can choose a = 0
and b = 1. The grammar is the following: ({S, T, U}, {0, 1}, P, S) with P containing
the rules S → TU |UT , U → 0U0|0U1|1U0|1U1|0 and T → 0T0|0T1|1T0|1T1|1. Now
U produces 0 and T produces 1 and before terminalising, these symbols produce the
same number of symbols before and after them. So for each word generated there
are n,m ∈ N such that the word is in {0, 1}n · {0} · {0, 1}n+m · {1} · {0, 1}m or in
{0, 1}n · {1} · {0, 1}n+m · {0} · {0, 1}m; in both cases, the symbols at positions n and
(n+m+ 1) + n are different where the word itself has length 2(n+m+ 1), thus the
word cannot be of the form vv. If a word w = uv with |u| = |v| = k and u, v differ at
position n then one lets m = k− n− 1 and shows that the grammar can generate uv
with parameters n,m as given.

Solution for Selftest 5.67. The grammar contains the non-terminals S, T and the
rules S → ε, 01T and T → T012|2 and, for all a, b ∈ {0, 1, 2}, the rules Ta → aT ,
Ta→ aT , Tab→ bTa, bTa→ Tab. The start-symbol is S and the terminal alphabet
is {0, 1, 2}.

Solution for Selftest 5.68. Σ = {0, 1, 2, 3}, N = {S, T, U, V,W} and the start
symbols is S. The rules are S → T23, T → T2|U , U → UV |UW |2, V 0 → 0V ,
V 1 → 1V , V 2 → 02V , V 3 → 03, W0 → 0W , W1 → 1W , W2 → 12W , W3 → 13.

The idea is to create first an U followed by a sequence of 2 and then a 3. The U
can send off a V or a W to the right and eventually becomes the first 2. The V moves
to the right over 0 and 1; whenever it crosses a 2, it creates a 0 before the 2, when it
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reaches the 3 at the end, it becomes a 0 before the 3. The W moves to the right over
0 and 1; whenever it crosses a 2, it creates a 1 before the 2, when it reaches the 3 at
the end, it becomes a 1 before the 3.

Solution for Selftest 5.69. Σ = {0, 1, 2, 3}, N = {S, T, U, V,W} and the start
symbols is S. The rules are S → TU3, T → TU |V 1, V → V 1|3, 1U → U1W ,
0U → 00, 3U → 30, W1 → 1W , WU → UW , W2 → 2W , W3 → 23.

The idea is to create a word 31jU i3 with the first rules, here i, j ≥ 1. Now the U
can only move to the front until they reach a 3 or a 0, each time they hop over a 1, a
W is created. When they reach a 0 or 3, they become a 0. The W move to the back
until they reach the back 3 and then they become a 2.
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6 Normalforms and Algorithms

For context-free languages, there are various normal forms which can be used in order
to make algorithms or carry out certain proofs. These two normal forms are the
following ones.

Definition 6.1: Normalforms. Consider a context-free grammar (N,Σ, P, S) with
the following basic properties: if S ⇒∗ ε then S → ε occurs in P and no rule has any
occurrence of S on the right side; there is no rule A→ ε for any A 6= S;

The grammar is in Chomsky Normal Form in the case that every rule (except
perhaps S → ε) is either of the form A → a or of the form A → BC for some
A,B,C ∈ N and terminal a ∈ Σ.

The grammar is in Greibach Normal Form in the case that every rule (except
perhaps S → ε) has a right hand side from ΣN∗.

Algorithm 6.2: Chomsky Normal Form. There is an algorithm which transforms
any given context-free grammar (N0,Σ, P0, S) into a new grammar (N4,Σ, P4, S

′)
in Chomsky Normal Form. Assume that the grammar produces at least one word
(otherwise the algorithm will end up with a grammar with an empty set of non-
terminals).

1. Dealing with ε: Let N1 = N0 ∪ {S ′} for a new non-terminal S ′; Initialise P1 =
P0 ∪ {S ′ → S};
While there are A,B ∈ N1 and v, w ∈ (N1 ∪ Σ)∗ with A → vBw,B → ε in P1

and A→ vw not in P1 Do Begin P1 = P1 ∪ {A→ vw} End;
Remove all rules A→ ε for all A ∈ N0 from P1, that is, for all A 6= S ′;
Keep N1, P1 fixed from now on and continue with grammar (N1,Σ, P1, S

′);

2. Dealing with single terminal letters: Let N2 = N1 and P2 = P1;
While there are a letter a ∈ Σ and a rule A → w in P2 with w 6= a and a
occurring in w
Do Begin Choose a new non-terminal B /∈ N2;
Replace in all rules in P2 all occurrences of a by B;
update N2 = N2 ∪ {B} and add rule B → a to P2 End;
Continue with grammar (N2,Σ, P2, S

′);

3. Breaking long ride hand sides: Let N3 = N2 and P3 = P2;
While there is a rule of the form A→ Bw in P3 with A,B ∈ N3 and w ∈ N3 ·N+

3

Do Begin Choose a new non-terminal C /∈ N3 and let N3 = N3 ∪ {C};
Add the rules A→ BC,C → w into P3 and remove the rule A→ Bw End;
Continue with grammar (N3,Σ, P3, S

′);
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4. Removing rules A → B: Make a table of all (A,B), (A, a) such that A,B ∈ N3,
a ∈ Σ and, in the grammar (N3,Σ, P3, S

′), A⇒∗ B and A⇒∗ a, respectively;
Let N4 = N3 and P4 contain the following rules:
S ′ → ε in the case that this rule is in P3;
A→ a in the case that (A, a) is in the table;
A→ BC in the case that there is D → EF in P3 with (A,D), (E,B), (F,C) in
the table;
The grammar (N4,Σ, P4, S

′) is in Chomsky Normalform.

Example 6.3. Consider the grammar ({S}, {0, 1}, {S → 0S0|1S1|00|11}, S) mak-
ing all palindromes of even length; this language generates all non-terminals of even
length. A grammar in Chomsky Normal Form for this language needs much more
non-terminals. The set of non-terminals is {S, T, U, V,W}, the alphabet is {0, 1}, the
start symbols is S and the rules are S → TV |UW , T → V S|0, U → WS|1, V → 0,
W → 1. The derivation S ⇒ 0S0 ⇒ 01S10 ⇒ 010010 in the old grammar is equiv-
alent to S ⇒ TV ⇒ V SV ⇒ 0SV ⇒ 0S0 ⇒ 0UW0 ⇒ 0WSW0 ⇒ 0WS10 ⇒
01S10 ⇒ 01TV 10 ⇒ 010V 10 ⇒ 010010 in the new grammar.

Exercise 6.4. Bring the grammar ({S, T}, {0, 1}, {S → TTTT, T → 0T1|ε}, S) into
Chomsky Normal Form.

Exercise 6.5. Bring the grammar ({S, T}, {0, 1}, {S → ST |T, T → 0T1|01}, S) into
Chomsky Normal Form.

Exercise 6.6. Bring the grammar ({S}, {0, 1}, {S → 0SS11SS0, 0110}, S) into
Chomsky Normal Form.

Algorithm 6.7: Removal of Useless Nonterminals. When given a gram-
mar (N0,Σ, P0, S) in Chomsky Normal Form, one can construct a new grammar
(N2,Σ, P2, S) which does not have useless non-terminals, that is, every non-terminal
can be derived into a word of terminals and every non-terminal can occur in some
derivation.

1. Removing non-terminating non-terminals: Let N1 contain all A ∈ N0 for
which there is a rule A→ a or a rule A→ ε in P0;
While there is a rule A→ BC in P0 with A ∈ N0−N1 and B,C ∈ N1 Do Begin
N1 = N1 ∪ {A} End;
Let P1 be all rules A→ w in P0 such that A ∈ N1 and w ∈ N1 ·N1 ∪ Σ ∪ {ε};
If S /∈ N1 then terminate with empty grammar else continue with grammar
(N1,Σ, P1, S).
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2. Selecting all reachable non-terminals: Let N2 = {S};
While there is a rule A→ BC in P1 with A ∈ N2 and {B,C} 6⊆ N2

Do Begin N2 = N2 ∪ {B,C} End;
Let P2 contain all rules A → w in P1 with A ∈ N2 and w ∈ N2 ·N2 ∪ Σ ∪ {ε};
The grammar (N2,Σ, P2, S) does not contain any useless non-terminal.

Quiz 6.8. Consider the grammar with terminal symbol 0 and non-terminal symbols
Q,R, S, T, U, V,W,X, Y, Z and rules S → TU |UV, T → UT |TV |TW,R → VW |QQ|0,
Q→ 0, U → VW |WX,V → WX|XY |0,W → XY |Y Z|0 and start symbol S. Deter-
mine the set of reachable and terminating non-terminals.

Exercise 6.9. Consider the grammar

({S0, S1, . . . , S9}, {0}, {S0 → S0S0, S1 → S2S3, S2 → S4S6|0, S3 → S6S9,
S4 → S8S2, S5 → S0S5, S6 → S2S8, S7 → S4S1|0, S8 → S6S4|0, S9 →
S8S7}, S1).

Determine the set of reachable and terminating non-terminals and explain the steps
on the way to this set. What is the shortest word generated by this grammar?

Exercise 6.10. Consider the grammar

({S0, S1, . . . , S9}, {0}, {S0 → S1S1, S1 → S2S2, S2 → S3S3, S3 →
S0S0|S4S4, S4 → S5S5, S5 → S6S6|S3S3, S6 → S7S7|0, S7 → S8S8|S7S7,
S8 → S7S6|S8S6, S9 → S7S8|0}, S1).

Determine the set of reachable and terminating non-terminals and explain the steps
on the way to this set. What is the shortest word generated by this grammar?

Algorithm 6.11: Emptyness Check. The above algorithms can also be used
to check whether a context-free grammar produces any word. The algorithm works
indeed for any context-free grammar by using Algorithm 6.2 to make the grammar
into Chomsky Normal Form and then Algorithm 6.7 to remove the useless symbols.
A direct check would be the following for a context-free grammar (N,Σ, P, S):

Initialisation: Let N ′ = ∅;

Loop: While there are A ∈ N −N ′ and a rule A→ w with w ∈ (N ′ ∪ Σ)∗

Do Begin N ′ = N ′ ∪ {A} End;

Decision: If S /∈ N ′ then the language of the grammar is empty else the language of
the grammar contains some word.
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Algorithm 6.12: Finiteness Check. One can also check whether a language
in Chomsky Normal Form generates an infinite set. This algorithm is an extended
version of the previous Algorithm 6.11: In the first loop, one determines the set N ′ of
non-terminals which can be converted into a word (exactly as before), in the second
loop one determines for all members A ∈ N ′ the set N ′′(A) of non-terminals which
can be obtained from A in a derivation which needs more than one step and which
only uses rules where all members on the right side are in N ′. If such a non-terminal
A satisfies A ∈ N ′′(A) then one can derive infinitely many words from A; the same
applies if there is B ∈ N ′′(A) with B ∈ N ′′(B). Thus the algorithm looks as follows:

Initialisation 1: Let N ′ = ∅;

Loop 1: While there are A ∈ N −N ′ and a rule A→ w with w ∈ (N ′ ∪ Σ)∗

Do Begin N ′ = N ′ ∪ {A} End;

Initialisation 2: For all A ∈ N , let N ′′(A) = ∅;

Loop 2: While there are A,B,C,D ∈ N ′ and a rule B → CD with B ∈ N ′′(A)∪{A}
and (C /∈ N ′′(A) or D /∈ N ′′(A))
Do Begin N ′′(A) = N ′′(A) ∪ {C,D} End;

Decision: If there is A ∈ N ′′(S) ∪ {S} with A ∈ N ′′(A) then the language of the
grammar is infinite else it is finite.

Exercise 6.13. The checks whether a grammar in Chomsky Normal Form generates
the empty set or a finite set can be implemented to run in polynomial time. However,
for non-empty grammars, these checks do not output an element witnessing that the
language is non-empty. If one adds the requirement to list such an element completely
(that is, all its symbols), what is the worst time complexity of this algorithm: polyno-
mial in n, exponential in n, double exponential in n? Give reasons for the answer.
Here n is the number of non-terminals in the grammar, note that the number of rules
is then also limited by O(n3).

Exercise 6.14. Consider the grammar ({S, T, U, V,W}, {0, 1, 2}, P, S) with P con-
sisting of the rules S → TT , T → UU , U → VW |WV , V → 0, W → 1. How
many words does the grammar generate: (a) None, (b) One, (c) Two, (d) Three, (e)
Finitely many and at least four, (f) Infinitely many?

Exercise 6.15. Consider the grammar ({S, T, U, V,W}, {0, 1, 2}, P, S) with P con-
sisting of the rules S → ST , T → TU , U → UV , V → VW , W → 0. How many
words does the grammar generate: (a) None, (b) One, (c) Two, (d) Three, (e) Finitely
many and at least four, (f) Infinitely many?
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Exercise 6.16. Consider the grammar ({S, T, U, V,W}, {0, 1, 2}, P, S) with P con-
sisting of the rules S → UT |TU |2, T → V V , U → WW , V → 0, W → 1. How
many words does the grammar generate: (a) None, (b) One, (c) Two, (d) Three, (e)
Finitely many and at least four, (f) Infinitely many?

Exercise 6.17. Consider the grammar ({S, T, U, V,W}, {0, 1, 2}, P, S) with P con-
sisting of the rules S → SS|TT |UU , T → V V , U → WW , V → 0, W → WW . How
many words does the grammar generate: (a) None, (b) One, (c) Two, (d) Three, (e)
Finitely many and at least four, (f) Infinitely many?

Description 6.18: Derivation Tree. A derivation tree is a representation of a
derivation of a word w by a context-free grammar such that each node in a tree is
labeled with a non-terminal A and the successors of the node in the tree are those
symbols, each in an extra node, which are obtained by applying the rule in the deriva-
tion to the symbol A. The leaves contain the letters of the word w and the root of
the tree contains the start symbol S. For example, consider the grammar

({S, T, U}, {0, 1}, {S → SS|TU |UT, U → 0|US|SU, T → 1|TS|ST}, S).

Now the derivation tree for the derivation S ⇒ TU ⇒ TSU ⇒ TUTU ⇒ 1UTU ⇒
10TU ⇒ 101U ⇒ 1010 can be the following:

S

T

T

1

S

U

0

T

1

U

0

However, this tree is not unique, as it is not clear whether in the derivation step
TU ⇒ TSU the rule T → TS was applied to T or U → SU was applied to U . Thus
derivation trees can be used to make it clear how the derivation was obtained. On
the other hand, derivation trees are silent about the order in which derivations are
applied to nodes which are not above or below each other; this order is, however, also
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not relevant for the result obtained. For example, once the derived word has reached
the length 4, it is irrelevant for the word obtained in which order one converts the
non-terminals into terminals.

Exercise 6.19. For the grammar from Description 6.18, how many derivation trees
are there to derive 011001?

Exercise 6.20. For the grammar from Description 6.18, how many derivation trees
are there to derive 000111?

Exercise 6.21. Consider the grammar

({S, T}, {0, 1, 2}, {S → TT, T → 0T1|2}, S).

Draw the derivation tree for the derivation of 00211021 in this grammar and prove
that for this grammar, every word in the language generated has a unique derivation
tree. Note that derivation trees are defined for all context-free grammars and not only
for those in Chomsky Normal Form.

The concept of the Chomsky Normal Form and of a Derivation Tree permit to prove
the version of the traditional pumping lemma for context-free languages; this result
was stated before, but the proof was delayed to this point.

Theorem 2.15 (b). Let L ⊆ Σ∗ be an infinite context-free language generated
by a grammar (N,Σ, P, S) in Chomsky Normal Form with h non-terminals. Then
the constant k = 2h+1 satisfies that for every u ∈ L of length at least k there is a
representation vwxyz = u such that |wxy| ≤ k, (w 6= ε or y 6= ε) and vwℓxyℓz ∈ L
for all ℓ ∈ N.

Proof. Assume that u ∈ L and |u| ≥ k. Let R be a derivation tree for the derivation
of u from S. If there is no branch of the tree R in which a non-terminal appears twice
then each branch consists of at most h branching nodes and the number of leaves of
the tree is at most 2h < k. Thus |u| ≥ k would be impossible. Note that the leaves
in the tree have terminals in their nodes and the inner nodes have non-terminals in
their node. For inner nodes r, let A(r) denote the non-terminal in their node.

Thus there must be nodes r ∈ R for which the symbol A(r) equals to A(r′) for
some descendant r′. By taking r with this property to be as distant from the root
as possible, one has that there are no descendant r′ of r and r′′ of r′ such that
A(r′) = A(r′′). Thus, each descendant r′ of r has at most 2h leaves descending from
r′ and r has at most k = 2h+1 descendants. Now, if one terminalises the derivations
except for what comes from A(r) and the descendant A(r′) with A(r′) = A(r), one
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can split the word u into v, w, x, y, z such that S ⇒∗ vA(r)z ⇒∗ vwA(r′)yz ⇒∗ vwxyz
and one has also that A(r) ⇒∗ wA(r′)y = wA(r)y and A(r′) ⇒∗ x.

These observations permit to conclude that S ⇒∗ vwℓxyℓz for all ℓ ∈ N. As
A(r) ⇒ wxy and the branches have below r at most h non-terminals on the branch,
each such branch has at most h + 1 branching nodes starting from r and the word
part in u generated below r satisfies |wxy| ≤ 2h+1 = k. Furthermore, only one of the
two children of r can generate the part which is derived from A(r′), thus at least one
of w, y must be non-empty. Thus the length constraints of the pumping lemma are
satisfied as required.

Example of a Derivation Tree for Proof. The following derivation tree shows an
example on how r and r′ are chosen. The choice is not always unique.

S

T at r

T at r′

1

S

T at r′

1

U

0

U

0

The grammar is the one from Description 6.18 and the tree is for deriving the word
1100. Both symbols S and T are repeated after their first appearance in the tree;
however, T occurs later than S and so the node r is the node where T appears for the
first time in the derivation tree. Now both descendants of r which have the symbol
T in the node can be chosen as r′ (as indicated). If one chooses the first, one obtains
that all words of the form 1(10)ℓ0 are in the language generated by the grammar; as
one would have that S ⇒∗ T0 ⇒∗ T (10)ℓ0 ⇒∗ 1(10)ℓ0. If one choose the second,
one obtains that all words of the form 1ℓ10ℓ0 are in the language generated by the
grammar, as one would have that S ⇒∗ T0 ⇒∗ 1ℓT0ℓ0 ⇒ 1ℓ10ℓ0. In both cases, ℓ can
be any natural number.

Ogden’s Lemma is not imposing a length-constraint but instead permitting to mark
symbols. Then the word will be split such that some but not too many of the marked
symbols go into the pumped part. This allows to influence where the pump is.
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Theorem 6.22: Ogden’s Pumping Lemma [69]. Let L ⊆ Σ∗ be an infinite
context-free language generated by a grammar (N,Σ, P, S) in Chomsky Normal Form
with h non-terminals. Then the constant k = 2h+1 satisfies that for every u ∈ L with
at least k marked symbols, there is a representation vwxyz = u such that wxy contains
at most k marked symbols, wy contains at least 1 marked symbol and vwℓxyℓz ∈ L
for all ℓ ∈ N.

Proof. Assume that u ∈ L and |u| ≥ k. Let R be a derivation tree for the derivation
of u from S and assume that at least k symbols in u are marked. Call a node r
in the tree a marked branching node iff marked symbols can be reached below both
immediate successors of the node. If there is no branch of the tree R in which a
non-terminal appears twice on marked branching positions then each branch contains
at most h marked branching nodes and the number of leaves with marked symbols of
the tree is at most 2h < k. Thus u ≥ k could not have k marked symbols.

Thus there must be marked branching nodes r ∈ R for which the symbol A(r)
equals to A(r′) for some descendant r′ which is also a marked branching node. By
taking r with this property to be as distant from the root as possible, one has that
there are no marked branching descendant r′ of r and no marked branching descendant
r′′ of r′ such that A(r′) = A(r′′). Thus, each marked branching descendant r′ of r has
at most 2h marked leaves descending from r′ and r has at most k = 2h+1 descendants
which are marked leaves. Now, if one terminalises the derivations except for what
comes from A(r) and the descendant A(r′) with A(r′) = A(r), one can split the word
u into v, w, x, y, z such that S ⇒∗ vA(r)z ⇒∗ vwA(r′)yz ⇒∗ vwxyz and one has also
that A(r) ⇒∗ wA(r′)y = wA(r)y and A(r′) ⇒∗ x.

These observations permit to conclude that S ⇒∗ vwℓxyℓz for all ℓ ∈ N. As
A(r) ⇒ wxy and the branches have below r at most h non-terminals on marked
branching nodes, each such branch has at most h+1 marked branching nodes starting
from r and the word part wxy in u generated below r satisfies that it contains at most
2h+1 = k many marked leaves. Furthermore, only one of the two children of r can
generate the part which is derived from A(r′), thus at least one of w, y must contain
some marked symbols. Thus the length constraints of Ogden’s Pumping Lemma are
satisfied as required.

Example 6.23. Let L be the language of all words w ∈ 1+(0+1+)+ where no two
runs of zeroes have the same length. So 100010011 ∈ L and 11011011001 /∈ L. Now
L satisfies the traditional pumping lemma for context-free languages but not Ogden’s
Pumping Lemma.

Proof. First one shows that L satisfies Corollary 2.16 with pumps of the length of
one symbol; this then implies that also Theorem 2.15 (b) is satisfied, as there only the
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length of the pumps with the part in between is important but not their position in
the full word. Let u ∈ L and |u| > 3. If 11 occurs in u then one can pump the first 1
which neighbours to another 1, as pumping this 1 does not influence the number and
lengths of the runs of zeroes in the word u. If 11 does not occur in u and there is only
one run of zeroes, so u ∈ 10+1, then one pumps the first of these zeroes; note that
11 ∈ L and thus if u = 10h+11 then 10∗0h1 ⊆ L. If there are several runs and 11 does
not occur in u then one pumps the border between the longest run of zeroes and some
neighbouring run of zeroes; if this border is omitted then the run of zeroes becomes
longer and is different from all others in length; if this border is repeated, the number
and lengths of the runs of zeroes is not modified. For example, if u = 1001010001
then 100101∗0001 ⊆ L, as in the case that the pump is omitted the resulting word
100100001 is in L as well, as the longest run of zeroes is fusionated with another run
of zeroes.

In order to see that L does not satisfy Ogden’s Lemma, one considers the word

u = 101021031 . . . 104k−1104k1

and one marks the k zeroes in the subword 10k1 of u. Now consider any splitting
vwxyz of u.

If w is in {0, 1}∗ − {0}∗ − {1}∗ then ww contains a subword of the form 10h1 and
xw4xy4z contains this subword at least twice. Thus w cannot be chosen from this set;
similarly for y.

If w, y are both in {1}∗ then none of the marked letters is pumped and therefore
this is also impossible.

If w ∈ {0}+ and y ∈ {1}∗ then the word vwwxyyz has one border increased in
depth and also the subword 10k1 replaced by 10k+h1 where k < k + h ≤ 2k. Thus
10k+h1 occurs twice as a subword of vwwxyyz and therefore vwwxyyz /∈ L; similarly
one can see that if w ∈ {1}∗ and y ∈ {0}+ this also causes vwwxyyz /∈ L.

The remaining case is that both w, y ∈ {0}+. Now one of them is, due to choice, a
subword of 10k1 of length h, the other one is a subword of 10k

′

1 of length h′ for some
h, h′, k′. If k′ = k then vwwxyyz contains the word 10h+h′+k1 twice (where h+h′ ≤ k
by w, y being disjoint subwords of 10k1); if k′ 6= k then the only way to avoid that
vwwxyyz contains 10k+h1 twice is to assume that k′ = k + h and the occurrence of
10k+h1 in u gets pumped as well — however, then 10k

′+h′

1 occurs in vwwxyyz twice,
as k + 1 ≤ k + h ≤ 2k and k + h+ 1 ≤ k′ + h′ ≤ 4k.

So it follows by case distinction that L does not satisfy Ogden’s Lemma. Thus L
cannot be a context-free language.

Theorem 6.24: Square-Containing Words (Ehrenfeucht and Rozenberg [26],
Ross and Winklmann [75]). The language L of the square-containing ternary
words is not context-free.
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Proposition 6.25. The language L of the square-containing ternary words satisfies
Ogden’s Lemma.

Proof. This can be shown for the constant 7. Let u be any word in L and assume
that at least 7 letters are marked.

Consider those splittings vwxyz = u where the following conditions are met:

• v ends with the same letter a with which z starts;

• w contains at least one marked letter;

• x, y are ε.

Among all possible such splittings, choose one where w is as short as possible.
First one has to show that such a splitting exists. Let c be a marked letter such

that there are at least three marked letters before and at least three marked letters
after c. If there is any letter a which occurs both before and after c, then one could
choose v as the letters up to some occurrence of a before c, z as the letters at and
beyond some occurrence of a after c and w to be all the letters in between. If no
such a exists then there is one letter which only occurs before c and two letters which
only occurs after c or vice versa, say the first. Hence one letter a occurs three times
marked before c and then one can split with v up to the first marked occurrence of
a, w between the first and third marked occurrence of a and z at and after the third
marked occurrence of a. Thus there is such a splitting and now one takes it such that
w is as short as possible.

If w would contain three marked letters of the same type b then in the above the
word ṽ ending with the first of these b, the word z̃ starting from the third of these b
and the word w̃ of the letters in between with x̃, ỹ being ε would also appear in the
list and therefore w would not be as short as possible.

Thus for each of 0, 1, 2, there are only two marked letters of this type inside w
and w contains at most six marked letters. Now vz = vxz ∈ L as it contains aa as a
subword. Furthermore vwℓxyℓz ∈ L for ℓ > 1, as w is not empty. vwxyz = u ∈ L by
choice of u. Thus the language L satisfies Ogden’s Pumping Lemma with constant
7.

A direct example not using cited results can also be constructed as follows.

Example 6.26. Consider the language L of all words w ∈ {0, 1}∗ such that either
w ∈ {0}∗ ∪ {1}∗ or the difference n between the number of 0 and number of 1 in w is
a cube, that is, in {. . . ,−64,−27,−8,−1, 0, 1, 8, 27, 64, . . .}. The language L satisfies
Ogden’s Pumping Lemma but is not context-free.

Proof. The language L∩ ({1} · {0}+) equals to {10n3+1 : n ∈ N}. If L is context-free
so must be this intersection; however, it is easy to see that this intersection violates
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Theorem 2.15 (b).
For the verification of Ogden’s Pumping Lemma with constant 2, consider a word

u ∈ L which contains both, zeroes and ones, and consider the case that at least one
letter is marked. Split the word u into vwxyz such that w, y consist of two different
letters (one is 0 and one is 1) and at least of one of these two letters is marked and no
letter in x is marked. If letters of both types of marked, one takes that pair of marked
different letters which are as near to each other as possible; if only zeroes are marked,
one picks a 1 and takes for the other letter the nearest 0 which is marked; if only ones
are marked, one picks a 0 anywhere in the word and choses for the other letter the
nearest 1 which is marked. Then the part x between w and y picked does not contain
any marked letter, as otherwise the condition to choose the “nearest marked letter”
would be violated. Furthermore, v is the part before w and z is the part after y in
the word u.

Now every word of the form vwℓxyℓz has the same difference between the occur-
rences of 0 and 1 as the original word u; thus all vwℓxyℓz are in L and so Ogden’s
Pumping Lemma is satisfied.

Exercise 6.27. Prove that the language

L = {ah · w : a ∈ {0, 1, 2}, w ∈ {0, 1, 2}∗, w is square-free and h ∈ N}

satisfies Theorem 2.15 (b) but does not satisfy Ogden’s Pumping Lemma. The fact
that there are infinitely many square-free words can be used without proof; recall that a
word w is square-free iff it does not have a subword of the form vv for any non-empty
word v.

Exercise 6.28. Use the Block Pumping Lemma to prove the following variant of
Ogden’s Lemma for regular languages: If a language L satisfies the Block Pumping
Lemma with constant k + 1 then one can, for each word u of length at least k with
having at least k marked symbols, find a splitting of the word into parts x, y, z such
that u = xyz and xy∗z ⊆ L and y contains at least 1 and at most k marked symbols.

Example 6.29. Let L be the language generated by the grammar

({S}, {0, 1}, {S → 0S0|1S1|00|11|0|1}, S),

that is, L is the language of all binary non-empty palindromes. For a grammar
in Greibach Normal Form for L, one needs two additional non-terminals T, U and
updates the rules as follows:

S → 0ST |1SU |0T |1U |0|1, T → 0, U → 1.
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Let H be the language generated by the grammar

({S}, {0, 1}, {S → SS|0S1|1S0|10|01}, S),

that is, H is the language of all non-empty binary words with same number of 0
and 1. For a grammar in Greibach Normal Form for H, one needs two additional
non-terminals T, U and updates the rules as follows:

S → 0SU |0U |1ST |1T, T → 0|0S, U → 1|1S.

In all grammars above, the alphabet is {0, 1} and the start symbol is S.

Exercise 6.30. Let L be the first language from Example 6.29. Find a grammar in
Greibach Normal Form for L ∩ 0∗1∗0∗1∗.

Exercise 6.31. Let H be the second language from Example 6.29. Find a grammar
in Greibach Normal Form for H ∩ 0∗1∗0∗1∗.
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7 Deterministic Membership Testing

For regular languages, a finite automaton can with one scan of the word decide whether
the word is in the language or not. A lot of research had been dedicated to develop
mechanisms for deciding membership of context-free and context-sensitive languages.
For context-free languages, the algorithms use polynomial time, for context-sensitive
languages, they can do in polynomial space and it is conjectured that it is in some
cases impossible to get polynomial time. The conjecture is equivalent to the conjecture
that the complexity classes P and PSPACE (polynomial time and polynomial space,
respectively) are different. This difference is implied by the conjecture that P is
different from NP; the latter is believed by 83% of the people in complexity theory
who participated in a recent poll by Bill Gasarch [33].

Cocke [19], Kasami [52] and Younger [91] developed independently of each other
an algorithm which solves the membership of a word in a given context-free grammar
in time O(n3). For this algorithm, the grammar is fixed and its size is considered to
be constant; if one factors the size of the grammar in, then the algorithm is O(n3 ·m)
where m is the size of the grammar (number of rules).

Algorithm 7.1: Cocke, Kasami and Younger’s Parser [19, 52, 91]. Let a
context-free grammar (N,Σ, P, S) be given in Chomsky Normal Form and let w be a
non-empty input word. Let 1, 2, . . . , n denote the positions of the symbols in w, so
w = a1a2 . . . an. Now one defines variables Ei,j with i < j, each of them taking a set
of non-terminals, as follows:

1. Initialisation: For all k,

Ek,k = {A ∈ N : A→ ak is a rule}.

2. Loop: Go through all pairs (i, j) such that they are processed in increasing order
of the difference j − i and let

Ei,j = {A : ∃ rule A→ BC ∃k [i ≤ k < j and B ∈ Ei,k and C ∈ Ek+1,j]}.

3. Decision: w is generated by the grammar iff S ∈ E1,n.

To see that the run-time is O(n3 ·m), note that the initialisation takes time O(n ·m)
and that in the loop, one has to fill O(n2) entries in the right order. Here each entry
is a vector of up to m bits to represent which of the non-terminals are represented;
initially they are 0. Then for each rule A → BC and each k with i ≤ k < j, one
checks whether the entry for B in the vector for Ei,k and the entry for C in the vector
for Ek+1,j are 1; if so, one adjusts the entry for A in the vector of Ei,j to 1. This
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loop runs over O(n ·m) entries with n being a bound on the number of values k can
take and m being the number of rules, thus each of the variables Ei,j is filled in time
O(n · m) and the overall time complexity of the loop is O(n3 · m). The decision is
O(1). Thus the overall time complexity is O(n3 ·m).

Example 7.2. Consider the grammar ({S, T, U}, {0, 1}, {S → SS|TU |UT, U →
0|US|SU, T → 1|TS|ST}, S) and the word 0011. Now one can compute the entries
of the Ei,j as follows:

E1,4 = {S}
E1,3 = {U} E2,4 = {T}

E1,2 = ∅ E2,3 = {S} E3,4 = ∅
E1,1 = {U} E2,2 = {U} E3,3 = {T} E4,4 = {T}
0 0 1 1

As S ∈ E1,4, the word 0011 is in the language. Now consider the word 0111.

E1,4 = ∅
E1,3 = {T} E2,4 = ∅

E1,2 = {S} E2,3 = ∅ E3,4 = ∅
E1,1 = {U} E2,2 = {T} E3,3 = {T} E4,4 = {T}
0 1 1 1

As S /∈ E1,4, the word 0111 is not in the language.

Quiz 7.3. Let the grammar be the same as in the previous example. Make the table
for the word 1001.

Exercise 7.4. Consider the grammar ({S, T, U, V,W}, {0, 1, 2}, P, S) with P consist-
ing of the rules S → TT , T → UU |V V |WW , U → VW |WV |V V |WW , V → 0,
W → 1. Make the entries of the Algorithm of Cocke, Kasami and Younger for the
words 0011, 1100 and 0101.

Exercise 7.5. Consider the grammar ({S, T, U, V,W}, {0, 1, 2}, P, S) with P consist-
ing of the rules S → ST |0|1, T → TU |1, U → UV |0, V → VW |1, W → 0. Make the
entries of the Algorithm of Cocke, Kasami and Younger for the word 001101.

Description 7.6: Linear Grammars. A linear grammar is a grammar where each
derivation has in each step at most one non-terminal. Thus every rule is either of
the form A → u or A → vBw for non-terminals A,B and words u, v, w over the
terminal alphabet. For parsing purposes, it might be sufficient to make the algorithm
for dealing with non-empty words and so one assumes that ε is not in the language.
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As in the case of the Chomsky Normal Form, one can put every linear language in a
normal form where all rules are either of the form A → c or A → cB or A → Bc for
non-terminals A,B and terminals c. This permits to adjust the algorithm of Cocke,
Kasami and Younger to the case of linear grammars where it runs in time O(n2 ·m),
where n is the length of the input word and m is the number of rules.

Algorithm 7.7: Parsing of Linear Grammars. Let a linear grammar (N,Σ, P, S)
be given in the normal form from Description 7.6 and let w be a non-empty input
word. Let 1, 2, . . . , n denote the positions of the symbols in w, so w = a1a2 . . . an.
Now one defines variables Ei,j with i < j, each of them taking a set of non-terminals,
as follows:

1. Initialisation: For all k,

Ek,k = {A ∈ N : A→ ak is a rule}.

2. Loop: Go through all pairs (i, j) such that they are processed in increasing order
of the difference j − i and let

Ei,j = {A : ∃ rule A→ Bc [B ∈ Ei,j−1 and c = aj] or

∃ rule A→ cB [c = ai and B ∈ Ei+1,j ]}.

3. Decision: w is generated by the grammar iff S ∈ E1,n.

To see that the run-time is O(n2 ·m), note that the initialisation takes time O(n ·m)
and that in the loop, one has to fill O(n2) entries in the right order. Here each entry
is a vector of up to m bits to represent which of the non-terminals are represented;
initially the bits are 0. Then for each rule, if the rule is A → Bc one checks whether
B ∈ Ei,j−1 and c = aj and if the rule is A → cB one checks whether B ∈ Ei+1,j and
c = ai. If the check is positive, one adjusts the entry for A in the vector of Ei,j to
1. This loop runs over O(m) entries with m being the number of rules, thus each of
the variables Ei,j is filled in time O(m) and the overall time complexity of the loop is
O(n2 ·m). The decision is O(1). Thus the overall time complexity is O(n2 ·m).

Example 7.8. Consider the grammar

({S, T, U}, {0, 1}, {S → 0|1|0T |1U, T → S0|0, U → S1|1}, S)

which is a linear grammar generating all non-empty binary palindromes. Then one
gets the following table for processing the word 0110:
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E1,4 = {S}
E1,3 = ∅ E2,4 = {T}

E1,2 = {U} E2,3 = {S, U} E3,4 = {T}
E1,1 = {S, T} E2,2 = {S, U} E3,3 = {S, U} E4,4 = {S, T}
0 1 1 0

As S ∈ E1,4, the word is accepted. Indeed, 0110 is a palindrome. For processing the
word 1110, one gets the following table:

E1,4 = {T}
E1,3 = {S, U} E2,4 = {T}

E1,2 = {S, U} E2,3 = {S, U} E3,4 = {T}
E1,1 = {S, U} E2,2 = {S, U} E3,3 = {S, U} E4,4 = {S, T}
1 1 1 0

As S /∈ E1,4, the word is rejected. It is easy to see that 1110 is not a palindrome and
that the algorithm is also correct in this case.

Exercise 7.9. For the grammar from Example 7.8, construct the table for the algo-
rithm on the word 0110110.

Exercise 7.10. Consider the following linear grammar:

({S, T, U}, {0, 1}, {S → 0T |T0|0U |U0, T → 0T00|1, U → 00U0|1}, S).

Convert the grammar into the normal form from Description 7.6 and construct then
the table of the algorithm for the word 00100.

Exercise 7.11. Which two of the following languages are linear? Provide linear
grammars for these two languages:

• L = {0n1m2k : n+ k = m};
• H = {0n1m2k : n+m = k};
• K = {0n1m2k : n 6= m or m 6= k}.

Algorithm 7.12: Kleene Star of Linear Grammar. Let L be a linear grammar.
Then there is an O(n2) algorithm which can check whether a word w of length n is
in L∗. Let w = a1a2 . . . an be the input word and n be its length.

First Part: Compute for each i, j with 1 ≤ i ≤ j ≤ n the set Ei,j of all non-terminals
which generate aiai+1 . . . aj.

Initialise Loop for Kleene Star: Let F0 = 1.
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Loop for Kleene Star: For m = 1, 2, . . . , n Do
Begin If there is a k < m with S ∈ Ek+1,m and Fk = 1
Then let Fm = 1 Else let Fm = 0 End.

Decision: w ∈ L∗ iff Fn = 1.

The first part is in O(n2) as the language is linear, see Algorithm 7.7. The Loop for
Kleene Star can be implemented as a double loop on the variables m and k and runs
in O(n2). The decision is afterwards reached by just checking one variable. Thus the
overall complexity is O(n2). For correctness, one just has to prove by induction that
Fm = 1 iff a1 . . . am is in L∗. Note that F0 = 1 as the empty word is in L∗ and the
inductive equation is that

a1 . . . am ∈ L∗ ⇔ ∃k < m [a1 . . . ak ∈ L∗ and ak+1 . . . am ∈ L]

which is implemented in the search; note that k can be 0 in the case that a1 . . . am ∈ L.

Exercise 7.13. Construct a quadratic time algorithm which checks whether a word
u is in H ·K · L where H,K,L are linear languages. The subalgorithms to make the
entries which of the subwords of u are in H,K,L can be taken over from Algorithm 7.7.

Exercise 7.14. Construct a quadratic time algorithm which checks whether a word u
is in (L∩H)∗ ·K where H,K,L are linear languages. The subalgorithms to make the
entries which of the subwords of u are in H,K,L can be taken over from Algorithm 7.7.

In the following exercise, one uses as the base case of regular expressions not finite lists
of words but arbitrary context-free languages. An example is to take two context-free
languages L1, L2 and then to consider expressions like

((L1 ∩ L2)
∗ · L1 · L2 · (L1 ∩ L2)

∗)+

and then the question is on how difficult the membership test for such a language
is. The main task of the exercise is to show that each such language has an O(n3)
parsing algorithm.

Exercise 7.15. Let the base case of expressions in this exercise be context-free lan-
guages and combine those by concatenation, union, intersection, set-difference, Kleene
Star and Kleene Plus. Consider regular expression with context-free languages as
primitive parts in the language which are combined by the given connectives. Now
describe by structural induction on how to construct an O(n3) decision procedure for
languages of this type.

The key idea is that whenever one combines one or two languages with concate-
nation, intersection, union, set difference, Kleene Plus or Kleene star, one can from
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algorithms which provide for any given subword ai . . . aj of the input word a1 . . . an a
value Ei,j, Ẽi,j ∈ {0, 1} denoting whether the subword is in or not in the language L
or L̃, respectively, create an algorithm which does the same for L ∩ L̃, L ∪ L̃, L− L̃,
L · L̃, L∗ and L+. Show that the corresponding computations of the new entries are
always in O(n3).

Description 7.16: Counting Derivation Trees. One can modify the algorithm
of Cocke, Kasami and Younger to count derivation trees. The idea is to replace one
entry which says which non-terminals generate a subword by an entry which says how
many trees generated from each non-terminal the corresponding subword. Here the
trees have the corresponding non-terminal as a root and the symbols of the subwords
in the leave and each node with its immediate successors corresponds to a rule in the
grammar.

More precisely, given a grammar (N,Σ, P, S) in Chomsky Normal Form and a
word w = a1a2 . . . an, then define for all positions (i, j) with 1 ≤ i ≤ j ≤ n and all
A ∈ N the following notions: Ei,j denotes the set of all nonterminals which generate
the subword ai . . . aj and Di,j,A denote the number of derivation trees which can, with
root A, derive a word ai . . . aj; for A ∈ N −Ei,j , the corresponding number Di,j,A is 0.

The following recursion-formula defines an algorithm to compute the values of the
notions Di,j,A: For each A ∈ N and i, if there is a rule A → i in P then Di,i,A = 1
else Di,i,A = 0. Furthermore, For each A ∈ N and each i, j with 1 ≤ i < j ≤ n, the
recrusion formula

Di,j,A =
∑

(B,C): A→BC ∈ P

∑

k: i≤k<j

Di,k,B ·Dk+1,j,C

holds and it does the following: It sums up for all rules A → BC and for all k with
i ≤ k < j the product Di,k,B · Dk+1,j,C which is the product of the the number of
trees having root B and generating ai . . . ak and the number of trees having root C
and generating ak+1 . . . aj. Thus one uses already these numbers of trees which have
been counted before and the fact that every tree with root A which generates a word
of at least length 2 can be uniquely decomposed into the rule which maps A to the
two successor non-terminals B,C in the left and right successor node of the tree and
the subtrees with generate the corresponding words from B and C, respectively; note
that the number of leaves of these subtrees determine the value of k.

Once that one has computed these values, one can determine the overall number
of derivation trees by just taking the number D1,n,S.

Exercise 7.17. Let P contain the rules V → V V |WW |0 and W → VW |WV |1 and
consider the grammar ({V,W}, {0, 1}, P,W ). How many derivation trees has the word
0011100?
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Exercise 7.18. Let P contain the rules V → V V |WW |0 and W → VW |WV |1 and
consider the grammar ({V,W}, {0, 1}, P,W ). How many derivation trees has the word
0000111?

Exercise 7.19. Let P contain the rules U → V U |UV |2, V → V V |WW |0 and
W → VW |WV |1 and consider the grammar ({U, V,W}, {0, 1, 2}, P, U). How many
derivation trees has the word 021111?

Exercise 7.20. Let P contain the rules U → V U |UV |2, V → V V |WW |0 and
W → VW |WV |1 and consider the grammar ({U, V,W}, {0, 1, 2}, P, U). How many
derivation trees has the word 010012?

For context-sensitive languages, only a quadratic-space algorithm is known due to a
construction by Savitch [78]. Note that when there are at most kn different words of
non-terminals and terminals up to length n then the length of the shortest derivation
is also at most kn. Furthermore, one can easily check whether in a derivation v ⇒ w
can be done in one step by a given grammar.

Algorithm 7.21. Let a context-sensitive grammar (N,Σ, P, S) for a language L be
given and let k = |N | + |Σ| + 1. For some input n > 0 and w ∈ Σn, the following
algorithm checks in space O(n2) whether w can be derived from S; note that each call
of the subroutine needs to archive the local variables u, v, t on the stack and this uses
O(n) space as the words u, v have up to length n with respect to the finite alphabet
N ∪ Σ and t is a number below kn which can be written down with O(n) digits.

Recursive Call: Function Check(u, v, t)
Begin If u = v or u⇒ v Then Return(1);
If t ≤ 1 and u 6= v and u 6⇒ v Then Return(0);
Let t′ = Floor( t+1

2
); Let r′ = 0;

For all u′ ∈ (N ∪ Σ)∗ with |u| ≤ |u′| ≤ |v| Do
Begin If Check(u, u′, t′) = 1 and Check(u′, v, t′) = 1 Then r′ = 1 End;
Return(r′) End;

Decision: If Check(S,w, kn) = 1 Then w ∈ L Else w /∈ L.

For the verification, let k′ be a number with 2k
′ ≥ k. Then one can see, by easy

induction, that Check is first called with 2k
′·n or less and then at each iteration of the

call, the value of t′ is half of the value of t so that the number of iterated calls is at
most k′ ·n. Thus the overall space to archive the stacks used is at most (k′ ·n) ·4 ·k′ ·n
where k′ · n is the number of nested calls, 4 is the number of variables to be archived
(u, v, u′, t′) and k′ · n is the space needed (in bits) to archive these numbers. Some
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minor space might also be needed for local processing within the loop.
For the verification of the correctness of Check(u, v, t), note that when v is derived

from u, all intermediate words are at least as long as u and at most as long as v, thus
the intermediate word u′ in the middle is, if v can derived from u within t steps,
within the search space. As one can process the search-space in length-lexicographic
order, it is enough to memorise u′ plus r′ plus t′ plus the outcome of the first call
Check(u, u′, t′) when doing the second call Check(u′, v, t′). So the local space of an
instance of Check can indeed be estimated with O(n). Furthermore, when t > 1,
there must be an intermediate u′ which is reached in the middle of the derivation
from u to v, and one can estimate the time t′ from u to u′ as well as from u′ to u in
both cases with Floor( t+1

2
).

The runtime of the algorithm is O(k2n
2

). One can easily see that one instance
of Check(u, v, t) without counting the subroutines runs in time O(kn), furthermore,
each Check(u, v, t) calls 2 · kn times a subroutine with parameter t/2. The number of
nesting of the calls is log(kn) = log(k) · n which gives O((2 · kn)log(k)·n) which can be
bounded by O((2k)log(k)·n

2

). Furthermore, as every call itself is O(kn) in runtime, so
the overall runtime is O((2k)log(k)·n

2+n) which can be simplified to an upper bound of
O(cn

2

) for any constant c > (2k)log(k). Up to today no subexponential algorithms are
known for this problem.

Example 7.22. There is a context-sensitive grammar where for each length n there
is a word of n symbols which cannot be derived in less than 2n steps. This bound is
only to be true for the grammar constructed, other grammars for the same language
can have better bounds.

The grammar ({S, U, V,W}, {0, 1}, P, S) simulates binary counting and has the
following rules in P :

S → 0S|U , U → V |0, 0V → 1U , V → 1, 1V → WU , 1W → W0,
0W → 10.

The binary counter starts with generating n− 1 digits 0 and then deriving from S to
U . U stands for the last digit 0, V stands for last digit 1, W stands for a digit 0 still
having a carry bit to pass on. Deriving a binary number k needs at least k steps. So
deriving 1n representing 2n − 1 in binary requires 2n − 1 counting steps where every
fourth counting step requires a follow-up with some carry, so that one can even show
that for 1n more than 2n derivation steps are needed.

Exercise 7.23. Give a proof that there are kn or less words of length up to n over
the alphabet Σ ∪N with k − 1 symbols.

Exercise 7.24. Modify Savitch’s Algorithm such that it computes the length of the
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shortest derivation of a word w in the context-sensitive grammar, provided that such
derivation exists. If it does not exist, the algorithm should return the special value ∞.

Exercise 7.25. Consider the following algorithm:

Recursive Call: Function Check(u, w, t)
Begin If u = w or u⇒ w Then Return(1);
If t ≤ 1 and u 6= v and u 6⇒ w Then Return(0);
Let r′ = 0; For all v ∈ (N ∪ Σ)∗ with u⇒ v and |v| ≤ |w| Do
Begin If Check(v, w, t− 1) = 1 Then r′ = 1 End;
Return(r′) End;

Decision: If Check(S,w, kn) = 1 Then w ∈ L Else w /∈ L.

Analyse the time and space complexity of this algorithm. Note that there is a poly-
nomial time algorithm which returns to given u, w the list of all v with u ⇒ v and
|v| ≤ |w|.

Definition 7.26: Growing CTS by Dahlhaus and Warmuth [20]. A grammar
(N,Σ, P, S) is growing iff |l| < |r| for all rules l → r in the grammar.

So growing grammars are context-sensitive by the corresponding characterisation,
thus they are also called “growing context-sensitive grammars”. It is clear that their
membership problem is in polynomial space. An important result is that this problem
is also in polynomial time.

Theorem 7.27: Growing CTS Membership is in P (Dahlhaus and Warmuth
[20]). Given a growing context-sensitive grammar there is a polynomial time algo-
rithm which decides membership of the language generated by this growing grammar.

In this result, polynomial time means here only with respect to the words in the
language, the dependence on the size of the grammar is not polynomial time. So if
one asks the uniform decision problem for an input consisting of a pair of a grammar
and a word, no polynomial time algorithm is known for this problem. As the problem
is NP-complete, the algorithm is unlikely to exist.

Example 7.28. Consider the grammar

({S, T, U}, {0, 1}, {S → 011|T11, T → T0U |00U,U0 → 0UU,U1 → 111}, S)
which is growing. This grammar has derivations like S ⇒ T11 ⇒ 00U11 ⇒ 001111
and S ⇒ T11 ⇒ T0U11 ⇒ 00U0U11 ⇒ 00U01111 ⇒ 000UU1111 ⇒ 000U111111 ⇒
00011111111. The language of the grammar is

{0n12n : n > 0} = {011, 001111, 0318, 04116, 05132, . . .}
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and not context-free. The latter can be seen as infinite languages satisfying the
pumping lemma can only have constant gaps, that is, there is a maximum constant
c such that for some t there are no words of length t, t+ 1, . . . , t+ c in the language.
However, the gaps of this language are growing, each sequence n + 2n + 1, n + 2n +
2, . . . , n+ 2n+1 is a gap.

Exercise 7.29. Show that every context-free language is the union of a language
generated by a growing grammar and a language containing only words up to length
1.

Exercise 7.30. Modify the proof of Theorem 5.38 to prove that every recursively
enumerable language, that is, every language generated by some grammar is the ho-
momorphic image of a language generated by a growing context-sensitive grammar.

Exercise 7.31. Construct a growing grammar for the language {12n02n12n : n > 0}
which is the “palindromisation” of the language from Example 7.28.
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8 Nondeterministic Membership Testing

For finite automata, nondeterministic automata and deterministic automata do not
vary in speed to process data, only in the amount of states needed for a given regular
language. For membership testing of context-free languages, there is, up to current
knowledge, a significant difference in speed. Nondeterministic algorithms, so called
pushdown automata, can operate with speed O(n) on the words while deterministic
algorithms like the one of Cocke, Kasami and Younger need O(n3) or, with some
improvements by exploiting fast matrix multiplication algorithms, about O(n2.3728639).

Description 8.1: Push Down Automaton. The basic idea for the linear time
algorithm to check nondeterministically membership in a context-free language is
that, for a grammar in Chomsky Normal Form, a word of length n can be derived
in 2n− 1 steps, n− 1 applications of rules which convert one non-terminal into two,
n applications of rules which convert a non-terminal into a terminal. A second idea
used is to go through the derivation tree and to do the left-most rule which can be
applied. Here an example with the usual grammar

({S, T, U}, {0, 1}, {S → SS|TU |UT, U → 0|US|SU, T → 1|TS|ST}, S).

and the derivation tree for the derivation S ⇒∗ 1010:

S

T

T

1

S

U

0

T

1

U

0

Now the left-most derivation according to this tree is S ⇒ TU ⇒ TSU ⇒ 1SU ⇒
1UTU ⇒ 10TU ⇒ 101U ⇒ 1010. Note that in each step the left-most non-terminal
is replaced by something else using the corresponding rule. The idea of the algorithm
is now to split the data of the derivation into two parts:

• The sequence of the so far generated or compared terminals;
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• The sequence of the current non-terminals in the memory.

The sequence of non-terminals behave like a stack: The first one is always processed
and then the new non-terminals, if any, are pushed to the front of the stack. The
terminals are, whenever generated, compared with the target word; alternatively, one
can therefore also read the terminals symbol by symbol from the source and whenever
one processes a rule of the form A→ a one compares this a with the current terminal:
if they agree then one goes on with the derivation else one discards the work done so
far. Such a concept is called a pushdown automaton — where non-terminal symbols
are pushed down into the stack of the non-terminals or pulled out when the current
non-terminal has just been converted into a terminal. The pushdown automaton
would therefore operate as follows:

Start: The symbol S is on the stack.

Loop: While there are symbols on the stack Do Begin

Step 1: Pull a symbol A from the top of the stack;

Step 2: Select nondeterministically a rule A→ w from the set of rules;

Step 3a: If the rule is A → BC Then push BC onto the stack so that B becomes
the topmost symbol and continue the next iteration of the loop;

Step 3b: If the rule is A→ a Then Read the next symbol b from the input;
If there is no next symbol b on the input or if b 6= a then abort the computation
else continue the next iteration of the loop End End;

Decision: If all symbols from the input have been read and the computation has not
yet been aborted Then accept Else reject.

For a more formal treatment, one also allows states in the push down automaton.

Definition 8.2: Pushdown Automaton. A pushdown automaton consists of a
tuple (Q,Σ, N, δ, s, S, F ) where Q is a set of states with s being the start state and F
being the set of final states, Σ is the alphabet used by the target language, δ is the
transition function and N is the set of stack symbols with the start symbol S being
on the stack.

In each cycle, the push down automaton currently in state p pulls the top element
A from the stack and selects a rule from δ(p,A, v) which consists of a pair (p, w) where
v ∈ Σ∗ and w ∈ N∗; if v agrees with the next input symbols to be processed (this is
void if v = ε) then the automaton advances on the input by these symbols and pushes
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w onto the stack and takes the new state q.
There are two ways to define when a pushdown automaton accepts: Acceptance

by state means that the pushdown automaton accepts iff there is a run starting with S
on the stack that goes through the cycles until the automaton has processed all input
and is in an accepting state. Acceptance by empty stack means that the pushdown
automaton accepts iff there is a run starting with S on the stack that goes through
the cycles until the automaton has processed all input and is in an accepting state
and the stack is empty. Note that the automaton gets stuck if it has not yet read all
inputs but there is no symbol left on the stack; such a run is considered as rejecting
and cannot count as an accepting run.

A common convention is that the word v of the input to be parsed in a cycle
always consists of either one symbol or zero symbols.

Example 8.3. The pushdown automaton from the beginning of this chapter has the
following description:

• Q = {s} and F = {s};
• Σ = {0, 1};
• N = {S, T, U} with start symbol S;

• δ(s, ε, S) = {(s, SS), (s, TU), (s, UT )};
δ(s, ε, T ) = {(s, TS), (s, ST )};
δ(s, ε, U) = {(s, US), (s, SU)};
δ(s, 0, U) = {(s, ε)};
δ(s, 1, T ) = {(s, ε)};
δ(s, v, A) = ∅ for all other choices of (v, A).

Here a sample processing of the word 001110:

input processed start – 0 – – 0 1 – 1 – 1 0
new stack S UT T ST UTT TT T TS S TU U ε

One can generalise this idea to an algorithm which works for any context-free language
given by a grammar in Chomsky Normal Form.

Algorithm 8.4. Let (N,Σ, P, S) be a grammar in Chomsky Normal Form generating
a language L. Then one can construct a pushdown automaton recognising the same
language L as follows:

• Q = {s} and F = {s};
• Σ and N are taken over from the grammar; furthermore, S is again the start
symbol;
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• For every non-terminal A ∈ N , one defines that
δ(s, ε, A) = {(s, BC) : A→ BC is in P} ∪ {(s, ε) : S → ε is in P and A = S},
for a ∈ Σ, if A→ a is in P then δ(s, a, A) = {(s, ε)} else δ(s, a, A) = ∅.

This algorithm was applied in Example 8.3.

Verification. One shows by induction over the derivation length that the automaton
can have the stack w after processing input v iff v ∈ Σ∗, w ∈ N∗ and S ⇒∗ vw.
Here the derivation length is the number of steps of the pushdown automaton or the
number of steps in the derivation.

It is clear that S can derive only S in zero steps and that the pushdown automaton,
similarly, has S in the stack and no input processed after zero steps. Furthermore,
one can see that ε is derived in the grammar in exactly one step iff S → ε is in P iff
the pushdown automaton has δ(s, ε, S) = {(s, ε)} iff the pushdown automaton can go
in one step into the situation where no input has been processed so far and w = ε.

Now consider that the equivalence holds for k steps, it has to be shown that it
also holds for k + 1 steps.

Now assume that the pushdown automaton has processed v in k+1 steps and has
the stack w and assume that vw 6= ε, as that case has already been covered. Let ṽ
and w̃ be the processed input in the first k steps and w̃ be the stack after k steps on
the way to v and w. There are two cases:

First, w̃ = Aw and ṽa = v. Then δ(s, a, A) = {(s, ε)} and the rule A→ a is in P .
Furthermore, S ⇒∗ ṽAw̃ in k steps. Now one can apply the rule A → a and obtains
that S ⇒∗ ṽaw̃ = vw in k + 1 steps.

Second, w = BCw̃ and the pushdown automaton had processed v already at step
k and had the stack Aw̃. Then the pushdown automaton satisfies (s, BC) ∈ δ(s, ε, A)
and A → BC is a rule. Furthermore, S ⇒∗ vAw̃ in k steps in the grammar and now
applying A → BC gives S ⇒∗ vBCw̃ in k + 1 steps, the righthand side is equal to
vw.

Furthermore, for the other way round, assume that S ⇒ vw in k + 1 steps in a
left-most derivation. Again assume that vw 6= ε.

First, if the last rule was A → a, then S → ṽAw in k steps and v = ṽa. By
induction hypothesis, the pushdown automaton can process ṽ in k processing steps
having a memory Aw and then in the next processing step read a and use up A, as
δ(s, A, a) = {(s, ε)} so that the pushdown automaton has read v and produced the
stack of w in k + 1 steps.

Second, if the last rule applied was A → BC then S → vAw̃ in k steps with
w = BCw̃ and the pushdown automaton can process v and having step Aw̃ after k
steps. Furthermore, (s, BC) ∈ δ(s, ε, A) and therefore the pushdown automaton can
have the stack BCw̃ = w after k + 1 steps with the input processed still being the
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same v.
This induction shows that S ⇒∗ vw with v ∈ Σ∗ and w ∈ N∗ iff there is a run of

the pushdown automaton which starts on stack being S and which has, after reading
input v and doing some processing the stack w. This equivalence is in particular true
if w = ε and therefore the words generated by the grammar are the same as those
accepted by the pushdown automaton in some run.

Exercise 8.5. Construct a pushdown automaton accepting by empty stack for the
language {0n1m2k : n+m = k + 1}.

Exercise 8.6. Construct a pushdown automaton accepting by empty stack for the
language {0n1m2k : n+m < k}.

Exercise 8.7. Construct a pushdown automaton accepting by empty stack for the
language {0n1m2k : n 6= m and k > 0}.

The next algorithm describes how to generate a pushdown automaton accepting by
state from a given context-free grammar in Chomsky Normal Form; the verification
is similar and therefore only sketched.

Algorithm 8.8. Assume that (N,Σ, P, S) is a context-free grammar in Chomsky
Normal Form. Then the following pushdown automaton recognises L with the accep-
tance method by state. The pushdown automaton is ({s, t},Σ, N ∪ N ′, δ, s, S ′, {t})
where N ′ = {A′ : A ∈ N} is a “primed copy” of N . The primed version of a non-
terminal is always the last non-terminal in the stack. For every non-terminal A ∈ N
and the corresponding A′ ∈ N ′, one defines the following transition function:

δ(s, ε, A) = {(s, BC) : A→ BC is a rule in P};
δ(s, ε, A′) = {(s, BC ′) : A → BC is a rule in P} ∪ {(t, ε) : A′ = S ′ and
S → ε is a rule in P};
for all terminals a, if the rule A→ a is in P then δ(s, a, A) = {(s, ε)} and
δ(s, a, A′) = {(t, ε)} else δ(s, a, A) = ∅ and δ(s, a, A′) = ∅;
δ(t, v, A), δ(t, v, A′) are ∅ for all v.

Similar as in the algorithm before, one can show the following: S ⇒∗ vwA with
v ∈ Σ∗, w ∈ N∗ and A ∈ N iff the pushdown automaton can, on input v reach
the stack content wA′ and is in state s. Furthermore, the pushdown automaton can
process input v and reach empty stack iff it can process v and reach the state t —
the reason is that for reaching state t it has to transform the last stack symbol of the
form A′ into ε and this transformation always leads from s to t.
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Exercise 8.9. Construct a pushdown automaton accepting by state for the language
{0n1m2k : n+m > k}.

Exercise 8.10. Construct a pushdown automaton accepting by state for the language
{0n1m2k : n 6= k or m 6= k}.

Exercise 8.11. Construct a pushdown automaton accepting by state for the language
{w ∈ {0, 1}∗ : w is not a palindrome}.

Theorem 8.12. If L can be recognised by a pushdown automaton accepting by final
state then it can also be recognised by a pushdown automaton accepting by empty stack.

Proof. Given a pushdown automaton (Q,Σ, N, δ, s, S, F ) for L, one constructs a new
automaton (Q∪ {t}, N, δ′, s, S, F ∪ {t}) as follows (where t is a new state outside Q):

• For all q ∈ Q, A ∈ N and v, δ′(q, v, A) = δ(q, v, A) ∪ {(t, ε) : v = ε and q ∈ F};
• For all A ∈ N and v 6= ε, δ′(t, ε, A) = {(t, ε)} and δ′(t, v, A) = ∅.

So whenever the original pushdown automaton is in an accepting state, it can opt to
remove all remaining non-terminals in the stack by transiting to t; once it transits to
t, during this transit and afterwards, it does not process any input but only removes
the symbols from the stack. Thus the new pushdown automaton can accept a word
v by empty stack iff the old pushdown automaton can accept that word v by final
state.

Furthermore, one can show that whenever a language L is recognised by a pushdown
automaton using the empty stack acceptance condition then it is generated by context-
free grammar.

Algorithm 8.13: Pushdown Automaton to Grammar. Given a pushdown au-
tomaton (Q,Σ, N, δ, s, S, F ) for L which accepts by empty stack, let the new grammar
((Q×N ×Q) ∪ {S ′},Σ, P, S ′) be defined by putting the following rules into P :

• For all p ∈ F , put all rules S ′ → (s, S, p) into P ;

• For each q, r ∈ Q, A ∈ N , v ∈ Σ∗ and (p1, w) ∈ δ(q, v, A) with w = B1B2 . . . Bn

with n > 0 and for all p2, . . . , pn ∈ Q, put the rule

(q, A, r) → v(p1, B1, p2)(p2, B2, p3) . . . (pn, Bn, r)

into P ;

• For each q ∈ Q, A ∈ N , v ∈ Σ∗ and (p, ε) ∈ δ(q, v, A), put the rule (q, A, p) → v
into P .
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The idea of the verification is that a non-terminal (p,A, q) generates a word v iff the
pushdown automaton can on state p process the input v with exactly using up the
symbol A in some steps and ending up in state q afterwards with the stack symbols
behind A being untouched. The construction itself is similar to the construction which
looks at the intersection of a context-free language with a regular language and the
verification is done correspondingly.

Example 8.14. Consider the following pushdown-automaton.

• Q = {s, t}, F = {t}, start state is s;

• Σ = {0, 1};
• N = {S, U, T}, start symbol is S;

• δ(s, 0, S) = {(s, SU), (t, U), (t, ε)};
δ(s, 1, S) = {(s, ST ), (t, T ), (t, ε)};
δ(t, 0, U) = {(t, ε)}; δ(t, 1, U) = ∅;
δ(t, 1, T ) = {(t, ε)}; δ(t, 0, T ) = ∅;
δ(q, ε, A) = ∅ for all q ∈ Q and A ∈ N .

Now, one can obtain the following context-free grammar for the language:

• Set of non-terminals is {S ′} ∪Q×N ×Q with start symbol S ′;

• Set of terminals is {0, 1};
• S ′ → (s, S, t);
(s, S, t) → 0(s, S, t)(t, U, t)|0(t, U, t)|0|1(s, S, t)(t, T, t)|1(t, T, t)|1;
(t, U, t) → 0;
(t, T, t) → 1;

• Start symbol S ′.

Unnecessary rules are omitted in this example; the set of non-terminals could just be
{S ′, (s, S, t), (t, T, t), (t, U, t)}.

If one does not use U, T as place-holders for 0, 1 and identifies S ′, (s, S, t) to S,
then one can get the following optimised grammar: The unique non-terminal is the
start symbol S, the set of terminals is {0, 1}, the rules are S → 0S0|00|0|1S1|11|1.
Thus the pushdown automaton and the corresponding grammar just recognise the set
of non-empty binary palindromes.

Greibach [37] established a normal form which allows to construct pushdown automata
which can check the membership of a word with processing one input symbol in each
step. The automaton accepts words by state.

Algorithm 8.15: Pushdown Automaton reading Input in Each Cycle. Let
(N,Σ, P, S) be a grammar in Greibach Normal Form. The pushdown automaton uses
the idea of primed symbols to remark the end of the stack. It is constructed as follows:
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• The set of states is {s, t, u} and if ε is in the language then {s, u} are accepting
else only {u} is the set of accepting states; s is the start state.

• Let N ′ = {A,A′ : A ∈ N} and S ′ be the start symbol.

• The terminal alphabet is Σ as for the grammar.

• For all symbols a ∈ Σ and A ∈ N ,
δ(s, a, S ′) = {(t, B1B2 . . . B

′
n) : S → aB1B2 . . . Bn is a rule in P with n >

0} ∪ {(u, ε) : S → a is a rule in P};
δ(t, a, A) = {(t, B1B2 . . . Bn) : A→ aB1B2 . . . Bn is a rule in P with n ≥ 0};
δ(t, a, A′) = {(t, B1B2 . . . B

′
n) : A → aB1B2 . . . Bn is a rule in P with n >

0} ∪ {(u, ε) : A→ a is a rule in P};
δ(q, v, A), δ(q, v, A′) are ∅ for all states q, A ∈ N and v where not defined
otherwise before; note that in a righthand side of a rule, only the last symbol
can be primed.

Exercise 8.16. The above algorithm can be made much simpler in the case that ε
is not in the language. So given a grammar (N,Σ, P, S) in Greibach Normal Form
for a language L with ε /∈ L, show that there is a pushdown automaton with non-
terminals N , start symbol S, terminals Σ and accepting by empty stack; determine
the corresponding transition function δ in dependence of P such that in each step, the
pushdown automaton reads one non-terminal.

Example 8.17. Consider the following pushdown automaton:

• Q = {s}; F = {s}; start state s;
• N = {S}; start symbol S;

• Σ = {0, 1, 2, 3};
• δ(s, 0, S) = {(s, ε)};
δ(s, 1, S) = {(s, S)};
δ(s, 2, S) = {(s, SS)};
δ(s, 3, S) = {(s, SSS)};
δ(s, ε, S) = ∅;

• Acceptance mode is by empty stack.

The language recognised by the pushdown automaton can be described as follows:
Let digitsum(w) be the sum of the digits occurring in w, that is, digitsum(00203) is
5. Now the automaton recognises the following language:

{w : digitsum(w) < |w| and all proper prefixes v of w with satisfy
digitsum(v) ≥ |v|}.
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This pushdown automaton has one property: In every situation there is exactly one
step the pushdown automaton can do, so it never has a nondeterministic choice. Thus
the run of the pushdown automaton is deterministic.

Exercise 8.18. Provide context-free grammars generating the language of Exam-
ple 8.17 in Greibach Normal Form and in Chomsky Normal Form.

Note that languages which are recognised by deterministic pushdown automata can
be recognised in linear time, that is, time O(n). For that reason, the concept of a
deterministic pushdown automaton is quite interesting. It is much more flexible, if
one uses the condition of acceptance by state rather than acceptance by empty stack;
therefore it is defined as follows.

Definition 8.19. A deterministic pushdown automaton is given as (Q,Σ, N, δ, s, S, F )
and has the acceptance mode by state with the additional constraint that for every
A ∈ N and every v ∈ Σ∗ and every q ∈ Q there is at most one prefix ṽ of v
for which δ(q, ṽ, A) is not empty and this set contains exactly one pair (p, w̃). The
languages recognised by a deterministic pushdown automaton are called deterministic
context-free languages. Without loss of generality, δ(q, v, A) is non-empty only when
v ∈ Σ ∪ {ε}.

Proposition 8.20. Deterministic context-free languages are closed under comple-
ment.

Proof. Given a deterministic pushdown automaton (Q,Σ, N, δ, s, S, F ) which has
acceptance mode by state, one constructs the new automaton as follows:

• Q′ = Q ∪ {t, u} for new state t, u; F ′ = {u} ∪Q− F ; new start state is t;

• the terminal alphabet Σ remains the same;

• N ′ = N ∪ {S ′} for a new start symbol S ′;

• The new transition function δ′ is as follows, where v ∈ Σ ∪ {ε}, a ∈ Σ, q ∈ Q,
A ∈ N :
1. δ′(t, ε, S ′) = {(s, SS ′)};
2. if δ(q, v, A) 6= ∅ then δ′(q, v, A) = δ(q, v, A);
3. if δ(q, a, A) and δ(q, ε, A) are both ∅ then δ′(q, a, A) = (u, S ′);
4. δ′(q, a, S ′) = {(u, S ′)};
5. δ′(u, a, S ′) = {(u, S ′)};
6. δ′ takes on all combinations not previously defined the value ∅.

The new pushdown automaton does the following:
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• It starts with state t and symbol S ′ and pushes SS ′ onto the stack before sim-
ulating the old automaton by instruction of type 1;

• It then simulates the old automaton using instructions of type 2 and it accepts
iff the old automaton rejects;

• When the old automaton gets stuck by a missing instruction then the new
automaton pushes S ′ and goes to state u by instruction of type 3;

• When the old automaton gets stuck by empty stack then this is indicated by S ′

being the symbol to be used and the new automaton pushes S ′ back onto the
stack and goes to state u by instruction of type 4;

• Once the automaton reaches state u and has S ′ on the top of the stack, it stays
in this situation forever and accepts all subsequent inputs by instructions of
type 5;

• The instruction set is completed by defining that δ′ takes ∅ in the remaining
cases in order to remain deterministic and to avoid choices in the transitions.

Note that the new automaton never gets stuck. Thus one can, by once again invert-
ing the accepting and rejecting state, use the same construction to modify the old
automaton such that it never gets stuck and still recognises the same language.

Proposition 8.21. If L is recognised by a deterministic pushdown automaton (Q,Σ,
N, δ, s, S, F ) which never gets stuck and H is recognised by a complete determinis-
tic finite automaton (Q′,Σ, δ′, s′, F ′) then L ∩ H is recognised by the deterministic
pushdown automaton

(Q×Q′,Σ, N ′, δ × δ′, (s, s′), S, F × F ′)

and L ∪H is recognised by the deterministic pushdown automaton

(Q×Q′,Σ, N ′, δ × δ′, (s, s′), S,Q× F ′ ∪ F ×Q′)

where (δ × δ′)((q, q′), a, A) = {((p, p′), w) : (p, w) ∈ δ(q, a, A) and p′ = δ′(q′, a)} and
(δ × δ′)((q, q′), ε, A) = {((p, q′), w) : (p, w) ∈ δ(q, ε, A)}.

Proof Idea. The basic idea of this proposition is that the product automaton simu-
lates both the pushdown automaton and finite automaton in parallel and since both
automata never get stuck and the finite automaton does not use any stack, the sim-
ulation of both is compatible and does never get stuck. For L ∩ H, the product
automaton accepts if both of the simulated automata accept; for L ∪H, the product
automaton accepts if at least one of the simulated automata accepts. Besides that,
both product automata do exactly the same.

Example 8.22. There is a deterministic pushdown-automaton which accepts iff two
types of symbols appear in the same quantity, say 0 and 1 and which never gets stuck:
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• Q = {s, t}; {s} is the set of accepting states; s is the start state;

• Σ contains 0 and 1 and perhaps other symbols;

• N = {S, T, U, V,W} and S is the start symbol;

• δ takes non-empty output only if exactly one symbol from the input is parsed;
the definition is the following:
δ(q, a, A) = {(q, A)} for all a ∈ Σ− {0, 1} and A ∈ N ;
δ(s, 0, S) = {(t, US)}; δ(s, 1, S) = {(t, TS)};
δ(t, 1, U) = {(s, ε)}; δ(t, 0, U) = {(t, V U)};
δ(t, 1, V ) = {(t, ε)}; δ(t, 0, V ) = {(t, V V )};
δ(t, 0, T ) = {(s, ε)}; δ(t, 1, T ) = {(t, TW )};
δ(t, 0,W ) = {(t, ε)}; δ(t, 1,W ) = {(t,WW )}.

The idea is that the stack is of the form S when the symbols are balanced and of the
form US if currently one zero more has been processed than ones and of the form
V nUS if currently n+1 zeroes more processed than ones and of form TS if currently
one one more has been processed than zeroes and of the form W nTS if currently n+1
ones more have been processed than zeroes. The state s is taken exactly when the stack
is of the form S and the symbols U, T are there to alert the pushdown automaton that,
when the current direction continues, the next symbol on the stack is S.

Theorem 8.23. The deterministic context-free languages are neither closed under
union nor under intersection.

Proof. If the deterministic context-free languages would be closed under union, then
they would also be closed under intersection. The reason is that if L and H are
deterministic context-free, then

L ∩H = Σ∗ − ((Σ∗ − L) ∪ (Σ∗ −H))

and so it is sufficient to show that they are not closed under intersection. By Exam-
ple 8.22 there language L0,1 of all words in {0, 1, 2}∗ with the same amount of 0 and 1
is deterministic context-free and so is also the language L1,2 of all words in {0, 1, 2}∗
with the same amount of 1 and 2. Now assume that the intersection L0,1∩L1,2 would
be deterministic context-free. Then so is also the intersection of that language with
0∗1∗2∗ by Proposition 8.21; however, the language

L0,1 ∩ L1,2 ∩ 0∗1∗2∗ = {0n1n2n : n ∈ N}

is not context-free and therefore also not deterministic context-free. Thus the de-
terministic context-free languages are neither closed under union nor under intersec-
tion.
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Exercise 8.24. Show that the language L = {0n10m : n ≥ m} is deterministic
context-free. What about L∗? Give reasons for the answer, though a full proof is not
requested.

Exercise 8.25. Assume that L is deterministic context-free and H is regular. Is
it always true that L · H is deterministic context-free? Give reasons for the answer,
though a full proof is not requested.

Exercise 8.26. Assume that L is deterministic context-free and H is regular. Is
it always true that H · L is deterministic context-free? Give reasons for the answer,
though a full proof is not requested.

Exercise 8.27. Is Lmi deterministic context-free whenever L is? Give reasons for
the answer, though a full proof is not requested.

There has been a lot of research under which condition one can in a grammar in
Greibach normal form find out by inspecting the next terminals in the word which rule
applies. One can consult the Wikipedia pages on LL-grammars and LL(1)-grammars
or see the textbook by Waite and Goos [90]. The following exercise investigate the
connections between the forms of the derivatives and grammars in Greibach normal
form where there is at most one rule of the form A → bw for each non-terminal A
and terminal b.

Exercise 8.28. Assume that L is recognised by a grammar in Greibach normal form
such that for every b ∈ Σ and every nonterminal A ∈ N there is exactly one rule
A→ bw with w ∈ N∗ in the grammar. Show that there is a finite family of languages
H1, . . . , Hn with H1 = L, H2 = {ε} and H3 = ∅ such that for every a ∈ Σ and every
Hk, the derivative (Hk)a is either an Hℓ or a product of several of the Hℓ. Note that
∅a = ∅ for all a ∈ Σ.

Exercise 8.29. Assume L is prefix-free and L 6= {ε} and L satisfies that every deriva-
tive of L is the product of some fixed languages H1, . . . , Hn. Is then L is recognised
by a grammar in Greibach normal form where for every A ∈ N and b ∈ Σ there is at
most one rule in the grammar of form A→ bw?

Exercise 8.30. Consider the language L of all ternary words which have as many
0 as 1. Show that every derivative of L is the product of several items of L, L0 and
L1 but that there is no grammar in Greibach normal form for L which has for every
A ∈ N and b ∈ Σ at most one rule of the form A→ bw with w ∈ N∗.

Exercise 8.31. Consider the context-free language L over the alphabet {f, (, ), 0, 1, , }
with the last symbol being a comma. The rules of the grammar are S → f(S, S)|0|1
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and create all expressions of a binary function f from {0, 1}2 to {0, 1}. Construct for
L a grammar in Greibach normal form where for each pair (A, b) there is at most one
rule A→ bw in the grammar.

Exercise 8.32. Prove the following rules of the derivative with x ∈ Σ∗ and a ∈ Σ:

(a) (L ∪H)x = Lx ∪Hx and (L ∩H)x = Lx ∩Hx;

(b) If ε ∈ L then (L ·H)a = La ·H ∪Ha else (L ·H)a = La ·H;

(c) (L∗)a = La · L∗.

The following theorem characterises the context-free languages by stating that all
derivatives have to be formed from a finite set of languages using concatenation and
union; furthermore, all the derivatives of these finitely many languages satisfy the
same condition.

Theorem 8.33. A language L is context-free iff there is a finite list of languages
H1, H2, . . . , Hn with L = H1 such that for every word x and every Hm, (Hm)x is a
finite union of finite products of some Hk.

Exercise 8.34. Prove this theorem using the rules of Exercise 8.32 and the existence
of grammars in Greibach Normal Form for context-free languages.
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Selftest 8.35. Construct a homomorphism h and a context-free set L of exponential
growth such that h(L) has polynomial growth and is not regular.

Selftest 8.36. Construct a homomorphism from {0, 1, 2, . . . , 9}∗ to {0, 1}∗ are there
such that

• The binary value of h(w) is at most the decimal value of w for all w ∈ {0, 1}∗;
• h(w) ∈ 0∗ iff w ∈ 0∗;

• h(w) is a multiple of three as a binary number iff w is a multiple of three as a
decimal number.

Note that h(w) can have leading zeroes, even if w does not have them (there is no
constraint on this topic).

Selftest 8.37. Consider the language L generated by the grammar ({S, T}, {0, 1, 2},
{S → 0S2|1S2|02|12|T2, T → 0T |1T}, S). Provide grammars for L in Chomsky
Normal Form, in Greibach Normal Form and in the normal form for linear languages.

Selftest 8.38. Carry out the Algorithm of Cocke, Kasami and Younger with the
word 0122 with the grammar in Chomsky Normal Form from Selftest 8.37. Provide
the table and the decision of the algorithm.

Selftest 8.39. Carry out the O(n2) Algorithm derived from the one of Cocke, Kasami
and Younger with the word 0022 using the grammar in the normal form for linear
grammars from Selftest 8.37. Provide the table and the decision of the algorithm.

Selftest 8.40. Provide an example of a language L which is deterministic context-free
and not regular such that also L · L is deterministic context-free and not regular.

Selftest 8.41. Provide an example of a language L which is deterministic context-free
and not regular such that L · L is regular.
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Solution for Selftest 8.35. Let L = {w ∈ {0, 1}∗ · {2} · {0, 1}∗ : w is a palindrome}
and let h(0) = 1, h(1) = 1, h(2) = 2. While L has exponentially many members
– there are 2n words of length 2n + 1 in L – the set h(L) = {1n21n : n ∈ N} and
therefore h(L) has only polynomial growth, there are n+ 1 many words up to length
2n+ 1 in h(L). However, h(L) is not regular.

Solution for Selftest 8.36. One can define h as follows: h(0) = 00, h(1) = 01,
h(2) = 10, h(3) = 11, h(4) = 01, h(5) = 10, h(6) = 11, h(7) = 01, h(8) = 10,
h(9) = 11. Then one has that

binval(h(anan−1 . . . a1a0)) =
∑

m

4mbinval(h(am))

≤
∑

m

4m · am ≤ decval(anan−1 . . . a1a0)

which gives the constraint on the decimal value. Furthermore, when taking modulo
3, 10m and 4m are 1 modulo 3 and am and h(am) have the same value modulo three,
thus they are the same. In addition, as only h(0) = 00, it follows that h(w) ∈ 0∗ iff
w ∈ 0∗.

Solution for Selftest 8.37. The non-terminal T in the grammar is superfluous.
Thus the grammar is ({S}, {0, 1, 2}, {S → 0S2|1S2|02|12}, S) and has the following
normal forms:

Chomsky Normal Form: Nonterminals S, T,X, Y, Z; Terminals 0, 1, 2; Rules S →
XT |Y T |XZ|Y Z, T → SZ, X → 0, Y → 1, Z → 2; start symbol S.

Greibach Normal Form: Nonterminals S, T ; Terminals 0, 1, 2; Rules S → 0ST |
1ST |0T |1T , T → 2; start symbol S.

Normal Form of linear grammar: Nonterminals S, T ; Terminals 0, 1, 2; Rules S →
0T |1T , T → S2|2; start symbol S.

Solution for Selftest 8.38.

E1,4 = {S}
E1,3 = ∅ E2,4 = {T}

E1,2 = ∅ E2,3 = {S} E3,4 = ∅
E1,1 = {X} E2,2 = {Y } E3,3 = {Z} E4,4 = {Z}
0 1 2 2

As S ∈ E1,4, the word 0122 is generated by the grammar.

Solution for Selftest 8.39.
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E1,4 = {S}
E1,3 = ∅ E2,4 = {T}

E1,2 = ∅ E2,3 = {S} E3,4 = ∅
E1,1 = ∅ E2,2 = ∅ E3,3 = {T} E4,4 = {T}
0 0 2 2

As S ∈ E1,4, the word 0022 is generated by the grammar.

Solution for Selftest 8.40. The following example L is non-regular and determin-
istic context-free: L = {0n1n : n > 0}. Now L · L = {0n1n0m1m : n,m > 0} is also
deterministic context-free.

Solution for Selftest 8.41. The following example provides a non-regular and
deterministic context-free L such that L · L is regular: L = {0n10m : n 6= m}. Now
L · L = {0n10k10m : k ≥ 2 or (k = 1 and n 6= 0 and m 6= 1) or (k = 1 and n 6= 0 and
m 6= 1) or (k = 0 and n 6= 0 and m 6= 0)}, thus L is regular. Let a word 0n10k10m

be given. If k ≥ 2 there are at least three ways to write k as a sum i+ j and at least
one way satisfies that n 6= i and j 6= m and 0n10k10m ∈ L · L; for k = 1 there are
only two ways and it is coded into the condition on L · L that one of these ways has
to work; for k = 0 it is just requiring that n,m are both different from 0 in order to
achieve that the word 0n10k10m is in L · L.
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9 Models of Computation

Since the 1920ies and 1930ies, mathematicians investigated how to formalise the no-
tion of computation in an abstract way. These notions are the Turing machine, the
register machine and the µ-recursive functions.

Definition 9.1: Turing Machine [89]. A Turing machine is a model to formalise
on how to compute an output from an input. The basic data storage is an infinite
tape which has at one place the input word on the tape with infinitely many blancs
before and after the word. The Turing machine works on this work in cycles and is
controlled by states, similarly to a finite automaton. It also has a head position on
the tape. Depending on the state on and the symbol under the head on the tape, the
Turing machine writes a new symbol (which can be the same as before), chooses a
new state and moves either one step left or one step right. One special state is the
halting state which signals that the computation has terminated; in the case that one
wants several outcomes to be distinguishable, one can also have several halting states,
for example for “halt and accept” and “halt and reject”. These transitions are noted
down in a table which is the finite control of the Turing Machine; one can also see
them as a transition function δ.

One says that the Turing machine computes a function f from Σ∗ to Σ∗ iff the
head before the computation stands on the first symbol of the input word, then the
computation is performed and at the end, when the machine goes into the halting
state, the output is the content written on the Turing machine tape. In the case
that for some input w the Turing machine never halts but runs forever then f(w) is
undefined. Thus Turing machines compute partial functions.

Note that Turing machines, during the computation, might use additional symbols,
thus their tape alphabet Γ is a superset of the alphabet Σ used for input and output.
Formally, a Turing machine is a tuple (Q,Γ,⊔,Σ, δ, s, F ) where Q is the set of states
with start state s and the set of halting states F ; Σ is the input alphabet, Γ the tape
alphabet and ⊔ the special space symbol in Γ − Σ; so Σ ⊂ Γ. δ is the transition
functions and maps pairs from (Q − F ) × Γ to triples from Q × Γ × {left, right}.
δ can be undefined on some combinations of inputs; if the machine runs into such a
situation, the computation is aborted and its value is undefined.

Example 9.2. The following Turing machine maps a binary number to its successor,
so 100 to 101 and 111 to 1000.
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state symbol new state new symbol movement
s 0 s 0 right
s 1 s 1 right
s ⊔ t ⊔ left
t 1 t 0 left
t 0 u 1 left
t ⊔ u 1 left

This table specifies the function δ of the Turing machine ({s, t, u}, {0, 1,⊔},⊔, {0, 1},
δ, s, {u}). At the beginning, the head of the Turing machine stands on the first symbol
of the input, say on the first 1 of 111. Then the Turing machine moves right until
it reaches a blanc symbol ⊔. On ⊔ it transits into t and goes one step to the left
back onto the input number. Then it transforms each 1 into a 0 and goes left until
it reaches a 0 or ⊔. Upon reaching this symbol, it is transformed into a 1 and the
machine halts.

Exercise 9.3. Construct a Turing machine which computes the function x 7→ 3x
where the input x as well as the output are binary numbers.

Exercise 9.4. Construct a Turing machine which computes the function x 7→ x + 5
where the input x as well as the output are binary numbers.

In the numerical paradigm, one considers natural numbers as primitives. For this,
one could, for example, identify the numbers with strings from {0} ∪ {1} · {0, 1}∗.

If one wants to use all binary strings and make a bijection to the natural numbers,
one would map a string a1a2 . . . an the value b−1 of the binary number b = 1a1a2 . . . an,
so ε maps to 0, 0 maps to 1, 1 maps to 2, 00 maps to 3 and so on. The following table
gives some possible identifications of members with N with various ways to represent
them.

decimal binary bin words ternary ter words
0 0 ε 0 ε
1 1 0 1 0
2 10 1 2 1
3 11 00 10 2
4 100 01 11 00
5 101 10 12 01
6 110 11 20 02
7 111 000 21 10
8 1000 001 22 11
9 1001 010 100 12
10 1010 011 101 20
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Now one defines a register machine as a machine working on numbers and not on
strings. Here the formal definition.

Description 9.5: Register Machine. A register machine consists of a program
and a storage consisting of finitely many registers R1, R2, . . . , Rn. The program has
line numbers and one can jump from one to the next; if no jump instruction is given,
after an instruction, the next existing line number applies. The following types of
instructions can be done:

• Ri = c for a number c;

• Ri = Rj + c for a number c;

• Ri = Rj +Rk;

• Ri = Rj − c for a number c, where the number 0 is taken if the result would be
negative;

• Ri = Rj −Rk, where the number 0 is taken if the result would be negative;

• If Ri = c Then Goto Line k;

• If Ri = Rj Then Goto Line k;

• If Ri < Rj Then Goto Line k;

• Goto Line k;

• Return(Ri), finish the computation with content of Register Ri.

One could be more restrictive and only allow to add or subtract the constant 1 and to
compare with 0; however, this makes the register programs almost unreadable. The
register machine computes a mapping which maps the contents of the input registers
to the output; for making clear which registers are input and which are not, one could
make a function declaration at the beginning. In addition to these conventions, in
the first line of the register program, one writes the name of the function and which
registers are read in as the input. The other registers need to be initialised with some
values by the program before they are used.

Register machines of this type were first studied in detail by Hartmanis and Simon
[39] and subsequently by Floyd and Knuth [29] who called them “addition machines”.

Example 9.6. The following program computes the product of two numbers.

Line 1: Function Mult(R1, R2);

Line 2: R3 = 0;

Line 3: R4 = 0;

Line 4: If R3 = R1 Then Goto Line 8;

Line 5: R4 = R4 +R2;

Line 6: R3 = R3 + 1;
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Line 7: Goto Line 4;

Line 8: Return(R4).

The following program computes the remainder of two numbers.

Line 1: Function Remainder(R1, R2);

Line 2: R3 = 0;

Line 3: R4 = 0;

Line 4: R5 = R4 +R2;

Line 5: If R1 < R5 Then Goto Line 8;

Line 6: R4 = R5;

Line 7: Goto Line 4;

Line 8: R3 = R1 −R4;

Line 9: Return(R3).

The program for integer division is very similar.

Line 1: Function Divide(R1, R2);

Line 2: R3 = 0;

Line 3: R4 = 0;

Line 4: R5 = R4 +R2;

Line 5: If R1 < R5 Then Goto Line 9;

Line 6: R3 = R3 + 1;

Line 7: R4 = R5;

Line 8: Goto Line 4;

Line 9: Return(R3).

Exercise 9.7. Write a program P which computes for input x the value y = 1 + 2 +
3 + . . .+ x.

Exercise 9.8. Write a program Q which computes for input x the value y = P (1) +
P (2) + P (3) + . . .+ P (x) for the program P from the previous exercise.

Exercise 9.9. Write a program O which computes for input x the factorial y =
1 · 2 · 3 · . . . · x. Here the factorial of 0 is 1.

Description 9.10: Subprograms. Register machines come without a management
for local variables. When writing subprograms, they behave more like macros: One
replaces the calling text with a code of what has to be executed at all places inside
the program where the subprogram is called. Value passing into and the function and
returning back is implemented; registers inside the called function are renumbered to
avoid clashes. Here the example of the function “Power” using the function “Mult”.
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Line 1: Function Power(R5, R6);

Line 2: R7 = 0;

Line 3: R8 = 1;

Line 4: If R6 = R7 Then Goto Line 8;

Line 5: R8 = Mult(R8, R5);

Line 6: R7 = R7 + 1;

Line 7: Goto Line 4;

Line 8: Return(R8).

Putting this together with the multiplication program only needs some code adjust-
ments, the registers are already disjoint.

Line 1: Function Power(R5, R6);

Line 2: R7 = 0;

Line 3: R8 = 1;

Line 4: If R6 = R7 Then Goto Line 16;

Line 5: R1 = R5; // Initialising the Variables used

Line 6: R2 = R8; // in the subfunction

Line 7: R3 = 0; // Subfunction starts

Line 8: R4 = 0;

Line 9: If R3 = R1 Then Goto Line 13;

Line 10: R4 = R4 +R2;

Line 11: R3 = R3 + 1;

Line 12: Goto Line 9;

Line 13: R8 = R4; // Passing value back, subfunction ends

Line 14: R7 = R7 + 1;

Line 15: Goto Line 4;

Line 16: Return(R8).

This example shows that it is possible to incorporate subfunctions of this type into the
main function; however, this is more difficult to read and so the subfunctions are from
now on preserved. Note that due to the non-implementation of the saving of the line
number, the register machines need several copies of the called function in the case
that it is called from different positions, for each position one. In short, subprograms
are more implemented like macros than like functions in programming. Though this
restriction is there, the concept is useful.

The next paragraph shows how to code a Turing machine using a one-sided tape (with
a starting point which cannot be crossed) in a register machine.
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Description 9.11: Coding and Simulating Turing Machines. If one would
have Γ = {0, 1, 2, . . . , 9} with 0 being the blanc, then one could code a tape starting
at position 0 as natural numbers. The leading zeroes are then all blanc symbols on
the tape. So, in general, one represent the tape by numbers in a system with |Γ| many
digits which are represented by 0, 1, . . . , |Γ| − 1. The following functions in register
programs show how to read out and to write a digit in the tape.

Line 1: Function Read(R1, R2, R3); // R1 = |Γ|, R2 = Tape, R3 = Position

Line 2: R4 = Power(R1, R3);

Line 3: R5 = Divide(R2, R4);

Line 4: R6 = Remainder(R5, R1);

Line 5: Return(R6). // Return Symbol

The operation into the other direction is to write a digit onto the tape.

Line 1: Function Write(R1, R2, R3, R4); // R1 = |Γ|, R2 = Tape, R3 = Position, R4

= New Symbol

Line 2: R5 = Power(R1, R3);

Line 3: R6 = Divide(R2, R5);

Line 4: R7 = Remainder(R6, R1);

Line 5: R6 = R6 +R4 −R7;

Line 6: R8 = Mult(R6, R5);

Line 7: R9 = Remainder(R2, R5);

Line 8: R9 = R9 +R8;

Line 9: Return(R9). // Return New Tape

For the general implementation, the following assumptions are made:

• Input and Output is, though only using the alphabet Σ, already coded in the
alphabet Γ which is a superset of Σ.

• When representing the symbols on the tape, 0 stands for ⊔ and Σ is represented
by 1, 2, . . . , |Σ| and the other symbols of Γ are represented by the next numbers.

• The starting state is 0 and the halting state is 1 — it is sufficient to assume
that there is only 1 for this purpose.

• The Turing machine to be simulated is given by four parameters: R1 contains
the size of Γ, R2 contains the number |Q| of states, R3 contains the Turing Table
which is an array of entries from Γ × Q × {left, right} organised by indices of
the form q · |Γ| + γ for state q and symbol γ (in numerical coding). The entry
for (γ, q,movement) is γ · |Q| · 2 + q · 2 +movement where movement = 1 for
going right and movement = 0 for going left. This table is read out like the
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tape, but it cannot be modified by writing. R4 contains the Turing tape which
is read and updated.

• Input and Output are on tapes of the form ⊔w⊔∞ and the Turing machine
cannot go left on 0, it just stays where it is (0 − 1 = 0 in this coding). The
register R5 contains the current tape position.

• R6 contains the current symbol and R7 contains the current state and R8 the
current instruction.

• The register machine simulating the Turing machine just runs in one loop and
if the input is a coding of the input word and the Turing machine runs correctly
then the output is a coding of the tape at the output.

So the main program of the simulation is the following.

Line 1: Function Simulate(R1, R2, R3, R4);

Line 2: R5 = 1;

Line 3: R7 = 0;

Line 4: R9 = Mult(Mult(2, R2), R1); // Size of Entry in Turing table

Line 5: R6 = Read(R1, R4, R5); // Read Symbol

Line 6: R8 = Read(R9, R3,Mult(R1, R7) +R6); // Read Entry

Line 7: R10 = Divide(R8,Mult(R2, 2)); // Compute New Symbol

Line 8: R4 = Write(R1, R4, R5, R10); // Write New Symbol

Line 9: R7 = Remainder(Divide(R8, 2), R2); // Compute New State

Line 10: If R7 = 1 Then Goto Line 13; // If State is Halting, Stop

Line 11: R5 = R5 +Mult(2,Remainder(R8, 2))− 1; // Move Head

Line 12: Goto Line 5;

Line 13: Return(R4).

This simulation shows that for fixed alphabet Σ, there is a universal Register machine
which computes a partial function ψ such that ψ(i, j, k, x) is the unique y ∈ Σ∗ for
which the simulation of the Turing machine given by tape alphabet of size i, number
of states j and table k maps the tape ⊔x⊔∞ to the tape ⊔y⊔∞ and halts. The three
parameters i, j, k are usually coded into one parameter e which is called the Turing
program.

Theorem 9.12. Every Turing machine can be simulated by a register machine and
there is even one single register machine which simulates for input (e, x) the Turing
machine described by e; if this simulation ends with an output y in the desired form
then the register machine produces this output; if the Turing machine runs forever, so
does the simulating register machine.
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Exercise 9.13. Explain how one has to change the simulation of the Turing machine
in order to have a tape which is in both directions infinite.

Alan Turing carried out the above simulations inside the Turing machine world. This
permitted him to get the following result.

Theorem 9.14: Turing’s Universal Turing Machine [89]. There is one single
Turing machine which simulates on input (e, x) the actions of the e-th Turing machine
with input x.

In the same way that one can simulate Turing machines by register machines, one
can also simulate register machines by Turing machines. Modulo minor adjustments
of domain and range (working with natural numbers versus working with words), the
two concepts are the same.

Theorem 9.15. If one translates domains and ranges in a canonical way, then the
partial functions from Σ∗ to Σ∗ computed by a Turing machine are the same as the
partial functions from N to N computed by a register machine.

Another way to define functions is by recursion. The central notion is that of a
primitive recursive function, which is also defined by structural induction.

Definition 9.16: Primitive Recursive Functions [82]. First, the following base
functions are primitive recursive.

Constant Function: The function producing the constant 0 without any inputs is
primitive recursive.

Successor Function: The function x 7→ x+ 1 is primitive recursive.

Projection Function: Each function of the form x1, . . . , xn 7→ xm for some m,n
with m ∈ {1, . . . , n} is primitive recursive.

Second, there are two ways to define inductively new primitive recursive functions
from others.

Composition: If f : Nn → N and g1, . . . , gn : Nm → N are primitive recursive, so is
x1, . . . , xm 7→ f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xn)).

Recursion: If f : Nn → N and g : Nn+2 → N are primitive recursive then there is
also a primitive recursive function h with h(0, x1, . . . , xn) = f(x1, . . . , xn) and
h(y + 1, x1, . . . , xn) = g(y, h(y, x1, . . . , xn), x1, . . . , xn).
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In general, this says that one can define primitive recursive functions by some base
cases, concatenation and recursion in one variable.

Example 9.17. The function h(x) = pred(x) = x − 1, with 0 − 1 = 0, is primitive
recursive. One defines pred(0) = 0 and pred(y+1) = y, more precisely pred is defined
using f, g with f(x) = 0 and g(y, pred(x)) = y.

Furthermore, the function x, y 7→ h(x, y) = x − y is primitive recursive, one
defines x− 0 = x and x− (y+1) = pred(x− y). This definition uses implicit that one
can instead of h(x, y) use h̃(y, x) which is obtained by swapping the variables; now
h(y, x) = h̃(second(y, x), f irst(y, x)) where first, second pick the first and second
input variable of two inputs. By induction one has h̃(0, x) = x and h̃(y + 1, x) =
pred(y, x), so h̃(y, x) = x− y.

Now one can define equal(x, y) = 1− (x− y)− (y − x) which is 1 if x, y are equal
and which is 0 if one of the terms x− y and y − x is at least 1.

Another example is x + y which can be defined inductively by 0 + y = y and
(x+ 1) + y = succ(x+ y), where succ : z 7→ z + 1 is one of the base functions of the
primitive recursive functions.

Exercise 9.18. Prove that every function of the form h(x1, x2, . . . , xn) = a1x1 +
a2x2 + . . .+ anxn + b with fixed parameters a1, a2, . . . , an, b ∈ N is primitive recursive.

Exercise 9.19. Prove that the function h(x) = 1+ 2+ . . .+ x is primitive recursive.

Exercies 9.20. Prove that the multiplication h(x, y) = x · y is primitive recursive.

Primitive recursive functions are always total. Thus one can easily derive that there
is no primitive recursive universal function for them. In the case that there would
be a function f(e, x) which is primitive recursive such that for all primitive recursive
functions g with one input there is an e such that ∀x [g(x) = f(e, x)] then one could
easily make a primitive recursive function which grows faster than all of these:

h(x) = 1 + f(0, x) + f(1, x) + . . .+ f(x, x).

To see that this function is primitive recursive, one first considers the two place
function

h̃(y, x) = 1 + f(0, x) + f(1, x) + . . .+ f(y, x)

by defining h̃(0, x) = 1 + f(0, x) and h̃(y + 1, x) = h̃(y, x) + f(y + 1, x). Bow h(x) =
h̃(x, x). Thus one has that there is no universal primitive recursive function for all
primitive recursive functions with one input; however, it is easy to construct such
a function computed by some register machine. Ackermann [1] was able to give a
recursive function defined by recursion over several variables which is not primitive
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recursive. In the subsequent literature, several variants were studied; generally used
is the following form of his function:

• f(0, y) = y + 1;

• f(x+ 1, 0) = f(x, 1);

• f(x+ 1, y + 1) = f(x, f(x+ 1, y)).

So it is a natural question on how to extend this notion. This extension is the notion
of µ-recursive functions; they appear first in the Incompleteness Theorem of Gödel
[35] where he characterised the recursive functions on the way to his result that one
cannot make a complete axiom system for the natural numbers with + and · which
is enumerated by an algorithm.

Definition 9.21: Partial recursive functions [35]. If f(y, x1, . . . , xn) is a function
then the µ-minimalisation g(x1, . . . , xn) = µy [f(y, x1, . . . , xn)] is the first value y such
that f(y, x1, . . . , xn) = 0. The function g can be partial, since f might at certain
combinations of x1, . . . , xn not take the value 0 for any y and then the search for the
y is undefined.

The partial recursive or µ-recursive functions are those which are formed from
the base functions by concatenation, primitive recursion and µ-minimalisation. If a
partial recursive function is total, it is just called a recursive function.

Theorem 9.22. Every partial recursive function can be computed by a register ma-
chine.

Proof. It is easy to see that all base functions are computed by register machines and
also the concatenation of functions. For the primitive recursion, one uses subprograms
F for f and G for g. Now h is computed by the following program H. For simplicity,
assume that f has two and g has four inputs.

Line 1: Function H(R1, R2, R3);

Line 2: R4 = 0;

Line 3: R5 = F(R2, R3);

Line 4: If R4 = R1 Then Goto Line 8;

Line 5: R5 = G(R4, R5, R2, R3);

Line 6: R4 = R4 + 1;

Line 7: Goto Line 4;

Line 8: Return(R5).

Furthermore, the µ-minimalisation h of a function f can be implemented using a
subprogram F for f ; here one assumes that f has three and g two inputs.
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Line 1: Function H(R1, R2);

Line 2: R3 = 0;

Line 3: R4 = F(R3, R1, R2);

Line 4: If R4 = 0 Then Goto Line 7;

Line 5: R3 = R3 + 1;

Line 6: Goto Line 3;

Line 7: Return(R3).

These arguments show that whenever the given functions f, g can be computed by
register programs, so are the functions derived from f and g by primitive recursion or
µ-minimalisation. Together with the corresponding result for concatenation, one can
derive that all partial recursive functions can be computed by register programs.

Indeed, one can also show the converse direction that all partial functions computed
by register programs are partial recursive. Thus one gets the following equivalence.

Theorem 9.23. For a partial function f , the following are equivalent:

• f as a function from strings to strings can be computed by a Turing machine;

• f as a function from natural numbers to natural numbers can be computed by a
register machine;

• f as a function from natural numbers to natural numbers is partial recursive.

Alonzo Church formulated the following thesis which is also a basic assumption of
Turing’s work on the Entscheidungsproblem [89]; therefore the thesis is also known as
“Church–Turing Thesis”.

Thesis 9.24: Church’s Thesis. All sufficiently reasonable models of computation
on N or on Σ∗ are equivalent and give the same class of functions.

One can also use Turing machines to define notions from complexity theory like classes
of time usage or space usage. The time used by a Turing machine is the number of
steps it makes until it halts; the space used is the number of different cells on the tape
the head visits during a computation. One measures the size n of the input x in the
number of its symbols in the language model and by log(x) = min{n ∈ N : x ≤ 2n}
in the numerical model.

Theorem 9.25. A function f is computable by a Turing machine in time p(n) for
some polynomial p iff f is computable by a register machine in time q(n) for some
polynomial q.
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Theorem 9.26. A function f is computable by a Turing machine in space p(n) for
some polynomial p iff f is computable by a register machine in such a way that all
registers take at most the value 2q(n) for some polynomial q.

The notions in Complexity Theory are also relatively invariant against changes of the
model of computation; however, one has to interpret the word “reasonable” of Church
in a stronger way than in recursion theory. Note that for these purposes, the model of
a register machine where it can only count up steps of one is not reasonable, as then
even the function x 7→ x+x is not computed in polynomial time. On the other hand,
a model where the multiplication is also a primitive, one step operation, would also
be unreasonable as then single steps have too much power. However, multiplication
is still in polynomial time.

Example 9.27. The following register program computes multiplication in polyno-
mial time.

Line 1: Function Polymult(R1, R2);

Line 2: R3 = 0;

Line 3: R4 = 0;

Line 4: If R3 = R1 Then Goto Line 13;

Line 5: R5 = 1;

Line 6: R6 = R2;

Line 7: If R3 +R5 > R1 Then Goto Line 4;

Line 8: R3 = R3 +R5;

Line 9: R4 = R4 +R6;

Line 10: R5 = R5 +R5;

Line 11: R6 = R6 +R6;

Line 12: Goto Line 7;

Line 13: Return(R4).

Alternatively, one can do in linear time by mimicking the school algorithm for binary
numbers. For a bit compacter program, several commands per line are allowed.

Line 1: Function Binarymult(R1, R2);

Line 2: R3 = 1; R4 = 1; R5 = 0; R6 = R2;

Line 3: If R3 > R6 Then Goto Line 5;

Line 4: R3 = R3 +R3; Goto Line 3;

Line 5: R6 = R6 +R6; R5 = R5 +R5; R4 = R4 +R4;

Line 6: If R6 < R3 Then Goto Line 8;

Line 7: R5 = R5 +R1; R6 = R6 −R3;
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Line 8: If R4 < R3 Then Goto Line 5;

Line 9: Return(R5).

In this program, R6 initially holds the input and later the input times some power of
2. R3 is doubled until it is larger than R2 and is a power of 2. In the loop starting
in Line 5, R4 is then used as counter going to R4, but again by doubling up in order
to need the same time. In the loop body, the highest order bit of R6 is read out and
R5 is updated accordingly. R5 is doubled in each iteration of the loop in order to
accomodate then the processing of lower order bits of R6.

Exercise 9.28. Write a register program which computes the remainder in polynomial
time.

Exercise 9.29. Write a register program which divides in polynomial time.

Exercise 9.30. Let an extended register machine have the additional command which
permits to multiply two registers in one step. Show that an extended register machine
can compute a function in polynomial time which cannot be computed in polynomial
time by a normal register machine.

Floyd and Knuth [29] called such register machines “addition machines” and also
showed that they can multiply, divide and form remainders in linear time (with the
same primitive steps as here for register machines). Their method used the represen-
tation of numbers by Fibonacci numbers and their method is superior to the above.
However, for avoiding copy and paste, please use in the solutions to the before exercises
one of the methods indicated in Example 9.27.
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10 Complexity Considerations

To determine the exact computational complexity of an algorithm or problem, one has
to agree on the machine model and the primitive operations permitted. For Turiing
machines, for example, there is a big difference induced by the number of tapes which
they use (this number is always constant, but depends on the machine model). For
example, for a one-tape Turing machine where the input is already on the tape, the
only languages they can recognise in linear time are the regular sets.

Theorem 10.1. A Turing machine with only one tape can recognise in time linear
of the input exactly the regular sets.

The idea of this proof is the following. Trakhtenbrot [88] and Hartmanis [38] have
proven that a one-tape Turing machine which runs linear time visits every cell on
the Turing tape at most constantly many times. Now one can modify the compu-
tation such that one enlarges the alphabet to tuples of symbols and at every visit
one adds new components to the tuple which were empty before and one does not
overwrite the old nonempty components. So if a cell has been visited twice, its tuple
is (a0, s1, a1, s2, a2, 0, . . . , 0) where s1, s2 are the states after the first and second visit
and a1, a2 are the corresponding states when the automaton reaches the cell. So at
each subsequent visit, the first two empty components are replaced by state and new
symbol; here one assumes that the combination of state and tape symbol always gives
away the direction the Turing machine takes as well the information whether it goes
into halting-accept or halting-reject. Note that the tuple length is constant, as each
cell is visited at most only a constant amount of times. Now the nfa, when process-
ing the input word, guesses these tuples and verifies that they are a consistent and
accepting computation of the given word; note that the computations only go beyond
both ends a constant number of steps at most, as otherwise the computation would
be nonterminating. Thus every language whose characteristic function is computed
by a linear time Turing machine is a regular set.

Exercise 10.2. Extend the above proof-sketch to a full proof of the result. This is a
more difficult exercise, as one has to reconstruct or look up the above cited result as
well, it should be included into the explanations; the exercise goes beyong the material
needed for this course.

Exercise 10.3. A Turing machine with two tapes can move the head independently
on the two tapes. Show that the set of palindromes can be recgonised by a Turing
machine with two tapes in linear time.

Also register machines (in the model of Floyd and Knuth [29] where they can add,
subtract and compare integers) have a different computational power than multitape
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Turing machines. Here a comparison of these two models. The complexity of the
basic operations is given for best known algorithm, for example, while the school
book multiplication gives O(n2) on n-bit numbers, the state of the art is O(n log n)
by Harvey and van der Hoeven [40]; for their algorithm they use the model of a
multitape Turing machine.

Complexities Register Machine Multitape Turing machine
Floyd and Knuth [29] Turing [89]

Addition 1 Θ(n)
Subtraction 1 Θ(n)
Comparison 1 Θ(n)
Multiplication Θ(n) O(n log n)
Bitwise And, Or, . . . Θ(n) Θ(n)
Doubling 1 Θ(n)
Halving Θ(n) Θ(n)
Regular Set Membership Θ(n) Θ(n)

This table shows the dependence of complexities of the chosen model. One cannot
say that one model is superior to the other because the operations like multiplica-
tion are faster, instead the primitive operations are just more powerful. Floyd and
Knuth [29] were the first to show that the basic operations like multiplying, dividing
and computing remainders are O(n) in their model; actually they cannot be faster.
Stockmeyer [83] showed that even a register machine with adding, subtracting, com-
paring and multiplying as primitive operations, it needs Ω(n) operations to compute
x/2 for an n-bit number x; similarly to determine whether the number x is even or
odd takes Ω(n) operations; thus with the upper bounds by Floyd and Knuty [29], the
linear bounds for various operations are tight. Regular set membership means that
if one looks at the sequence of bits in the binary representation, then the question
is whether the so obtained word is in a given regular set. For the multitape Turing
machine model, lower bounds Ω(n) stem already from the trivial fact that for vari-
ous operations, the Turing machine has to access all bits in order to carry out the
operation correctly.

Description 10.4: The Complexity Class P. As the complexity of a computation
depends on the exact way the process of computing is formalised, one tries to come
up with robust classes which are the same for many formalisation. One of them is the
class P of sets which can be decided by an algorithm in polynomial time. The main
idea is that there is a polynomial p (bound of form k · (n + k)k for some k > 0) and
the computing device can use p(n) steps to compute the answer for n-bit input x. In
some cases, one does not count the number of bits, but, in particular for finite graphs,
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the number n of nodes or for strings over Σ just the number of symbols (without
converting the alphabet into words over binary alphabet).

Suppose that two computation models C and D are given. Now the following
conditions guarantee that C cannot compute more in polynomial time than D iff
there is a polynomial p and a constant c such that the following holds:

1. Every primitive operation of C on inputs of length n can be done by p(n) steps
of D;

2. Every primitive operation of C with inputs up to length n produces only outputs
up to length n+ c.

If now an algorithm needs q(n) steps with respect to C for some input of length n
then all intermediate values have length up to n+ c · q(n) and need q(p(n+ c · q(n)))
steps which is, as three polynomials are concatenated, again a polynomial bound on
the number of steps in the computation according to model D.

Example 10.5. The model of Floyd and Knuth [29] satisfies both conditions, when
compared to multitape Turing machines.

First, multitape Turing machines can add and subtract and compate n-bit num-
bers in O(n) steps, thus the first condition holds.

Second, if x, y are numbers with up to n bits then x + y has at most n + 1 bits,
as the absolute value of x + y is at most the double of the maximum of the absolute
values of x and y. Comparisons produce only one bit of output. Furthermore, adding
or subtracting constants will make short inputs longer by more than one bit, but the
maximum of the bits gained are given by the length of the longest constant in the
program. Thus the second condition is satisfied.

Indeed, Hartmanis and Simon [39] showed that register machines with the primi-
tive operation to add, to subtract, to compare and to carry out bitwise operations can
compute in polynomially many steps the same what Turing machines can compute.
On the other hand, they showed if one adds to this instruction set also the multipli-
cation, classes considered to be larger like NP and PSPACE can be handled with
polynomially many steps. So one can characterise P with multitape Turing machines
or with register machines which can add, subtract and compare plus, perhaps, bitwise
operations.

Description 10.6.The Complexity Class NP Nondeterminism is quite common in
automata theory; nfas can compute with nondetermism not more than dfas, but they
can be much smaller. For transducers, nondeterminism can be essential and certain
functions can only be computed with nondeterministic transducers. Similarly one can
introduce nondeterminism for Turing machines or register machines. Machines can do
nondeterministically a branching (either to go this state / line or to that state / line).
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Furthermore, for register machines one might guess the content of a register; however,
again one needs a limitation, so if x is the old content of the register, then the new
one is an element of {0, 1, 2, . . . , x−1, x} and nothing else, as guessing extremely large
numbers might allow to go beyond NP. Now a set X is in the class NP iff there is
a nondeterministic register machine and a polynomial p such that for each input y of
length n, the nondeterministic register machine runs at most p(n) steps and y ∈ X
iff there is an accepting run of the register machine.

Example 10.7. Stockmeyer [83] showed that deterministic register machines need
Ω(n) steps to check whether an input number is even or odd. The following non-
determinnistic program does it in constantly many steps.

Line 1: Function Remainderbytwo(R1);

Line 2: Guess R2 from range {0, 1, . . . , R1};
Line 3: R3 = R2 +R2;

Line 4: If R3 = R1 Then Return 0;

Line 5: R3 = R3 + 1;

Line 6: If R3 = R1 Then Return 1;

Line 7: Reject Computation.

The program terminates with correct output iff the value R2 guessed satisfies 2 ·R2 ≤
R1 ≤ 2 · R2 + 1. All other guesses lead to a rejection of the computation. In other
words, the register machine has to guess the downrounded half of R1.

Description 10.8: NP-Complete Problems. A problem A is NP-complete iff
for every further problem B in NP there is a polynomial time computable function
f such that x ∈ B iff f(x) ∈ A.

Example 10.9. Manders and Adleman [61] provided the following numerical problem
which is NP-complete: Given three natural numbers a, b, c, are there two natural
numbers x, y with a · x2 + b · y = c.

Example 10.10: The Satisfiability Problem SAT. Let x1, x2, . . . , xn be {0, 1}-
valued variables, for example bits of an n-bit number. A clause is a condition of the
form xi = bi ∨ xj = bj ∨ xk = bk where bi, bj , bk are bits. Let F be a set of clauses
of size m. Now the instance F has a solution iff there are values for the variables
x1, . . . , xn such that all clauses in F are satisfied.

SAT is now the set of all (n, F ) such that F consists of clauses over the first n
variables and F can be solved. 3SAT is the set of all (n, F ) ∈ SAT where each clause
in F consists of at most three conditions; analogously one defines 2SAT and 4SAT
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and so on. The problem 2SAT is in P while the problems 3SAT, 4SAT, . . . and
SAT itself are all NP-complete.

Example 10.11: The Graph Problem CLIQUE. Let (V,E) be a graph with n
nodes and let m with 1 ≤ m ≤ n be a natural number. Now CLIQUE is the set of
all such (V,E, n,m) where V has n nodes and a subset W of m nodes such that each
two distinct nodes in W are connected by an edge in E. CLIQUE is NP-complete.

Example 10.12: The Graph Problem INDEPENDENTSET. Let (V,E) be
a graph with n nodes and let m with 1 ≤ m ≤ n be a natural number. Now
INDEPENDENTSET is the set of all such (V,E, n,m) where V has n nodes and
a subset W of m nodes such that no two distinct nodes in W are connected by an
edge in E.

Definition 10.13. A set A is polynomial-time many-one reducible to a set B iff there
is a polynomial-time computable function g such that, for all x, x ∈ A⇔ g(x) ∈ B.

Example 10.14. CLIQUE is polynomial-time many-one reducible to INDEPEN-
DENTSET by the following mapping F : Given a graph (V,E) with n nodes and
a parameter m, let F (V,E) be the set of all edges between distinct of nodes of V
which are not in E then the mapping f which maps (V,E, n,m) to (V, F (V,E), n,m)
is a polynomial-time many-one reduction satisfying that (V,E, n,m) is in CLIQUE
iff (V, F (V,E), n,m) is in INDEPENDENTSET. As INDEPENDENTSET is
in NP and as CLIQUE is polynomial-time many-one reducible to INDEPEN-
DENTSET, the problem INDEPENDENTSET is NP-complete.

1

3

2

4

is mapped to

1

3

2

4

This graphics shows the reduction from (V,E, 4, 3) to (V, F (V,E), 4, 3), the first graph
has a clique of size three, the second an independent set of size three. In both cases the
witnessing set is {2, 3, 4}. The graphs are in CLIQUE and INDEPENDENTSET,
respectively. The main idea of the reduction is to swap edges and nonedges.

Description 10.15: Complexity Class PSPACE. The space complexity is the
space used for the computations. In the case of a register machine, it can be viewed
as the number of bits needed to store the registers, in other words, a space bound of
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m bits imposes that all registers used are during the whole runtime of the program
strictly between −2m and 2m. Now a problem is in PSPACE if there is a polynomial
p such that one can, for inputs of n bits, solve the problem with computations obeying
to a space bound of p(n) bits. Note that NP is contained in PSPACE as one can
just try out all possible solutions and then either to settle with the first one to fit the
problem requirements or to find out that there is no solution.

Example 10.16. A PSPACE-complete problem is quantified satisfiability QSAT
where there are variables x1, y1, x2, y2, . . . , xn, yn and where QSAT is the set of all
instances (F, n,m) of m clauses which satisfy that for all x1 there is y1 for all x2 there
is y2 . . . for all xn there is yn such that all clauses in F are satisfied.

Exercise 10.17. Make a proof that every deterministic register program whose space
bound (register size) is bounded by p(n) bits throughout the overall time runs at most
in time 2O(p(n)) for the same polynomial p.

Exercise 10.18. Show that the following problem is in NP: CONNECTED-
HALVES is the set of all graphs (V,E) such that one can split V into two two
subsets U,W such that |U | ≤ |W | ≤ |U | + 1 and every node in U is connected to
every node in W by an edge.

While the complexity classes above are more at the lower end of the hierarchy of
complxity classes, the following will be on the upper end.

Description 10.19: Primitive Recursive. A special form of programs can employ
For-Loops in place of arbitrary Goto-commands. Such a register machine program
does not use backward goto-commands except for a For-Loop which has to satisfy the
following condition: The Loop variables does not get changed inside the loop and the
bounds are read out when entering the loop and not changed during the run of the
loop. For-Loops can be nested but they cannot partly overlap. Goto commands can
neither go into a loop nor from inside a loop out of it. The rules for Goto commands
also apply for if-commands. Here an example.

Line 1: Function Factor(R1, R2);

Line 2: R3 = R1;

Line 3: R4 = 0;

Line 4: If R2 < 2 Then Goto Line 10;

Line 5: For R5 = 0 to R1

Line 6: If Remainder(R3, R2) > 0 Then Goto Line 9;

Line 7: R3 = Divide(R3, R2);

Line 8: R4 = R4 + 1;
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Line 9: Next R5;

Line 10: Return(R4);

This function computes how often R2 is a factor of R1 and is primitive recursive. Using
For-Loops to show that programs are primitive recursive is easier than to follow the
scheme of primitive recursion precisely. Consider the following easy function.

Line 1: Function Collatz(R1);

Line 2: If Remainder(R1, 2) = 0 Then Goto Line 6;

Line 3: If R1 = 1 Then Goto Line 8;

Line 4: R1 = Mult(R1, 3) + 1;

Line 5: Goto Line 2;

Line 6: R1 = Divide(R1, 2);

Line 7: Goto Line 2;

Line 8: Return(R1);

It is unknown whether this function terminates for all inputs larger than 1. Lothar
Collatz conjectured in 1937 that “yes”, but though many attempts have been made
since then, no proof has been found that termination is there. Though one does not
know whether the function terminates on a particular output, one can write a function
which simulates “Collatz” for R2 steps with a For-Loop. In the case that the output
line is reached with output y, one outputs y + 1; in the case that the output line is
not reached, one outputs 0. This simulating function is primitive recursive.

In order of avoiding too much hard coding in the function, several instructions per
line are allowed. The register LN for the line number and T for the loop are made
explicit.

Line 1: Function Collatz(R1, R2);

Line 2: LN = 2;

Line 3: For T = 0 to R2

Line 4: If LN = 2 Then Begin If Remainder(R1, 2) = 0 Then LN = 6 Else LN = 3;
Goto Line 10 End;

Line 5: If LN = 3 Then Begin If R1 = 1 Then LN = 8 Else LN = 4; Goto Line 10
End;

Line 6: If LN = 4 Then Begin R1 = Mult(R1, 3) + 1; LN = 5; Goto Line 10 End;

Line 7: If LN = 5 Then Begin LN = 2; Goto Line 10 End;

Line 8: If LN = 6 Then Begin R1 = Divide(R1, 2); LN = 7; Goto Line 10 End;

Line 9: If LN = 7 Then Begin LN = 2; Goto Line 10 End;

Line 10: Next T ;

Line 11: If LN = 8 Then Return(R1 + 1) Else Return(0);
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In short words, in every simulation step, the action belonging to the line number LN
is carried out and the line number is afterwards updated accordingly. The simulation
here is not yet perfect, as “Mult” and “Divide” are simulated in one step; a more
honest simulation would replace this macros by the basic commands and then carry
out the simulation.

Exercise 10.20. Write a program for a primitive recursive function which simulate
the following function with input R1 for R2 steps.

Line 1: Function Expo(R1);

Line 2: R3 = 1;

Line 3: If R1 = 0 Then Goto Line 7;

Line 4: R3 = R3 +R3;

Line 5: R1 = R1 − 1;

Line 6: Goto Line 3;

Line 7: Return(R3).

Exercise 10.21. Write a program for a primitive recursive function which simulate
the following function with input R1 for R2 steps.

Line 1: Function Repeatadd(R1);

Line 2: R3 = 3;

Line 3: If R1 = 0 Then Goto Line 7;

Line 4: R3 = R3 +R3 +R3 + 3;

Line 5: R1 = R1 − 1;

Line 6: Goto Line 3;

Line 7: Return(R3).

Theorem 10.22. For every partial-recursive function f there is a primitive recursive
function g and a register machine M such that for all t,

If f(x1, . . . , xn) is computed by M within t steps
Then g(x1, . . . , xn, t) = f(x1, . . . , xn) + 1
Else g(x1, . . . , xn, t) = 0.

In short words, g simulates the program M of f for t steps and if an output y comes
then g outputs y + 1 else g outputs 0.

Based on Theorem 10.22, one can make many equivalent formalisations for the notion
that a set is enumerated by an algorithm.
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Description 10.23: Decidable Sets. The class of all sets which has a recursive
decision procedure is called the class DECIDABLE of decidable (or recursive) sets.
It is the class of all sets of numbers for which some register machine can compute the
characteristic function. One can make a program F in two inputs e, x such that the
restriction x 7→ F (e, x) is the characteristic function of the e-th primitive recursive set;
this is possible as one can enumerate all computer programs which satisfy the above
specifications of primite recursive programs. The so obtained set is decidable but not
primitive recursive. When it comes to functions, the above mentioned Ackermann
function is recursive but not primitive recursive.

Theorem 10.24. The following notions are equivalent for a set A ⊆ N:

(a) A is the range of a partial recursive function;

(b) A is empty or A is the range of a total recursive function;

(c) A is empty or A is the range of a primitive recursive function;

(d) A is the set of inputs on which some register machine terminates;

(e) A is the domain of a partial recursive function;

(f) There is a two-place recursive function g such that A = {x : ∃y [g(x, y) > 0]}.

Proof. (a) ⇒ (c): If A is empty then (c) holds; if A is not empty then there is
an element a ∈ A which is now taken as a constant. For the partial function f
whose range A is, there is, by Theorem 10.22, a primitive function g such that either
g(x, t) = 0 or g(x, t) = f(x)+1 and whenever f(x) takes a value there is also a t with
g(x, t) = f(x)+ 1. Now one defines a new function h which is also primitive recursive
such that if g(x, t) = 0 then h(x, t) = a else h(x, t) = g(x, t)− 1. The range of h is A.

(c) ⇒ (b): This follows by definition as every primitive recursive function is also
recursive.

(b) ⇒ (d): Given a function h whose range is A, one can make a register machine
which simulates h and searches over all possible inputs and checks whether h on these
inputs is x. If such inputs are found then the search terminates else the register
machine runs forever. Thus x ∈ A iff the register machine program following this
behaviour terminates after some time.

(d) ⇒ (e): The domain of a register machine is the set of inputs on which it halts
and outputs a return value. Thus this implication is satisfied trivially by taking the
function for (e) to be exactly the function computed from the register program for
(d).
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(e) ⇒ (f): Given a register program f whose domain A is according to (e), one takes
the function g as defined by Theorem 10.22 and this function indeed satisfies that
f(x) is defined iff there is a t such that g(x, t) > 0.

(f) ⇒ (a): Given the function g as defined in (f), one defines that if there is a t with
g(x, t) > 0 then f(x) = x else f(x) is undefined. The latter comes by infinite search
for a t which is not found. Thus the partial recursive function f has range A.

The many equivalent definitions show that they capture a natural concept. This is
formalised in the following definition (which could take any of the above entries).

Definition 10.25. A set is recursively enumerable iff it is the range of a partial
recursive function.

If a set is recursively enumerable there is a function which can enumerate the members;
however, often one wants the better property to decide the membership in the set.
This property is defined as follows.

Definition 10.26. A set L ⊆ N is called recursive or decidable iff the function
x 7→ L(x) with L(x) = 1 for x ∈ L and L(x) = 0 for x /∈ L is recursive; L is
undecidable or nonrecursive iff this function is not recursive, that is, if there is no
algorithm which can decide whether x ∈ L.

One can also cast the same definition in the symbolic model. Let Σ be a finite
alphabet and A ⊆ Σ∗. The set A is recursively enumerable iff it is the range of
a partial function computed by a Turing machine and A is recursive or decidable
iff the mapping x 7→ A(x) is computed by a Turing machine. There is a natural
characterisation. The next result shows that not all recursively enumerable sets are
decidable. The most famous example is due to Turing.

Definition 10.27: Halting Problem [89]. Let e, x 7→ ϕe(x) be a universal partial
recursive function covering all one-variable partial recursive functions. Then the set
H = {(e, x) : ϕe(x) is defined} is called the general halting problem and K = {e :
ϕe(e)} is called the diagonal halting problem.

The name stems from the fact that Turing considered universal partial recursive func-
tions which are defined using Turing machines or register machines or any other such
natural mechanism. Then ϕe(x) is defined iff the e-th register machine with input x
halts and produces some output.

Theorem 10.28: Undecidability of the Halting Problem [89]. Both the diag-
onal halting problem and the general halting problem are recursively enumerable and
undecidable.
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Proof. It is sufficient to prove this for the diagonal halting problem. Note that Turing
[89] proved that a universal function like e, x 7→ ϕe(x) exists, that is, that one can
construct a partial recursive function which simulates on input e and x the behaviour
of the e-th register machine with one input. Let F(e, x) be this function. Furthermore
let Halt(e) be a program which checks whether ϕe(e) halts; it outputs 1 in the case
of “yes” and 0 in the case of “no”. Now one can make the following register program
using F and Halt as macros.

Line 1: Function Diagonalise(R1);

Line 2: R2 = 0;

Line 3: If Halt(R1) = 0 Then Goto Line 5;

Line 4: R2 = F(R1, R1) + 1;

Line 5: Return(R2).

Note that Diagonalise is a total function: On input e it first checks whether ϕe(e)
is defined using Halt. If not, Diagonalise(e) is 0 and therefore different from ϕe(e)
which is undefined.l If yes, Diagonalise(e) is ϕe(e) + 1, as ϕe(e) can be computed by
doing the simulation F(e, e) and then adding one to it. So one can see that for all
e, the function ϕe differs from Diagonalise on input e. Thus Diagonalise is a register
machine having a different input/output behaviour than all the functions ϕe. Thus
there are three possibilities to explain this:

1. The list ϕ0, ϕ1, . . . captures only some but not all functions computed by register
machines;

2. The simulation F(e, e) to compute ϕe(e) cannot be implemented;

3. The function Halt(e) does not always work properly, for example, it might on
some inputs not terminate with an output.

The first two items — that register machines cover all partial-recursive functions and
that the universal simulating register machine / partial recursive function exists —
has been proven before by many authors and is correct. Thus the third assumption,
that the function Halt exists and is total and does what it promises, must be the
failure. This gives then Turing’s result on the unsolvability of the halting problem.

The halting problem is recursively enumerable — see Entry (d) in Theorem 10.24
and the fact that there is a register machine computing e 7→ ϕe(e) — and therefore
it is an example of a recursively enumerable set which is undecidable. This notion is
formalised in the following definition.

In summary, this chapter investigated the hierarchy

P ⇒ NP ⇒ PSPACE ⇒ PRIMREC ⇒ DECIDABLE ⇒ RE
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and except for the first two, all implications are known to be proper. The problem
whether P = NP is one of the seven Millenium Problems and not solved so far. The
last result of this chapter and the subsequent exercises study properties of recursively
enumerable and recursive sets.

Theorem 10.29. A set L is recursive iff both L and N−L are recursively enumerable.

Exercise 10.30. Prove this characterisation.

Exercise 10.31. Prove that the set {e : ϕe(2e+ 5) is defined} is undecidable.

Exercise 10.32. Prove that the set {e : ϕe(e
2 + 1) is defined} is undecidable.

Exercise 10.33. Prove that the set {e : ϕe(e/2) is defined} is undecidable. Here e/2
is the downrounded value of e divided by 2, so 1/2 should be 0 and 3/2 should be 1.

Exercise 10.34. Prove that the set {x2 : x ∈ N} is recursively enumerable by proving
that there is a register machine which halts exactly when a number is square.

Exercise 10.35. Prove that the set of prime numbers is recursively enumerable by
proving that there is a register machine which halts exactly when a number is prime.

Exercise 10.36. Prove that the set {e : ϕe(e/2) is defined} is recursively enumerable
by proving that it is the range of a primitive recursive function. Here e/2 is the
downrounded value of e divided by 2, so 1/2 should be 0 and 3/2 should be 1.

Exercise 10.37. Prove or disprove: Every recursively enumerable set is either ∅ or
the range of a function which can be computed in polynomial time.

Exercise 10.38. Prove or disprove: Every recursively enumerable set is either ∅ or
the domain of a function f where the graph {(x, f(x)) : x ∈ dom(f)} can be decided in
polynomial time, that is, given inputs x, y, one can decide in polynomial time whether
(x, y) = (x, f(x)).

Exercise 10.39. Prove or disprove: Every recursively enumerable set is either ∅ or
the domain of a {0, 1}-valued function f where the graph {(x, f(x)) : x ∈ dom(f)}
can be decided in polynomial time.
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11 Undecidable Problems

Hilbert posed in the year 1900 in total 23 famous open problems. One of them was
the task to construct an algorithm to determine the members of a Diophantine set.
Among them are Diophantine sets. These sets can be defined using polynomials,
either over the integers Z or over the natural numbers N. Let P (B) be the set of all
polynomials with coefficients from B, for example, if B = {0, 1, 2} then P (B) contains
polynomials like 1 · x1 + 2 · x2x3 + 1 · x53.

Definition 11.1. A ⊆ N is Diophantine iff one of the following equivalent conditions
are true:

(a) There are n and a polynomials p(x, y1, . . . , yn), q(x, y1, . . . , yn) ∈ P (N) such that,
for all x ∈ N,

x ∈ A⇔ ∃y1, . . . , yn ∈ N [p(x, y1, . . . , yn) = q(x, y1, . . . , yn)];

(b) There are n and a polynomial p(x, y1, . . . , yn) ∈ P (Z) such that, for all x ∈ N,

x ∈ A⇔ ∃y1, . . . , yn ∈ N [p(x, y1, . . . , yn) = 0];

(c) There are n and a polynomial p(x, y1, . . . , yn) ∈ P (Z) such that, for all x ∈ N,

x ∈ A⇔ ∃y1, . . . , yn ∈ Z [p(x, y1, . . . , yn) = 0];

(d) There are n and a polynomial p(y1, . . . , yn) ∈ P (Z) such that, for all x ∈ N,

x ∈ A⇔ ∃y1, . . . , yn ∈ Z [p(y1, . . . , yn) = x],

that is, A is the intersection of N and the range of p.

Proposition 11.2. The conditions (a) through (d) in Definition 11.1 are indeed all
equivalent.

Proof. (a) ⇒ (b): The functions p, q from condition (a) have natural numbers as
coefficients; their difference has integers as coefficients and (p − q)(x, y1, . . . , yn) =
0 ⇔ p(x, y1, . . . , yn) = q(x, y1, . . . , yn).

(b) ⇒ (c): The functions p from condition (b) is of the corresponding form, however,
the variables have to be quantified over natural numbers in (b) while over integers in
(c). The way out is to use the following result from number theory: Every natural
number is the sum of four squares of natural numbers; for example, 6 = 0+1+1+4.
Furthermore, as squares of integers are always in N, their sum is as well. So one can
write
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There are n and a polynomial p(x, y1, . . . , yn) ∈ P (Z) such that, for all
x ∈ N, x ∈ A iff

∃z1, . . . , z4n ∈ Z [p(x, z21+z
2
2+z

2
3+z

2
4 , . . . , z

2
4n−3+z

2
4n−2+z

2
4n−1+z

2
4n) = 0].

Thus the function q(x, z1, . . . , z4n) given as p(x, z21 + z22 + z23 + z24 , . . . , z
2
4n−3 + z24n−2 +

z24n−1 + z24n) is then the polynomial which is sought for in (c).

(c) ⇒ (d): The functions p from condition (c) can be used to make the corresponding
condition for (d). Indeed, if p(x, y1, . . . , yn) = 0 then it follows that

q(x, y1, . . . , yn) = x− (x+ 1) · (p(x, y1, . . . , yn))2

takes the value x in the case that p(x, y1, . . . , yn) = 0 and takes a negative number
as value in the case that the polynomial p(x, y1, . . . , yn) has the absolute value of at
least 1 and therefore also the square (p(x, y1, . . . , yn))

2 has at least the value 1. Thus
q can be used as the polynomial in (d).

(d) ⇒ (a): The functions p from condition (d) can be modified to match condition
(a) in three steps: First one replaces each input yk by z2k−1 − z2k where z2k−1, z2k are
variables ranging over N. Second one forms the polynomial

(x− p(z1 − z2, z3 − z4, . . . , z2n−1 − z2n))
2

which takes as values only natural numbers and has as variables only natural numbers.
Now any polynomial equation mapping to 0 like

x2 − 4xz1 + 4xz2 + 4z21 + 4z22 − 8z1z2 = 0

can be transformed to the equality of two members of P (N) by brining terms with
negative coefficient onto the other side:

x2 + 4xz2 + 4z21 + 4z22 = 4xz1 + 8z1z2.

This then permits to choose the polynomials for (a).

Example 11.3. The set of all composite numbers (which are the product of at least
two prime numbers) is Diophantine. So x is composite iff

x = (2 + y21 + y22 + y23 + y24) · (2 + y25 + y26 + y27 + y28)
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for some y1, . . . , y8 ∈ Z. Thus condition (d) shows that the set is Diophantine.
The set of all square numbers is Diophantine: x is a square iff x = y21 for some y1.
The set of all non-square numbers is Diophantine. Here one could use condition

(b) best and show that x is a non-square iff

∃y1, y2, y3 ∈ N [x = y21 + 1 + y2 and x+ y3 = y21 + 2y1]

which is equivalent to

∃y1, y2, y3 ∈ N [(y21 + 1 + y2 − x)2 + (x+ y3 − y21 − 2y1)
2 = 0].

This second condition has now the form of (b) and it says that x is properly between
y21 and (y1 + 1)2 for some y1.

Quiz

(a) Which numbers are in the Diophantine set {x : ∃y ∈ N [x = 4 · y + 2]}?
(b) Which numbers are in the Diophantine set {x : ∃y ∈ N [x16 = 17 · y + 1]}?

Exercise 11.4. Show that the set of all x ∈ N such that x is odd and x is a multiple
of 97 is Diophantine.

Exercise 11.5. Show that the set of all natural numbers which are multiples of 5 but
not multiples of 7 is Diophantine.

Exercise 11.6. Consider the set

{x ∈ N : ∃y1, y2 ∈ N [((2y1 + 3) · y2)− x = 0]}.

This set is Diophantine by condition (b). Give a verbal description for this set.

Proposition 11.7. Every Diophantine set is recursively enumerable.

Proof. If A is Diophantine and empty, it is clearly recursively enumerable. If A
is Diophantine and non-empty, consider any a ∈ A. Furthermore, there is a poly-
nomial p(x, y1, . . . , yn) in P (Z) such that x ∈ A iff there are y1, . . . , yn ∈ N with
p(x, y1, . . . , yn) = 0. One can now easily build a register machine which does the
following on input x, y1, . . . , yn: If p(x, y1, . . . , yn) = 0 then the register machine out-
puts x else the register machine outputs a. Thus A is the range of a total function
computed by a register machine, that is, A is the range of a recursive function. It
follows that A is recursively enumerable.
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Proposition 11.8. If A,B are Diophantine sets so are A ∪ B and A ∩ B.

Proof. There are an n,m and polynomials p, q in P (Z) such that

x ∈ A⇔ ∃y1, . . . , yn ∈ N [p(x, y1, . . . , yn) = 0]

and
x ∈ B ⇔ ∃z1, . . . , zm ∈ N [q(x, z1, . . . , zm) = 0]

These two conditions can be combined. Now x is in A ∪ B iff p(x, y1, . . . , yn) ·
q(x, z1, . . . , zm) = 0 for some y1, . . . , yn, z1, . . . , zm ∈ N; the reason is that the prod-
uct is 0 iff one of the factors is 0. Furthermore, x ∈ A ∩ B iff (p(x, y1, . . . , yn))

2 +
(q(x, z1, . . . , zm))

2 = 0 for some y1, . . . , yn, z1, . . . , zm ∈ N; the reason is that this sum
is 0 iff both subpolynomials p, q evaluate to 0, that is, x is in both sets; note that
the variables to be quantified over are different and therefore one can choose them
independently from each other in order to get both of p, q to be 0 in the case that
x ∈ A ∩ B.

Exercise 11.9. Show that if a set A is Diophantine then also the set

B = {x ∈ N : ∃x′ ∈ N [(x+ x′)2 + x ∈ A]}

is Diophantine.

David Hilbert asked in 1900 in an address to the International Congress of Math-
ematicians for an algorithm to determine whether Diophantine sets have members
and to check whether a specific x would be a member of a Diophantine set; this was
the tenth of his list of 23 problems he thought should be solved within the twenti-
eth century. It turned out that this is impossible. In the 1930ies, mathematicians
showed that there are recursively enumerable sets for which the membership cannot
be decided, among them Alan Turing’s halting problem to be the most famous one.
In 1970, Matiyasevich [59, 60] showed that recursively enumerable subsets of N are
Diophantine and thus there is no algorithm which can check whether a given x is a
member of a given Diophantine set; even if one keeps the Diophantine set fixed.

Theorem 11.10: Unsolvability of Hilbert’s Tenth Problem [59]. Every recur-
sively enumerable set is Diophantine; in particular there are undecidable Diophantine
sets.

A general question investigated by mathematicians is also how to decide the correct-
ness of formulas which are more general than those defining Diophantine sets, that is,
of formulas which also allow universal quantification. Such lead to the definition of
arithmetic sets.
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Definition 11.11.Arithmetic setsTa36 A set A ⊆ N is called arithmetic iff there is
a formula using existential (∃) and universal (∀) quantifiers over variables such that
all variables except for x are quantified and that the predicate behind the quantifiers
only uses Boolean combinations of polynomials from P (N) compared by < and = in
order to evaluate the formula; formulas can have constants denoting the corresponding
natural numbers, constants for 0 and 1 are sufficient.

The following examples are the starting point towards the undecidability of certain
arithmetic sets.

Example 11.12. The set P of all prime numbers is defined by

x ∈ P ⇔ ∀y, z [x > 1 and (y + 2) · (z + 2) 6= x]

and the set T of all powers of 2 is defined by

x ∈ T ⇔ ∀y, y′ ∃z [x > 0 and (x = y · y′ ⇒ (y = 1 or y = 2 · z))]

and, in general, the set E of all prime powers is defined by

(p, x) ∈ E ⇔ ∀y, y′ ∃z [p > 1 and x ≥ p and (x = y · y′ ⇒ (y = 1 or y = p · z))]

which says that (p, x) ∈ E iff p is a prime number and x is a non-zero power of p. In
the last equations, E is a subset of N× N rather than N itself.

Example 11.13: Configuration and Update of a Register Machine [89]. The
configuration of a register machine at step t is the line number LN of the line to be
processed and the content R1, . . . , Rn of the n registers. There is a set U of updates
of tuples of the form (LN,R1, . . . , Rn, LN

′, R′
1, . . . , R

′
n, p) where such a tuple is in U

iff p is an upper bound on all the components in the tuple and the register program
when being in line number LN and having the register content R1, . . . , Rn goes in one
step to line number LN ′ and has the content R′

1, . . . , R
′
n. Note that here upper bound

means “strict upper bound”, that is, LN < p and R1 < p and . . . and Rn < p and
LN ′ < p and R′

1 < p and . . . and R′
n < p. Consider the following example program

(which is a bit compressed to give an easier formula):

Line 1: Function Sum(R1); R2 = 0; R3 = 0;

Line 2: R2 = R2 +R3; R3 = R3 + 1;

Line 3: If R3 ≤ R1 Then Goto Line 2;

Line 4: Return(R2);

The set U would now be defined as follows:
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(LN,R1, R2, R3, LN
′, R′

1, R
′
2, R

′
3, p) is in U iff

LN < p and R1 < p and R2 < p and R3 < p and LN ′ < p and R′
1 < p

and R′
2 < p and R′

3 < p and
[(LN = 1 and LN ′ = 2 and R′

1 = R1 and R
′
2 = 0 and R′

3 = 0) or (LN = 2
and LN ′ = 3 and R′

1 = R1 and R′
2 = R2 +R3 and R′

3 = R3 + 1) or
(LN = 3 and LN ′ = 2 and R′

1 = R′
3 and R′

2 = R2 and R′
3 = R3 and

R3 ≤ R1) or
(LN = 3 and LN ′ = 4 and R′

1 = R′
3 and R′

2 = R2 and R′
3 = R3 and

R3 > R1)].

Note the longer the program and the more lines it has, the more complex are the
update conditions. They have not only to specify which variables change, but also
those which keep their values. Such an U can be defined for every register machine.

Example 11.14: Run of a Register Machine. One could code the values of
the registers in digits step by step. For example, when all values are bounded by
10, for computing sum(3), the following sequences would permit to keep track of the
configurations at each step:

LN: 1 2 3 2 3 2 3 2 3 4

R1: 3 3 3 3 3 3 3 3 3 3

R2: 0 0 0 0 1 1 3 3 6 6

R3: 0 0 1 1 2 2 3 3 4 4

So the third column says that after two steps, the register machine is going to do
Line 3 and has register values 3,0,1 prior to doing the commands in Line 3. The last
column says that the register machine has reached Line 4 and has register values 3,6,4
prior to doing the activity in Line 4 which is to give the output 6 of Register R2 and
terminate.

Now one could code each of these in a decimal number. The digit relating to
10t would have the configurations of the registers and line numbers at the beginning
of step t of the computation. Thus the corresponding decimal numbers would be
4323232321 for LN and 3333333333 for R1 and 6633110000 for R2 and 4433221100 for
R3. Note that the updates of a line take effect whenever the next step is executed.

In the real coding, one would not use 10 but a prime number p. The value of this
prime number p just depends on the values the registers take during the computation;
the larger these are, the larger p has to be. Now the idea is that the p-adic digits for
pt code the values at step t and for pt+1 code the values at step t+ 1 so that one can
check the update.

Now one can say that the program Sum(x) computes the value y iff there exist
q, p, LN,R1, R2, R3 such that q is a power of p and p is a prime and LN,R1, R2, R3
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code a run with input x and output y in the format given by p, q. More precisely, for
given x, y there have to exist p, q, LN,R1, R2, R3 satisfying the following conditions:

1. (p, q) ∈ E, that is, p is a prime and q is a power of p;

2. R1 = r1 · p+ x and LN = rLN · p+ 1 and p > x+ 1 for some numbers rLN , r1;

3. R2 = q ·y+r2 and LN = q ·4+rLN and p > y+4 for some numbers r2, rLN < q;

4. For each p′ < q such that p′ divides q there are rLN , r1, r2, r3, r
′
LN , r

′
1, r

′
2, r

′
3, r

′′
LN ,

r′′1 , r
′′
2 , r

′′
3 , r

′′′
LN , r

′′′
1 , r

′′′
2 , r

′′′
3 such that

• rLN < p′ and LN = rLN + p′ · r′LN + p′ · p · r′′LN + p′ · p2 · r′′′LN ;
• r1 < p′ and R1 = r1 + p′ · r′1 + p′ · p · r′′1 + p′ · p2 · r′′′1 ;
• r2 < p′ and R2 = r2 + p′ · r′2 + p′ · p · r′′2 + p′ · p2 · r′′′2 ;
• r3 < p′ and R3 = r3 + p′ · r′3 + p′ · p · r′′3 + p′ · p2 · r′′′3 ;
• (r′LN , r

′
1, r

′
2, r

′
3, r

′′
LN , r

′′
1 , r

′′
2 , r

′′
3 , p) ∈ U .

This can be formalised by a set R of pairs of numbers such that (x, y) ∈ R iff the
above described quantified formula is true. Thus there is a formula in arithmetics
on (N,+, ·) using both types of quantifier (∃, ∀) which is true iff the register machine
computes from input x the output y.

Furthermore, one can also define when this register machine halts on input x by
saying that the machine halts on x iff ∃y [(x, y) ∈ R].

This can be generalised to any register machine computation including one which
simulates on input e, x the e-th register machine with input x (or the e-th Turing
machine with input x). Thus there is a set H definable in arithmetic on the natural
numbers such that (e, x) ∈ H iff the e-th register machine with input x halts. This
gives the following result of Turing.

Theorem 11.15: Undecidability of Arithmetics. The set of all true formulas
in arithmetic of the natural numbers with + and · using universal (∀) and existential
(∃) quantification over variables is undecidable.

Church [18] and Turing [89] also used this construction to show that there is no general
algorithm which can check for any logical formula, whether it is valid, that is, true in
all logical structures having the operations used in the formula. Their work solved the
Entscheidungsproblem of Hilbert from 1928. Note that the Entscheidungsproblem did
not talk about a specific structure like the natural numbers. Instead Hilbert asked
whether one can decide whether a logical formula is true in all structures to which
the formula might apply; for example, whether a formula involving + and · is true in
all structures which have an addition and multiplication.

One might ask whether every arithmetical set is at least recursively enumerable.
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The next results will show that this is not the case; for this one needs the following
definition.

Definition 11.16. A set I ⊆ N is an index set iff for all d, e ∈ N, if ϕd = ϕe then
either d, e are both in I or d, e are both outside I.

The definition of an index set has implicit the notion of the numbering on which it is
based. For getting the intended results, one has to assume that the numbering has a
certain property which is called “acceptable”.

Definition 11.17: Acceptable Numbering [35]. For index sets, it is important
to see on what numbering they are based. Here a numbering is a two-place function
e, x 7→ ϕe(x) of functions ϕe having one input which is partial recursive (in both e
and x). A numbering ϕ is acceptable iff for every further numbering ψ there is a
recursive function f such that, for all e, ψe = ϕf(e). That is, f translates “indices” or
“programs” of ψ into “indices” or “programs” of ϕ which do the same.

The universal functions for register machines and for Turing machines considered
above in these notes are actually acceptable numberings. The following proposition
is more or less a restatement of the definition of acceptable.

Proposition 11.18. Let ϕ be an acceptable numbering and f be a partial-recursive
function with n + 1 inputs. Then there is a recursive function g with n inputs such
that

∀e1, . . . , en, x [f(e1, . . . , en, x) = ϕg(e1,...,en)(x)]

equality means that either both sides are defined and equal or both sides are undefined.

This proposition is helpful to prove the following theorem of Rice which is one of the
milestones in the study of index sets and undecidable problems. The proposition is in
that proof mainly used for the parameters n = 1 and n = 2. For the latter note that
e1, e2 7→ (e1 + e2) · (e1 + e2 + 1)/2 + e2 is a bijection from N × N to N and it is easy
to see that it is a recursive bijection, as it is a polynomial. Now given f with inputs
e1, e2, x, one can make a numbering ψ defined by

ψ(e1+e2)·(e1+e2+1)/2+e2(x) = f(e1, e2, x)

and then use that due to ϕ being acceptable there is a recursive function g̃ with

ψe = ϕg̃(e)

for all e. Now let g(e1, e2) = g̃((e1 + e2) · (e1 + e2 + 1)/2 + e2) and it follows that

∀e1, e2, x [f(e1, e2, x) = ϕg(e1,e2)(x)]
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where, as usual, two functions are equal at given inputs if either both sides are de-
fined and take the same value or both sides are undefined. The function g is the
concatenation of the recursive function g̃ with a polynomial and thus recursive.

Theorem 11.19: Rice’s Characterisation of Index Sets [74]. Let ϕ be an
acceptable numbering and I be an index set (with respect to ϕ).

(a) The set I is recursive iff I = ∅ or I = N.

(b) The set I is recursively enumerable iff there is a recursive enumeration of finite
lists (x1, y1, . . . , xn, yn) of conditions such that every index e satisfies that e ∈ I iff
there is a list (x1, y1, . . . , xn, yn) in the enumeration such that, for m = 1, . . . , n,
ϕe(xm) is defined and equal to ym.

Proof. First one looks into case (b) and assume that there is an enumeration of
the lists (x1, y1, . . . , xn, yn) such that each partial function in I satisfies at least the
conditions of one of these lists. Now one can define that f(d, e) takes the value e in
the case that ϕe(x1) = y1, . . . , ϕe(xn) = yn for the d-th list (x1, y1, . . . , xn, yn) in this
enumeration; in the case that the d-th list has the parameter n = 0 (is empty) then
f(d, e) = e without any further check. In the case that the simulations for one xm to
compute ϕe(xm) does not terminate or gives a value different from ym then f(d, e) is
undefined. Thus the index set I is range of a partial recursive function and therefore
I is recursively enumerable.

Now assume for the converse direction that I is recursively enumerable. Let
T ime(e, x) denote the time that a register machine needs to compute ϕe(x); if this
computation does not halt then T ime(e, x) is also undefined and considered to be∞ so
that T ime(e, x) > t for all t ∈ N. Note that the set of all (e, x, t) with T ime(e, x) ≤ t
is recursive.

Now define f(i, j, x) as follows: If T ime(i, x) is defined and it furthermore holds
that T ime(j, j) > Time(i, x) + x then f(i, j, x) = ϕi(x) else f(i, j, x) remains unde-
fined.

The function f is partial recursive. The function f does the following: if ϕi(x)
halts and furthermore ϕj(j) does not halt within T ime(i, x)+x then f(i, j, x) = ϕi(x)
else f(i, j, x) is undefined. By Proposition 11.18, there is a function g such that

∀i, j, x [ϕg(i,j)(x) = f(i, j, x)]

where again equality holds if either both sides of the equality are defined and equal
or both sides are undefined.

Now consider any i ∈ I. For all j with ϕj(j) being undefined, it holds that

ϕi = ϕg(i,j)
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and therefore g(i, j) ∈ I. The complement of the diagonal halting problem is not
recursively enumerable while the set {j : g(i, j) ∈ I} is recursively enumerable; thus
there must be a j with g(i, j) ∈ I and ϕj(j) being defined. For this j, it holds that
ϕg(i,j)(x) is defined iff T ime(e, x) + x < Time(j, j). This condition can be tested
effectively and the condition is not satisfied for any x ≥ T ime(j, j). Thus one can
compute an explicit list (x1, y1, . . . , xn, yn) such that ϕg(i,j)(x) is defined and takes
the value y iff there is an m ∈ {1, . . . , n} with x = xm and y = ym. There is an
algorithm which enumerates all these lists, that is, the set of these lists is recursively
enumerable. This list satisfies therefore the following:

• If i ∈ I then a there is a list (x1, y1, . . . , xn, yn) enumerated such that ϕi(x1) =
y1, . . . , ϕi(xn) = yn; note that this list might be empty (n = 0), for example in
the case that ϕi is everywhere undefined;

• If (x1, y1, . . . , xn, yn) appears in the list then there is an index i ∈ I such that
ϕi(x) is defined and equal to y iff there is an m ∈ {1, . . . , n} with xm = x and
ym = y.

What is missing is that all functions extending a tuple from the list have also their
indices in I. So consider any tuple (x1, y1, . . . , xn, yn) in the list and any function
ϕi extending this tuple. Now consider the following partial function f ′: f ′(j, x) = y
iff either there is an m ∈ {1, . . . , n} with xm = x and ym = y or ϕj(j) is defined
and ϕi(x) = y. There is a recursive function g′ with ϕg′(j)(x) = f ′(j, x) for all
j, x; again either both sides of the equation are defined and equal or both sides are
undefined. Now the set {j : g′(j) ∈ I} is recursive enumerable and it contains all j
with ϕj(j) being undefined; as the diagonal halting problem is not recursive, the set
{j : g′(j) ∈ I} is a proper superset of {j : ϕj(j) is undefined}. As there are only
indices for two different functions in the range of g, it follows that {j : g′(j) ∈ I} = N.
Thus i ∈ I and the set I coincides with the set of all indices e such that some finite
list (x1, y1, . . . , xn, yn) is enumerated with ϕe(xm) being defined and equal to ym for
all m ∈ {1, . . . , n}. This completes part (b).

Second for the case (a), it is obvious that ∅ and N are recursive index sets. So assume
now that I is a recursive index set. Then both I and N−I are recursively enumerable.
One of these sets, say I, contains an index e of the everywhere undefined function.
By part (b), the enumeration of conditions to describe the indices e in the index set
I must contain the empty list. Then every index e satisfies the conditions in this list
and therefore I = N. Thus ∅ and N are the only two recursive index sets.

Corollary 11.20. There are arithmetic sets which are not recursively enumerable.

Proof. Recall that the halting problem

H = {(e, x) : ϕe(x) is defined}
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is definable in arithmetic. Thus also the set

{e : ∀x [(e, x) ∈ H]}

of indices of all total functions is definable in arithmetic by adding one more quantifier
to the definition, namely the universal one over all x. If this set would be recursively
enumerable then there would recursive enumeration of lists of finite conditions such
that when a function satisfies one list of conditions then it is in the index set. However,
for each such list there is a function with finite domain satisfying it, hence the index
set would contain an index of a function with a finite domain, in contradiction to its
definition. Thus the set

{e : ∀x [(e, x) ∈ H]}
is not recursively enumerable.

The proof of Rice’s Theorem and also the above proof have implicitly used the fol-
lowing observation.

Observation 11.21. If A,B are sets and B is recursively enumerable and if there is
a recursive function g with x ∈ A⇔ g(x) ∈ B then A is also recursively enumerable.

Such a function g is called a many-one reduction. Formally this is defined as follows.

Definition 11.22. A set A is many-one reducible to a set B iff there is a recursive
function g such that, for all x, x ∈ A⇔ g(x) ∈ B.

One can see from the definition: Assume that A is many-one reducible to B. If B
is recursive so is A; if B is recursively enumerable so is A. Thus a common proof
method to show that some set B is not recursive or not recursively enumerable is to
find a many-one reduction from some set A to B where the set A is not recursive or
recursively enumerable, respectively.

Example 11.23. The set E = {e : ∀ even x [ϕe(x) is defined]} is not recursively
enumerable. This can be seen as follows: Define f(e, x) such that f(e, 2x) = f(e, 2x+
1) = ϕe(x) for all e, x. Now there is a recursive function g such that ϕg(e)(x) = f(e, x)
for all x; furthermore, ϕg(e)(2x) = ϕe(x) for all e, x. It follows that ϕe is total iff ϕg(e)

is defined on all even inputs. Thus the set of all indices of total functions is many-one
reducible to E via g and therefore E cannot be recursively enumerable.

Example 11.24. The set F = {e : ϕe is somewhere defined} is not recursive. There
is a partial recursive function f(e, x) with f(e, x) = ϕe(e) for all e, x and a recursive
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function g with ϕg(e)(x) = f(e, x) = ϕe(e) for all e. Now e ∈ K iff g(e) ∈ F and thus
F is not recursive.

Theorem 11.25. Every recursively enumerable set is many-one reducible to the
diagonal halting problem K = {e : ϕe(e) is defined}.

Proof. Assume that A is recursively enumerable. Now there is a partial recursive
function f̃ such that A is the domain of f̃ . One adds to f̃ one input parameter which
is ignored and obtains a function f such that f(e, x) is defined iff e ∈ A. Now there
is a recursive function g such that

∀e, x [ϕg(e)(x) = f(e, x)].

If e ∈ A then ϕg(e) is total and g(e) ∈ K; if e /∈ A then ϕg(e) is nowhere defined and
g(e) /∈ K. Thus g is a many-one reduction from A to K.

Exercise 11.26. Show that the set F = {e : ϕe is defined on at least one x} is
many-one reducible to the set {e : ϕe(x) is defined for exactly one input x}.

Exercise 11.27. Determine for the following set whether it is recursive, recursively
enumerable and non-recursive or even not recursively enumerable: A = {e : ∀x [ϕe(x)
is defined iff ϕx(x+ 1) is undefined]}.

Exercise 11.28. Determine for the following set whether it is recursive, recursively
enumerable and non-recursive or even not recursively enumerable: B = {e : There
are at least five numbers x where ϕe(x) is defined}.

Exercise 11.29. Determine for the following set whether it is recursive, recursively
enumerable and non-recursive or even not recursively enumerable: C = {e : There are
infinitely many x where ϕe(x) is defined}.

Exercise 11.30. Assume that ϕe is an acceptable numbering. Now define ψ such
that

ψ(d+e)·(d+e+1)/2+e(x) =







undefined if d = 0 and x = 0;
d− 1 if d > 0 and x = 0;
ϕe(x) if x > 0.

Is the numbering ψ enumerating all partial recursive functions? Is the numbering ψ
an acceptable numbering?

Exercise 11.31. Is there a numbering ϑ with the following properties:

• The set {e : ϑe is total} is recursively enumerable;

• Every partial recursive function ϕe is equal to some ϑd.

Prove the answer.
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12 Undecidability and Formal Languages

The current section uses methods from the previous sections in order to show that
certain problems in the area of formal languages are undecidable. Furthermore, this
section adds another natural concept to describe recursively enumerable languages:
they are those which are generated by some grammar. For the corresponding con-
structions, the notion of the register machine will be adjusted to the multi counter
machine with respect to two major changes: the commands will be made much more
simpler (so that computations / runs can easily be coded using grammars) and the
numerical machine is adjusted to the setting of formal languages and reads the input
in like a pushdown automaton (as opposed to register machines which have the input
in some of the registers). There are one counter machines and multi counter machines;
one counter machines are weaker than deterministic pushdown automata, therefore
the natural concept is to allow several (“multi”) counters.

Description 12.1: Multi Counter Automata. One can modify the pushdown
automaton to counter automata, also called counter machines. Counter automata are
like register machines and Turing machines controlled by line numbers or states (these
concepts are isomorphic); the difference to register machines are the following two:

• The counters (= registers) have much more restricted operations: One can add
or subtract 1 or compare whether they are 0. The initial values of all counters
is 0.

• Like a pushdown automaton, one can read one symbol from the input at a time;
depending on this symbol, the automaton can go to the corresponding line. One
makes the additional rule that a run of the counter automaton is only valid iff
the full input was read.

• The counter automaton can either output symbols with a special command
(when computing a function) or terminate in lines with the special commands
“ACCEPT” and “REJECT” in the case that no output is needed but just a
binary decision. Running forever is also interpreted as rejection and in some
cases it cannot be avoided that rejection is done this way.

Here an example of a counter automaton which reads inputs and checks whether at
each stage of the run, at least as many 0 have been seen so far as 1.

Line 1: Counter Automaton Zeroone;

Line 2: Input Symbol – Symbol 0: Goto Line 3; Symbol 1: Goto Line 4; No further
Input: Goto Line 7;

Line 3: R1 = R1 + 1; Goto Line 2;

Line 4: If R1 = 0 Then Goto Line 6;
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Line 5: R1 = R1 − 1; Goto Line 2;

Line 6: REJECT;

Line 7: ACCEPT.

A run of the automaton on input 001 would look like this:

Line: 1 2 3 2 3 2 4 5 2 7

Input: 0 0 1 -

R1: 0 0 0 1 1 2 2 2 1 1

A run of the automaton on input 001111000 would look like this:

Line: 1 2 3 2 3 2 4 5 2 4 5 2 4 6

Input: 0 0 1 1 1

R1: 0 0 0 1 1 2 2 2 1 1 1 0 0 0

Note that in a run, the values of the register per cycle always reflect those before
going into the line; the updated values of the register are in the next columnl. The
input reflects the symbol read in the line (if any) where “-” denotes the case that the
input is exhausted.

Theorem 12.2. Register machines can be translated into counter machines.

Proof Idea. The main idea is that one can simulate addition, subtraction, assignment
and comparison using additional registers. Here an example on how to translate the
sequence R1 = R2 +R3 into a code segment which uses an addition register R4 which
is 0 before and after the operation.

Line 1: Operation R1 = R2 +R3 on Counter Machine

Line 2: If R1 = 0 Then Goto Line 4;

Line 3: R1 = R1 − 1; Goto Line 2;

Line 4: If R2 = 0 Then Goto Line 6;

Line 5: R4 = R4 + 1; R2 = R2 − 1; Goto Line 4;

Line 6: If R4 = 0 Then Goto Line 8;

Line 7: R1 = R1 + 1; R2 = R2 + 1; R4 = R4 − 1; Goto Line 6;

Line 8: If R3 = 0 Then Goto Line 10;

Line 9: R4 = R4 + 1; R3 = R3 − 1; Goto Line 8;

Line 10: If R4 = 0 Then Goto Line 12;

Line 11: R1 = R1 + 1; R3 = R3 + 1; R4 = R4 − 1; Goto Line 10;

Line 12: Continue with Next Operation;

A further example is R1 = 2−R2 which is realised by the following code.
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Line 1: Operation R1 = 2−R2 on Counter Machine

Line 2: If R1 = 0 Then Goto Line 4;

Line 3: R1 = R1 − 1; Goto Line 2;

Line 4: R1 = R1 + 1; R1 = R1 + 1;

Line 5: If R2 = 0 Then Goto Line 10;

Line 6: R1 = R1 − 1; R2 = R2 − 1;

Line 7: If R2 = 0 Then Goto Line 9;

Line 8: R1 = R1 − 1;

Line 9: R2 = R2 + 1;

Line 10: Continue with Next Operation;

Similarly one can realise subtraction and comparison by code segments. Note that
each time one compares or adds or subtracts a variable, the variable needs to be
copied twice by decrementing and incrementing the corresponding registers, as regis-
ters compare only to 0 and the value in the register gets lost when one downcounts it
to 0 so that a copy must be counted up in some other register to save the value. This
register is in the above example R4.

Quiz 12.3. Provide counter automaton translations for the following commands:

• R2 = R2 + 3;

• R3 = R3 − 2;

• R1 = 2.

Write the commands in a way that that 1 is subtracted only from registers if those are
not 0.

Exercise 12.4. Provide a translation for a subtraction: R1 = R2 − R3. Here the
result is 0 in the case that R3 is greater than R2. The values of R2, R3 after the
translated operation should be the same as before.

Exercise 12.5. Provide a translation for a conditional jump: If R1 ≤ R2 then Goto
Line 200. The values of R1, R2 after doing the conditional jump should be the same
as before the translation of the command.

Corollary 12.6. Every language recognised by a Turing machine or a register ma-
chine can also be recognised by a counter machine. In particular there are languages
L recognised by counter machines for which the membership problem is undecidable.

Theorem 12.7. If K is recognised by a counter machine then there are deterministic
context-free languages L and H and a homomorphism h such that

K = h(L ∩H).
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In particular, K is generated by some grammar.

Proof. The main idea of the proof is the following: One makes L and H to be
computations such that for L the updates after an odd number of steps and for H
the updates after an even number of steps is checked; furthermore, one intersects one
of them, say H with a regular language in order to meet some other, easy to specify
requirements on the computation.

Furthermore, h(L∩H) will consist of the input words of accepting counter machine
computations; in order to achieve that this works, one requires that counter machines
read the complete input before accepting. If they read only a part, this part is the
accepted word, but no proper extension of it.

Now for the detailed proof, let K be the given recursively enumerable set and M
be a counter machine which recognises K. Let R1, R2, . . . , Rn be the registers used
and let 1, 2, . . . ,m be the line numbers used. Without loss of generality, the alphabet
used is {0, 1}. One uses 0, 1 only to denote the input symbol read in the current cycle
and 2 to denote the outcome of a reading when the input is exhausted. For a line
LN ∈ {1, 2, . . . ,m}, let 3LN code the line number. Furthermore, one codes as 4x the
current value of the counter where x = pR1

1 · pR2

2 · . . . · pRn

n and p1, p2, . . . , pn are the
first n prime numbers. For example, if R1 = 3 and R3 = 1 and all other registers are
0 then x = 23 · 30 · 51 · 70 · . . . = 40. Thus the set I of all possible configurations is of
the form

I = {0, 1, 2, ε} · {3, 33, . . . , 3m} · {4}+

where the input (if requested) is the first digit then followed by the line number
coded as 3LN then followed by the registers coded as 4x; note that x > 0 as it is the
multiplication of prime powers. Furthermore, let

J = {v · w : v, w ∈ I and w is configuration of next step after v}
be the set of all legal successor configurations. Note that J is deterministic context-
free: The pushdown automaton starts with S on the stack. It has several states
which permit to memorise the symbol read (if any) and the line number which is the
number of 3 until the first 4 comes; if this number is below 1 or abovem the pushdown
automaton goes into an always rejecting state and ignores all further inputs. Then
the pushdown automaton counts the number of 4 by pushing them onto the stack.
It furthermore reads from the next cycle the input symbol (if any) and the new line
number and then starts to compare the 4; again in the case that the format is not
kept, the pushdown automaton goes into an always rejecting state and ignores all
further input. Depending of the operation carried out, the pushdown automaton
compares the updated memory with the old one and also checks whether the new line
number is chosen adequately. Here some representative sample commands and how
the deterministic pushdown automaton handles them:
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Line i: Rk = Rk + 1;
In this case, one has that the configuration update must be of the form

{3i} · {4}x · {0, 1, 2, ε} · {3i+1} · {4}x·pk

and the deterministic pushdown automaton checks whether the new number of
3 is one larger than the old one and whether when comparing the second run
of 4 those are pk times many of the previous run, that is, it would count down
the stack only after every pk-th 4 and keep track using the state that the second
number of 4 is a multiple of pk.

Line i: Rk = Rk − 1;
In this case, one has that the configuration update must be of the form

{3i} · {4}x · {0, 1, 2, ε} · {3i+1} · {4}x/pk

and the deterministic pushdown automaton checks whether the new number of
3 is one larger than the old one and whether when comparing the second run
of 4 it would count down the stack by pk symbols for each 4 read and it would
use the state to check whether the first run of 4 was a multiple of pk in order to
make sure that the subtraction is allowed.

Line i: If Rk = 0 then Goto Line j;
In this case, the configuration update must either be of the form

{3i} · {4}x · {0, 1, 2, ε} · {3j} · {4}x

with x not being a multiple of pk or it must be of the form

{3i} · {4}x · {0, 1, 2, ε} · {3i+1} · {4}x

with x being a multiple of pk. Being a multiple of pk can be checked by using the
state and can be done in parallel with counting; the preservation of the value is
done accordingly.

Line i: If input symbol is 0 then goto Line j0; If input symbol is 1 then goto Line
j1; If input is exhausted then goto Line j2;
Now the configuration update must be of one of the form

u · {3i} · {4}x · {0, 1, 2, ε} · {3ju} · {4}x

for some u ∈ {0, 1, 2} and the deterministic pushdown automaton can use the
state to memorise u, i and the stack to compare the two occurrences of 4x.
Again, if the format is not adhered to, the pushdown automaton goes into an
always rejecting state and ignores all future input.
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One can see that also the language J∗ can be recognised by a deterministic pushdown
automaton, as the automaton, after processing one word from J , has in the case of
success the stack S and can now process the next word. Thus the overall language of
correct computations is

(J∗ · (I ∪ {ε})) ∩ (I · J∗ · (I ∪ {ε})) ∩R

where R is a regular language which codes that the last line number is that of a line
having the command ACCEPT and that the first line number is 1 and the initial value
of all registers is 0 and that once a 2 is read from the input (for exhausted input)
then all further attempts to read an input are answered with 2. So if the lines 5 and
8 carry the command ACCEPT then

R = ({34} · I∗ · {35, 38} · {4}+) ∩ ({0, 1, 3, 4}∗ · {2, 3, 4}∗).

As the languages J∗ · (I ∪ {ε}) and I · J∗ · (I ∪ {ε}) are deterministic context-free,
one has also that L = J∗ · (I ∪ {ε}) and H = (I · J∗ · (I ∪ {ε})) ∩R are deterministic
context-free.

Thus one can construct a context-sensitive grammar for H∩L. Furthermore, let h
be the homomorphism given by h(0) = 0, h(1) = 1, h(2) = ε, h(3) = ε and h(4) = ε.
Taking into account that in an accepting computation v accepting a word w all the
input symbols are read, one then gets that h(v) = w. Thus h(L∩H) contains all the
words accepted by the counter machine and K = h(L ∩H). As L ∩H are generated
by a context-sensitive grammar, it follows from Proposition 5.39 that h(L ∩ H) is
generated by some grammar.

Exercise 12.8. In the format of the proof before and with respect to the sample
multi counter machine from Definition 12.1, give the encoded version (as word from
{0, 1, 2, 3, 4}+) of the run of the machine on the input 001.

Exercise 12.9. In the format of the proof before and with respect to the sample
multi counter machine from Definition 12.1, give the encoded version (as word from
{0, 1, 2, 3, 4}+) of the run of the machine on the input 001111000.

Theorem 12.10. A set K ⊆ Σ∗ is recursively enumerable iff it is generated by some
grammar. In particular, there are grammars for which it is undecidable which words
they generate.

Proof. If K is generated by some grammar, then every word w has a derivation
S ⇒ v1 ⇒ v2 ⇒ . . . ⇒ vn in this grammar. It is easy to see that an algorithm
can check, by all possible substitutions, whether vm ⇒ vm+1. Thus one can make a
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function f which on input S ⇒ v1 ⇒ v2 ⇒ . . . ⇒ vn checks whether all steps of the
derivation are correct and whether vn ∈ Σ∗ for the given alphabet; if these tests are
passed then the function outputs vn else the function is undefined. Thus K is the
range of a partial recursive function.

The converse direction is that if K is recursively enumerable then K is recognised
by a Turing machine and then K is recognised by a counter automaton and then K
is generated by some grammar by the previous theorem.

Corollary 12.11. The following questions are undecidable:

• Given a grammar and a word, does this grammar generate the word?

• Given two deterministic context-free languages by deterministic push down au-
tomata, does their intersection contain a word?

• Given a context-free language given by a grammar, does this grammar generate
{0, 1, 2, 3, 4}∗?

• Given a context-sensitive grammar, does its language contain any word?

Proof. One uses Theorem 12.7 and one lets K be an undecidable recursively enu-
merable language, say a suitable encoding of the diagonal halting problem.

For the first item, if one uses a fixed grammar for K and asks whether an in-
put word is generated by it, this is equivalent to determining the membership in the
diagonal halting problem. This problem is undecidable. The problem where both,
the grammar and the input word, can be varied, is even more general and thus also
undecidable.

For the second item, one first produces two deterministic pushdown automata for
the languages L and H. Second one considers for an input word w = b1 . . . bn ∈ {0, 1}n
the set

Rw = {3, 4}∗ · {b1} · {3, 4}∗ · {b2} · . . . · {3, 4}∗ · {bn} · {2, 3, 4}∗.

and notes that L ∩H ∩Rw only contains accepting computations which read exactly
the word w. One can construct a deterministic finite automaton for Rw and combine
it with the deterministic pushdown automaton for H to get a deterministic pushdown
automaton for Hw = H∩Rw. Now the question whether the intersection of L and Hw

is empty is equivalent to whether there is an accepting computation of the counter
machine which reads the input w; this question cannot be decided. Thus the corre-
sponding algorithm cannot exist.

For the third item, note that the complement {0, 1, 2, 3, 4}∗ − (L∩Hw) of L∩Hw

equals to ({0, 1, 2, 3, 4}∗ −L)∪ ({0, 1, 2, 3, 4}∗ −Hw). The two parts of this union are
deterministic context-free languages which have context-free grammars which can be
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computed from the deterministic pushdown automata for L and Hw; these two gram-
mars can be combined to a context-free grammar for the union. Now being able to
check whether this so obtained context-free grammar generates all words is equivalent
to checking whether w /∈ K – what was impossible.

The fourth item is more or less the same as the second item; given deterministic
pushdown automata for L and Hw, one can compute a context-sensitive grammar for
L ∩ Hw. Checking whether this grammar contains a word is as difficult as deciding
whether w ∈ K, thus impossible.

The above proof showed that it is undecidable to check whether a context-free gram-
mar generates {0, 1, 2, 3, 4}∗. Actually this is undecidable for all alphabets with at
least two symbols, so it is already undecidable to check whether a context-free gram-
mar generates {0, 1}∗.

A further famous undecidable but recursively enumerable problem is the Post’s
Correspondence Problem. Once one has shown that this problem is undecidable, it
provides an alternative approach to show the undecidability of the above questions in
formal language theory.

Description 12.12: Post’s Correspondence Problem. An instance of Post’s
Correspondence Problem is a list (x1, y1), (x2, y2), . . . , (xn, yn) of pairs of words. Such
an instance has a solution iff there is a sequence k1, k2, . . . , km of numbers in {1, . . . , n}
such that m ≥ 1 – so that the sequence is not empty – and

xk1xk2 . . . xkm = yk1yk2 . . . ykm ,

that is, the concatenation of the words according to the indices provided by the
sequence gives the same independently of whether one chooses the x-words or the
y-words.

Consider the following pairs: (a,a), (a,amanap), (canal,nam), (man,lanac), (o,oo),
(panama,a), (plan,nalp), This list has some trivial solutions like 1, 1, 1 giving aaa for
both words. It has also the famous solution 2, 4, 1, 7, 1, 3, 6 which gives the palindrome
as a solution:

a man a plan a canal panama

amanap lanac a nalp a nam a

The following instance of Post’s correspondence problem does not admit any solution:
(1,0), (2,135), (328,22222), (4993333434,3333), (8,999). The easiest way to see is that
no pair can go first: the x-word and the y-word always start with different digits.

Exercise 12.13. For the following version of Post’s Correspondence Problem, de-
termine whether it has a solution: (23,45), (2289,2298), (123,1258), (777,775577),
(1,9999), (11111,9).
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Exercise 12.14. For the following version of Post’s Correspondence Problem, deter-
mine whether it has a solution: (1,9), (125,625), (25,125), (5,25), (625,3125), (89,8),
(998,9958).

Exercise 12.15. One application of Post’s Correspondence Problem is to get a proof
for the undecidability to check whether the intersection of two deterministic context-
free languages is non-empty. For this, consider an instance of Post’s Correspondence
Problem given by (x1, y1), . . . , (xn, yn) and assume that the alphabet Σ contains the
digits 1, 2, . . . , n, n + 1 plus all the symbols occurring in the xm and ym. Now let
L = {kmkm−1 . . . k1(n + 1)xk1xk2 . . . xkm : m > 0 and k1, k2, . . . , km ∈ {1, . . . , n}} and
H = {kmkm−1 . . . k1(n + 1)yk1yk2 . . . ykm : m > 0 and k1, k2, . . . , km ∈ {1, . . . , n}}.
Show that L,H are deterministic context-free and that their intersection is non-empty
iff the given instance of Post’s Correspondence Problem has a solution; furthermore,
explain how the corresponding deterministic pushdown automata can be constructed
from the instance.

Description 12.16: Nondeterministic machines. Nondeterminism can be re-
alised in two ways: First by a not determined transition, that is, a Goto command
has two different lines and the machine can choose which one to take or the Turing
machine has in the table several possible successor states for some combination where
it choses one. The second way to implement nondeterminism is to say that a register
or counter has a value x and the machine replaces x by some arbitrary value from
{0, 1, . . . , x}. In order to avoid too much computation power, the value should not
go up by guessing. Nondeterministic machines can have many computations which
either and in an accepting state (with some output) or in a rejecting state (where
the output is irrelevant) or which never halt (when again all contents in the machine
registers or tape is irrelevant). One defines the notions as follows:

• A function f computes on input x a value y iff there is an accepting run which
produces the output y and every further accepting run produces the same out-
put; rejected runs and non-terminating runs are irrelevant in this context.

• A set L is recognised by a nondeterministic machine iff for every x it holds that
x ∈ L iff there is an accepting run of the machine for this input x.

One can use nondeterminism to characterise the regular and context-sensitive lan-
guages via Turing machines or register machines.

Theorem 12.17. A language L is context-sensitive iff there is a Turing machine
which recognises L and which modifies only those cells on the Turing tape which are
occupied by the input iff there is a nondeterministic register machine recognising the
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language and a constant c such that the register machine on any run for an input
consisting of n symbols never takes in its registers values larger than cn.

These machines are also called linear bounded automata as they are Turing machines
whose workspace on the tape is bounded linearly in the input. One can show that
a linear bound on the input and working just on the cells given as an input is not
giving a different model. An open problem is whether in this characterisation the
word “nondeterministic” can be replaced by “deterministic”, as it can be done for
finite automata.

Theorem 12.18. A language L is regular iff there is a nondeterministic Turing
machine and a linear bound a · n + b such that the Turing machine makes for each
input consisting of n symbols in each run at most a · n+ b steps and recognises L.

Note that Turing machines can modify the tape on which the input is written while a
deterministic finite automaton does not have this possibility. This result shows that,
on a linear time constraint, this possibility does not help. This result is for Turing
machines with one tape only; there are also models where Turing machines have
several tapes and such Turing machines can recognise the set of palindromes in linear
time though the set of palindromes is not regular. In the above characterisation, one
can replace “nondeterministic Turing machine” by “deterministic Turing machine”;
however, the result is stated here in the more general form.

Example 12.19. Assume that a Turing machine has as input alphabet the decimal
digits 0, 1, . . . , 9 and as tape alphabet the additional blanc ⊔. This Turing machine
does the following: For an input word w, it goes four times over the word from left
to right and replaces it a word v such that w = 3v + a for a ∈ {0, 1, 2} in decimal
notation; in the case that doing this in one of the passes results in an a /∈ {0, 1, 2}, the
Turing machine aborts the computation and rejects. If all four passes went through
without giving a non-zero remainder, the Turing machine checks whether the resulting
word is of the from the set {0}∗ · {110} · {0}∗ · {110} · {0}∗.

One detail, left out in the overall description is how the pass divides by 3 when
going from the front to the end. The method to do this is to have a memory a which
is the remainder-carry and to initialise it with 0. Then, one replaces in each step the
current decimal digit b by the value (a · 10 + b)/3 where this value is down-rounded
to the next integer (it is from {0, 1, . . . , 9}) and the new value of a is the remainder
of a · 10 + b by 3. After the replacement the Turing machine goes right.

Now one might ask what language recognised by this Turing machine is. It is the
following: {0}∗ ·{891}·{0}∗ ·{891}·{0}+. Note that 110 times 34 is 8910 and therefore
the trailing 0 must be there. Furthermore, the nearest the two blocks of 110 can be
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is 110110 and that times 81 is 8918910. Thus it might be that there is no 0 between
the two words 891.

Exercise 12.20. Assume that a Turing machine does the following: It has 5 passes
over the input word w and at each pass, it replaces the current word v by v/3. In the
case that during this process of dividing by 3 a remainder different from 0 occurs for
the division of the full word, then computation is aborted as rejecting. If all divisions
go through and the resulting word v is w/35 then the Turing machine adds up the
digits and accepts iff the sum of digits is exactly 2 — note that it can reject once it
sees that the sum is above 3 and therefore this process can be done in linear time with
constant memory. The resulting language is regular by Theorem 12.18. Determine a
regular expression for this language.

Exercise 12.21. A Turing machine does two passes over a word and divides it the
decimal number on the tape each time by 7. It then accepts iff the remainders of the
two divisions sum up to 10, that is, either one pass has remainder 4 and the other
has remainder 6 or both passes have remainder 5. Note that the input for the second
pass is the downrounded fraction of the first pass divided by 7. Construct a dfa for
this language.

Exercise 12.22. Assume that a Turing machine checks one condition, does a pass
on the input word from left to right modifying it and then again checks the condition.
The precise activity is the following on a word from {0, 1, 2}∗:

Initialise c = 0 and update c to 1− c whenever a 1 is read (after doing the replace-
ment). For each symbol do the following replacement and then go right:

If c = 0 then 1 → 0, 2 → 1, 0 → 0;
If c = 1 then 1 → 2, 2 → 2, 0 → 1.

Here an example:

Before pass 0100101221010210

After pass 0011200222001220

The Turing machine accepts if before the pass there are an even number of 1 and
afterwards there are an odd number of 1.

Explain what the language recognised by this Turing machine is and why it is
regular. As a hint: interpret the numbers as natural numbers in ternary representation
and analyse what the tests and the operations do.
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Selftest 12.23. Provide a register machine program which computes the Fibonacci
sequence. Here Fibonacci(n) = n for n < 2 and Fibonacci(n) = Fibonacci(n − 1) +
Fibonacci(n− 2) for n ≥ 2. On input n, the output is Fibonacci(n).

Selftest 12.24. Define by structural induction a function F such that F (σ) is the
shortest string, if any, of the language represented by the regular expression σ. For
this, assume that only union, concatenation, Kleene Plus and Kleene Star are per-
mitted to combine languages. If σ represents the empty set then F (σ) = ∞. For
example, F ({0011, 000111}) = 4 and F ({00, 11}+) = 2.

Selftest 12.25. Construct a context-sensitive grammar for all words in {0}+ which
have length 2n for some n.

Selftest 12.26. Construct a deterministic finite automaton recognising the language
of all decimal numbers x which are multiples of 3 but which are not multiples of 10.
The deterministic finite automaton should have as few states as possible.

Selftest 12.27. Determine, in dependence of the number of states of a nondetermi-
nistic finite automaton, the best possible constant which can be obtained for the
following weak version of the pumping lemma: There is a constant k such that, for
all words w ∈ L with |w| ≥ k, one can split w = xyz with y 6= ε and xy∗z ⊆ L. Prove
the answer.

Selftest 12.28. Which class C of the following classes of languages is not closed un-
der intersection: regular, context-free, context-sensitive and recursively enumerable?
Provide an example of languages which are in C such that their intersection is not in
C.

Selftest 12.29. Provide a homomorphism h which maps 001 and 011 to words which
differ in exactly two digits and which satisfies that h(002) = h(311) and |h(23)| =
|h(32)|.

Selftest 12.30. Translate the following grammar into the normal form of linear
grammars:

({S}, {0, 1, 2}, {S → 00S11|222}, S).
Furthermore, explain which additional changes one would to carry out in order to
transform the linear normal form into Chomsky normal form.

Selftest 12.31. Consider the grammar

({S, T, U}, {0, 1}, {S → ST |TT |0, T → TU |UT |UU |1, U → 0}, S).
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Use the algorithm of Cocke, Kasami and Younger to check whether 0100 is generated
by this grammar and provide the corresponding table.

Selftest 12.32. Let L be deterministic context-free and H be a regular set. Which
of the following sets is not guaranteed to be deterministic context-free: L ·H, H · L,
L∩H or L∪H? Make the right choice and then provide examples of L,H such that
the chosen set is not deterministic context-free.

Selftest 12.33. Write a register machine program which computes the function
x 7→ x8. All macros used must be defined as well.

Selftest 12.34. The universal function e, x 7→ ϕe(x) is partial recursive. Now define
ψ as ψ(e) = ϕe(µx [ϕe(x) > 2e]); this function is partial-recursive as one can make
an algorithm which simulates ϕe(0), ϕe(1), . . . until it finds the first x such that ϕe(x)
takes a value y > 2e and outputs this value y; this simulation gets stuck if one of the
simulated computations does not terminate or if the corresponding input x does not
exist. The range A of ψ is recursively enumerable. Prove that A is undecidable; more
precisely, prove that the complement of A is not recursively enumerable.

Selftest 12.35. LetWe be the domain of the function ϕe for an acceptable numbering
ϕ0, ϕ1, . . . of all partial recursive functions. Construct a many-one reduction g from

A = {e : We is infinite}

to the set
B = {e : We = N};

that is, g has to be a recursive function such that We is infinite iff Wg(e) = N.

Selftest 12.36. Is it decidable to test whether a context-free grammar generates
infinitely many elements of {0}∗ · {1}∗?
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Solution for Selftest 12.23. The following register program computes the Fibonacci
sequence. R2 will carry the current value and R3, R4 the next two values where
R4 = R2 +R3 according to the recursive equation of the Fibonacci sequence. R5 is a
counting variable which counts from 0 to R1. When R1 is reached, the value in R2 is
returned; until that point, in each round, R3, R4 are copied into R2, R3 and the sum
R4 = R2 +R3 is updated.

Line 1: Function Fibonacci(R1);

Line 2: R2 = 0;

Line 3: R3 = 1;

Line 4: R5 = 0;

Line 5: R4 = R2 +R3;

Line 6: If R5 = R1 Then Goto Line 11;

Line 7: R2 = R3;

Line 8: R3 = R4;

Line 9: R5 = R5 + 1;

Line 10: Goto Line 5;

Line 11: Return(R2).

Solution for Selftest 12.24. One can define F as follows. For the base cases, F is
defined as follows:

• F (∅) = ∞;

• F ({w1, w2, . . . , wn}) = min{|wm| : m ∈ {1, . . . , n}}.

In the inductive case, when F (σ) and F (τ) are already known, one defined F (σ ∪ τ),
F (σ · τ), F (σ∗) and F (σ+) as follows:

• If F (σ) = ∞ then F (σ ∪ τ) = F (τ);
If F (τ) = ∞ then F (σ ∪ τ) = F (σ);
If F (σ) <∞ and F (τ) <∞ then F (σ ∪ τ) = min{F (σ), F (τ)};

• If F (σ) = ∞ or F (τ) = ∞
then F (σ · τ) = ∞
else F (σ · τ) = F (σ) + F (τ);

• F (σ∗) = 0;

• F (σ+) = F (σ).

Solution for Selftest 12.25. The grammar contains the non-terminals S, T, U and
the terminal 0 and the start symbol S and the following rules: S → 0|00|T0U , T →
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TV , V 0 → 00V , V U → 0U , T → W , W0 → 00W , WU → 00. Now S ⇒ T0U ⇒
W0U ⇒ 00WU ⇒ 0000 generates 04. Furthermore, one can show by induction
on n that S ⇒∗ T02

n−1U ⇒ TV 02
n−1U ⇒∗ T02

n+1−2V U ⇒ T02
n+1−1U and S ⇒∗

T02
n−1U ⇒ W02

n−1U ⇒∗ 02
n+1−2WU ⇒ 02

n+1

. So, for each n, one can derive 02
n+1

and one can also derive 0, 00 so that all words from {0}+ of length 2n can be derived.

Solution for Selftest 12.26. The deterministic finite automaton needs to memorise
two facts: the remainder by three and whether the last digit was a 0; the latter needs
only to be remembered in the case that the number is a multiple of 3. So the dfa has
four states: s, q0, q1, q2 where s is the starting state and q0, q1, q2 are the states which
store the remainder by 3 of the sum of the digits seen so far. The transition from
state s or qa (a ∈ {0, 1, 2}) on input b ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is as follows (where
also a = 0 in the case that the state is s):

• If a+ b is a multiple of 3 and b = 0 then the next state is s;

• If a+ b is a multiple of 3 and b 6= 0 then the next state is q0;

• If a+ b has the remainder c ∈ {1, 2} modulo 3 then the next state is qc.

Furthermore, s is the start state and q0 is the only accepting state.

Solution for Selftest 12.27. Assume that L is recognised by a nondeterministic
finite automaton having n states. Then the following holds: For every word w ∈ L of
length n or more, one can split w = xyz such that y 6= ε and xy∗z ⊆ L. For this one
considers an accepting run of the nfa on the word w which is a sequence q0q1 . . . qn of
states where qm is the state after having processed m symbols, so q0 is the initial state.
The state qn must be accepting. As there are n + 1 values q0, q1, . . . , qn but only n
states in the automaton, there are i, j with 0 ≤ i < j ≤ n such that qi = qj. Now let x
be the first i symbols of w, y be the next j− i symbols and z be the last n−j symbols
of w, clearly w = xyz and |y| = j − i > 0. It is easy to see that when y is omitted
then q0q1 . . . qiqj+1 . . . qn is a run of the automaton on xz and if y is repeated, one can
repeat the sequence from qitoqj accordingly. So q0 . . . qi(qi+1 . . . qj)

3qj+1 . . . qn is an
accepting run on xy3z. Thus all words in xy∗z are accepted by the nondeterministic
finite automaton and xy∗z ⊆ L.

Furthermore, there are for each n finite automata with n states which accept
all words having at most n − 1 symbols, they advance from one state to the next
upon reading a symbol and get stuck once all states are used up. Thus the pumping
constant cannot be n − 1, as otherwise the corresponding language would need to
have infinitely many words, as a word of length n− 1 could be pumped. So n is the
optimal constant.

Solution for Selftest 12.28. The context-free languages are not closed under in-
tersection. The example is the language {0n1n2n : n ∈ N} which is the intersection of
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the two context-free languages {0n1n2m : n,m ∈ N} and {0n1m2m : n,m ∈ N}. Both
languages are context-free; actually they are even linear languages.

Solution to Selftest 12.29. One can choose the homomorphism given by h(0) = 55,
h(1) = 66, h(2) = 6666 and h(3) = 5555. Now h(001) = 555566 and h(011) = 556666
so that they differ in two positions and h(002) = h(311) = 55556666. Furthermore,
|h(23)| = |h(32)| is true for every homomorphism and a vacuous condition.

Solution to Selftest 12.30. The grammar can be translated into the normal form
for linear grammars as follows: The non-terminals are S, S ′, S ′′, S ′′′, S ′′′, T, T ′ and the
rules are S → 0S ′|2T , S ′ → 0S ′′, S ′′ → S ′′′1, S ′′′ → S1, T → 2T ′, T ′ → 2.

For Chomsky Normal form one would have to introduce two further non-terminals
V,W representing 0 and 1 and use that T ′ → 2. Then one modifies the grammar
such that the terminals do not appear in any right side with two non-terminals. The
updated rules are the following: S → V S ′|T ′T , S ′ → V S ′′, S ′′ → S ′′′W , S ′′′ → SW ,
T → T ′T ′, T ′ → 2, V → 0, W → 1.

Solution for Selftest 12.31. The given grammar is ({S, T, U}, {0, 1}, {S → ST |TT |
0, T → TU |UT |UU |1, U → 0}, S). Now the table for the word 0100 is the following:

E1,4 = {S, T}
E1,3 = {S, T} E2,4 = {S, T}

E1,2 = {S, T} E2,3 = {T} E3,4 = {T}
E1,1 = {S, U} E2,2 = {T} E3,3 = {S, U} E4,4 = {S, U}
0 1 0 0

As S ∈ E1,4, the word 0100 is in the language.

Solution for Selftest 12.32. If L is deterministic context-free and H is regular then
L∩H, L∪H and L·H are deterministic context-free. However, the set H ·L might not
be deterministic context-free. An example is the following set: H = ({0}∗ · {1})∪{ε}
and L = {0n10n : n ∈ N}. L is one of the standard examples of deterministic
context-free sets; however, when a deterministic pushdown automaton processes an
input starting with 0n10n, it has to check whether the number of 0 before the 1 and
after the 1 are the same and therefore it will erase from the stack the information on
how many 0 are there. This is the right thing to do in the case that the input is from
{ε} · L. However, in the case that the input is from {0}∗ · {1} · L, the deterministic
pushdown automaton has now to process in total an input of the form 0n10n10m which
will be accepted iff n = m. The information on what n was is, however, no longer
available.

Solution for Selftest 12.33. One first defines the function Square computing x 7→
x2.
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Line 1: Function Square(R1);

Line 2: R3 = 0;

Line 3: R2 = 0;

Line 4: R2 = R2 +R1;

Line 5: R3 = R3 + 1;

Line 6: If R3 < R1 then goto Line 4;

Line 7: Return(R1).

Now one defines the function x 7→ x8.

Line 1: Function Eightspower(R1);

Line 2: R2 = Square(R1);

Line 3: R3 = Square(R2);

Line 4: R4 = Square(R3);

Line 5: Return(R4).

Solution for Selftest 12.34. First note that the complement of A is infinite: All
elements of A ∩ {0, 1, . . . , 2e} must be from the finite set {ψ(0), ψ(1), . . . , ψ(e − 1)}
which has at most e elements, thus there must be at least e non-elements of A below
2e. If the complement of A would be recursively enumerable then N−A is the range
of a function ϕe which is defined for all x. Thus ψ(e) would be ϕe(x) for the first x
where ϕe(x) > 2e. As the complement of A is infinite, this x must exist. But then
ψ(e) is in both: it is in A by the definition of A as range of ψ and it is in the range
of ϕe which is the complement of A. This contradiction shows that the complement
of A cannot be the range of a recursive function and therefore A cannot be recursive.

Solution for Selftest 12.35. The task is to construct a many-one reduction g from
A = {e : We is infinite} to the set B = {e : We = N}.

For this task one first defines a partial recursive function f as follows: Let M be
a universal register machine which simulates on inputs e, x the function ϕe(x) and
outputs the result iff that function terminates with a result; if the simulation does
not terminate then M runs forever. Now let f(e, x) is the first number t (found by
exhaustive search) such that there are at least x numbers y ∈ {0, 1, . . . , t} for which
M(e, y) terminates within t computation steps. Note that f(e, x) is defined iff We has
at least x elements. There is now a recursive function g such that ϕg(e)(x) = f(e, x)
for all e, x where either both sides are defined and equal or both sides are undefined.
If the domain We of ϕe is infinite then ϕg(e) is defined for all x and Wg(e) = N; if the
domain We of ϕe has exactly y elements then f(e, x) is undefined for all x > y and
Wg(e) is a finite set. Thus g is a many-one reduction from A to B.
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Solution for Selftest 12.36. It is decidable: The way to prove it is to construct from
the given context-free grammar for some set L a new grammar for the intersection
L∩{0}∗ · {1}∗, then to convert this grammar into Chomsky Normal form and then to
run the algorithm which checks whether this new grammar generates an infinite set.
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[9] J. Richard Büchi. On a decision method in restricted second order arithmetic.
Proceedings of the International Congress on Logic, Methodology and Philosophy
of Science, Stanford University Press, Stanford, California, 1960.
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[14] Christopher Chak, Rūsinņš Freivalds, Frank Stephan and Henrietta Tan. On
block pumpable languages. Theoretical Computer Science, 609:272–285, 2016.

[15] Ashok K. Chandra, Dexter C. Kozen and Larry J. Stockmeyer. Alternation.
Journal of the ACM, 28(1):114–133, 1981.
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[50] Marcin Jurdziński. Deciding the winner in parity games is in UP ∩Co−UP.
Information Processing Letters, 68(3):119–124, 1998.
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