Theory of Computing 2
Chomsky Hierarchy and Grammars

Frank Stephan
Department of Computer Science
Department of Mathematics
National University of Singapore
fstephan@comp.nus.edu.sg
Languages

Language = Set of Strings over finite Alphabet Σ. Examples for Finite Languages: \emptyset, $\{\varepsilon, 0, 11\}$.

Union: $L \cup H = \{u : u \in L \text{ or } u \in H\}$.
Intersection: $L \cap H = \{u : u \in L \text{ and } u \in H\}$.
Set Difference: $L \setminus H = \{u : u \in L \text{ and } u \notin H\}$.
Concatenation: $000 \cdot 1122 = 0001122$;
$L \cdot H = \{v \cdot w : v \in L \text{ and } w \in H\}$.
Kleene Star: $L^* = \{\varepsilon\} \cup L \cup L \cdot L \cup L \cdot L \cdot L \cup \ldots$
$= \{w_1 \cdot w_2 \cdot \ldots \cdot w_n : n > 0 \text{ and } w_1, w_2, \ldots, w_n \in L\}$.
Kleene Plus: $L^+ = L \cup L \cdot L \cup L \cdot L \cdot L \cup \ldots$
$= \{w_1 \cdot w_2 \cdot \ldots \cdot w_n : n > 0 \text{ and } w_1, w_2, \ldots, w_n \in L\}$.

Regular languages are those which can be formed from finite languages using union, concatenation and Kleene star. Regular expressions write down such definitions explicitly.
A set L has **polynomial growth** iff there is a polynomial p such that for all n, there are at most $p(n)$ words in L which are shorter than n.

Examples are $\{00\}^*$, $\{0\}^* \cup \{1\}^*$ and $\{0\}^* \cdot \{1\}^* \cdot \{2\}^*$.

A set L has **exponential growth** iff there are constants h, k such that for each n there are at least 2^n words in L which are shorter than $hn + k$.

Examples are $\{0, 1\}^*$ and $\{0000, 1111\}^* \cdot \{2222\}$.

Theorem

Every regular set has either polynomial or exponential growth.

Proof by structural induction: Let $P(L)$ denote that L has either polynomial or exponential growth.

$P(L)$ is true for all finite sets L. If $P(L)$ and $P(H)$ are true, so are $P(L \cup H)$, $P(L \cdot H)$ and $P(L^*)$.

Theory of Computing 2 Chomsky Hierarchy and Grammars – p. 3
Grammars

Grammar \((N, \Sigma, P, S)\) describes how to generate the words in a language; the language \(L\) of a grammar consists of all the words in \(\Sigma^*\) which can be generated.

\(N\): Non-terminal alphabet, disjoint to \(\Sigma\).

\(S \in N\) is the start symbol.

\(P\) consists of rules \(l \rightarrow r\) with each rule having at least one symbol of \(N\) in the word \(l\).

\(v \Rightarrow w\) iff there are \(x, y\) and rule \(l \rightarrow r\) in \(P\) with \(v = xly\) and \(w = xry\). \(v \Rightarrow^* w\): several such steps.

The grammar with \(N = \{S\}\), \(\Sigma = \{0, 1\}\) and \(P = \{S \rightarrow SS, S \rightarrow 0, S \rightarrow 1\}\) permits to generate all nonempty binary strings.

\(S \Rightarrow SS \Rightarrow SSS \Rightarrow 0SS \Rightarrow 01S \Rightarrow 011\).
These conventions are followed often, but not strictly.

Terminal symbols or alphabet symbols: 0, 1, 2, . . . ;
Variables for terminals: a, b, c, . . . ;
Variables for sets of alphabets: Σ, Γ, Δ ;
Non-Terminals: S, T, . . . ; Start symbol S ;
Variables for terminals: A, B, C, . . . ;

Words over terminals:
ε, 0, 1, 2, 3, . . . , 00, 01, 10, 02, 11, 20, 03, . . . ;
Symbol repetition in words: 0^81^9, 0^n1^n2^n ;
Variables for words over terminals: u, v, w, x, y, z ;
Words over non-terminals and terminals: same letters, sometimes capital.
Conventions 2

Rules: $S \rightarrow 00|11|ST|T$, $T \rightarrow TT|222$;

Variables for rules: $l \rightarrow r$, $A \rightarrow w$;

Derivation one step: $v \Rightarrow w$;

Derivation arbitrary steps (including none): $v \Rightarrow^* w$;

Languages: \emptyset, $\{00, 11\}$, Σ^*, $\{0, 1\}^*$, regular expressions;

Variables for Languages: L, H, K, . . . ;

States of automata (next lecture): o, p, q, r, s, t; start: s;

Automata transition function: δ;

Variables of states of automata: often same symbols;

Natural numbers:
0, 1, 2, . . . , 9, 10, 11, . . . , 99, 100, 101, 102, . . . ;

Variables of natural numbers: m, n, i, j, k, . . . ;

Variables for functions: f, g, h, . . . ;

Set of natural numbers: \mathbb{N}.
Examples

Example 2.3
At least three symbols, 0s followed by 1s, at least one 0 and one 1.
\(N = \{S, T\}, \Sigma = \{0, 1\} \), start symbol S,
P has \(S \rightarrow 0T1, T \rightarrow 0T, T \rightarrow T1, T \rightarrow 0, T \rightarrow 1 \).

Example 2.4
All words with as many 0s as 1s.
\(N = \{S\}, \Sigma = \{0, 1\}, S \rightarrow SS|0S1|1S0|\varepsilon \).
The symbol | separates alternatives.

Example 2.5
All words of odd length.
\(N = \{S, T\}, \Sigma = \{0, 1, 2\} \), start symbol S,
\(S \rightarrow 0T|1T|2T|0|1|2, T \rightarrow 0S|1S|2S \).
The Chomsky Hierarchy

Grammar \((N, \Sigma, P, S)\) generating \(L\).

CH0: No restriction. Generates all recursively enumerable languages.

CH1 (context-sensitive): Every rule is of the form \(uAw \rightarrow uvw\) with \(A \in N\), \(u, v, w \in (N \cup \Sigma)^*\) and \(v = \varepsilon\) is only possible if \(A = S\) and \(S\) does not occur on any right side of a rule.

Easier formalisation: If \(l \rightarrow r\) is a rule then \(|l| \leq |r|\), that is, \(r\) is at least as long as \(l\). Special rule (as above) for the case that \(\varepsilon \in L\).

CH2 (context-free): Every rule is of the form \(A \rightarrow w\) with \(A \in N\) and \(w \in (N \cup \Sigma)^*\).

CH3 (regular): Every rule is of the form \(A \rightarrow wB\) or \(A \rightarrow w\) with \(A, B \in N\) and \(w \in \Sigma^*\).
Examples

A language L is called context-sensitive / context-free / regular iff it can be generated by a grammar of respective type.

Regular grammar for Example 2.3:
$N = \{S, T\}$, $\Sigma = \{0, 1\}$, start symbol S,
$S \rightarrow 0S | 00T | 01T$, $T \rightarrow 1T | 1$.

Grammar for Example 2.4 is context-free. This was the example of all words with same number of 0 and 1.

Grammar for Example 2.5 is regular. This was the example of all words of odd length.

Example 2.9.
Context-Sensitive Grammar for $\{0^n1^n2^n : n \in \mathbb{N}\}$.
$N = \{S, T, U\}$, $\Sigma = \{0, 1, 2\}$, start symbol S,
$S \rightarrow 012 | 0T12 | \varepsilon$, $T \rightarrow 0T1U | 01U$, $U1 \rightarrow 1U$, $U2 \rightarrow 22$.
Expression \Rightarrow Regular Grammar

Theorem
Every regular language is generated by a regular grammar.
The next slide will provide the following details:

- Every finite set is generated by a regular grammar;
- If two regular grammars with disjoint sets of non-terminals generate L and H then one can combine these two grammars to new regular grammars for $L \cup H$, $L \cdot H$ and L^*, respectively.

One can always rename the non-terminals in order to achieve that two grammars do not use the same non-terminals; thus one can prove by structural induction that every regular set L satisfies the property “L is generated by some regular grammar.”
Constructing the Grammars

If \(L = \{w_1, w_2, \ldots, w_n\} \) then grammar
\((\{S\}, \Sigma, \{S \rightarrow w_1 | w_2 | \ldots | w_n\}, S)\) generates \(L \).

Assume that the regular grammar \((N_1, \Sigma, P_1, S_1)\) generates \(L \) and the regular grammar \((N_2, \Sigma, P_2, S_2)\) generates \(H \) and \(N_1 \cap N_2 = \emptyset \). \(A, B \) are always non-terminals and \(w \in \Sigma^* \).

Choose \(S \not\in N_1 \cup N_2 \cup \Sigma \); the regular grammar
\((\{S\} \cup N_1 \cup N_2, \Sigma, \{S \rightarrow S_1 | S_2\} \cup P_1 \cup P_2, S)\) generates \(L \cup H \).

Let \(P = \{A \rightarrow wB : A \rightarrow wB \text{ is in } P_1 \cup P_2\} \cup \{A \rightarrow wS_2 : A \rightarrow w \text{ is in } P_1\} \cup \{A \rightarrow w : A \rightarrow w \text{ is in } P_2\} \); the regular grammar \((N_1 \cup N_2, \Sigma, P, S_1)\) generates \(L \cdot H \).

Let \(P = P_1 \cup \{S \rightarrow S_1 | \varepsilon\} \cup \{A \rightarrow wS : A \rightarrow w \text{ is in } P_1\} \); the regular grammar \((N_1 \cup \{S\}, \Sigma, P, S)\) generates \(L^* \).
Example 2.11

Given \((\{0, 1\}^* \cdot 2 \cdot \{0, 1\}^* \cdot 2) \cup \{0, 2\}^* \cup \{1, 2\}^* \).

Choose Non-Terminals \(S, T, U, V, W \) with
\[
L_S = L_T \cup L_V \cup L_W;
L_T = \{0, 1\}^* \cdot 2 \cdot \{0, 1\}^* \cdot 2 = \{0, 1\}^* \cdot 2 \cdot L_U;
L_U = \{0, 1\}^* \cdot 2; \\
L_V = \{0, 2\}^*; \\
L_W = \{1, 2\}^*.
\]

Grammar \((\{S, T, U, V, W\}, \{0, 1, 2\}, P, S) \) with these rules:

\[
S \rightarrow T|V|W, \\
T \rightarrow 0T|1T|2U, \\
U \rightarrow 0U|1U|2, \\
V \rightarrow 0V|2V|\varepsilon, \\
W \rightarrow 1W|2W|\varepsilon.
\]
Regular Grammar ⇒ Expression

Let R_1, R_2, \ldots, R_n be an explicit list of rules in the regular grammar and define inductively for $m = 0, 1, \ldots, n$ and all non-terminals C, D the sets $E_{C,D,m}, E_{C,m}$ defined as follows:

- $E_{C,D,m}$ is the set of all words $v \in \Sigma^*$ for which there is a derivation $C \Rightarrow^* vD$ using only the rules R_1, R_2, \ldots, R_m;
- $E_{C,m}$ is the set of all words $v \in \Sigma^*$ for which there is a derivation $C \Rightarrow^* v$ using only the rules R_1, R_2, \ldots, R_m.

It will be proven by induction that all these sets can be generated by regular expressions. The base case is that $E_{C,C,0} = \{\varepsilon\}$, as one can derive $C \Rightarrow^* C$ without applying any rule, that $E_{C,D,0} = \emptyset$ when $C \neq D$ and that $E_{C,0} = \emptyset$.
Inductive Step

For \(m = 0, 1, \ldots, n - 1 \), define all \(E_{C,D,m+1} \) and \(E_{C,m+1} \) using the corresponding expressions on level \(m \).

If \(R_{m+1} \) is \(A \rightarrow w \):

- \(E_{C,D,m+1} = E_{C,D,m} \);
- \(E_{C,m+1} = E_{C,m} \cup (E_{C,A,m} \cdot \{w\}) \).

If \(R_{m+1} \) is \(A \rightarrow wB \):

- \(E_{C,D,m+1} = E_{C,D,m} \cup (E_{C,A,m} \cdot \{w\} \cdot (E_{B,A,m} \cdot \{w\})^* \cdot E_{B,D,m}) \);
- \(E_{C,m+1} = E_{C,m} \cup (E_{C,A,m} \cdot \{w\} \cdot (E_{B,A,m} \cdot \{w\})^* \cdot E_{B,m}) \).

The final regular expression is \(E_{S,n} \) where \(S \) is the start symbol.
Example 2.13

Regular grammar \((\{S, T\}, \{0, 1, 2, 3\}, P, S) \) with
\(S \rightarrow 0S|1T|2 \) and \(T \rightarrow 0T|1S|3 \).
Let \(L_S = \{w : (S \rightarrow w) \in P\} = \{2\} \) and \(L_T = \{3\} \).
Let \(L_{S,S} = \{w : (S \rightarrow wS) \in P\} = \{0\} \), \(L_{S,T} = \{1\} \),
\(L_{T,S} = \{1\} \), \(L_{T,T} = \{0\} \).

Regular Expression:
\[(L_{S,S})^* \cdot (L_{S,T} \cdot (L_{T,T})^* \cdot L_{T,S} \cdot (L_{S,S})^*)^* \cdot (L_{S} \cup L_{S,T} \cdot (L_{T,T})^* \cdot L_T) \]
giving \(0^* \cdot (10^*10^*)^* \cdot (2 \cup 10^*3) \).

Equivalent expression:
\[(L_{S,S} \cup L_{S,T} \cdot (L_{T,T})^* \cdot L_{T,S})^* \cdot (L_{S} \cup L_{S,T} \cdot (L_{T,T})^* \cdot L_T) \]
giving \((0 \cup 10^*1)^* \cdot (2 \cup 10^*3) \).
The Pumping Lemma

Theorem 2.15 (a)
Let L be a regular language. There is a constant k such that every $w \in L$ with $|w| > k$ equals to xyz with $y \neq \epsilon$ and $|xy| \leq k$ and $xy^*z \subseteq L$.

Tighter versions will be shown later.

Example
$L = 0110 \cdot \{2, 3\}^* \cup 001100 \cdot \{22, 33\}^* \cup 11 \cup 0011001100 \cdot \{2, 3\}$. Then the constant k is 11.
If $w \in L$ and $|w| > 11$ then there are at least two occurrences of $2, 3$ in w.
So split w into xyz such that y is the first block of two digits from $2, 3$ occuring in w.
Then $xy^*z \subseteq L$.
Proof by Structural Induction

If \(k \) is larger than the length of all members of \(L \) then \(L \) satisfies the Pumping Lemma with constant \(k \).

If \(L, H \) satisfy the Pumping Lemma with constant \(k \) so does \(L \cup H \).

If \(L, H \) satisfy the Pumping Lemma with constant \(k \) then \(L \cdot H \) satisfies the Pumping Lemma with constant \(2k \): if \(v \in L \) and \(w \in H \) satisfy \(|vw| > 2k \) then either \(|v| \leq k \) and one can pump inside the first \(k \) symbols of \(w \) or \(|v| > k \) and one can pump inside the first \(k \) symbols of \(v \).

If \(L \) satisfies the Pumping Lemma with constant \(k \) so does \(L^* \): If \(v = w_1w_2 \ldots w_n \) with \(|v| > k \) and \(w_1, w_2, \ldots, w_n \in L \) then either \(|w_1| \leq k \) and \(w_1^*w_2 \ldots w_n \subseteq L \) or \(|w_1| > k \) and one can pump inside \(w_1 \).
Weaker Version of Pumping Lemma

Corollary 2.16
If L is regular then there is a constant k such that for all $u \in L$ longer than k there are x, y, z with $y \neq \varepsilon$, $u = xyz$ and $xy^*z \subseteq L$.

Exercise 2.17
Let p_1, p_2, p_3, \ldots be the list of prime numbers in ascending order. Show that $L = \{0^n : n > 0 \text{ and } n \neq p_1 \cdot p_2 \cdot \ldots \cdot p_m \text{ for all } m\}$ satisfies Corollary 2.16 but does not satisfy Theorem 2.15 (a).
Exercise 2.18

Assume that (N, Σ, P, S) is a regular grammar and h is a constant such that N has less than h elements and for all rules of the form $A \rightarrow wB$ or $A \rightarrow w$ with $A, B \in N$ and $w \in \Sigma^*$ it holds that $|w| < h$. Show that Theorem 2.15 (a) holds with the constant k being h^2.

Theory of Computing 2 Chomsky Hierarchy and Grammars – p. 19
Example 2.20
Let $L = \{ w \in \{0, 1\}^* : w \text{ has as many } 0\text{s as } 1\text{s}\}$.

L satisfies Corollary 2.16.

Given $w \in \{0, 1\}^* - \{0\}^* - \{1\}^*$. Let $w = xyz$ with $y \in \{01, 10\}$.

If $w \in L$ then $xy^*z \subseteq L$.

L does not satisfy Theorem 2.15 (a), as there is a constraint on the position where the word is pumped.

Let k be the pumping constant and consider $0^{k+1}1^{k+1}$. Pumping before position k expands or reduces the number of 0s while keeping the number of 1s the same.
Theorem 2.15 (b): Pumping-Lemma for CTF
Assume that L is a context-free language. Then there is a constant k such that for all $u \in L$ with $|u| > k$ there is a representation $vwxyz$ of u with $|wxy| \leq k$ and $w \neq \varepsilon$ or $y \neq \varepsilon$ and $vw^nyx^nzy \in L$ for all $n \in \mathbb{N}$.

Applications
Showing that certain languages are not context-free or regular.

$L = \{u : u$ is a decimal number where every digit appears as often as the other digits$\}$. This language is not context-free.

$L = \{3^n7^n : n \in \{1, 2, 3, \ldots\}\}$. This language is context-free but not regular.
Example 2.19
The set \(L = \{0^p : p \text{ is a prime}\} \) is not context-free.

Let \(k \) be the pumping constant and \(p \) be a prime number larger than \(k \).

Now \(0^p = vwxyz \) with \(wy \neq \varepsilon \) and \(vw^rxy^rz \in L \) for all \(r \).

Let \(q = |wy| \), note that \(q > 0 \).

Now \(vw^{p+1}xy^{p+1}z \in L \) and has length \(p + p \cdot q \).

This is \(p \cdot (1 + q) \) and is not a prime.

Hence \(0^{p+p \cdot q} \notin L \), a contradiction to the Pumping Lemma.

So \(L \) does not satisfy the Pumping Lemma for context-free languages.
Theorem 2.21

Let $L \subseteq \{0\}^*$. The following conditions are equivalent for L.

(a) L is regular;
(b) L is context-free;
(c) L satisfies the Pumping Lemma for regular languages;
(d) L satisfies the Pumping Lemma for context-free languages.

Clearly (a) implies (b), (c) and (b), (c) both imply (d).
Proof of \((d)\) implies \((a)\)

Assume that \(k\) is the pumping constant for the context-free Pumping Lemma. Then, for every word \(u \in L\) with \(|u| > k\), one can split \(0^n\) into \(vwxyz\) such that \(|wxy| \leq k\) and \(wy \neq \varepsilon\) and \(vw^hxy^hz \in L\) for all \(h\).

This in particular holds when \(h - 1\) is a multiple of \(k!/|wy|\).

As words from \(0^*\) commute with each other, \(0^n \cdot (0^k)!^* \subseteq L\).

For each remainder \(m \in \{0, 1, \ldots, k! - 1\}\), let

\[
 n_m = \min\{i : \exists j \ [i > k \text{ and } i = m + jk! \text{ and } 0^i \in L]\}
\]

and let \(n_m = \infty\) when there is no such \(i\), that is, \(\min \emptyset = \infty\).

Now \(L\) is the union of \(L \cap \{\varepsilon, 0, 00, \ldots, 0^k\}\) and those sets \(0^{n_m} \cdot (0^k)!^*\) where \(m < k!\) and \(n_m < \infty\). Thus \(L\) is regular.
Construct context-free grammars for the sets

$L = \{0^n1^m2^k : n < m \text{ or } m < k\}$,

$H = \{0^n1^m2^{n+m} : n, m \in \mathbb{N}\}$ and

$K = \{w \in \{0, 1, 2\}^* : w \text{ has a subword of the form } 20^n1^n2 \text{ for some } n > 0 \text{ or } w = \varepsilon\}$.

Which of the versions of the Pumping Lemma (Theorems 2.15 (a) and 2.15 (b) and Corollary 2.16) are satisfied by L, H and K, respectively.
Exercise 2.23

Exercise
Let \(L = \{0^n1^n2^n : n \in \mathbb{N}\} \).

Show that this language is not context-free using the Pumping Lemma for context-free languages.

Comment
This is a classical result and standard exercise in the field. This example often comes up and it is useful to remember it. It will be used in varied form for various further results.
Additional Exercises

Exercise 2.24
Let \(L = \{0^h1^i2^j3^k : (h \neq i \text{ and } j \neq k) \text{ or } (h \neq k \text{ and } i \neq j)\} \) be given. Construct a context-free grammar for \(L \) and determine which of versions of the Pumping Lemma (Corollary 2.16 and Theorems 2.15 (a) and 2.15 (b)) are satisfied by \(L \).

Exercise 2.25
Consider the linear grammar \((\{S\}, \Sigma, \{S \rightarrow 00S|S1|S2|3\}, S) \) and construct for the language \(L \) generated by the grammar the following: a regular grammar for \(L \) and a regular expression for \(L \).
Grammars and Growth

For the following exercises, let $f(n)$ be the number of words $w \in L$ with $|w| < n$. To answer the questions, either construct a grammar witnessing that such an L exists or prove that it cannot exist.

Exercise 2.26
Is there a context-free language L with $f(n) = \lceil \sqrt{n} \rceil$?

Exercise 2.27
Is there a regular L with $f(n) = n(n + 1)/2$?

Exercise 2.28
Is there a context-sensitive L with $f(n) = n^n$, where $0^0 = 0$?

Exercise 2.29
Is there a regular L with $f(n) = (3^n - 1)/2 + \lfloor n/2 \rfloor$?

Exercise 2.30
Is there a regular L with $f(n) = \lfloor n/3 \rfloor + \lfloor n/2 \rfloor$?